

roblems with Familiar Data Structures
es me wince. Oh, the humiliations I suffer for your

It wasn’t until ninth ad my first real girlfriend. Okay, maybe I was a little
ey, show me a good programmer who wasn’t; it goes

annie Schweigert, and she was about four feet tall,
lling to go out with me, which made her approxi-

gether at school, and went to basketball games and a few
how the two of us were never alone. Being 14, neither of

chauffeuring us. That’s a next-to-
ter of my own (ideal being exiling

all males between the ages of 12 and 18 to Tasmania), but at the time, it drove me
nuts. You see.. . ahem.. . I had never actually kissed Jeannie-or anyone, for that mat-
ter, unless you count maiden aunts and the like-and I was dying to. At the same
time, I was terrified at the prospect. What if I turned out to be no good at it? It wasn’t
as if I could go to Kisses ‘ R Us and take lessons.
My long-awaited opportunity finally came after a basketball game. For a change, my
father was driving, and when we dropped her off at her house, I walked her to the
door. This was my big chance. I put my arms around her, bent over with my eyes
closed, just like in the movies.. . .

28 1

unfamiliar problems with familiar data structures

And whacked her on the top of the head with my chin. (As I said, she was only about
four feet tall.) And I do mean whacked. Jeannie burst into hysterical laughter, tried to
calm herself down, said goodnight, and went inside, still giggling. No kiss.
I was a pretty mature teenager, so this was only slightly more traumatic than leading
the Tournament of Roses parade in my underwear. On the next try, though, I did
manage to get the hang of this kissing business, and eventually even went on to have
a child. (Not with Jeannie, I might add; the mind boggles at the mess I could have
made of that with her.) As it turns out, none of that stuff is particularly difficult; in
fact, it’s kind of enjoyable, wink, wink, say no more.
When you’re dealing with something new, a little knowledge goes a long way. When
it comes to kissing, we have to fumble along the learning curve on our own, but
there are all sorts of resources to help speed up the learning process when it comes
to programming. The basic mechanisms of programming-searches, sorts, parsing,
and the like-are well-understood and superbly well-documented. Treat yourself to
a book like Algorithms, by Robert Sedgewick (Addison Wesley), or Knuth’s The Art of
Computer Programming series (also from Addison Wesley; and where was Knuth with
The Art of Kissing when I needed him?), or practically anything by Jon Bentley, and
when you tackle a new area, give yourself a head start. There’s still plenty of room for
inventiveness and creativity on your part, but why not apply that energy on top of the
knowledge that’s already been gained, instead of reinventing the wheel? I know,
reinventing the wheel is just the kind of challenge programmers love-but can you
really afford to waste the time? And do you honestly think that you’re so smart that you
can out-think Knuth, who’s spent a lifetime at this stuff and happens to be a genius?
Maybe you can-but I sure can’t. For example, consider the evolution of my under-
standing of linked lists.

Linked Lists
Linked lists are data structures composed of discrete elements, or nodes, joined to-
gether with links. In C, the links are typically pointers. Like all data structures, linked
lists have their strengths and their weaknesses. Primary among the strengths are:
simplicity; speedy sequential processing; ease and speed of insertion and deletion;
the ability to mix nodes of various sizes and types; and the ability to handle variable
amounts of data, especially when the total amount of data changes dynamically or is
not always known beforehand. Weaknesses include: greater memory requirements
than arrays (the pointers take up space); slow non-sequential processing, including
finding arbitrary nodes; and an inability to backtrack, unless doubly-linked lists are
used. Unfortunately, doubly linked lists need more memory, as well as processing
time to maintain the backward links.
Linked lists aren’t very good for most types of sorts. Insertion and bubble sorts work
fine, but more sophisticated sorts depend on effkient random access, which linked

282 Chapter 15

lists don’t provide. Likewise, you wouldn’t want to do a binary search on a linked list.
On the other hand, linked lists are ideal for applications where nothing more than
sequential access is needed to data that’s always sorted or nearly sorted.
Consider a polygon fill function, for example. Polygon edges are added to the active
edge list in x-sorted order, and tend to stay pretty nearly x-sorted, so sophisticated
sorting is never needed. Edges are read out of the list in sorted order, just the way
linked lists work best. Moreover, linked lists are straightforward to implement, and
with linked lists an arbitrary number of polygon edges can be handled with no fuss.
All in all, linked lists work beautifully for filling polygons. For an example of the use
of linked lists in polygon filling, see my column in the May 1991 issue of DX Dobb’s
Journal. Be warned, though, that none of the following optimizations are to be found
in that column.
You see, that column was my first heavy-duty use of linked lists, and they seemed so
simple that I didn’t even open Sedgewick or Knuth. For hashing or Boyer-Moore
searching, sure, I’d have done my homework first; but linked lists seemed too obvi-
ous to bother. I was much more concerned with the polygon-related aspects of the
implementation, and, in truth, I gave the linked list implementation not a moment’s
thought before I began coding. Heck, I had handled much tougher programming
problems in the past; surely i t would be faster to figure this one out on my own than
to look it up.
Not!
The basic concept of a linked list-the one I came up with for that DDJcolumn-is
straightforward, as shown in Figure 15.1. A head pointer points to the first node in
the list, which points to the next node, which points to the next, and so on, until the
last node in the list is reached (typically denoted by a NULL next-node pointer).
Conceptually, nothing could be simpler. From an implementation perspective, how-
ever, there are serious flaws with this model.
The fimdamental problem is that the model of Figure 15.1 unnecessarily complicates link
manipulation. In order to delete a node, for example, you must change the preceding

Pointer to
head of list

I &Node # 1

Node # 1

&Node #2

Other data
in node I

Node #2 Node #3 Node #4

Other data Other data Other data
in node in node

The basic concept of a linked list.
Figure 1 5.1

Linked Lists and Unintended Challenges 283

node's NextNode pointer to point to the following node, as shown in Listing 15.1.
(Listing 15.2 is the header file LLIST.H, which is ##included by all the linked list listings
in this chapter.) Easy enough-unless the preceding node happens to be the head
pointer, which doesn't have a NextNode field, because it's not a node, so Listing 15.1
won't work. Cumbersome special code and extra information (a pointer to the head of
the list) are required to handle the head-pointer case, as shown in Listing 15.3. (I'll
grant you that if you make the next-node pointer the first field in the LinkNode struc-
ture, at offset 0, then you could successfully point to the head pointer and pretend it
was a M o d e structure-but that's an ugly and potentially dangerous trick, and
we'll see a better approach next.)

LISTING 1 5.1 11 5- 1 .C
/* D e l e t e s t h e n o d e i n a l i n k e d l i s t t h a t f o l l o w s t h e i n d i c a t e d n o d e .

Assumes l i s t i s headed by a dummy node, s o no s p e c i a l t e s t i n g f o r
t h e h e a d - o f - l i s t p o i n t e r i s r e q u i r e d . R e t u r n s t h e same p o i n t e r
t h a t was p a s s e d i n . * /

#i n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e * D e l e t e N o d e A f t e r (s t r u c t L i n k N o d e * N o d e T o D e l e t e A f t e r)
I

NodeToDeleteAfter ->NextNode -
return(NodeToDe1eteAfter) :

NodeToOeleteAfter->NextNode->NextNode:

1

LISTING 15.2 1LIST.H
/* L i n k e d l i s t h e a d e r f i l e . * /
d e f i n e MAX-TEXT-LENGTH 100 /* l o n g e s t a l l o w e d T e x t f i e l d * /
d e f i n e SENTINEL 32767 / * l a r g e s t p o s s i b l e V a l u e f i e l d * /

s t r u c t L i n k N o d e {
s t ruc t L inkNode *Nex tNode ;
i n t Value:
cha r TextCMAX-TEXT-LENGTH+ll;
/* Any number o f a d d i t i o n a l d a t a f i e l d s may by p resen t * /

1 :
s t r u c t L i n k N o d e * D e l e t e N o d e A f t e r (s t r u c t L i n k N o d e *) ;
s t r u c t L i n k N o d e * F i n d N o d e B e f o r e V a l u e (s t r u c t LinkNode *, i n t) :
s t r u c t L i n k N o d e * I n i t L i n k e d L i s t (v o i d) ;
s t r u c t L i n k N o d e *InsertNodeSorted(struct LinkNode *.

s t r u c t L i n k N o d e *) ;

LISTING 15.3 11 5-3.C
/* D e l e t e s t h e n o d e i n t h e s p e c i f i e d l i n k e d l i s t t h a t f o l l o w s t h e

i n d i c a t e d n o d e . L i s t i s h e a d e d b y a h e a d - o f - l i s t p o i n t e r : i f t h e
p o i n t e r t o t h e n o d e t o d e l e t e a f t e r p o i n t s t o t h e h e a d - o f - l i s t
p o i n t e r , s p e c i a l h a n d l i n g i s p e r f o r m e d . * /

i i n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e * D e l e t e N o d e A f t e r (s t r u c t L i n k N o d e * * H e a d O f L i s t P t r .

{
s t r u c t L i n k N o d e * N o d e T o D e l e t e A f t e r)

/ * H a n d l e s p e c i a l l y i f t h e n o d e t o d e l e t e a f t e r i s a c t u a l l y t h e
head o f t h e l i s t (d e l e t e t h e f i r s t e l e m e n t i n t h e l i s t) * /

i f (NodeToDe le teA f te r - (s t r u c t L i n k N o d e *) H e a d O f L i s t P t r) I
* H e a d O f L i s t P t r - (* H e a d O f L i s t P t r) - > N e x t N o d e ;

284 Chapter 15

1 else {
N o d e T o D e l e t e A f t e r - > N e x t N o d e =

N o d e T o D e l e t e A f t e r - > N e x t N o d e - > N e x t N o d e ;
I

1
r e t u r n (N o d e T o D e 1 e t e A f t e r) :

However, it is true that if you’re going to store a variety of types of structures in your
linked lists, you should start each node with the LinkNode field. That way, the link
pointer is in the same place in every structure, and the same linked list code can
handle all of the structure types by casting them to the base link-node structure type.
This is a less than elegant approach, but it works. C++ can handle data mixing more
cleanly than C, via derivation from a base link-node class.
Note that Listings 15.1 and 15.3 have to specify the linked-list delete operation as
“delete the next node,” rather than “delete this node,” because in order to relink it’s
necessary to access the NextNode field of the node preceding the node to be de-
leted, and it’s impossible to backtrack in a singly linked list. For this reason,
singly-linked list operations tend to work with the structure preceding the one of
interest-and that makes the problem of having to special-case the head pointer all
the more acute.
Similar problems with the head pointer crop up when you’re inserting nodes, and in
fact in all link manipulation code. It’s easy to end up working with either pointers to
pointers or lots of special-case code, and while those approaches work, they’re inel-
egant and inefficient..

Dummies and Sentinels
A far better approach is to use a dummy node for the head of the list, as shown in
Figure 15.2. I invented this one for myself the next time I encountered linked lists,
while designing a seed fill function for MetaWindows, back during my tenure at
Metagraphics Corp. But I could have learned it by spending five minutes with
Sedgewick’s book.

Dummy
head node Node # 1 Node #2 Node #3

Dummy tail
node

&Node # 1 ”+ &Node #2

Not Other data Other data Other data Not used

&Tail node + &Node #3 ”+

used

-

in node in node in node
I

Using a dummy head and tail node with a linked list.
Figure 15.2

Linked Lists and Unintended Challenges 285

The next-node pointer of the head node, which points to thefirst real node, is the p onlypart of the head node that b actually used. This way the same code works on the
head node as on the rest of the list, so there are no special cases.

Likewise, there should be a separate node for the tail of the list, so that every node
that contains real data is guaranteed to have a node on either side of it. In this
scheme, an empty list contains two nodes, as shown in Figure 15.3. Although it is not
necessary, the tail node may point to itself as its own next node, rather than contain
a NULL pointer. This way, a deletion operation on an empty list will have no effect-
quite unlike the same operation performed on a list terminated with a NULL pointer.
The tail node of a list terminated like this can be detected because it will be the only
node for which the next-node pointer equals the current-node pointer.
Figure 15.3 is a giant step in the right direction, but we can still make a few refinements.
The inner loop of any code that scans through such a list has to perform a special test on
each node to determine whether the tail has been reached. So, for example, code to find
the first node containing a value field greater than or equal to a certain value has to
perform two tests in the inner loop, as shown in Listing 15.4.

LISTING 15.4 11 5-4.C
/* F i n d s t h e f i r s t n o d e i n a l i n k e d l i s t w i t h a v a l u e f i e l d g r e a t e r

t h a n o r e q u a l t o a k e y v a l u e , a n d r e t u r n s a p o i n t e r t o t h e n o d e
p r e c e d i n g t h a t n o d e (t o f a c i l i t a t e i n s e r t i o n and d e l e t i o n) . o r a
NULL p o i n t e r i f no such va lue was found . Assumes t h e l i s t i s
terminated w i t h a tail node p o i n t i n g t o i t s e l f a s the next node. */

i n c l u d e < s t d i o . h >
bi n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e *F indNodeBeforeValueNotLess(

I
s t r u c t L i n k N o d e * H e a d O f L i s t N o d e . i n t S e a r c h v a l u e)

s t r u c t L i n k N o d e * N o d e P t r - HeadOfLis tNode:

w h i l e ((NodePtr ->NextNode->NextNode !- NodePtr ->NextNode) &&
(NodePtr ->NextNode->Value < Searchva lue))

NodePtr - NodePtr ->NextNode:

i f (NodePtr->NextNode->NextNode -- NodePtr ->NextNode)

e l s e
r e t u r n (N U L L) ; / * we f o u n d t h e s e n t i n e l : f a i l e d s e a r c h * /

r e t u r n (N o d e P t r) : /* s u c c e s s : r e t u r n p o i n t e r t o n o d e p r e c e d i n g
node t h a t was >- * /

}

Suppose, however, that we make the tail node a sentinel by giving it a value that is
guaranteed to terminate the search, as shown in Figure 15.4. The list in Figure 15.4
has a sentinel with a value field of 32,767; since we're working with integers, that's
the highest possible search value, and is guaranteed to satisfy any search that comes
down the pike. The success or failure of the search can then be determined outside
the loop, if necessary, by checking for the tail node's special pointer-but the inside
of the loop is streamlined to just one test, as shown in Listing 15.5. Not all linked lists

286 Chapter 15

Dummy head Dummy ta i l
node node

Tail node &Tail node -

N o t N o t
used used .

Representing an empty list.
Figure 15.3

lend themselves to sentinels, but the performance benefits are considerable for those
that do.

LISTING 15.5 11 5-5.C
/* F i n d s t h e f i r s t n o d e i n a v a l u e - s o r t e d l i n k e d l i s t t h a t

has a V a l u e f i e l d g r e a t e r t h a n o r e q u a l t o a key va lue , and
r e t u r n s a p o i n t e r t o t h e n o d e p r e c e d i n g t h a t n o d e (t o f a c i l i t a t e
i n s e r t i o n and d e l e t i o n) . o r a NULL p o i n t e r i f no such va lue was
found . Assumes t h e l i s t i s t e r m i n a t e d w i t h a s e n t i n e l tail node
c o n t a i n i n g t h e l a r g e s t p o s s i b l e V a l u e f i e l d s e t t i n g and p o i n t i n g
t o i t s e l f as t h e n e x t n o d e . * /

i n c l u d e < s t d i o . h >
C i n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e *F indNodeBeforeValueNotLess(

t
s t r u c t L i n k N o d e * H e a d O f L i s t N o d e . i n t S e a r c h v a l u e)

s t ruc t L inkNode *NodePt r - HeadOfListNode;
w h i l e (NodePtr ->NextNode->Value < Searchva lue)

i f (NodePtr ->NextNode->NextNode -= NodePtr ->NextNode)

e l s e

NodePtr = NodePtr->NextNode:

r e t u r n (N U L L) ; / * we f o u n d t h e s e n t i n e l ; f a i l e d s e a r c h * /

r e t u r n (N o d e P t r) ; / * s u c c e s s ; r e t u r n p o i n t e r t o n o d e p r e c e d i n g
n o d e t h a t was >- * /

1

Dummy head
node Node # 1 Node #2 Node #3

Dumml t a i l I I n o e

& N o d e # 1 & N o d e #2

Not used
Other da ta t I

List terminated by a sentinel.
Figure 15.4

Linked Lists and Unintended Challenges 287

Circular Lists
One minor but elegant refinement yet remains: Use a single node as both the head
and the tail of the list. We can do this by connecting the last node back to the first
through the head/tail node in a circular fashion, as shown in Figure 15.5. This head/
tail node can also, of course, be a sentinel; when it’s necessary to check for the end of
the list explicitly, that can be done by comparing the current node pointer to the
head pointer. If they’re equal, you’re at the head/tail node.
W h y am I so fond of this circular list architecture? For one thing, it saves a node, and
most of my linked list programming has been done in severely memory-constrained
environments. Mostly, though, it’sjust so neut;with this setup, there’s not a single node or
inner-loop instruction wasted. Perfect economy of programming, if you ask me.
I must admit that I racked my brains for quite a while to come up with the circular
list, simple as it may seem. Shortly after coming up with it, I happened to look in
Sedgewick’s book, only to find my nifty optimization described plain as day; and a
little while after that, I came across a thread in the algorithms/computer.sci topic on
BIX that described it in considerable detail. Folks, the information is out there. Look
it up before turning on your optimizer afterburners!
Listings 15.1 and 15.6 together form a suite of C functions for maintaining a circular
linked list sorted by ascending value. (Listing 15.5 requires modification before it
will work with circular lists.) Listing 15.7 is an assembly language version of
InsertNodeSorted(); note the tremendous efficiency of the scanning loop in
InsertNodeSorted()-four instructions per node!-thanks to the dummy head/tail/
sentinel node. Listing 15.8 is a simple application that illustrates the use of the linked-
list functions in Listings 15.1 and 15.6.
Contrast Figure 15.5 with Figure 15.1, and Listings 15.1, 15.5, 15.6, and 15.7 with
Listings 15.3 and 15.4. Yes, linked lists are simple, but not so simple that a little
knowledge doesn’t make a substantial difference. Make it a habit to read Knuth or
Sedgewick or the like before you write a single line of code.

Dummy head/tail
node Node # 1 Node #2 Node #3

+
Other data Other data

- &Head/ + &Node #3 j. &Node #2 -+ &Node # 1
tail node

Not used
in node Other data in node

L in node

Representing a circular list.
Figure 15.5

288 Chapter 15

w h i l e (NodePtr->NextNode->Value < Searchva lue)
NodePtr - NodePtr->NextNode;

NodeToInsert->NextNode = NodePtr->NextNode:
NodePtr->NextNode - NodeToInser t ;
r e t u r n (N o d e P t r) :

}

LISTING 15.7 11 5-7.ASM
: C n e a r - c a l l a b l e a s s e m b l y f u n c t i o n f o r i n s e r t i n g a new node i n a
: l i n k e d l i s t s o r t e d b y a s c e n d i n g o r d e r o f t h e V a l u e f i e l d . The l i s t
: i s c i r c u l a r : t h a t i s . i t has a dummy node as bo th t he head and t he
: t a i l o f t h e l i s t . The dummy node i s a s e n t i n e l , c o n t a i n i n g t h e
: l a r g e s t p o s s i b l e V a l u e f i e l d s e t t i n g . T e s t e d w i t h TASM.
MAXLTEXT-LENGTH equ 100 : l o n g e s t a l l o w e d T e x t f i e l d
SENTINEL equ 32767 : l a r g e s t p o s s i b l e V a l u e f i e l d
L i n k N o d e s t r u c
NextNode dw ?
Va lue dw ?
Tex t db MAX-TEXTLLENGTH+l d u p (?)
:*** Any number o f a d d i t i o n a l d a t a f i e l d s may b y p r e s e n t ***
L i nkNode ends

.model smal 1

.code

: I n s e r t s t h e s p e c i f i e d n o d e i n t o a a s c e n d i n g - v a l u e - s o r t e d l i n k e d
: l i s t , s u c h t h a t v a l u e - s o r t i n g i s m a i n t a i n e d . R e t u r n s a p o i n t e r t o
: t h e n o d e a f t e r w h i c h t h e new node i s i n s e r t e d .
: C n e a r - c a l l a b l e a s :
: s t r u c t L i n k N o d e *InsertNodeSorted(struct LinkNode *HeadOfListNode.

parms s t r u c

HeadOfListNode dw ? : p o i n t e r t o h e a d n o d e o f 1 i s t
NodeToInser t dw ? ; p o i n t e r t o n o d e t o i n s e r t
parms ends

s t r u c t L i n k N o d e * N o d e T o I n s e r t)

dw 2 dup (? I : p u s h e d r e t u r n a d d r e s s & BP

p u b l i c - 1 n s e r t N o d e S o r t e d
-1nse r tNodeSor ted p roc nea r

push
mov
push
push
mov
mov
mov

SearchLoop:
mov
mov
CmP

mov
mov
mov

bP
bP. SP
s i
d i
s i , [b p l . N o d e T o I n s e r t
a x . [s i l . V a l u e
d i .Cbp l .Head0fL is tNode

b x . d i
d i .Cbx l .Nex tNode
C d i l . V a l u e . a x

SearchLoop

ax . [bx l .Nex tNode
[s i l . N e x t N o d e , a x
Cbx1.NextNode.si

: p o i n t t o s t a c k f r a m e
: p r e s e r v e r e g i s t e r v a r s

; p o i n t t o n o d e t o i n s e r t
; s e a r c h v a l u e
: p o i n t t o l i n k e d l i s t i n
: w h i c h t o i n s e r t

:advance t o t h e n e x t node
: p o i n t t o f o l l o w i n g n o d e
: i s t h e f o l l o w i n g n o d e ' s
: v a l u e l e s s t h a n t h e v a l u e
: f r o m t h e n o d e t o i n s e r t ?
:yes . s o c o n t i n u e s e a r c h i n g
:no. s o we have f ound ou r
: i n s e r t p o i n t
; l i n k t h e new node between
: t h e c u r r e n t n o d e a n d t h e
: f o l l o w i n g n o d e

290 Chapter 15

mov ax, bx

pop d i
pop s i
POP bp
r e t

end
Jnser tNodeSorted endp

; r e t u r n p o i n t e r t o node
: a f t e r w h i c h we i n s e r t e d
: r e s t o r e r e g i s t e r v a r s

LISTING 15.8 11 5-8.C
/* Sample l i n k e d l i s t p r o g r a m . T e s t e d w i t h B o r l a n d C++. * I
#i n c l u d e < s t d l i b . h>
#i n c l u d e < s t d i 0 . h>
Bi nc l ude <con i 0 . h>
Pi nc l ude <c type. h>
i n c l u d e < s t r i n g . h >
{ { i n c l u d e " 1 l i s t . h "

v o i d m a i n ()
{ i n t Done = 0 . Char, Tempvalue:

s t ruc t L inkNode *TempPt r . *L i s tP t r . *TempPt rZ :
c h a r TempBuffer[MAX-TEXT-LENGTH+31:

i f ((L i s t P t r - I n i t L i n k e d L i s t O) =- NULL) I
p r i n t f (" 0 u t o f m e m o r y \ n ") ;
e x i t (1) :

1
w h i l e (! D o n e) {

p r i n t f (" \ n A = a d d ; D - d e l e t e : F - f i n d ; L - l i s t a l l : C ! - q u i t \ n > ") :
Char = t o u p p e r (g e t c h e 0) :
p r i n t f (" \ n ") :
s w i t c h (C h a r) {

case ' A ' : I* add a node * I
i f ((TempPt r = m a l l o c (s i z e o f (s t r u c t L i n k N o d e))) -- NULL)
I

p r i n t f (" 0 u t o f memory\n) :
e x i t (1) :

1
p r i n t f (" N o d e v a l u e : "1:
scanf ("%d" . &TempPt r ->Va lue) :
i f ((F indNodeBe fo reVa lue (L i s tP t r .TempPt r ->Va lue)) != -NULL)
{ p r i n t f (" * * * v a l u e a l r e a d y i n l i s t : t r y a g a i n * * * \ n ") :

) e l s e { p r i n t f (" N o d e t e x t : ") :
f ree(TempPt r1 :

TempBuffer[O] .. MAX-TEXT-LENGTH:
c g e t s (T e m p B u f f e r) ;
s t r c p y (T e m p P t r - > T e x t . & T e m p B u f f e r [E l) :
I n s e r t N o d e S o r t e d (L i s t P t r . T e m p P t r) ;
p r i n t f (" \ n ") :

1
b r e a k :

p r i n t f (" V a 1 u e f i e l d o f n o d e t o d e l e t e : ") :

scanf ("%d". &TempVal ue) :
i f ((TempPt r - F i n d N o d e B e f o r e V a l u e (L i s t P t r . Tempvalue))

case ' D ' : I* d e l e t e a node *I

!=- NULL) I
TempPtrE - TempPtr->NextNode; I* - > node to d e l e t e *I
De le teNodeAf te r (TempPt r) : I* d e l e t e i t *I
f r e e (T e m p P t r 2) : I* f r e e i t s memory * /

Linked Lists and Unintended Challenges 291

1 e l s e (

b r e a k ;

p r i n t f (" V a 1 u e f i e l d o f n o d e t o f i n d : "1;
scanf("%d". &Tempvalue) ;
i f ((TempPtr - F i n d N o d e B e f o r e V a l u e (L i s t P t r . Tempvalue))

p r i n t f (" * * * n o s u c h v a l u e f i e l d i n l i s t * * * \ n ")

case I F ' : I* f i n d a node *I

!- NULL)
p r i n t f (" V a 1 u e : % d \ n T e x t : % s \ n " .

TempPtr->NextNode->Value. TempPtr->NextNode->Text) ;
e l s e

b r e a k ;

TempPtr - L i s t P t r - > N e x t N o d e ; I* p o i n t t o f i r s t node *I
i f (TempPtr - L i s t P t r) { I* empty i f a t s e n t i n e l *I

1 e l s e I

p r i n t f (" * * * n o s u c h v a l u e f i e l d i n l i s t * * * \ n ") ;

case ' L ' : I* l i s t all nodes *I

p r i n t f (" * * * L i s t i s empty *** \n") ;

do { p r i n t f (" V a l u e : % d \ n T e x t : % s \ n " , T e m p P t r - > V a l u e .
TempPt r ->Tex t) ;

TempPtr - TempPtr->NextNode;

1
break ;

case '0':
Done - 1;
b reak ;

b reak ;

1 wh i le (TempPt r !- L i s t P t r) ;

d e f a u l t :

1
1

1

Hi/Lo in 24 Bytes
In one of my PC TECHNIQLES "Pushing the Envelope" columns, I passed along one of
David Stafford's fiendish programming puzzles: Write a Gcallable function to find the
greatest or smallest unsigned int. Not a big deal-except that David had already done it
in 24 bytes, so the challenge was to do it in 24 bytes or less.
Such routines soon began coming at me from all angles. However (and I hate to say
this because some of my correspondents were very pleased with the thought that they
had bested David), no one has yet met the challenge-because most of you folks
missed a key point. When David said, "Write a function to find the greatest or small-
est unsigned int in 24 bytes or less," he meant, 'Write the hi and the lo functions in
24 bytes or less-combined."
Oh.
Yes, a 24byte hi/lo function is possible, anatomically improbable as it might seem.
Which I guess goes to show that when one of David's puzzles seems less than impos-
sible, odds are you're missing something. Listing 15.9 is David's 24byte solution,
from which a lot may be learned if one reads closely enough.

292 Chapter 15

LISTING 15.9 L15-9.ASM
; F i n d t h e g r e a t e s t or s m a l l e s t u n s i g n e d i n t .
; C c a l l a b l e (s m a l l m o d e l) : 24 b y t e s .
: By D a v i d S t a f f o r d .
: u n s i g n e d h i (i n t num. uns igned a []) :

: u n s i g n e d l o (i n t n u m . uns igned a []) ;

p u b l i c -.hi. -10

save:
t o p :

around:

-h i : db
-1 0 : x o r

P O P

POP
POP
push
push
push
mov

j c x z
cmc
j a
i nc
i nc
dec
j nz

cmp

Ob9h

ax
dx
bx
bx
dx
ax
ax, Cbxl
a x . [b x l
a round

c x . c x

save
bx
bx
dx
t o p

:mov cx . immedia te

: g e t r e t u r n a d d r e s s
:ge t coun t
: g e t p o i n t e r
: r e s t o r e p o i n t e r
; r e s t o r e c o u n t
; r e s t o r e r e t u r n a d d r e s s

r e t

Before I end this chapter, let me say that I get a lot of feedback from my readers, and
it's much appreciated. Keep those cards, letters, and email messages coming. And if
any of you know Jeannie Schweigert, have her drop me a line and let me know how
she's doing these days

Linked Lists and Unintended Challenges 293

	previous:
	home:
	next:

