

' When you seem t&be stumped, stop for a minute and think. All the information you
need may be right"ih"front of your nose if you just look at things a little differently.
Here's a case in poin6:;:~
When I was in college&-iisEd to stay around campus for the summer. Oh, I'd take a
course or two, but m&tly it was an excuse to hang out and have fun. In that spirit, my
girlfriend, Adrian ({it my future wife, partly for reasons that will soon become appar-
ent), bussed in to sp,&nd a week, sharing a less-than-elegant $150 per month apartment
with me and br>k ggcessity, my roommate.
Our apartment w?i$::pretty much standard issue for two male college students; maybe
even a cut above. The dishes were usually washed, there was generally food in the
refrigerator, and nothing larger than a small dog had taken up permanent residence
in the bathroom. However, there was one sticking point (literally): the kitchen floor.
This floor-standard tile, with a nice pattern of black lines on an off-white back-
ground (or so we thought)-had never been cleaned. By which I mean that I know
for a certainty that we had never cleaned it, but I suspect that it had in fact not been
cleaned since the Late Jurassic, or possibly earlier. Our feet tended to stick to it; had
the apartment suddenly turned upside-down, I think we'd all have been hanging
from the ceiling.
One day, my roommate and I returned from a pickup basketball game. Adrian, having
been left to her own devices for a couple of hours, had apparently kept herself busy.

."e s '"".$" .

02..8gj iag$*.&!&&

26 1

optimizing a pretty optimum search algorithm

“Notice anything?” she asked, with an edge to her voice that suggested we had damned
well better.
“Uh, you cooked dinner?” I guessed. ‘Washed the dishes? Had your hair done?” My
roommate was equally without a clue.
She stamped her foot (really; the only time I’ve ever seen it happen), and said, “No,
you jerks! The kitchen floor! Look at the floor! I cleaned it!”
The floor really did look amazing. It was actually all white; the black lines had been
grooves filled with dirt. We assured her that it looked terrific, itjust wasn’t that obvi-
ous until you knew to look for it; anyone would tell you that it wasn’t the kind of
thing that jumped out at you, but it really was great, no kidding. We had almost
smoothed things over, when a friend walked in, looked around with a start, and said,
“Hey! Did you guys put in a new floor?”
As I said, sometimes everything you need to know is right in front of your nose.
Which brings us to Boyer-Moore string searching.

String Searching Refresher
I’ve discussed string searching earlier in this book, in Chapters 5 and 9. You may want
to refer back to these chapters for some background on string searching in general.
I’m also going to use some of the code from that chapter as part of this chapter’s test
suite. For further information, you may want to refer to the discussion of string search-
ing in the excellent Algorithm in C, by Robert Sedgewick (Addison-Wesley), which
served as the primary reference for this chapter. (If you look at Sedgewick, be aware
that in the Boyer-Moore listing on page 288, there is a mistake: “j > 0” in the for loop
should be “j >= 0,” unless I’m missing something.)
String searching is the simple matter of finding the first occurrence of a particular
sequence of bytes (the pattern) within another sequence of bytes (the buffer). The
obvious, brute-force approach is to try every possible match location, starting at the
beginning of the buffer and advancing one position after each mismatch, until ei-
ther a match is found or the buffer is exhausted. There’s even a nifty string instruction,
REPZ CMPS, that’s perfect for comparing the pattern to the contents of the buffer
at each location. What could be simpler?
We have some important information that we’re not yet using, though. Typically, the
buffer will contain a wide variety of bytes. Let’s assume that the buffer contains text,
in which case there will be dozens of different characters; and although the distribu-
tion of characters won’t usually be even, neither will any one character constitute
half the buffer, or anything close. A reasonable conclusion is that the first character
of the pattern will rarely match the first character of the buffer location currently
being checked. This allows us to use the speedy REPNZ S W B to whiz through the
buffer, eliminating most potential match locations with single repetitions of S U B .

262 Chapter 14

Only when that first character does (infrequently) match must we drop back to the
slower REPZ CMPS approach.
It’s important to understand that we’re assuming that the buffer is typical text. That’s
what I meant at the outset, when I said that the information you need may be under
your nose.

Formally, you don ’t know a blessed thing about the search buffeer, but experience, p common sense, and your knowledge of the application give you a great deal of
useful, ifsomewhat imprecise, information.

If the buffer contains the letter ‘A’ repeated 1,000 times, followed by the letter ‘B,’
then the REPNZ SWB/REPZ CMPS approach will be much slower than the brute-
force REPZ CMPS approach when searching for the pattern “AB,” because REPNZ
SCASB would match at every buffer location. You could construct a horrendous worst-
case scenario for almost any good optimization; the key is understanding the usual
conditions under which your code will work.
As discussed in Chapter 9, we also know that certain characters have lower probabili-
ties of matching than others. In a normal buffer, ‘T’ will match far more often than
‘X.’ Therefore, if we use REPNZ SCASB to scan for the least common letter in the
search string, rather than the first letter, we’ll greatly decrease the number of times
we have to drop back to REPZ CMPS, and the search time will become very close to
the time it takes REPNZ SCASB to go from the start of the buffer to the match
location. If the distance to the first match is N bytes, the least-common RJPNZ SCASB
approach will take about as long as N repetitions of REPNZ SCASB.
At this point, we’re pretty much searching at the speed of REPNZ S W B . On the
x86, there simply is no faster way to test each character in turn. In order to get any
faster, we’d have to check fewer characters-but we can’t do that and still be sure of
finding all matches. Can we?
Actually, yes, we can.

The Boyer-Moore Algorithm
All our apn‘on‘ knowledge of string searching is stated above, but there’s another sort
of knowledge-knowledge that’s generated dynamically. As we search through the
buffer, we acquire information each time we check for a match. One sort of informa-
tion that we acquire is based on partial matches; we can often skip ahead after partial
matches because (take a deep breath!) by partially matching, we have already implic-
itly done a comparison of the partially matched buffer characters with all possible
pattern start locations that overlap those partially-matched bytes.
If that makes your head hurt, it should-and don’t worry. This line of thinking, which is
the basis of the Knuth-Morris-Pratt algorithm and half the basis of the Boyer-Moore

Boyer-Moore String Searching 263

algorithm, is what gives Boyer-Moore its reputation for inscrutability. That reputa-
tion is well deserved for this aspect (which I will not discuss further in this book), but
there’s another part of Boyer-Moore that’s easily understood, easily implemented,
and highly effective.
Consider this: We’re searching for the pattern “ABC,” beginning the search at the
start (offset 0) of a buffer containing “ABZABC.” We match on ‘A,’ we match on ‘B,’
and we mismatch on ‘C’; the buffer contains a ‘Z’ in this position. What have we
learned? Why, we’ve learned not only that the pattern doesn’t match the buffer start-
ing at offset 0, but also that it can’t possibly match starting at offset 1 or offset 2,
either! After all, there’s a ‘Z’ in the buffer at offset 2; since the pattern doesn’t con-
tain a single ‘Z,’ there’s no way that the pattern can match starting at any location
from which it would span the ‘Z’ at offset 2. We can just skip straight from offset 0 to
offset 3 and continue, saving ourselves two comparisons.
Unfortunately, this approach only pays off big when a near-complete partial match is
found; if the comparison fails on the first pattern character, as often happens, we can
only skip ahead 1 byte, as usual. Look at it differently, though: What if we compare
the pattern starting with the last (rightmost) byte, rather than the first (leftmost)
byte? In other words, what if we compare from high memory toward low, in the
direction in which string instructions go after the STD instruction? After all, we’re
comparing one set of bytes (the pattern) to another set of bytes (a portion of the
buffer) ; it doesn’t matter in the least in what order we compare them, so long as all
the bytes in one set are compared to the corresponding bytes in the other set.

Why on earth would we want to start with the rightmost character? Because a 1 mismatch on the rightmost character tells us a great deal more than a mismatch on
the leftmost character.

We learn nothing new from a mismatch on the leftmost character, except that the
pattern can’t match starting at that location. A mismatch on the rightmost character,
however, tells us about the possibilities of the pattern matching starting at every buffer
location from which the pattern spans the mismatch location. If the mismatched
character in the buffer doesn’t appear in the pattern, then we’ve just eliminated not
one potential match, but as many potential matches as there are characters in the
pattern; that’s how many locations there are in the buffer that might have matched,
but have just been shown not to, because they overlap the mismatched character
that doesn’t belong in the pattern. In this case, we can skip ahead by the full pattern
length in the buffer! This is how we can outperform even REPNZ SCASB; REPNZ
SCMB has to check every byte in the buffer, but Boyer-Moore doesn’t.
Figure 14.1 illustrates the operation of a Boyer-Moore search when the rightmost char-
acter of the search pattern (which is the first character that’s compared at each location
because we’re comparing backwards) mismatches with a buffer character that appears

264 Chapter 14

Start of + 0
buffer being
searched

2
3
4
5
6
7
a
9

10
1 1
12
13
14
15

R
A
T
E

<blank:,

A
N
D

<blank>

E
Q
U
A
L

<blank>

s -
.
/

/

lil'
H

Start of
search pattern

J The pattern character 'H' is first compared
to buffer offset 3, which is 'E.' This results
in a mismatch.

This shows that not only can the pattern
not match starting at buffer offset 0, but
also that it cannot match starting at offset
1 I 2, or 3 (the other locations that span
the 'E' at offset 3) because 'E' doesn't
occur anywhere in the pattern.

Therefore, the next potential match
location starts at buffer offset 4, and the
next comparison skips ahead 4 bytes to
offset 7, saving 3 comparisons in all.

Mismatch on first character checked.
Figure 14.1

nowhere in the pattern. Figure 14.2 illustrates the operation of a partial match when
the mismatch occurs with a character that's not a pattern member. In this case, we can
only skip ahead past the mismatch location, resulting in an advance of fewer bytes than
the pattern length, and potentially as little as the same single byte distance by which
the standard search approach advances.
What if the mismatch occurs with a buffer character that does occur in the pattern?
Then we can't skip past the mismatch location, but we can skip to whatever location
aligns the rightmost occurrence of that character in the pattern with the mismatch
location, as shown in Figure 14.3.
Basically, we exercise our right as members of a free society to compare strings in
whichever direction we choose, and we choose to do so right to left, rather than the
more intuitive left to right. Whenever we find a mismatch, we see what we can learn
from the buffer character that failed to match the pattern. Imagine that we move the
pattern to the right across the mismatch location until we find a start location that

Boyer-Moore String Searching 265

r
Start of + 0
buffer being
searched

2
3
4
5
6
7
8
9

10
1 1
12
13
14
15

R
A
T
E

<blank>
A
N
D

<blank>
E
Q
U
A
L

<blank>
S

H+ search Of pattern

'E' and 'T' match, but 'I' mismatches. The
mismatch character in the buffer is 'A,'
which doesn't occur in the pattern.

This shows that not only can the pattern
not match starting at buffer offset 0, but
also that it cannot match starting at offset
1 (the other location that spans the 'A' at
offset 1). W e can therefore skip the
pattern completely past offset 1 .

However, because of the partial match,
skipping ahead past the mismatch
advances the overall search by only 2
buffer locations; the next comparison
occurs at offset 5.

Mismatch on third character checked.
Figure 14.2

the mismatch does not eliminate as a possible match for the pattern. If the mismatch
character doesn't appear in the pattern, the pattern can move clear past the mis-
match location. Otherwise, the pattern moves until a matching pattern byte lies atop
the mismatch. That's all there is to it!

Boyer-Moore: The Good and the Bad
The worst case for this version of Boyer-Moore is that the pattern mismatches on the
leftmost character-the last character compared-every time. Again, not very likely,
but it is true that this version of Boyer-Moore performs better as there are fewer and
shorter partial matches; ideally, the rightmost character would never match until the
full match location was reached. Longer patterns, which make for longer skips, help
Boyer-Moore, as does a long distance to the match location, which helps diffuse the
overhead of building the table of distances to skip ahead on all the possible mis-
match values.

266 Chapter 14

Start of -+ 0
buffer being
searched ’

2
3
4
5
6
7
8
9

10
1 1
12
13
14

15

R
A
T
E

<blank>
A
N
D

<blank>
E
Q
U
A
L

<blank>

S

Start of
search pattern

The pattern character ‘S’ is first compared
to buffer offset 3, which is ’E.‘ This results
in a mismatch.

This shows that not only can the pattern
not match starting at buffer offset 0, but
also that i t cannot match starting at offset
1 ; however, starting at offset 2, the ’E’ in
the pattern would line up with the ’E’ we
just mismatched on in the buffer.

Therefore, we can skip ahead two buffer
locations from the mismatch, so that the
buffer ’E’ lines up with the pattern ‘E‘; the
next comparison is at offset 5.

Mismatch on character that appears in pattern.
Figure 14.3

The best case for Boyer-Moore is good indeed: About N/M comparisons are required,
where N is the buffer length and M is the pattern length. This reflects the ability of Boyer-
Moore to skip ahead by a full pattern length on a complete mismatch.
How fast isBoyer-Moore? Listing 14.1 is a C implementation of Boyer-Moore search-
ing; Listing 14.2 is a test-bed program that searches up to the first 32K of a file for a
pattern. Table 14.1 (all times measured with Turbo Profiler on a 20 MHz cached 386,
searching a modified version of the text of this chapter) shows that this implementa-
tion is generally much slower than REPNZ S W B , although it does come close when
searching for long patterns. Listing 14.1 is designed primarily to make later assembly
implementations more comprehensible, rather than faster; Sedgewick’s implemen-
tation uses arrays rather than pointers, is a great deal more compact and very clever,
and may be somewhat faster. Regardless, the far superior performance of REPNZ
SCASB clearly indicates that assembly language is in order at this point.

Boyer-Moore String Searching 267

The entry “Standard Boyer-Moore in AS”’ in Table 14.1 refers to straight-forward
hand optimization of Listing 14.1, code that is not included in this chapter for the
perfectly good reason that it is slower in most cases than REPNZ SCASB. I say this
casually now, but not so yesterday, when I had all but concluded that Boyer-Moore
was simply inferior on the x86, due to two architectural quirks: the string instruc-
tions and slow branching. I had even coined a neat phrase for it: Architecture is
destiny. Has a nice ring, doesn’t it?

LISTING 14.1 11 4- 1 .C
/ * Searches a b u f f e r f o r a s p e c i f i e d p a t t e r n . I n c a s e o f a mismatch,

uses t h e v a l u e o f t h e m i s m a t c h e d b y t e t o s k i p across as many
p o t e n t i a l m a t c h l o c a t i o n s a s p o s s i b l e (p a r t i a l B o y e r - M o o r e) .
R e t u r n s s t a r t o f f s e t o f f i r s t m a t c h s e a r c h i n g f o r w a r d , o r NULL i f
no match i s found.
T e s t e d w i t h B o r l a n d C++ i n C mode and the smal l mode l . * /

i n c l u d e < s t d i o . h >

268 Chapter 14

uns igned char * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r P t r .
uns igned i n t B u f f e r L e n g t h . u n s i g n e d c h a r * P a t t e r n P t r .
uns igned i n t P a t t e r n L e n g t h)

uns igned char * Work ingPa t te rnP t r . * W o r k i n g B u f f e r P t r :
uns igned i n t CompCount. SkipTableC2561, Skip. DistanceMatched:
i n t i;

{

/ * R e j e c t i f t h e b u f f e r i s t o o s m a l l * /
i f (B u f f e r L e n g t h < P a t t e r n L e n g t h) r e t u r n (N U L L) :

I* Retu rn an i n s t a n t m a t c h i f t h e p a t t e r n i s 0 - l e n g t h *I
i f (P a t t e r n L e n g t h == 0) r e t u r n (B u f f e r P t r 1 ;

/ * C r e a t e t h e t a b l e o f d i s t a n c e s b y w h i c h t o s k i p ahead on

/ * I n i t i a l i z e a l l s k i p s t o t h e p a t t e r n l e n g t h : t h i s i s t h e s k i p

f o r (i = 0: i < 2 5 6 ; i++l S k i p T a b l e C i l = Pa t te rnLeng th ;
/ * S e t t h e s k i p v a l u e s f o r t h e b y t e s t h a t d o a p p e a r i n t h e p a t t e r n

t o t h e d i s t a n c e f r o m t h e b y t e l o c a t i o n t o t h e end o f t h e
p a t t e r n . When t h e r e a r e m u l t i p l e i n s t a n c e s o f t h e same b y t e ,
t h e r i g h t m o s t i n s t a n c e ' s s k i p v a l u e i s u s e d . N o t e t h a t t h e
r i g h t m o s t b y t e o f t h e p a t t e r n i s n ' t e n t e r e d i n t h e s k i p t a b l e :
i f we g e t t h a t v a l u e f o r a mismatch, we know f o r s u r e t h a t t h e
r i g h t end o f t h e p a t t e r n has a l ready passed the mismatch
l o c a t i o n , s o t h i s i s n o t a r e l e v a n t b y t e f o r s k i p p i n g p u r p o s e s * /

S k i p T a b l e [P a t t e r n P t r [i]] = Pa t te rnLeng th - i ~ 1 :

m i s m a t c h e s f o r e v e r y p o s s i b l e b y t e v a l u e * /

d i s t a n c e f o r b y t e s t h a t d o n ' t a p p e a r i n t h e p a t t e r n * /

f o r (i = 0: i < (P a t t e r n L e n g t h - 1) : i++)

/* P o i n t t o r i g h t m o s t b y t e o f t h e p a t t e r n * /
P a t t e r n P t r += P a t t e r n L e n g t h - 1 :
I* P o i n t t o l a s t (r i g h t m o s t) b y t e o f t h e f i r s t p o t e n t i a l p a t t e r n

B u f f e r P t r += Pa t te rnLeng th - 1:
/ * Count o f number o f p o t e n t i a l p a t t e r n m a t c h l o c a t i o n s i n

B u f f e r L e n g t h -= Pa t te rnLeng th - 1;

m a t c h l o c a t i o n i n t h e b u f f e r * /

b u f f e r * I

I* S e a r c h t h e b u f f e r * /
w h i l e (1) (

/ * See i f we have a m a t c h a t t h i s b u f f e r l o c a t i o n * I
Work ingPa t te rnP t r = P a t t e r n P t r :
W o r k i n g B u f f e r P t r = B u f f e r P t r :
CompCount = Pa t te rnLeng th :
/ * Compare t h e p a t t e r n a n d t h e b u f f e r l o c a t i o n , s e a r c h i n g f r o m

w h i l e (* W o r k i n g P a t t e r n P t r - == *Work ingBu f fe rP t r -) I
h i g h memory t o w a r d l o w (r i g h t t o l e f t) * I

/ * I f w e ' v e m a t c h e d t h e e n t i r e p a t t e r n , i t ' s a match * /
i f (-CompCount == 0)

/* Re tu rn a p o i n t e r t o t h e s t a r t o f t h e m a t c h l o c a t i o n */

I
/ * I t ' s a mismatch: l e t ' s see what we c a n l e a r n f r o m i t * /
Work ingBuf ferPtr++; / * p o i n t b a c k t o t h e m i s m a t c h l o c a t i o n *!
/ * 11 o f b y t e s t h a t d i d m a t c h * /
Dis tanceMatched = B u f f e r P t r - W o r k i n g B u f f e r P t r :
/ * I f . based on t h e m i s m a t c h c h a r a c t e r , we c a n ' t e v e n s k i p ahead

as f a r as where we s t a r t e d t h i s p a r t i c u l a r c o m p a r i s o n , t h e n
j u s t advance by 1 t o t h e n e x t p o t e n t i a l m a t c h : o t h e r w i s e ,

r e t u r n (B u f f e r P t r - P a t t e r n L e n g t h + 1):

Boyer-Moore String Searching 269

s k i p a h e a d f r o m t h e m i s m a t c h l o c a t i o n b y t h e s k i p d i s t a n c e
f o r t h e m i s m a t c h c h a r a c t e r *I

i f (Sk ipTable[*Work ingBuf ferPtr l <- DistanceMatched)
S k i p - 1: I* s k i p d o e s n ' t do any good, advance by 1 *I
e l s e

/ * Use s k i p v a l u e , a c c o u n t i n g f o r d i s t a n c e c o v e r e d b y t h e

S k i p - SkipTable[*WorkingBufferPtrl - DistanceMatched;
I* If sk ipp ing ahead wou ld exhaus t t he bu f fe r , we ' re done

w i t h o u t a match * I
if (S k i p >- B u f f e r L e n g t h f r e t u r n (N U L L) :
I* Skip ahead and per fo rm the nex t compar ison *I
B u f f e r L e n g t h -- S k i p ;
B u f f e r P t r +- S k i p ;

p a r t i a l m a t c h *I

1
J

LISTING 14.2 11 4-2.C
/ * Program t o e x e r c i s e b u f f e r - s e a r c h r o u t i n e s i n L i s t i n g s 1 4 . 1 & 14.3.

(M u s t b e m o d i f i e d t o p u t c o p y o f p a t t e r n a s s e n t i n e l a t e n d o f t h e
s e a r c h b u f f e r i n o r d e r t o be used w i t h L i s t i n g 1 4 . 4 .) * /

i n c l u d e < s t d i o . h >
Pi n c l ude < s t r i n g . h>
C i n c l ude < f c n t l . h >

d e f i n e DISPLAY-LENGTH 40
d e f i n e BUFFER-SIZE 0x8000

e x t e r n u n s i g n e d c h a r * F i n d S t r i n g (u n s i g n e d c h a r *, u n s i g n e d i n t .

v o i d m a i n (v o i d 1 :
uns igned char *, u n s i g n e d i n t) ;

v o i d m a i n 0 I
uns igned char TempBuffer[DISPLAY-LENGTH+ll:
uns igned char F i lename[l50] . Pa t te rnC1501. *MatchPt r , *Tes tBuf fe r :
i n t Hand1 e;
u n s i g n e d i n t W o r k i n g L e n g t h :

p r i n t f (" F i 1 e t o s e a r c h : ") :
ge ts (F i lename1:
p r i n t f (" P a t t e r n f o r w h i c h t o s e a r c h : ") :
g e t s (P a t t e r n) :

i f ((Handle - open(Fi1ename. 0-RDONLY 1 0-BINARY)) - -1) (

1
I* Get memory i n w h i c h t o b u f f e r t h e d a t a * /
i f ((T e s t B u f f e r - (u n s i g n e d c h a r *)malloc(BUFFER-SIZE+1)) - NULL) (

1
/ * Process a BUFFER-SIZE chunk * I
i f ((i n t) (W o r k i n g L e n g t h -

p r i n t f (" C a n ' t o p e n f i l e : % s \ n " . F i l e n a m e) ; e x i t (1) ;

p r i n t f (" C a n ' t g e t e n o u g h m e m o r y \ n ") ; e x i t (1) ;

read(Hand1e. Tes tBuf fe r . BUFFER-SIZE)) - -1) {
p r i n t f (" E r r o r r e a d i n g f i l e %s\n" , F i l e n a m e) : e x i t (1) :

I
TestBuf ferCWorkingLength] - 0: I* 0 - t e r m i n a t e b u f f e r f o r p r i n t f *I
I* S e a r c h f o r t h e p a t t e r n and r e p o r t t h e r e s u l t s *I
i f ((M a t c h P t r - F i n d S t r i n g (T e s t B u f f e r . W o r k i n g L e n g t h . P a t t e r n ,

(u n s i g n e d i n t) s t r l e n (P a t t e r n))) - NULL) (

270 Chapter 14

/ * P a t t e r n w a s n ' t f o u n d */
p r i n t f (" \ " % s \ " n o t f o u n d \ n " . P a t t e r n) ;

/ * P a t t e r n was found . Ze ro - te rm ina te TempBuf fe r : s t rncpy

TempBufferCDISPLAY-LENGTH] = 0:
p r i n t f (" \ " % s \ " f o u n d . N e x t Xd c h a r a c t e r s a t m a t c h : \ n \ " % s \ " \ n " .

1 e l s e {

won ' t do i t i f DISPLAY-LENGTH c h a r a c t e r s a r e c o p i e d * /

P a t t e r n , DISPLAY_.LENGTH,
s t rncpy (TempBuf fe r . Ma tchP t r . DISPLAY-LENGTH)):

1
e x i t (0) :

1

Well, architecture carries a lot of weight, but it sure as heck isn't destiny. I had simply
fallen into the trap of figuring that the algorithm was so clever that I didn't have to
do any thinking myself. The path leading to REPNZ SCASB from the original brute-
force approach of REPZ CMF'SB at every location had been based on my observation
that the first character comparison at each buffer location usually fails. Why not
apply the same concept to Boyer-Moore? Listing 14.3 is just like the standard imple-
mentation-except that it's optimized to handle a first-comparison mismatch as
quickly as possible in the loop at QuickSearchLoop, much as REPNZ SCASB opti-
mizes first-comparison mismatches for the brute-force approach. The results in Table
14.1 speak for themselves; Listing 14.3 is more than twice as fast as what I assure you
was already a nice, tight assembly implementation (and unrolling QuickSearchLoop
could boost performance by up to 10 percent more). Listing 14.3 is also four times
faster than REPNZ SCASB in one case.

LISTING 14.3 11 4-3.ASM
: Searches a b u f f e r f o r a s p e c i f i e d p a t t e r n . I n case o f a mismatch,
; u s e s t h e v a l u e o f t h e m i s m a t c h e d b y t e t o s k i p a c r o s s a s many
: p o t e n t i a l m a t c h l o c a t i o n s a s p o s s i b l e (p a r t i a l B o y e r - M o o r e) .
: R e t u r n s s t a r t o f f s e t o f f i r s t m a t c h s e a r c h i n g f o r w a r d , o r NULL i f
; no match i s found.
: T e s t e d w i t h TASM.
: C n e a r - c a l l a b l e a s :

uns igned char * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r P t r .
uns igned i n t B u f f e r L e n g t h . u n s i g n e d c h a r * P a t t e r n P t r .
uns igned i n t P a t t e r n L e n g t h) :

parms s t r u c
dw 2 dup(?) :pushed BP & r e t u r n a d d r e s s

B u f f e r P t r dw ? : p o i n t e r t o b u f f e r t o be searched
B u f f e r L e n g t h dw ? :# o f b y t e s i n b u f f e r t o b e s e a r c h e d
P a t t e r n P t r dw ? : p o i n t e r t o p a t t e r n f o r w h i c h t o s e a r c h
Pa t te rnLeng th dw ? : l e n g t h o f p a t t e r n f o r w h i c h t o s e a r c h
parms ends

.model small

.code
p u b l i c - F i n d s t r i n g

c l d
p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p : p o i n t t o o u r s t a c k f r a m e

~ F i n d S t r i n g p r o c near

Boyer-Moore String Searching 271

push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i ab1 es
push d i
sub sp .256*2 : a l l oca te space f o r Sk ipTab le

: C r e a t e t h e t a b l e o f d i s t a n c e s b y w h i c h t o s k i p ahead on mismatches
: f o r e v e r y p o s s i b l e b y t e v a l u e . F i r s t . i n i t i a l i z e a l l s k i p s t o t h e
: p a t t e r n l e n g t h : t h i s i s t h e s k i p d i s t a n c e f o r b y t e s t h a t d o n ' t
: appear i n t h e p a t t e r n .

mov ax .Cbp+Pat te rnLength l
and ax .ax ; re tu rn an i ns tan t ma tch i f t h e p a t t e r n i s

rnov d i .ds
mov es . d i :ES=DS=SS
mov d i . s p ; p o i n t t o S k i p B u f f e r
mov cx.256
r e p s t o s w
dec ax : f rom now on, we on ly need
mov [bp+Pat te rnLength] .ax : P a t t e r n L e n g t h - 1

j z I n s t a n t M a t c h ; O - l e n g t h

: P o i n t t o l a s t (r i g h t m o s t) b y t e o f f i r s t p o t e n t i a l p a t t e r n m a t c h
: l o c a t i o n i n b u f f e r .

: R e j e c t i f b u f f e r i s t o o s m a l l , and s e t t h e c o u n t o f t h e number o f
: p o t e n t i a l p a t t e r n m a t c h l o c a t i o n s i n t h e b u f f e r .

add [b p + B u f f e r P t r l . a x

sub [bp+Buf ferLength l .ax
j b e NoMatch

: S e t t h e s k i p v a l u e s f o r t h e b y t e s t h a t do appear i n t h e p a t t e r n t o
; t h e d i s t a n c e f r o m t h e b y t e l o c a t i o n t o t h e e n d o f t h e p a t t e r n .
: When t h e r e a r e m u l t i p l e i n s t a n c e s o f t h e same b y t e , t h e r i g h t m o s t
; i n s t a n c e ' s s k i p v a l u e i s u s e d . N o t e t h a t t h e r i g h t m o s t b y t e o f t h e
; p a t t e r n i s n ' t e n t e r e d i n t h e s k i p t a b l e : i f we g e t t h a t v a l u e f o r
: a mismatch, we know f o r s u r e t h a t t h e r i g h t end o f t h e p a t t e r n has
: a l r e a d y p a s s e d t h e m i s m a t c h l o c a t i o n , s o t h i s i s not a r e l e v a n t b y t e
: f o r s k i p p i n g p u r p o s e s .

mov
and
j z
mov

sub
mov
i nc
s h l
mo v

dec
j nz

mov
dec
mov

SetSkipLoop:

SetSkipDone:

s i . [b p + P a t t e r n P t r] : p o i n t t o s t a r t o f p a t t e r n
ax.ax : a r e t h e r e any s k i p s t o s e t ?
SetSkipDone :no
d i .sp : p o i n t t o S k i p B u f f e r

bx , b x : p r e p a r e f o r w o r d a d d r e s s i n g o f f b y t e v a l u e
b l , [s i] : g e t t h e n e x t p a t t e r n b y t e
s i : a d v a n c e t h e p a t t e r n p o i n t e r
b x . 1 ; p r e p a r e f o r w o r d l o o k u p
C d i + b x l . a x : s e t t h e s k i p v a l u e when t h i s b y t e v a l u e i s

ax
SetSkipLoop

d l , [s i 1 ; D L - r i g h t m o s t p a t t e r n b y t e f r o m now on
s i : p o i n t t o n e x t - t o - r i g h t m o s t b y t e o f p a t t e r n
[b p + P a t t e r n P t r l . s i : f r o m now on

: t h e m i s m a t c h v a l u e i n t h e b u f f e r

: S e a r c h t h e b u f f e r .
s t d : f o r b a c k w a r d REP2 CMPSB
mov d i . [b p + B u f f e r P t r] ; p o i n t t o f i r s t s e a r c h l o c a t i o n
mov cx . [bp+Buf fe rLength] :# o f m a t c h l o c a t i o n s t o c h e c k

mov s i . s p ; p o i n t SI t o S k i p T a b l e
SearchLoop:

: S k i p t h r o u g h u n t i l t h e r e ' s a m a t c h f o r t h e r i g h t m o s t p a t t e r n b y t e .
QuickSearchLoop:

mov b l , Cdi 1 ; r i g h t m o s t b u f f e r b y t e a t t h i s l o c a t i o n
cmp d l , b l :does i t m a t c h t h e r i g h t m o s t p a t t e r n b y t e ?
j z Fu l lCompare :yes, so keep going

272 Chapter 14

sub bh,bh :convert t o a word
add bx .bx : p repare f o r l ook -up i n S k i p T a b l e
mov a x , [s i + b x] : g e t s k i p v a l u e f r o m s k i p t a b l e f o r t h i s

: mismatch value
add d i , a x : B u f f e r P t r +- S k i p :
sub cx .ax :Bu f fe rLength -- S k i p :

jmp short NoMatch

a l i g n 2

mov ax.[bp+BufferPtrl
jmp sho r t Done

j a QuickSearchLoop ;cont inue i f a n y b u f f e r l e f t

: Return a p o i n t e r t o t h e s t a r t o f t h e b u f f e r (f o r 0 - l e n g t h p a t t e r n) .

I n s t a n t M a t c h :

: Compare t h e p a t t e r n and t h e b u f f e r l o c a t i o n , s e a r c h i n g f r o m h i g h
: memory t o w a r d l o w (r i g h t t o l e f t) .

Ful lCompare:
a l i g n 2

mov [b p + B u f f e r P t r] . d i
mov [b p + B u f f e r L e n g t h l . c x : t h e s e a r c h

: s a v e t h e c u r r e n t s t a t e o f

mov c x . [b p + P a t t e r n L e n g t h l :# o f b y t e s y e t t o compare
j cxz Ma tch
mov s i . [b p + P a t t e r n P t r]

;done i f o n l y one c h a r a c t e r

d e c d i
: p o i n t t o n e x t - t o - r i g h t m o s t b y t e s
: o f b u f f e r l o c a t i o n and p a t t e r n

repz cmpsb :compare t h e r e s t o f t h e p a t t e r n
j z M a t c h : t h a t ' s it: we've found a match

: I t ' s a mismatch: l e t ' s s e e what we can l e a r n from i t .
i n c d i :compensate f o r 1 - b y t e o v e r r u n o f REP2 CMPSB;

: p o i n t t o m i s m a t c h l o c a t i o n i n b u f f e r
: d o f b y t e s t h a t d i d m a t c h .

mov s i . [b p + B u f f e r P t r]
sub s i . d i

: I f . based on the m ismatch cha rac te r , we c a n ' t e v e n s k i p ahead as f a r
: a s where we s t a r t e d t h i s p a r t i c u l a r c o m p a r i s o n , t h e n j u s t a d v a n c e b y
: 1 t o t h e n e x t p o t e n t i a l m a t c h ; o t h e r w i s e , s k i p a h e a d f r o m t h i s
: c o m p a r i s o n l o c a t i o n b y t h e s k i p d i s t a n c e f o r t h e m i s m a t c h c h a r a c t e r .
: l e s s t h e d i s t a n c e c o v e r e d b y t h e p a r t i a l m a t c h .

sub bx ,bx : p repare f o r word add ress ing o f f by te va lue
mov b l , [d i l : g e t t h e v a l u e o f t h e m i s m a t c h b y t e i n b u f f e r
add b x . b x : p r e p a r e f o r w o r d l o o k - u p
add bx.sp :SP p o i n t s t o S k i p T a b l e
mov c x . [b x l : g e t t h e s k i p v a l u e f o r t h i s m i s m a t c h
mov ax .1 :assume w e ' l l j u s t a d v a n c e t o t h e n e x t

: p o t e n t i a l m a t c h l o c a t i o n
s u b c x . s i : i s t h e s k i p f a r e n o u g h t o b e w o r t h t a k i n g ?
j n a MoveAhead ;no. go w i t h t h e d e f a u l t a d v a n c e o f 1
mov a x , c x : y e s : t h i s i s t h e d i s t a n c e t o s k i p ahead from

MoveAhead:
: Skip ahead and per form the next compar ison, i f t h e r e ' s a n y b u f f e r
: l e f t t o check.

: t h e l a s t p o t e n t i a l m a t c h l o c a t i o n c h e c k e d

mov d i . C b p + B u f f e r P t r]
add d i , a x : B u f f e r P t r +== Sk ip :
mov cx . [bp+Buf fe rLength]
sub cx.ax :Buf ferLength -- S k i p :
j a SearchLoop

a l i g n 2

sub ax.ax
jmp s h o r t Done

: Return a NULL p o i n t e r f o r no match.

NoMatch:

; c o n t i n u e i f any b u f f e r l e f t

Boyer-Moore String Searching 273

: R e t u r n s t a r t

Match:
a l i g n

mo v
sub

c l d
add
POP
POP
POP
r e t

~ F i n d S t r i n g
end

Done:

o f m a t c h i n b u f f e r (B u f f e r P t r - (P a t t e r n L e n g t h - 1)).
2

ax .Cbp+Buf fe rPt r]
ax , [bp+Pat te rnLength l

: r e s t o r e d e f a u l t d i r e c t i o n f l a g
sp .256*2 ; dea l l oca te space f o r Sk ipTab le
d i ; r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s
s i
bP : r e s t o r e c a l l e r ' s s t a c k f r a m e

endp

Table 14.1 represents a limited and decidedly unscientific comparison of searching
techniques. Nonetheless, the overall trend is clear: For all but the shortest patterns,
well-implemented Boyer-Moore is generally as good as or better than-sometimes
much better than-brute-force searching. (For short patterns, you might want to use
REPNZ SCASB, thereby getting the best of both worlds.)
Know your data and use your smarts. Don't stop thinking just because you're imple-
menting a big-name algorithm; you know more than it does.

Further Optimization of Boyer-Moore
We can do substantially better yet than Listing 14.3 if we're willing to accept tighter
limits on the data. Limiting the length of the searched-for pattern to a maximum of
255 bytes allows us to use the XLAT instruction and generally tighten the critical
loop. (Be aware, however, that XLAT is a relatively expensive instruction on the 486
and Pentium.) Putting a copy of the searched-for string at the end of the search
buffer as a sentinel, so that the search never fails, frees us from counting down the
buffer length, and makes it easy to unroll the critical loop. Listing 14.4, which imple-
ments these optimizations, is about 60 percent faster than Listing 14.3.

LISTING 14.4 11 4-4.ASM
: Searches a b u f f e r f o r a s p e c i f i e d p a t t e r n . I n c a s e o f a mismatch,
: uses t h e v a l u e o f t h e m i s m a t c h e d b y t e t o s k i p a c r o s s as many
: p o t e n t i a l m a t c h l o c a t i o n s as p o s s i b l e (p a r t i a l B o y e r - M o o r e) .
: R e t u r n s s t a r t o f f s e t o f f i r s t m a t c h s e a r c h i n g f o r w a r d , o r NULL i f
: no match i s found.
; R e q u i r e s t h a t t h e p a t t e r n be no l o n g e r t h a n 255 b y t e s , a n d t h a t
: t h e r e b e a match f o r t h e p a t t e r n somewhere i n t h e b u f f e r (i e . . a
: c o p y o f t h e p a t t e r n s h o u l d be placed as a s e n t i n e l a t t h e end o f
: t h e b u f f e r i f t h e p a t t e r n i s n ' t a l r e a d y known t o be i n t h e b u f f e r) .
: T e s t e d w i t h TASM.
: C n e a r - c a l l a b l e a s :
: uns igned char * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r P t r .
; u n s i g n e d i n t B u f f e r L e n g t h . u n s i g n e d c h a r * P a t t e r n P t r ,
; u n s i g n e d i n t P a t t e r n L e n g t h) :

parms s t r u c
dw 2 dup(?) ;pushed BP & r e t u r n a d d r e s s

274 Chapter 14

B u f f e r P t r dw ? ; p o i n t e r t o b u f f e r t o b e s e a r c h e d
B u f f e r L e n g t h dw ? :# o f b y t e s i n b u f f e r t o b e s e a r c h e d

P a t t e r n P t r dw ?
; (n o t u s e d , a c t u a l l y)
; p o i n t e r t o p a t t e r n f o r w h i c h t o s e a r c h
: (p a t t e r n *MUST* e x i s t i n t h e b u f f e r)

Pa t te rnLeng th dw ? ; l e n g t h o f p a t t e r n f o r w h i c h t o s e a r c h (m u s t
: be <- 255)

parms ends

.model sma 1 1

.code
p u b l i c _ F i n d s t r i n g

c l d
p u s h b p ; p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov bp .sp ; po in t t o our s tack f rame
push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
push d i
sub sp .256 ; a l l oca te space f o r Sk ipTab le

_ F i n d s t r i n g p r o c n e a r

: C r e a t e t h e t a b l e o f d i s t a n c e s b y w h i c h t o s k i p ahead on mismatches
: f o r e v e r y p o s s i b l e b y t e v a l u e . F i r s t , i n i t i a l i z e a l l s k i p s t o t h e
; p a t t e r n l e n g t h : t h i s i s t h e s k i p d i s t a n c e f o r b y t e s t h a t d o n ' t
: appear i n t h e p a t t e r n .

mov d i .ds
mov e s , d i : ES-DS=SS
mov d i . s p : p o i n t t o S k i p B u f f e r
mov a 1 , b y t e p t r [b p + P a t t e r n L e n g t h]
and a l . a l : r e t u r n a n i n s t a n t m a t c h i f t h e p a t t e r n i s

mov ah.a l
mov cx.256/2
rep s tosw
mov ax. [bp+Pat ternLength]
dec ax : f rom now on. we on ly need
mov [bp+Pat ternLength] .ax : P a t t e r n L e n g t h - 1

: P o i n t t o r i g h t m o s t b y t e o f f i r s t p o t e n t i a l p a t t e r n m a t c h l o c a t i o n
: i n b u f f e r .

: S e t t h e s k i p v a l u e s f o r t h e b y t e s t h a t d o a p p e a r i n t h e p a t t e r n t o
: t h e d i s t a n c e f r o m t h e b y t e l o c a t i o n t o t h e end o f t h e p a t t e r n .

j z I n s t a n t M a t c h ; 0 - l e n g t h

add [bp+Bu f fe rP t r l , ax

mov
and
j z
mov
sub

mov
i nc
mov

dec
j n z

mov
dec
mov

SetSkipLoop:

SetSkipDone:

s i . C b p + P a t t e r n P t r] ; p o i n t t o s t a r t o f p a t t e r n
a x , a x : a r e t h e r e a n y s k i p s t o s e t ?
SetSkipDone ;no
d i . s p : p o i n t t o S k i p B u f f e r
b x , b x ; p r e p a r e f o r w o r d a d d r e s s i n g o f f b y t e v a l u e

b l . [s i l : g e t t h e n e x t p a t t e r n b y t e
s i : a d v a n c e t h e p a t t e r n p o i n t e r
[d i + b x l . a l : s e t t h e s k i p v a l u e when t h i s b y t e v a l u e i s

ax
SetSkipLoop

d l . [s i] : D L - r i g h t m o s t p a t t e r n b y t e f r o m now on
s i : p o i n t t o n e x t - t o - r i g h t m o s t b y t e o f p a t t e r n
[b p + P a t t e r n P t r l . s i ; f r o m now on

: the mismatch va lue i n t h e b u f f e r

: S e a r c h t h e b u f f e r .
s t d : f o r backward R E P Z CMPSB
mov d i . [b p + B u f f e r P t r l : p o i n t t o t h e f i r s t s e a r c h l o c a t i o n
mov bx.sp : p o i n t t o S k i p T a b l e f o r XLAT

Boyer-Moore String Searching 275

SearchLoop:

; S k i p t h r o u g h u n t i l t h e r e ' s a match f o r t h e f i r s t p a t t e r n b y t e .
QuickSearchLoop:
; See i f we have a match a t t h e f i r s t b u f f e r l o c a t i o n .

REPT 8 ; u n r o l l l o o p 8 t i m e s t o r e d u c e b r a n c h i n g
mov a1 , [d i 1 : n e x t b u f f e r b y t e
cmp d l .a1 ;does i t m a t c h t h e p a t t e r n ?
jz F u l lCompare ;yes, so keep go ing
x1 a t ; n o . l o o k u p t h e s k i p v a l u e f o r t h i s m i s m a t c h
add d i ,ax
ENDM

; B u f f e r P t r +- Sk ip ;

jmp QuickSearchLoop

a l i g n 2

mov ax .Cbp+Buf fe rPt r l
j m p s h o r t Done

sub ah,ah ;used t o c o n v e r t AL t o a word

; Return a p o i n t e r t o t h e s t a r t o f t h e b u f f e r (f o r 0 - l e n g t h p a t t e r n) .

I n s t a n t M a t c h :

; Compare t h e p a t t e r n and t h e b u f f e r l o c a t i o n , s e a r c h i n g f r o m h i g h
; memory t o w a r d l o w (r i g h t t o l e f t) .

Fu l l compare :
a l i g n 2

mov [b p + B u f f e r P t r l . d i : s a v e t h e c u r r e n t b u f f e r l o c a t i o n
mov cx.Cbp+PatternLength] ;# o f b y t e s y e t t o compare
j c x z M a t c h ;done i f t h e r e was o n l y one c h a r a c t e r
dec d i ; p o i n t t o n e x t d e s t i n a t i o n b y t e t o compare (S I

r e p z cmpsb ; c o m p a r e t h e r e s t o f t h e p a t t e r n
; p o i n t s t o n e x t - t o - r i g h t m o s t s o u r c e b y t e)

j z M a t c h ; t h a t ' s i t ; we've found a match
; I t ' s a mismatch: l e t ' s see what we can l ea rn f rom it.

i n c d i ;compensate f o r I - b y t e o v e r r u n o f REPZ CMPSB;
; p o i n t t o m i s m a t c h l o c a t i o n i n b u f f e r

; # o f b y t e s t h a t d i d m a t c h .
mov s i . C b p + B u f f e r P t r l
sub s i . d i

; I f . based on the mismatch charac ter , we c a n ' t e v e n s k i p a h e a d a s f a r
; as where we s t a r t e d t h i s p a r t i c u l a r c o m p a r i s o n , t h e n j u s t a d v a n c e by
; 1 t o t h e n e x t p o t e n t i a l m a t c h ; o t h e r w i s e . s k i p ahead from t h i s
; c o m p a r i s o n l o c a t i o n b y t h e s k i p d i s t a n c e f o r t h e m i s m a t c h c h a r a c t e r ,
: l e s s t h e d i s t a n c e c o v e r e d b y t h e p a r t i a l m a t c h .

mov a1 , Cdi 1 ; g e t t h e v a l u e o f t h e m i s m a t c h b y t e i n b u f f e r
x1 a t ; g e t t h e s k i p v a l u e f o r t h i s m i s m a t c h
mov c x . 1 ;assume w e ' l l j u s t advance t o t h e n e x t

s u b a x . s i ; i s t h e s k i p f a r e n o u g h t o be w o r t h t a k i n g ?
j n a MoveAhead ;no. go w i t h t h e d e f a u l t a d v a n c e o f 1
mov cx.ax ; y e s . t h i s i s t h e d i s t a n c e t o s k i p ahead from

; p o t e n t i a l m a t c h l o c a t i o n

; t h e l a s t p o t e n t i a l m a t c h l o c a t i o n c h e c k e d
MoveAhead:
; Sk ip ahead and per fo rm the nex t compar ison .

mov d i . [b p + B u f f e r P t r l
add d i , c x ; B u f f e r P t r +- S k i p ;
mov s i . [b p + P a t t e r n P t r l ; p o i n t t o t h e n e x t - t o - r i g h t m o s t

jmp SearchLoop

a l i g n 2

mov a x , [b p + B u f f e r P t r l
sub ax. [bp+Pat ternLength l

; p a t t e r n b y t e

; R e t u r n s t a r t o f m a t c h i n b u f f e r (B u f f e r P t r - (P a t t e r n L e n g t h - 1)).

Match:

276 Chapter Id

Done :
c l d : r e s t o r e d e f a u l t d i r e c t i o n f l a g
add sp.256 :deal locate space for Sk ipTab le
pop d i : r e s t o r e c a l l e r ’ s r e g i s t e r v a r i a b l e s
pop s i
POP b p : r e s t o r e c a l l e r ’ s s t a c k f r a m e
r e t

end
- F i n d S t r i ng endp

Note that Table 14.1 includes the time required to build the skip table each time
Findstring is called. This time could be eliminated for all but the first search when
repeatedly searching for a particular pattern, by building the skip table externally
and passing a pointer to it as a parameter.

Know What You Know
Here we’ve turned up our nose at a repeated string instruction, we’ve gone against
the grain by comparing backward, and yet we’ve speeded up our code quite a bit. All
this without any restrictions or special requirements (excluding Listing 14.4)”and
without any new information. Everything we needed was sitting there all along; we
just needed to think to look at it.
As Yogi Berra might put it, ‘You don’t know what you know until you know it.”

boyer-Moore String Searching 277

	next:
	home:
	previous:

