
chapter 27

yet another vga write mode

Chunky Bitmaps,
ics Coexistence

In the last chapter, we’karned about the markedly peculiar write mode 3 of the VGA,
after having spent thre& learning the ins and outs of the VGA’s data path in
write mode 0, touching mode 1 as well in Chapter 23. In all, the VGA sup-
ports four write mod&-write modes 0, 1 ,2 , and 3-and read modes 0 and 1 as well.
Which leaves two bbning questions: What is write mode 2, and how the heck do you

bit unusual but not really hard to understand, particularly if you
followed the descri&on of set/reset in Chapter 25. Reading VGA memory, on the
other hand, can be &anger than you could ever imagine.
Let’s start with the easy stuff, write mode 2, and save the read modes for the next
chapter.

Write Mode 2 and Set/Reset
Remember how set/reset works? Good, because that’s pretty much how write mode
2 works. (You don’t remember? Well, I’ll provide a brief refresher, but I suggest that
you go back through Chapters 23 through 25 and come up to speed on the VGA.)

50 1

Recall that the set/reset circuitry for each of the four planes affects the byte written
by the CPU in one of three ways: By replacing the CPU byte with 0, by replacing it
with OFFH, or by leaving it unchanged. The nature of the transformation for each
plane is controlled by two bits. The enable set/reset bit for a given plane selects
whether the CPU byte is replaced or not, and the set/reset bit for that plane selects
the value with which the CPU byte is replaced if the enable set/reset bit is 1. The net
effect of set/reset is to independently force any, none, or all planes to either of all
ones or all zeros on CPU writes. As we discussed in Chapter 25, this is a convenient
way to force a specific color to appear no matter what color the pixels being overwrit-
ten are. Set/reset also allows the CPU to control the contents of some planes while
the set/reset circuitry controls the contents of other planes.
Write mode 2 is basically a set/reset-type mode with enable set/reset always on for all
planes and the set/reset data coming directly from the byte written by the CPU. Put
another way, the lower four bits written by the CPU are written across the four planes,
thereby becoming a color value. Put yet another way, bit 0 of the CPU byte is ex-
panded to a byte and sent to the plane 0 ALU (if bit 0 is 0, a 0 byte is the CPU-side
input to the plane 0 ALU, while if bit 0 is 1, a OFFH byte is the CPU-side input);
likewise, bit I of the CPU byte is expanded to a byte for plane 1, bit 2 is expanded for
plane 2, and bit 3 is expanded for plane 3.
It’s possible that you understand write mode 2 thoroughly at this point; nonetheless, I
suspect that some additional explanation of an admittedly non-obvious mode wouldn’t
hurt. Let’s follow the CPU byte through the VGA in write mode 2, step by step.

A Byte’s Progress in Write Mode 2
Figure 27.1 shows the write mode 2 data path. The CPU byte comes into the VGA
and is split into four separate bits, one for each plane. Bits 7-4 of the CPU byte vanish
into the bit bucket, never to be heard from again. Speculation long held that those 4
unused bits indicated that IBM would someday come out with an 8-plane adapter
that supported 256 colors. When IBM did finally come out with a 256-color mode
(mode 13H of the VGA), it turned out not to be planar at all, and the upper nibble
of the CPU byte remains unused in write mode 2 to this day.
The bit of the CPU byte sent to each plane is expanded to a 0 or OFFH byte, depend-
ing on whether the bit is 0 or 1 , respectively. The byte for each plane then becomes
the CPU-side input to the respective plane’s ALU. From this point on, the write
mode 2 data path is identical to the write mode 0 data path. As discussed in earlier
articles, the latch byte for each plane is the other ALU input, and the ALU either
ANDs, ORs, or XORs the two bytes together or simply passes the CPU-side byte
through. The byte generated by each plane’s ALU then goes through the bit mask
circuitry, which selects on a bit-by-bit basis between the ALU byte and the latch byte.
Finally, the byte from the bit mask circuitry for each plane is written to that plane if
the corresponding bit in the Map Mask register is set to 1.

502 Chapter 27

It k worth noting two differences between write mode 2 and write mode 0, the p standard write mode of the VGA. First, rotation of the CPUdata byte does not take
place in write mode 2. Second, the Set/Reset and Enable Set/Reset registers have
no effect in write mode 2.

Now that we understand the mechanics of write mode 2, we can step back and get a
feel for what it might be useful for. View bits 3-0 of the CPU byte as a single pixel in

Yet Another VGA Write Mode 503

VGA data flow in write mode 2.
Figure 27.1

one of 16 colors. Next imagine that nibble turned sideways and written across the
four planes, one bit to a plane. Finally, expand each of the’bits to a byte, as shown in
Figure 27.2, so that 8 pixels are drawn in the color selected by bits 30 of the CPU byte.
Within the constraints of the VGA’s data paths, that’s exactly what write mode 2 does.
By “the constraints of the VGA’s data paths,’’ I mean the ALUs, the bit mask, and the
map mask. As Figure 2’1.1 indicates, the ALUs can modify the color written by the
CPU, the map mask can prevent the CPU from altering selected planes, and the bit
mask can prevent the CPU from altering selected bits of the byte written to. (Actu-
ally, the bit mask simply substitutes latch bits for ALU bits, but since the latches are
normally loaded from the destination display memory byte, the net effect of the bit mask
is usually to preserve bits of the destination byte.) These are not really constraints at
all, of course, but rather features of the VGA; I simply want to make it clear that the
use of write mode 2 to set 8 pixels to a given color is a rather simple special case
among the many possible ways in which write mode 2 can be used to feed data into
the VGA’s data path.
Write mode 2 is selected by setting bits 1 and 0 of the Graphics Mode register (Graphics
Controller register 5) to 1 and 0, respectively. Since VGA registers are readable, the
correct way to select write mode 2 on the VGA is to read the Graphics Mode register,
mask off bits 1 and 0, OR in OOOOOOlOb (OZH), and write the result back to the
Graphics Mode register, thereby leaving the other bits in the register undisturbed.

Copying Chunky Bitmaps to VGA Memory Using Write Mode 2
Let’s take a look at two examples of write mode 2 in action. Listing 27.1 presents a
program that uses write mode 2 to copy a graphics image in chunky format to the
VGA. In chunky format adjacent bits in a single byte make up each pixel: mode 4 of the
CGA, EGA, and VGA is a 2-bit-per-pixel chunky mode, and mode 13H of the VGA is
an 8-bit-per-pixel chunky mode. Chunky format is convenient, since all the information
about each pixel is contained in a single byte; consequently chunky format is often
used to store bitmaps in system memory.
Unfortunately, VGA memory is organized as a planar rather than chunky bitmap in
modes ODH through 12H, with the bits that make up each pixel spread across four
planes. The conversion from chunky to planar format in write mode 0 is quite a
nuisance, requiring a good deal of bit manipulation. In write mode 2, however, the
conversion becomes a snap, as shown in Listing 27.1. Once the VGA is placed in
write mode 2, the lower four bits (the lower nibble) of the CPU byte (a single 4bit
chunky pixel) become eight planar pixels, all the same color. As discussed in Chap-
ter 25, the bit mask makes it possible to narrow the effect of the CPU write down to
a single pixel.
Given the above, conversion of a chunky 4bit-per-pixel bitmap to the VGA’s planar
format in write mode 2 is trivial. First, the Bit Mask register is set to allow only the
VGA display memory bits corresponding to the leftmost chunky pixel of the two

504 Chapter 27

stored in the first chunky bitmap byte to be modified. Next, the destination byte in
display memory is read in order to load the latches. Then a byte containing two
chunky pixels is read from the chunky bitmap in system memory, and the byte is
rotated four bits to the right to get the leftmost chunky pixel in position. This ro-
tated byte is written to the destination byte; since write mode 2 is active, each bit of
the chunky pixel goes to its respective plane, and since the Bit Mask register is set up
to allow only one bit in each plane to be modified, a single pixel in the color of the
chunky pixel is written to VGA memory.
This process is then repeated for the rightmost chunky pixel, if necessary, and re-
peated again for as many pixels as there are in the image.

LISTING 27.1 127- 1 .ASM
: Program t o i l l u s t r a t e one use o f w r i t e mode 2 o f t h e VGA and EGA by
: an ima t ing t he image o f an "A" drawn by copying it from a chunky
: b i t - m a p i n s y s t e m memory t o a p l a n a r b i t - m a p i n VGA o r EGA memory.

: Assemble w i t h MASM o r TASM

: By Michael Abrash

Stack segment para s tack 'STACK'
db 512 dup(0)

Stack ends

SCREEN-WIDTH-IN-BYTES equ 80
DISPLAY-MEMORY-SEGMENT equ OaOOOh
SC- INDEX equ 3c4h Sequence Con t ro l l e r I ndex

MAP-MASK
r e g i s t e r

GC-INDEX equ 03ceh :Graph ics Cont ro l le r Index reg
GRAPHICS-MODE
BIT-MASK

Data segment para common 'DATA'

: C u r r e n t l o c a t i o n o f "A" as i t i s an imated across the sc reen.

Cur ren tX dw ?
Cur ren tY dw ?
RemainingLength dw ?

: Chunky b i t -map image of a y e l l o w "A" on a b r i g h t b l u e b a c k g r o u n d

equ 2 : i n d e x o f Map Mask r e g i s t e r

equ 5 : i n d e x o f Graph ics Mode r e g
equ 8 : i n d e x o f B i t Mask r e g

AImage l a b e l b y t e
dw 13. 13 ; w i d t h . h e i g h t i n p i x e l s
db 000h. OOOh, 000h. 000h. 000h. 000h. OOOh
db 009h. 099h, 099h. 099h. 099h. 099h. OOOh
db 009h. 099h, 099h. 099h. 099h. 099h. OOOh
db O09h. 099h, 099h. Oe9h. 099h. 099h. OOOh
db 009h. 099h, 09eh. Oeeh. 099h. 099h. OOOh
db 009h. 099h. Oeeh, 09eh. Oe9h. 099h. OOOh
db 009h. 09eh. Oe9h. 099h. Oeeh. 099h. OOOh
db 009h. 09eh. Oeeh. Oeeh. Oeeh. 099h. OOOh
db 009h. 09eh. Oe9h. 099h. Oeeh. 099h. OOOh
db 009h. 09eh. Oe9h. 099h. Oeeh, 099h. OOOh

Yet Another VGA Write Mode 505

db 009h. 099h. 099h. 099h. 099h. 099h. OOOh
db 009h. 099h. 099h. 099h. 099h. 099h. OOOh
db 000h. 000h. 000h. 000h. 000h. 000h. OOOh

Data ends

Code segmen t pa ra pub l i c 'CODE'

S t a r t p r o c n e a r
assume cs:Code, ds:Data

mov ax, Data
mov ds ,ax
mov ax.10h
i n t 1 0 h : s e l e c t v i d e o mode 10h (640x350)

: P r e p a r e f o r a n i m a t i o n .

mov CCurrentX1.0
mov CCurrentYl .200
mov CRemainingLength1.600 :move 600 t i m e s

: A n i m a t e , r e p e a t i n g R e m a i n i n g L e n g t h t i m e s . I t ' s u n n e c e s s a r y t o e r a s e
: t h e o l d i m a g e , s i n c e t h e o n e p i x e l o f b l a n k f r i n g e a r o u n d t h e i m a g e
: e r a s e s t h e p a r t o f t h e o l d i m a g e n o t o v e r l a p p e d b y t h e new image.

Animat ionLoop:
mov bx.CCurrentX1
mov cx.CCurrentY1
mov s i . o f f s e t AImage
c a l l DrawFromChunkyBitmap :draw t h e "A" image
i n c [C u r r e n t X l ;move one p i x e l t o t h e r i g h t

mov cx.0
DelayLoop:

;de lay s o we d o n ' t move t h e
: i m a g e t o o f a s t : a d j u s t as
: needed

1 oop Del ayLoop

dec
j n z

: W a i t f o r a

mov
i n t
mov
i n t
mov
i n t

S t a r t endp

[Remain ingLength l
Animat ionLoop

k e y b e f o r e r e t u r n i n g t o t e x t mode and end ing .

a h . 0 l h
21h
ax.03h
10h
ah.4ch
21h

: Draw an image s t o r e d i n a c h u n k y - b i t map i n t o p l a n a r V G A I E G A memory
: a t t h e s p e c i f i e d l o c a t i o n .

: I n p u t :
BX - X s c r e e n l o c a t i o n a t w h i c h t o d r a w t h e u p p e r - l e f t c o r n e r

o f t h e image
C X - Y s c r e e n l o c a t i o n a t w h i c h t o d r a w t h e u p p e r - l e f t c o r n e r

o f t h e image
DS:SI - p o i n t e r t o c h u n k y i m a g e t o d r a w , as f o l l o w s :

word a t 0: w i d t h o f i m a g e , i n p i x e l s
w o r d a t 2: h e i g h t o f i m a g e , i n p i x e l s

506 Chapter 27

b y t e a t 4: msb/ lsb - f i r s t & second chunky p ixe ls ,
r e p e a t i n g f o r t h e r e m a i n d e r o f t h e s c a n l i n e
o f t h e image , t hen f o r all s c a n l i n e s . Images
w i t h odd widths have an unused n u l l n i b b l e
p a d d i n g e a c h s c a n l i n e o u t t o a b y t e w i d t h

; A X , BX, C X . DX, SI. D I , ES d e s t r o y e d .

DrawFromChunkyBitmap proc near
c l d

; S e l e c t w r i t e mode 2 .

mov dx.GC-INDEX
mov a1 .GRAPHICS-MODE
o u t d x , a l
i n c d x
mov a1 .02h
o u t d x . a l

; E n a b l e w r i t e s t o all 4 p l a n e s .

mov dx , SC-I NDEX
mov a1 .MAP-MASK
o u t d x . a l
i n c d x
mov a l . O f h
o u t d x , a l

: P o i n t E S : D I t o t h e d i s p l a y memory b y t e i n w h i c h t h e f i r s t p i x e l
; o f the image goes , w i th AH s e t u p a s t h e b i t mask t o access t ha t
; p i x e l w i t h i n t h e a d d r e s s e d b y t e .

mov ax.SCREEN-WIDTH-IN-BYTES
mu1 c x : o f f s e t o f s t a r t o f t o p s c a n l i n e
mov d i ,ax
mov c l . b l
and c l . l l l b
mov ah.80h ;set AH t o t h e b i t mask f o r t h e
s h r a h . c l ; i n i t i a l p i x e l
s h r b x . 1
sh r bx .1
s h r b x . 1 ;X i n b y t e s
add d i . b x ; o f f s e t o f u p p e r - l e f t b y t e o f i m a g e
mov bx.DISPLAY-MEMORY-SEGMENT
mov es.bx ; E S : D I p o i n t s t o t h e b y t e a t w h i c h t h e

; upper l e f t o f t h e image goes

; Get t h e w i d t h and h e i g h t o f t h e image.

mov c x . [s i l ; g e t t h e w i d t h
i n c s i
i n c s i
mov b x . [s i 1 ; g e t t h e h e i g h t
i n c s i
i n c s i
mov dx.GC-INDEX
mov a1 ,BIT-MASK
o u t d x . a l ; l e a v e t h e GC I n d e x r e g i s t e r p o i n t i n g
i n c d x ; t o t h e B i t Mask r e g i s t e r

Yet Another VGA Write Mode 507

RowLoop:

push
push
push

ColumnLoop:
mov
o u t
mov
mov
s h r
s h r
s h r
s h r
s t o s b
r o r
j c
dec

CheckMorePixels:
dec
j z
mov
o u t
mov
l o d s b

s t o s b
r o r
j c
dec

a x : p r e s e r v e t h e l e f t c o l u m n ’ s b i t mask
c x ; p r e s e r v e t h e w i d t h
d i : p r e s e r v e t h e d e s t i n a t i o n o f f s e t

a1 ,ah
d x . a l
a1 ,es :Cd i l
a1 , [s i 1
a l . 1
a1 .1
a1 .1
a1 ,1

ah.1
CheckMorePixels
d i

: s e t t h e b i t mask t o draw t h i s p i x e l
: l o a d t h e l a t c h e s
; g e t t h e n e x t t w o c h u n k y p i x e l s

;move t h e f i r s t p i x e l i n t o t h e l s b
:draw the f i r s t p i x e l
;move mask t o n e x t p i x e l p o s i t i o n
: i s n e x t p i x e l i n t h e a d j a c e n t b y t e ?
:no

cx ;see i f t h e r e a r e any more p i x e l s
AdvanceToNextScanLine : across i n image
a1 ,ah
d x . a l ; s e t t h e b i t mask t o draw t h i s p i x e l
a1 . e s : [d i l ; l o a d t h e l a t c h e s

: g e t t h e same two chunky p i xe l s aga in
: a n d a d v a n c e p o i n t e r t o t h e n e x t
; t w o p i x e l s
; d r a w t h e s e c o n d o f t h e t w o p i x e l s

ah.1 :move mask t o n e x t p i x e l p o s i t i o n
CheckMorePixels2 ; i s n e x t p i x e l i n t h e a d j a c e n t b y t e ?
d i :no

CheckMorePixels2:
1 oop Col umnLoop :see i f t h e r e a r e any more p i x e l s

jmp short CheckMoreScanLines
; across i n t h e image

AdvanceToNextScanLine:
i n c s i :advance t o t h e s t a r t o f t h e n e x t

; scan 1 i n e i n t h e image

CheckMoreScanLines:
pop d i : g e t b a c k t h e d e s t i n a t i o n o f f s e t
POP c x : g e t b a c k t h e w i d t h
POP ax ; g e t b a c k t h e l e f t c o l u m n ’ s b i t mask
add di.SCREEN-WIDTH-IN-BYTES

; p o i n t t o t h e s t a r t o f t h e n e x t s c a n
: 1 i n e o f t h e image

dec bx ;see i f t h e r e a r e any more scan l i n e s
j n z RowLoop : i n t h e image
r e t

DrawFromChunkyBitmap endp
Code ends

end S t a r t

“That’s an interesting application of write mode 2,” you may well say, “but is it really
useful?” While the ability to convert chunky bitmaps into VGA bitmaps does have its
uses, Listing 27.1 is primarily intended to illustrate the mechanics of write mode 2.

508 Chapter 27

Forper$ormance, it’s best to store 16-color bitmaps in pre-separated four-plane for-
mat in system memory, and copy one plane at a time to the screen. Ideally, such
bitmaps should be copied one scan line at a time, with all four planes completed for
one scan line before moving on to the next. I say this because when entire images
are copied one plane at a time, nasty transient color effects can occur as one plane
becomes visibly changed before other planes have been modified.

Drawing Color-Patterned Lines Using Write Mode 2
A more serviceable use of write mode 2 is shown in the program presented in Listing
27.2. The program draws multicolored horizontal, vertical, and diagonal lines, bas-
ing the color patterns on passed color tables. Write mode 2 is ideal because in this
application color can vary from one pixel to the next, and in write mode 2 all that’s
required to set pixel color is a change of the lower nibble of the byte written by the
CPU. Set/reset could be used to achieve the same result, but an index/data pair of
OUTS would be required to set the Set/Reset register to each new color. Similarly,
the Map Mask register could be used in write mode 0 to set pixel color, but in this
case not only would an index/data pair of OUTS be required but there would also be
no guarantee that data already in display memory wouldn’t interfere with the color
of the pixel being drawn, since the Map Mask register allows only selected planes to
be drawn to.
Listing 27.2 is hardly a comprehensive line drawing program. It draws only a few
special line cases, and although it is reasonably fast, it is far from the fastest possible
code to handle those cases, because it goes through a dot-plot routine and because it
draws horizontal lines a pixel rather than a byte at a time. Write mode 2 would,
however, serve just as well in a full-blown line drawing routine. For any type of pat-
terned line drawing on the VGA, the basic approach remains the same: Use the bit
mask to select the pixel (or pixels) to be altered and use the CPU byte in write mode
2 to select the color in which to draw.

LISTING 27.2 127-2.ASM
: Program t o i l l u s t r a t e one use o f w r i t e mode 2 o f t h e VGA and EGA by
: d r a w i n g l i n e s i n c o l o r p a t t e r n s .

: Assemble w i t h MASM o r TASM

: By Michael Abrash

Stack segment para stack ‘STACK’
db 512 dup(0)

Stack ends

SCREEN-WIDTH-IN-BYTES
GRAPHICSLSEGMENT
SC-INDEX
MAP-MASK
GC- INDEX
GRAPHICS-MODE
BIT-MASK

equ 80
equ OaOOOh :mode 10 b i t - m a p segment
equ 3c4h :Sequence C o n t r o l l e r I n d e x r e g i s t e r
equ 2 ; i ndex o f Map Mask r e g i s t e r
equ 03ceh :Graph ics Cont ro l le r Index reg
equ 5 : i ndex o f Graphics Mode r e g
equ 0 : i ndex o f B i t Mask r e g

Yet Another VGA Write Mode 509

D a t a segment
P a t t e r n 0

P a t t e r n l

P a t t e r n 2

P a t t e r n 3

Data ends

Code segment

S t a r t p r o c
assume

mov
mov
mo v
i n t

: Draw 8 r a d i a l

mov
mov
mov
c a l l

: Draw 8 r a d i a l

mov
mov
mov
c a l l

: Draw 8 r a d i a l

mov
mov
mov
c a l l

: Draw 8 r a d i a l

mov
mov
mov
c a l l

para common 'DATA'
db 16
db 0, 1, 2, 3. 4. 5. 6. 7. 8
db 9. 10, 11. 12. 13. 14. 15
db 6
db
db 8

2. 2 . 2. 10, 10. 10

db 15, 15. 15. 0 . 0 . 15. 0 . 0
db 9
db 1. 1, 1, 2. 2. 2. 4. 4. 4

p a r a p u b l i c 'CODE'
cs:Code. ds:Data
near
ax.0ata
ds.ax
ax, 10h
1 0 h : s e l e c t v i d e o mode 10h (640x350)

l i n e s i n u p p e r - l e f t q u a d r a n t i n p a t t e r n 0.

bx.0
CX.0
s i . o f f s e t P a t t e r n 0
RuadrantUp

l i n e s i n u p p e r - r i g h t q u a d r a n t i n p a t t e r n 1.

bx , 320
cx.0
s i . o f f s e t P a t t e r n l
RuadrantUp

l i n e s i n l o w e r - l e f t q u a d r a n t i n p a t t e r n 2.

bx.0
cx.175
s i . o f f s e t P a t t e r n 2
Quadrantup

l i n e s i n l o w e r - r i g h t q u a d r a n t i n p a t t e r n 3 .

bx.320
cx.175
s i . o f f s e t P a t t e r n 3
Quadrantup

: W a i t f o r a k e y b e f o r e r e t u r n i n g t o t e x t mode and ending.

mov a h . 0 l h
i n t Z l h
mov ax.03h
i n t 10h
mov ah.4ch
i n t 21h

: Draws 8 r a d i a l l i n e s w i t h s p e c i f i e d p a t t e r n i n s p e c i f i e d mode 10h
: quadrant .

51 0 Chapter 27

; I n p u t :
BX - X c o o r d i n a t e o f u p p e r l e f t c o r n e r o f q u a d r a n t
C X - Y c o o r d i n a t e o f u p p e r l e f t c o r n e r o f q u a d r a n t
SI - p o i n t e r t o p a t t e r n , i n f o l l o w i n g f o r m :

By te 0: L e n g t h o f p a t t e r n
By te 1: Start o f p a t t e r n , one c o l o r p e r b y t e

: A X , BX. C X , DX des t royed

Quadrantup
add
add
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
rnov
mov
c a l l
mov
mov
c a l l
r e t

Quadrantup

proc near
bx. 160
cx.87
ax.0
dx.160
L i neUp
ax, 1
dx, 88
L i neUp
ax.2
dx, 88
L i neUp
ax.3
dx, 88
L i neUp
ax.4
dx.161
L i neUp
ax.5
dx, 88
L i neUp
ax.6
dx, 88
L i neUp
ax.7
dx, 88
L i neUp

endp

; p o i n t t o t h e c e n t e r o f t h e q u a d r a n t

; d r a w h o r i z o n t a l l i n e t o r i g h t edge

: d r a w d i a g o n a l l i n e t o u p p e r r i g h t

: d r a w v e r t i c a l l i n e t o t o p edge

: d r a w d i a g o n a l l i n e t o u p p e r l e f t

:draw h o r i z o n t a l l i n e t o l e f t edge

: d r a w d i a g o n a l l i n e t o l o w e r l e f t

: d r a w v e r t i c a l l i n e t o b o t t o m edge

; d r a w d i a g o n a l l i n e t o b o t t o m r i g h t

; Draws a h o r i z o n t a l , v e r t i c a l , o r d i a g o n a l l i n e (o n e o f t h e e i g h t
: p o s s i b l e r a d i a l l i n e s) o f t h e s p e c i f i e d l e n g t h f r o m t h e s p e c i f i e d
: s t a r t i n g p o i n t .

; I n p u t :
A X - l i n e d i r e c t i o n , as f o l l o w s :

3 2 1
4 * 0
5 6 7

BX - X c o o r d i n a t e o f s t a r t i n g p o i n t
C X - Y c o o r d i n a t e o f s t a r t i n g p o i n t
DX = l e n g t h o f l i n e (number o f p i x e l s d r a w n)

; All r e g i s t e r s p r e s e r v e d .

: T a b l e o f v e c t o r s t o r o u t i n e s f o r e a c h o f t h e 8 p o s s i b l e l i n e s .

L ineUpVectors label word
dw LineUpO. L ineUp l . LineUpZ. Lineup3
dw LineUp4. LineUp5. LineUp6. Lineup7

Yet Another VGA Write Mode 5 1 1

; Macro t o d r a w h o r i z o n t a l , v e r t i c a l , o r d i a g o n a l l i n e .

; I n p u t :

MLi neUp

X P a r m - 1 t o draw r i g h t , -1 t o draw l e f t , 0 t o n o t move h o r z .
YParm - 1 t o draw up, -1 t o draw down, 0 t o n o t move v e r t .
BX - X s t a r t l o c a t i o n
C X - Y s t a r t l o c a t i o n
DX - number o f p i x e l s t o draw
D S : S I - l i n e p a t t e r n

macro XParm. Y P a r m
local L ineUpLoop. CheckMoreLine
mov d i , s i : s e t a s i d e s t a r t o f f s e t o f p a t t e r n
l o d s b ; g e t l e n g t h o f p a t t e r n
mov a h . a l

LineUpLoop:
1 odsb
c a l l

i f XParm EP 1
i nc

e n d i f
i f XParm EQ -1

end i f
i f YParm ER 1

end i f
i f YParm EO -1

end i f

dec

i nc

dec

dec

mov
1 odsb
mov

j n z

CheckMoreLine:
dec
j nz
jmp
endm

L i n e u p p r o c
push
push
push
push
push
push
push

mov

mov
mov

push

; g e t c o l o r o f t h i s p i x e l
DotUpInColor ; . . .and draw i t

bx

bx

c x

c x

ah ;at end o f p a t t e r n ?
CheckMoreLine
s i . d i ; g e t b a c k s t a r t o f p a t t e r n

a h . a l ; r e s e t p a t t e r n c o u n t

dx
L i neUpLoop
L i neUpEnd

near

bx
ax

dx
s i
d i
es

c x

d i , a x

ax.GRAPHICSLSEGMENT
es ,ax

dx ;save l i n e l e n g t h

51 2 Chapter 27

: E n a b l e w r i t e s t o a l l p l a n e s .

mov dx.SC-INDEX
mov a1 .MAP-MASK
o u t d x . a l
i n c d x
mov a1 .Ofh
o u t d x . a l

: S e l e c t w r i t e mode 2.

mov dx.GC-INDEX
mov a1 .GRAPHICS-MODE
o u t d x . a l
i n c d x
mov a l . 0 2 h
o u t d x . a l

: V e c t o r t o p r o p e r r o u t i n e .

POP d x : g e t b a c k l i n e l e n g t h

s h l d i . l
jmp cs:CLineUpVectors+di]

: H o r i z o n t a l l i n e t o r i g h t .

L i neUpO:
MLineUp 1, 0

: D i a g o n a l l i n e t o u p p e r r i g h t .

L ineup1 :
MLineUp 1. -1

: V e r t i c a l l i n e t o t o p .

L i neUp2:
MLineUp 0. -1

: D i a g o n a l l i n e t o u p p e r l e f t .

L i neUp3:
MLineUp -1. -1

: H o r i z o n t a l l i n e t o l e f t .

L i neUp4:
MLineUp -1. 0

: D i a g o n a l l i n e t o b o t t o m l e f t .

L i neUp5:
MLineUp -1. 1

: V e r t i c a l l i n e t o bot tom.

LineUpC:
MLineUp 0. 1

Yet Another VGA Write Mode 5 1 3

: D i a g o n a l l i n e t o b o t t o m r i g h t .

L i neUp7 :
MLineUp 1. 1

L i neUpEnd:
POP es
POP d i
pop s i
POP dx
POP cx
POP bx
POP ax
r e t

L i neUp endp

: Draws a d o t i n t h e s p e c i f i e d c o l o r a t t h e s p e c i f i e d
: Assumes t h a t t h e VGA i s i n w r i t e mode 2 w i t h w r i t e s
: enab led and t ha t ES p o i n t s t o d i s p l a y memory.

: I n p u t :
AL - d o t c o l o r
BX - X c o o r d i n a t e o f d o t
C X - Y c o o r d i n a t e o f d o t
ES - d i s p l a y memory segment

: All r e g i s t e r s p r e s e r v e d .

DotUpInCol or proc nea r
push bx
push cx
push dx
push d i

1 oca
t o a

ti on.
11 p lanes

: P o i n t E S : D I t o t h e d i s p l a y memory b y t e i n w h i c h t h e p i x e l g o e s , w i t h
: t h e b i t mask s e t up t o a c c e s s t h a t p i x e l w i t h i n t h e a d d r e s s e d b y t e .

push
mov
mu1
mov
mov
and
mov
mov
o u t
i nc
mov
s h r
o u t
s h r
shr
s h r
add
mov
POP
s t o s b

POP
POP

51 4 Chapter 27

ax : p rese rve do t co lo r
ax.SCREEN-WIDTH-IN-BYTES
cx
d i .ax
c l , b l
c l . l l l b
dx.GC-INDEX
a1 .BIT-MASK
dx ,a l
dx
a l . 80h
a1 . c l
dx.al
bx .1
bx .1
bx .1
d i , bx
a1 . e s : [d i l
ax

d i
dx

: o f f s e t o f s t a r t o f t o p s c a n l i n e

: s e t t h e b i t mask f o r t h e p i x e l

: X i n b y t e s
: o f f s e t o f b y t e p i x e l i s i n
: 1 oad 1 atches
:ge t back do t color
: w r i t e d o t i n d e s i r e d c o l o r

POP cx

ret
DotUpInColor endp
S t a r t endp
Code ends

POP bx

end Start

When to Use Write Mode 2 and When
to Use Set/Reset
As indicated earlier, write mode 2 and set/reset are functionally interchangeable.
Write mode 2 lends itself to more efficient implementations when the drawing color
changes frequently, as in Listing 27.2.
Set/reset tends to be superior when many pixels in succession are drawn in the same
color, since with set/reset enabled for all planes the Set/Reset register provides the
color data and as a result the CPU is free to draw whatever byte value it wishes. For
example, the CPU can execute an OR instruction to display memory when set/reset
is enabled for all planes, thus both loading the latches and writing the color value
with a single instruction, secure in the knowledge that the value it writes is ignored
in favor of the set/reset color.
Set/reset is also the mode of choice whenever it is necessary to force the value written to
some planes to a fixed value while allowing the CPU byte to modify other planes.
This is the mode of operation when set/reset is enabled for some but not all planes.

Mode 13H-320x200 with 256 Colors
I’m going to take a minute-and I do mean a minute-to discuss the programming
model for mode 13H, the VGA’s 320x200 256-color mode. Frankly, there’s just not
much to it, especially compared to the convoluted 16-color model that we’ve ex-
plored over the last five chapters. Mode 13H offers the simplest programming model
in the history of PC graphics: A linear bitmap starting at A000:0000, consisting of
64,000 bytes, each controlling one pixel. The byte at offset 0 controls the upper left
pixel on the screen, the byte at offset 319 controls the upper right pixel on the
screen, the byte at offset 320 controls the second pixel down at the left of the screen,
and the byte at offset 63,999 controls the lower right pixel on the screen. That’s all
there is to it; it’s so simple that I’m not going to spend any time on a demo program,
especially given that some of the listings later in this book, such as the antialiasing
code in Chapter F on the companion CD-ROM, use mode 13H.

Flipping Pages from Text to Graphics and Back
A while back, I got an interesting letter from Phil Coleman, of La Jolla, who wrote:
“Suppose I have the EGA in mode 10H (640x350 16-color graphics). I would like to

Yet Another VGA Write Mode 5 1 5

preserve some or all of the image while I temporarily switch to text mode 3 to give
my user a ‘Help’ screen. Naturally memory is scarce so I’d rather not make a copy of
the video buffer at AOOOH to ‘remember’ the image while I digress to the Help text.
The EGA BIOS says that the screen memory will not be cleared on a mode set if bit 7
of AL is set. Yet if I try that, it is clear that writing text into the B800H buffer trashes
much more than the 4K bytes of a text page; when I switch back to mode 10H, “ghosts”
appear in the form of bands of colored dots. (When in text mode, I do make a copy
of the 4K buffer at B800H before showing the help; and I restore the 4K before
switching back to mode 10H.) Is there a way to preserve the graphics image while I
switch to text mode?”
“A corollary to this question is: Where does the 64/128/256Kof EGA memory ‘hide’
when the EGA is in text mode? Some I guess is used to store character sets, but what
happens to the rest? Or rather, how can I protect it?”
Those are good questions. Alas, answering them in full would require extensive ex-
planation that would have little general application, so I’m not going to do that.
However, the issue of how to go to text mode and back without losing the graphics
image certainly rates a short discussion, complete with some working code. That’s
especially true given that both the discussion and the code apply just as well to the
VGA as to the EGA (with a few differences in mode 12H, the VGA’s high-resolution
mode, as noted below).
Phil is indeed correct in his observation that setting bit 7 of AL instructs the BIOS
not to clear display memory on mode sets, and he is also correct in surmising that a
font is loaded when going to text mode. The normal mode 10H bitmap occupies the
first 28,000 bytes of each of the VGA’s four planes. (The mode 12H bitmap takes up
the first 38,400 bytes of each plane.) The normal mode 3 character/attribute memory
map resides in the first 4000 bytes of planes 0 and 1 (the blue and green planes in
mode 10H). The standard font in mode 3 is stored in the first 8K of plane 2 (the red
plane in mode 10H). Neither mode 3 nor any other text mode makes use of plane 3
(the intensity plane in mode IOH) ; if necessary, plane 3 could be used as scratch
memory in text mode.
Consequently, you can get away with saving a total of just under 16K bytes-the first
4000 bytes of planes 0 and 1 and the first 8K bytes of plane 2-when going from
mode 10H or mode 12H to mode 3, to be restored on returning to graphics mode.
That’s hardly all there is to the matter of going from text to graphics and back with-
out bitmap corruption, though. One interesting point is that the mode 10H bitmap
can be relocated to A000:8000 simply by doing a mode set to mode 10H and setting
the start address (programmed at CRT Controller registers OCH and ODH) to 8000H.
You can then access display memory starting at A800:8000 instead of the normal
AOOO:OOOO, with the resultant display exactly like that of normal mode 10H. There
are BIOS issues, since the BIOS doesn’t automatically access display memory at the

51 6 Chapter 27

new start address, but if your program does all its drawing directly without the help
of the BIOS, that’s no problem.
The mode 12H bitmap can’t start at A000:8000, because it’s so long that it would run
off the end of display memory. However, the mode 12H bitmap can be relocated to,
say, A000:6000, where it would fit without conflicting with the default font or the
normal text mode memory map, although it would overlap two of the upper pages
available for use (but rarely used) by text-mode programs.
At any rate, once the graphics mode bitmap is relocated, flipping to text mode and
back becomes painless. The memory used by mode 3 doesn’t overlap the relocated
mode 10H bitmap at all (unless additional portions of font memory are loaded), so
all you need do is set bit 7 of AL on mode sets in order to flip back and forth between
the two modes.
Another interesting point about flipping from graphics to text and back is that the
standard mode 3 character/attribute map doesn’t actually take up every byte of the
first 4000 bytes of planes 0 and 1. The standard mode 3 character/attribute map
actually only takes up every even byte of the first 4000 in each plane; the odd bytes
are left untouched. This means that only about 12K bytes actually have to be saved
when going to text mode. The code in Listing 27.3 flips from graphics mode to text
mode and back, saving only those 12K bytes that actually have to be saved. This code
saves and restores the first 8K of plane 2 (the font area) while in graphics mode, but
performs the save and restore of the 4000 bytes used for the character/attribute
map while in text mode, because the characters and attributes, which are actually
stored in the even bytes of planes 0 and 1, respectively, appear to be contiguous bytes
in memory in text mode and so are easily saved as a single block.
Explaining why only every other byte of planes 0 and 1 is used in text mode and why
characters and attributes appear to be contiguous bytes when they are actually in
different planes is a large part of the explanation I’m not going to go into now. One
bit of fallout from this, however, is that if you flip to text mode and preserve the
graphics bitmap using the mechanism illustrated in Listing 27.3, you shouldn’t write
to any text page other than page 0 (that is, don’t write to any offset in display memory
above 3999 in text mode) or alter the Page Select bit in the Miscellaneous Output
register (3C2H) while in text mode. In order to allow completely unfettered access
to text pages, it would be necessary to save every byte in the first 32K of each of
planes 0 and 1. (On the other hand, this would allow up to 16 text screens to be
stored simultaneously, with any one displayable instantly.) Moreover, if any fonts other
than the default font are loaded, the portions of plane 2 that those particular fonts
are loaded into would have to be saved, up to a maximum of all 64K of plane 2. In
the worst case, a full 128K would have to be saved in order to preserve all the memory
potentially used by text mode.
As I said, Phil Coleman’s question is an interesting one, and I’ve only touched on the
intriguing possibilities arising from the various configurations of display memory in

Yet Another VGA Write Mode 51 7

VGA graphics and text modes. Right now, though, we've still got the basics of the
remarkably complex (but rewarding!) VGA to cover.

LISTING 27.3 L27-3.ASM
: Program t o i l l u s t r a t e f l i p p i n g f r o m b i t - m a p p e d g r a p h i c s mode t o
: t e x t mode and back w i thou t l os ing any o f t h e g r a p h i c s b i t - m a p .

: Assemb le w i th MASM o r TASM

: By Michael Abrash

Stack segment para s tack 'STACK'
db 512 dup(0)

Stack ends

GRAPHICS-SEGMENT
TEXT-SEGMENT

equ OaOOOh :mode 10 bi t -map segment
equ Ob800h :mode 3 bi t -map segment

SC- INDEX equ 3c4h :Sequence Con t ro l l e r I ndex reg i s te r
MAP-MASK equ 2
GC-INDEX

: i n d e x o f Map Mask r e g i s t e r
e q u 3 c e h : G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r

READ-MAP equ 4 : i n d e x o f Read Map r e g i s t e r

Data segment para common 'DATA'

GStri keAnyKeyMsg0
db

l a b e l b y t e

db
Odh. Oah. 'Graphics mode' , Odh. Oah
' S t r i k e any key t o c o n t i n u e . . . ' , Odh. Oah. ' f '

GSt r i keAnyKeyMsg l l abe l by te
db Odh. Oah. 'G raph ics mode a g a i n ' , Odh. Oah
db ' S t r i k e any key t o c o n t i n u e . . . ' . Odh. Oah. ' $ '

T S t r i keAnyKeyMsg l a b e l b y t e
db
db

Odh. Oah, 'Text mode' , Odh. Oah
' S t r i k e any key t o c o n t i n u e . . . ' , Odh, Oah. ' f '

P1 ane2Save db 2000h dup (? I ; s a v e a r e a f o r p l a n e 2 d a t a

CharAt tSave db 4000 dup (?) ; s a v e a r e a f o r memory wiped
: where f o n t g e t s l o a d e d

: o u t by c h a r a c t e r / a t t r i b u t e
: d a t a i n t e x t mode

Data ends

Code segment para pub l i c ' C O D E '

S t a r t p r o c n e a r
assume cs:Code. ds:Data

mov ax.10h
i n t 1 0 h : s e l e c t v i d e o mode 10h (640x350)

: Fill t h e g r a p h i c s b i t - m a p w i t h a c o l o r e d p a t t e r n .

c l d
mov ax.GRAPHICS-SEGMENT
mov es ,ax
mov ah.3 : i n i t i a l fill p a t t e r n
mov c x . 4 : f o u r p l a n e s t o fill
mov dx.SC-INDEX
mov a1 .MAP-MASK
o u t d x , a l : l e a v e t h e SC I n d e x p o i n t i n g t o t h e
i n c d x : Map Mask r e g i s t e r

51 8 Chapter 27

F i l l B i t M a p :
mov a l . 1 0 h
s h r a1 , c l
o u t d x . a l

:generate map mask f o r t h i s p l a n e

s u b d i . d i
; s e t map mask f o r t h i s p l a n e
; s t a r t a t o f f s e t 0

mov a1 ,ah : ge t t he fill p a t t e r n
push cx
mov cx.8000h

; p r e s e r v e p l a n e c o u n t
:fill 32K words

rep s tosw ;do fill f o r t h i s p l a n e
POP c x : g e t b a c k p l a n e c o u n t
s h l a h . 1
s h l a h . 1
1 oop F i 11 B i tMap

; Put up "str ike any key" message.

mov ax.Data
mov ds.ax
mov d x . o f f s e t GStrikeAnyKeyMsgO
mov ah.9
i n t 21h

; W a i t f o r a key.

mov a h . 0 l h
i n t 21h

; Save t h e 8K o f p l a n e 2 t h a t will be used by the fon t .

mov dx.GC-INDEX
mov a1 , READ-MAP
o u t d x . a l
i n c d x
mov a1 .2
o u t d x . a l
mov ax.Data
mov es.ax
mov ax.GRAPHICS-SEGMENT
mov ds.ax
s u b s i . s i
mov d i . o f f s e t PlaneZSave
mov cx.Z000h/2 :save 8K (l e n g t h o f d e f a u l t f o n t)
r e p movsw

: s e t u p t o r e a d f r o m p l a n e 2

; GO t o t e x t mode w i t h o u t c l e a r i n g d i s p l a y memory.

mov ax.083h
i n t 10h

; Save t h e t e x t mode b i t - m a p .

mov ax.Data
mov es.ax
mov ax.TEXT-SEGMENT
mov ds.ax
sub s i . s i
mov d i , o f f s e t C h a r A t t S a v e
mov c x . 4 0 0 0 / 2 ; l e n g t h o f o n e t e x t s c r e e n i n words
r e p movsw

Yet Another VGA Write Mode 5 1 9

; F i l l t h e t e x t
; message.

mov
mov
sub
mov
mov
mov

mode s c r e e n w i t h d o t s a n d p u t u p " s t r i k e a n y k e y "

ax.TEXT-SEGMENT
es,ax
d i . d i
a1 . I . ' ;fill c h a r a c t e r
ah.7 ;fill a t t r i b u t e
c x . 4 0 0 0 / 2 ; l e n g t h o f o n e t e x t s c r e e n i n w o r d s

rep s tosw
mov ax.Data
mov ds.ax
mov dx .o f fse t TSt r i keAnyKeyMsg
mov ah.9
i n t 21h

; W a i t f o r a key.

mov ah .0 lh
i n t 21h

; R e s t o r e t h e t e x t mode s c r e e n t o t h e s t a t e i t was i n on e n t e r i n g
; t e x t mode.

mov ax.0ata

mov ax.TEXT-SEGMENT
mov ds.ax

mov es,ax
mov s i . o f f s e t C h a r A t t S a v e
s u b d i . d i
mov c x . 4 0 0 0 / 2 ; l e n g t h o f o n e t e x t s c r e e n i n words
r e p movsw

; R e t u r n t o mode 1 0 h w i t h o u t c l e a r i n g d i s p l a y memory.

mov ax,90h
i n t 10h

; R e s t o r e t h e p o r t i o n o f p l a n e 2 t h a t was w i p e d o u t b y t h e f o n t .

mov dx,SC-INDEX
mov a1 .MAP-MASK
o u t dx .a l
i n c d x
mov a1 .4
o u t d x . a l ; s e t u p t o w r i t e t o p l a n e 2
mov ax.Data
mov ds.ax
mov ax.GRAPHICS-SEGMENT
mov es.ax
mov s i . o f f s e t PlaneESave
sub d i . d i
mov cx .2000h /2 ; res to re 8K (l e n g t h o f d e f a u l t f o n t)
r e p movsw

; Put up "s t r i ke any key" message.

mov ax.Data
mov ds.ax

520 Chapter 27

mov d x . o f f s e t G S t r i k e A n y K e y M s g l
mov a h . 9
i n t 21h

: W a i t f o r a k e y b e f o r e r e t u r n i n g t o t e x t mode and ending.

mov a h . 0 l h
i n t 21h
mov a x . 0 3 h
i n t 10h
mov ah.4ch
i n t 21h

S t a r t endp
Code ends

end S t a r t

Yet Another VGA Write Mode 52 1

	previous:
	home:
	next:

