
chapter 22

zenning and the flexible mind

Ch

And so we come &>the end of ourjourney; for now, at least. What follows is a modest
riginally served to show readers of Zen of Assembly

Language that they more than just bits and pieces of knowledge; that
they had also begun to apply the flexible mind-unconventional, broadly
integrative thinkin hing high-level optimization at the algorithmic and

urse, need no such reassurance, having just spent
xible mind in many guises, but I think you’ll find

ve nonetheless. Try to stay ahead as the level of optimization
elimination to instruction substitution to more creative solu-

nding and redesign. We’ll start out by compacting
individual instructiods and bits of code, but by the end we’ll come up with a solution
that involves the very structure of the subroutine, with each instruction carefully
integrated into a remarkably compact whole. It’s a neat example of how optimiza-
tion operates at many levels, some much less determininstic than others-and besides,
it’s just plain fun.
Enjoy!

Lennmg
In Jeff Duntemann’s excellent book Bodand PascaZFrum Square One (Random House,
1993), there’s a small assembly subroutine that’s designed to be called from a Turbo

41 5

Pascal program in order to fill the screen or a system-memory screen buffer with a
specified character/attribute pair in text mode. This subroutine involves only 21
instructions and works perfectly well; however, with what we know, we can compact
the subroutine tremendously and speed it up a bit as well. To coin a verb, we can
“Zen” this already-tight assembly code to an astonishing degree. In the process, I
hope you’ll get a feel for how advanced your assembly skills have become.
Jeff‘s original code follows as Listing 22.1 (with some text converted to lowercase in
order to match the style of this book), but the comments are mine.

LISTING
OnStack
01 dBP
RetAddr
F i l l e r
A t t r i b
B u f S i z e
BufOfs
BufSeg
EndMrk
OnStack

22.1 122- 1 .ASM
s t r u c : d a t a t h a t ’ s s t o r e d on t h e s t a c k a f t e r PUSH BP
dw ? : c a l l e r ’ s BP
dw ? : re tu rn add ress
dw ? : c h a r a c t e r t o fill t h e b u f f e r w i t h
dw ? : a t t r i b u t e t o fill t h e b u f f e r w i t h
dw ? :number o f c h a r a c t e r / a t t r i b u t e p a i r s t o fill
dw ? : b u f f e r o f f s e t
dw ? : b u f f e r segment
db ? : m a r k e r f o r t h e end o f t h e s t a c k f r a m e
ends

C l e a r s
push
mov
cmp
j n e
cmp
j e

mov
and
mov
and
o r
mov
mov
mov
mov
mov

Bye: mov
POP
r e t

S t a r t : c l d

r e p

C l e a r s

p r o c n e a r
bP ; s a v e c a l l e r ’ s B P
bP. SP : p o i n t t o s t a c k f r a m e
word p t r Cbp l .BufSeg.0 :sk ip the fill i f a n u l l
S t a r t
word p t r Cbpl.BufOfs,O
Bye

a x . C b p l . A t t r i b : l o a d AX w i t h a t t r i b u t e p a r a m e t e r
a x . O f f 0 0 h ; p r e p a r e f o r m e r g i n g w i t h fill char
b x . [b p l . F i l l e r : l o a d BX w i t h fill char
b x . 0 f f h : p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
ax .bx : comb ine a t t r i bu te and fill c h a r
bx ,Cbp l .BufOfs : load DI w i t h t a r g e t b u f f e r o f f s e t
d i , bx
bx . [bp l .Bu fSeg : l oad ES w i t h t a r g e t b u f f e r segment
e s , bx
cx .Cbp l .Bu fS ize ; l oad C X w i t h b u f f e r s i z e
s tosw ;fill t h e b u f f e r
s p . b p ; r e s t o r e o r i g i n a l s t a c k p o i n t e r
bp ; and c a l l e r ’ s BP

: p o i n t e r i s passed

:make STOSW count up

EndMrk -Re tAddr -2 : re tu rn . c lea r ing t he pa rms f rom the s tack
endp

The first thing you’ll notice about Listing 22.1 is that Clears uses a REP STOSW
instruction. That means that we’re not going to improve performance by any great
amount, no matter how clever we are. While we can eliminate some cycles, the bulk
of the work in Clears is done by that one repeated string instruction, and there’s no
way to improve on that.
Does that mean that Listing 22.1 is as good as it can be? Hardly. While the speed of
Clears is very good, there’s another side to the optimization equation: size. The whole of
Clears is 52 bytes long as it stands-but, as we’ll see, that size is hardly set in stone.

41 6 Chapter 22

Where do we begin with Clears? For starters, there’s an instruction in there that
serves no earthly purpose-MOV SP,BP. SP is guaranteed to be equal to BP at that
point anyway, so why reload it with the same value? Removing that instruction saves
us two bytes.
Well, that was certainly easy enough! We’re not going to find any more totally non-
functional instructions in Clears, however, so let’s get on to some serious optimizing.
We’ll look first for cases where we know of better instructions for particular tasks
than those that were chosen. For example, there’s no need to load any register,
whether segment or general-purpose, through BX; we can eliminate two instruc-
tions by loading ES and DI directly as shown in Listing 22.2.

LISTING 22.2 122-2.ASM
C l e a r s p r o c n e a r

push bp
mov bp. sp
cmp word p t r Cbpl.BufSeg.0
j n e S t a r t
cmp word p t r [b p l . B u f O f s . O
je Bye

mov a x . C b p l . A t t r i b
and ax.Off00h
mov bx . [bp l . F i 11 e r
and b x . 0 f f h
o r ax .bx
mov d i .Cbp].BufOfs
mov es, [bp l .BufSeg
mov cx . [bp l .Bu fS ize
rep s tosw

S t a r t : c l d

Bye :
POP bP
r e t EndMrk-RetAddr-2

C1 ears endp

: s a v e c a l l e r ’ s BP
: p o i n t t o s t a c k f r a m e
: s k i p t h e fill i f a n u l l
: p o i n t e r i s p a s s e d

:make STOSW coun t up
: l o a d A X w i t h a t t r i b u t e p a r a m e t e r
: p r e p a r e f o r m e r g i n g w i t h fill char
: l o a d BX w i t h fill char
: p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
: c o m b i n e a t t r i b u t e a n d fill char
; l o a d D I w i t h t a r g e t b u f f e r o f f s e t
: l o a d ES w i t h t a r g e t b u f f e r segment
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

: r e s t o r e c a l l e r ’ s BP
: r e t u r n . c l e a r i n g t h e parms f r o m t h e s t a c k

(The OnStack structure definition doesn’t change in any of our examples, so I’m
not going clutter up this chapter by reproducing it for each new version of Clears.)
Okay, loading ES and DI directly saves another four bytes. We’ve squeezed a total of
6 bytes-about 11 percent-out of Clears. What next?
Well, LES would serve better than two MOV instructions for loading ES and DI as shown
in Listing 22.3.

LISTING 22.3 122-3.ASM
C l e a r s p r o c n e a r

p u s h b p : s a v e c a l l e r ’ s B P
mov bp,sp : p o i n t t o s tack f rame
cmp word p t r Cbpl .BufSeg.0 :sk ip the fill i f a n u l l
j n e S t a r t : p o i n t e r i s p a s s e d
cmp word p t r [b p l . B u f O f s , O
je Bye

mov a x . [b p l . A t t r i b : l o a d A X w i t h a t t r i b u t e p a r a m e t e r
and ax.Off00h : p r e p a r e f o r m e r g i n g w i t h fill char

S t a r t : c l d :make STOSW count up

Zenning and the Flexible Mind 41 7

mov
and
o r
1 es

mov
r e p

POP
r e t

Bye :

C l e a r s

b x . [b p l . F i l l e r
b x . 0 f f h
ax, bx
d i . d w o r d p t r [b p l . B u f O f s

cx ,Cbp l .BufS ize
stosw

bP
EndMrk-RetAddr-2
endp

: l o a d BX w i t h fill c h a r
: p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
;combine a t t r i b u t e and fill c h a r
: l o a d E S : D I w i t h t a r g e t b u f f e r
: s e g m e n t : o f f s e t
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

: r e s t o r e c a l l e r ’ s BP
: r e t u r n . c l e a r i n g t h e pa rms f rom the s tack

That’s good for another three bytes. We’re down to 43 bytes, and counting.
We can save 3 more bytes by clearing the low and high bytes of AX and BX, respectively,
by using SUB reg8,reg8 rather than ANDing 16-bit values as shown in Listing 22.4.

LISTING 22.4 122-4.ASM
C l e a r s p roc nea r

push bp
mov bp.sp
cmp word p t r Cbpl.BufSeg.0
j n e S t a r t
cmp word p t r C b p l . B u f O f s . 0
j e Bye

mov a x . [b p l . A t t r i b
sub a1,a l
mov b x . C b p l . F i l l e r
sub bh,bh
or ax .bx
l e s d i . d w o r d p t r [b p l . B u f O f s

mov cx .Cbp l .BufS ize
rep s tosw

S t a r t : c l d

Bye :
P O P bP
re t EndMrk -Re tAddr -2

C l e a r s endD

: s a v e c a l l e r ’ s B P
: p o i n t t o s t a c k f r a m e
: s k i p t h e fill i f a n u l l
: p o i n t e r i s p a s s e d

;make STOSW count up
: l o a d A X w i t h a t t r i b u t e p a r a m e t e r
: p r e p a r e f o r m e r g i n g w i t h fill char
: l o a d BX w i t h fill char
: p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
: c o m b i n e a t t r i b u t e a n d fill char
: l o a d E S : D I w i t h t a r g e t b u f f e r
;segment :o f fse t
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

: r e s t o r e c a l l e r ’ s BP
: r e t u r n . c l e a r i n g t h e parms f rom the s tack

Now we’re down to 40 bytes-more than 20 percent smaller than the original code.
That’s pretty much it for simple instruction-substitution optimizations. Now let’s look
for instruction-rearrangement optimizations.
It seems strange to load a word value into AX and then throw away AL. Likewise, it
seems strange to load a word value into BX and then throw away BH. However, those
steps are necessary because the two modified word values are ORed into a single char-
acter/attribute word value that is then used to fill the target buffer.
Let’s step back and see what this code really does, though. All it does in the end is
load one byte addressed relative to BP into AH and another byte addressed relative
to BP into AL. Heck, we can just do that directly! Presto-we’ve saved another 6
bytes, and turned two word-sized memory accesses into byte-sized memory accesses
as well. Listing 22.5 shows the new code.

41 8 Chapter 22

LISTING 22.5 122-5.ASM
C l e a r s p roc nea r

push bp
mov bp,sp
cmp word p t r Cbpl.BufSeg.0
j n e S t a r t
cmp word p t r [b p l . B u f O f s . O
j e Bye

mov a h , b y t e p t r [b p] . A t t r i b [l l
mov a1 , b y t e p t r [b p l . F i l l e r
l e s d i . d w o r d p t r [b p] . B u f O f s
mov cx ,Cbp l .BufS ize
rep s tosw

S t a r t : c l d

Bye :
POP bp
re t EndMrk -Re tAddr -2

Clears endp

; s a v e c a l l e r ' s BP
; p o i n t t o s t a c k f r a m e
; s k i p t h e fill i f a n u l l
: p o i n t e r i s passed

;make STOSW count up
; l o a d AH w i t h a t t r i b u t e
; l o a d AL w i t h fill char
; l o a d ES:OI w i t h t a r g e t b u f f e r s e g m e n t : o f f s e t
; l o a d C X w i t h b u f f e r s i z e
;fill t h e b u f f e r

; r e s t o r e c a l l e r ' s BP
: r e t u r n . c l e a r i n g t h e parms f rom the s tack

(We could get rid ofyet another instruction by having the calling code pack both the
attribute and the fill value into the same word, but that's not part of the specification
for this particular routine.)
Another nifty instruction-rearrangement trick saves 6 more bytes. Clears checks to see
whether the far pointer is null (zero) at the start of the routine.. .then loads and uses
that same far pointer later on. Let's get that pointer into registers and keep it there;
that way we can check to see whether it's null with a single comparison, and can use it
later without having to reload it from memory. This technique is shown in Listing 22.6.

LISTING 22.6 122-6.ASM
C l e a r s p roc nea r

push bp
mov bp,sp
l e s d i . d w o r d p t r [b p] . B u f O f s

mov ax.es
o r a x . d i
j e Bye

mov a h . b y t e p t r C b p l . A t t r i b C 1 1
mov a l . b y t e p t r C b p] . F i l l e r
mov c x . [b p l . B u f S i z e
rep s tosw

Start: c l d

Bye :
POP bp
re t EndMrk -Re tAddr -2

Clears endp

; s a v e c a l l e r ' s B P
; p o i n t t o s t a c k f r a m e
; l o a d E S : D I w i t h t a r g e t b u f f e r
;segment :o f fse t
;put segment where we c a n t e s t i t
; i s i t a n u l l p o i n t e r ?
;yes. s o we' re done
;make STOSW count up
; l o a d AH w i t h a t t r i b u t e
; l o a d AL w i t h fill char
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

; r e s t o r e c a l l e r ' s B P
: r e t u r n , c l e a r i n g t h e parms f rom the s tack

Well. Now we're down to 28 bytes, having reduced the size of this subroutine by
nearly 50 percent. Only 13 instructions remain. Realistically, how much smaller can
we make this code?
About one-third smaller yet, as it turns out-but in order to do that, we must stretch
our minds and use the 8088's instructions in unusual ways. Let me ask you this: What
do most of the instructions in the current version of Clears do?

Zenning and the Flexible Mind 41 9

They either load parameters from the stack frame or set up the registers so that the
parameters can be accessed. Mind you, there’s nothing wrong with the stack-frame-
oriented instructions used in Clears; those instructions access the stack frame in a
highly efficient way, exactly as the designers of the 8088 intended, and just as the code
generated by a high-level language would. That means that we aren’t going to be able
to improve the code if we don’t bend the rules a bit.
Let’s think ... the parameters are sitting on the stack, and most of our instruction
bytes are being used to read bytes off the stack with BP-based addressing.. .we need a
more efficient way to address the stack.. . the stack.. .THE STACK!
Ye gods! That’s easy-we can use the stuck pointer to address the stack rather than BP.
While it’s true that the stack pointer can’t be used for mod-reg-rm addressing, as BP
can, it can be used to pop data off the stack-and POP is a one-byte instruction.
Instructions don’t get any shorter than that.
There is one detail to be taken care of before we can put our plan into action: The
return address-the address of the calling code-is on top of the stack, so the pa-
rameters we want can’t be reached with POP. That’s easily solved, however-we’ll
just pop the return address into an unused register, then branch through that regis-
ter when we’re done, as we learned to do in Chapter 14. As we pop the parameters,
we’ll also be removing them from the stack, thereby neatly avoiding the need to
discard them when it’s time to return.
With that problem dealt with, Listing 22.7 shows the Zenned version of Clears.

LISTING 22.7 122-7.ASM
C l e a r s p r o c n e a r

POP dx ; g e t t h e r e t u r n a d d r e s s
POP ax ; p u t fill c h a r i n t o AL
POP bx ; g e t t h e a t t r i b u t e
mov ah.bh ; p u t a t t r i b u t e i n t o AH
POP c x ; g e t t h e b u f f e r s i z e
pop d i : g e t t h e o f f s e t o f t h e b u f f e r o r i g i n
POP es : g e t t h e s e g m e n t o f t h e b u f f e r o r i g i n
mov bx.es ;put the segment where we c a n t e s t it
o r b x . d i ; n u l 1 p o i n t e r ?
j e Bye ;yes. so we‘re done
c l d :make STOSW count up
rep s tosw :do t h e s t r i n g s t o r e

jrnp dx : r e t u r n t o t h e c a l l i n g c o d e
Bye:

Clears endp

At long last, we’re down to the bare metal. This version of Clears is just 19 bytes long.
That’s just 37 percent as long as the original version, without any change whatsoarer in the
&nctzonuZiCy that CbarS maka available to the culling code. The code is bound to run a bit
faster too, given that there are far fewer instruction bytes and fewer memory accesses.
All in all, the Zenned version of Clears is a vast improvement over the original. Probably
not the best possible implementation-never say never!-but an awfully good one.

420 Chapter 22

	next:
	home:
	previous:

