
chapter 32

be it resolved: 360x480

olor Modes About as Far as the
A Can Take Them

how to coax 320x400 256-color resolution out of a
ted that the VGA was actually capable of supporting

256-color resolutio 360x480, but didn’t pursue the topic further, prefer-
tile and easy-to-set 320x400 256-color mode instead.
ticularly useful item from John Bridges, a longtime
programmer. It was a complete mode set routine

de that he has placed into the public domain. In addition,
of freeware (free, but not public domain) utilities
ch displays PIC, PCX, and GIF images not only in

360x480~256 but also in 640~350~256,640x400x256,640~480~256, and 800~600~256
on SuperVGAs.”
In this chapter, I’m going to combine John’s mode set code with appropriately modi-
fied versions of the dot-plot code from Chapter 31 and the line-drawing code that
we’ll develop in Chapter 35. Together, those routines will make a pretty nifty demo
of the capabilities of 360x480 256-color mode.

609

Extended 256-Color Modes: What’s Not to Like?
When last we left 256-color programming, we had found that the standard 256-color
mode, mode 13H, which officially offers 320x200 resolution, actually displays 400,
not 200, scan lines, with line-doubling used to reduce the effective resolution to
320x200. By tweaking a few of the VGA’s mode registers, we converted mode 13H to
a true 320x400 256-color mode. As an added bonus, that 320x400 mode supports
two graphics pages, a distinct improvement over the single graphics page supported
by mode 13H. (We also learned how to getfourgraphics pages at 320x200 resolution,
should that be needed.)
I particularly like 320x400 256-color mode for two reasons: It supports two-page graph-
ics, which is very important for animation applications; and it doesn’t require changing
any of the monitor timing characteristics of the VGA. The mode bits that we changed
to produce 320x400 256-color mode are pretty much guaranteed to be the same
from one VGA to another, but the monitor-oriented registers are less certain to be
constant, especially for VGAs that provide special support for the extended capabili-
ties of various multiscanning monitors.
All in all, those are good arguments for 320x400 256-color mode. However, the
counter-argument seems compelling as well-nothing beats higher resolution for
producing striking graphics. Given that, and given thatJohn Bridges was kind enough
to make his mode set code available, I’m going to look at 360x480 256-color mode
next. However, bear in mind that the drawbacks of this mode are the flip side of the
strengths of 320x400 256-color mode: Only one graphics page, and direct setting of
the monitor-oriented registers. Also, this mode has a peculiar and unique aspect
ratio, with 480 pixels (as many as high-resolution mode 12H) vertically and only 360
horizontally. That makes for fairly poor horizontal resolution and sometimes-jagged
drawing; on the other hand, the resolution is better in both directions than in mode
13H, and mode 13H itself has an odd aspect ratio, so it seems a bit petty to complain.
The single graphics page isn’t a drawback if you don’t need page flipping, of course, so
there’s not much to worry about there: If you need page flipping, don’t use this mode.
The direct setting of the monitor-oriented registers is another matter altogether.
I don’t know how likely this code is to produce problems with clone VGAs in general;
however, I did find that I had to put an older Video Seven VRAM VGA into “pure”
mode-where it treats the VRAMs as DRAMS and exactly emulates a plain-vanilla
IBM VGA-before 360x480 256-color mode would work properly. Now, that particu-
lar problem was due to an inherent characteristic ofVRAMs, and shouldn’t occur on
Video Seven’s Fastwrite adapter or any other VGA clone. Nonetheless, 360x480 256-
color mode is a good deal different from any standard VGA mode, and while the
code in this chapter runs perfectly well on all other VGAs in my experience, I can’t
guarantee its functionality on any particular VGA/monitor combination, unlike
320x400 256-color mode. Mind you, 360x480 256-color mode should work on all

61 0 Chapter 32

VGAs-there are just too many variables involved for me to be certain. Feedback
from readers with broad 360x480 256-color experience is welcome.
The above notwithstanding, 360x480 256-color mode offers 64 times as many colors
and nearly three times as many pixels as IBM’s original CGA color graphics mode,
making startlingly realistic effects possible. No mode of the VGA (at least no mode
that 1 know of!), documented or undocumented, offers a better combination of reso-
lution and color; even 320x400 256-color mode has 26 percent fewer pixels.
In other words, 360x480 256-color mode is worth considering-so let’s have a look.

360x480 256-Color Mode
I’m going to start by showing you 360x480 256-color mode in action, after which
we’ll look at how i t works. I suspect that once you see what this mode looks like,
you’ll be more than eager to learn how to use it.
Listing 32.1 contains three C-callable assembly functions. As you would expect,
Set360x480Mode places the VGA into 360x480 256-color mode. Draw360x480Dot
draws a pixel of the specified color at the specified location. Finally, Read360x480Dot
returns the color of the pixel at the specified location. (This last function isn’t actu-
ally used in the example program in this chapter, but is included for completeness.)
Listing 32.2 contains an adaptation of some C line-drawing code I’ll be presenting
shortly in Chapter 35. If you’re reading this book in serial fashion and haven’t gotten
there yet, simply take it on faith. If you really really need to know how the line-draw
code works right now, by all means make a short forward call to Chapter 35 and
digest it. The line-draw code presented below has been altered to select 360x480
256-color mode, and to cycle through all 256 colors that this mode supports, draw-
ing each line in a different color.

LISTING 32.1 132- 1 .ASM
: B o r l a n d C/C++ t i n y / s m a l l / m e d i u m m o d e l - c a l l a b l e a s s e m b l e r
: s u b r o u t i n e s t o :
: * S e t 3 6 0 x 4 8 0 2 5 6 - c o l o r VGA mode
: * Draw a d o t i n 3 6 0 x 4 8 0 2 5 6 - c o l o r V G A mode
: * Read t h e c o l o r o f a d o t i n 360x480 256 -co lo r VGA mode

: A s s e m b l e d w i t h TASM

: The 360x480 256-co lo r mode s e t
: by John B r idges , who h a s p l a c e d

VGALSEGMENT equ OaOOOh
S C - I N D E X
GC- I N D E X

equ 3c4h
equ 3ceh

MAPYMASK
READ-MAP

equ 2

SCREENKWIDTH
equ 4

WORD-OUTSLOK
equ 360
equ 1

code and parameters were p rov ided
t h e m i n t o t h e p u b l i c d o m a i n .

: d i s p l a y memory segment
: S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
: G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
;Map Mask r e g i s t e r i n d e x i n SC
:Read Map r e g i s t e r i n d e x i n GC
:# o f p i x e l s a c r o s s s c r e e n
: s e t t o 0 t o assemble f o r
; c o m p u t e r s t h a t c a n ’ t h a n d l e
: w o r d o u t s t o i n d e x e d VGA r e g i s t e r s

Be It Resolved: 360x480 61 1

- DATA s e g m e n t p u b l i c b y t e 'DATA'

; 360x480 256-co lo r mode CRT C o n t r o l l e r r e g i s t e r s e t t i n g s .
; (Cour tesy o f John B r idges .)

v p t b l dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

vpend 1 abel
- DATA ends

06b00h
05901h
05a02h
08e03h
05e04h
08a05h
DOd06h
03e07h
04009h
OealOh
O a c l l h
O d f l 2 h
02d13h
00014h
Oe715h
00616h
Oe317h
word

; Macro t o o u t p u t

OUT-WORD macro
i f WORD-OUTS-OK

ou t dx .ax
e l s e

ou t dx .a l
i n c d x
xchg ah.a l
o u t d x . a l
dec dx
xchg ah.a l

endm
e n d i f

a word value t o a p o r t .

- TEXT s e g m e n t b y t e p u b l i c 'CODE'
assume cs:-TEXT, ds:-DATA

; Sets up 360x480 256-co lor mode.
; (C o u r t e s y o f J o h n B r i d g e s .)

; Cal l as: vo id Set360By480ModeO

; R e t u r n s : n o t h i n g

p u b l i c -Set360x480Mode

push s i
push d i
mov ax.12h
i n t 10h

- Set360x480Mode proc near

mov ax.13h
i n t 10h

h o r z t o t a l
h o r z d i s p l a y e d
s t a r t h o r z b l a n k i n g
end ho rz b lank ing
s t a r t h sync
end h sync
v e r t i c a l t o t a l
o v e r f l o w
c e l l h e i g h t
v sync s t a r t
v sync end and p ro tec t c r0 -c r7
v e r t i c a l d i s p l a y e d
o f f s e t
t u r n o f f dword mode
v b l a n k s t a r t
v b lank end
t u r n on b y t e mode

;p reserve C r e g i s t e r v a r s

; s t a r t w i t h mode 12h
: l e t t h e B I O S c l e a r t h e v i d e o memory

; s t a r t w i t h s t a n d a r d mode 13h
: l e t t h e B I O S s e t t h e mode

61 2 Chapter 32

mov dx , 3c4h
mov ax.0604h
o u t d x , a x

mov ax.0100h
o u t d x , a x
mov dx .3c2h
mov a1 .Oe7h
o u t d x , a l
mov dx .3c4h
mov ax.0300h
o u t d x . a x

; a l t e r s e q u e n c e r r e g i s t e r s
: d i s a b l e c h a i n 4

: s y n c h r o n o u s r e s e t
: a s s e r t e d
; m i s c o u t p u t
; use 28 mHz d o t c l o c k
: s e l e c t i t
: s e q u e n c e r a g a i n
: r e s t a r t s e q u e n c e r
; r u n n i n g a g a i n

mov dx.3d4h : a l t e r c r t c r e g i s t e r s

mov a1 . l l h : c r l l
o u t d x . a l ; c u r r e n t v a l u e
i n c d x : p o i n t t o d a t a
i n a1 .dx : g e t c r l l v a l u e
and a l . 7 f h ; remove crO - > c r 7
o u t d x . a l : w r i t e p r o t e c t
dec dx : p o i n t t o i n d e x
c l d
mov s i . o f f s e t v p t b l
mov c x . ((o f f s e t v p e n d) - (o f f s e t v p t b l)) s h r 1

o u t d x . a x
l o o p @b
pop d i : r e s t o r e C r e g i s t e r v a r s
pop s i
r e t

@b: lodsw

-Set360x480Mode endp

; Draws a p i x e l i n t h e s p e c i f i e d c o l o r a t t h e s p e c i f i e d
: l o c a t i o n i n 3 6 0 x 4 8 0 2 5 6 - c o l o r mode.

; C a l l a s : v o i d D r a w 3 6 0 x 4 8 0 D o t (i n t X , i n t Y . i n t C o l o r)

: R e t u r n s : n o t h i n g

DParms s t r u c
dw ?
dw ?

DrawX dw ?
DrawY dw ?
C o l o r dw ?

DParms ends

pub l ic -Draw360x480Dot

push bp
mov bp ,sp
p u s h s i
p u s h d i
mov ax.VGA-SEGMENT
mov es .ax
mov ax,SCREEN_WIOTH/4

-Draw360x480Dot proc near

;pushed BP
; r e t u r n a d d r e s s
; X c o o r d i n a t e a t w h i c h t o d r a w
: Y c o o r d i n a t e a t w h i c h t o d r a w
; c o l o r i n w h i c h t o d r a w (i n t h e
: range 0-255; u p p e r b y t e i g n o r e d)

: p r e s e r v e c a l l e r ' s BP
; p o i n t t o s t a c k f r a m e
: p r e s e r v e C r e g i s t e r v a r s

: p o i n t t o d i s p l a y memory

: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s , s o
; e a c h 3 6 0 - p i x e l r o w i s 9 0 b y t e s w i d e
; i n e a c h p l a n e

Be It Resolved: 360x480 61 3

mu1 Cbp+DrawYl
mov d i , Cbp+DrawX]

: p o i n t t o s t a r t o f d e s i r e d r o w

s h r d i . l
: g e t t h e X c o o r d i n a t e

s h r d i . 1
; t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s

add d i , a x
: so d i v i d e t h e X c o o r d i n a t e b y 4

mov c l . b y t e p t r Cbp+OrawX]
: p o i n t t o t h e p i x e l ' s a d d r e s s

and c l .3
; g e t t h e X c o o r d i n a t e a g a i n

mov ah .1
: g e t t h e p l a n e # o f t h e p i x e l

s h l a h . c l : s e t t h e b i t c o r r e s p o n d i n g t o t h e p l a n e

mov a1 .MAP-MASK
mov dx,SC_INDEX
OUT-WORD ; s e t t o w r i t e t o t h e p r o p e r p l a n e f o r

mov a l . b y t e p t r C b p + C o l o r] : g e t t h e c o l o r
s t o s b : d r a w t h e p i x e l
pop d i ; r e s t o r e C r e g i s t e r v a r s
pop s i

r e t

: t h e p i x e l i s i n

: t h e p i x e l

POP bp : r e s t o r e c a l l e r ' s BP

- Draw360x480Dot endp

: Reads t h e c o l o r o f t h e p i x e l a t t h e s p e c i f i e d
: l o c a t i o n i n 3 6 0 x 4 8 0 2 5 6 - c o l o r mode.

; C a l l a s : i n t R e a d 3 6 0 ~ 4 8 0 D o t (i n t X . i n t Y)

: R e t u r n s : p i x e l c o l o r

RParms s t r u c
dw ?
dw ?

ReadX dw ?
Ready dw ?
RParms ends

pub l i c -Read360x480Dot

push bp
mov bp .sp
p u s h s i
p u s h d i
mov ax.VGA-SEGMENT
mov es.ax
mov ax,SCREEN-WIOTH/4

- Read360x480Dot proc near

mu1 [bp+DrawY]
mov si , [bp+DrawX]
s h r s i . l
s h r s i . l
add s i . ax
mov a h . b y t e p t r Cbp+DrawX]
and ah.3

mov a1 , READ-MAP
mov dx.GC-INDEX
OUT-WORD

:pushed BP
: r e t u r n a d d r e s s
: X c o o r d i n a t e f r o m w h i c h t o r e a d
:Y c o o r d i n a t e f r o m w h i c h t o r e a d

: p r e s e r v e c a l l e r ' s BP
: p o i n t t o s t a c k f r a m e
: p r e s e r v e C r e g i s t e r v a r s

: p o i n t t o d i s p l a y memory
: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s , s o
: e a c h 3 6 0 - p i x e l r o w i s 90 b y t e s w i d e
: i n each D lane

; p o i n t t o s t a r t o f d e s i r e d r o w
: g e t t h e X c o o r d i n a t e
: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s
: s o d i v i d e t h e X c o o r d i n a t e b y 4
: p o i n t t o t h e p i x e l ' s a d d r e s s
: g e t t h e X c o o r d i n a t e a g a i n

: g e t t h e p l a n e # o f t h e p i x e l

: s e t t o r e a d f r o m t h e p r o p e r p l a n e f o r
: t h e p i x e l

61 4 Chapter 32

l o d s b y t e p t r e s : [s i]
sub ah.ah
p o p d i
p o p s i
POP bp
r e t

-Read360x480Dot endp
-TEXT ends

end

; r e a d t h e p i x e l
;make t h e r e t u r n v a l u e a w o r d f o r C
; r e s t o r e C r e g i s t e r v a r s

; r e s t o r e c a l l e r ' s BP

MSTING 32.2 132-2.C
* Sample program t o i l l u s t r a t e V G A l i n e d r a w i n g i n 3 6 0 x 4 8 0
* 2 5 6 - c o l o r mode.

* C o m p i l e d w i t h B o r l a n d C/C++.

* M u s t b e l i n k e d w i t h L i s t i n g 3 2 . 1 w i t h a command l i n e l i k e :

* b c c 1 1 0 - 2 . c 1 1 0 - l . a s m

*

*

*

*
* By M i c h a e l A b r a s h
* /
#i ncl ude <dos . h> /* c o n t a i n s g e n i n t e r r u p t * /

{ {de f ine TEXT-MODE 0x03
d e f i n e BIOS-VIDEO-INT Ox10
d e f i n e X-MAX 360 / * w o r k i n g s c r e e n w i d t h * I
d e f i n e Y-MAX 480 / * w o r k i n g s c r e e n h e i g h t * /

e x t e r n v o i d D r a w 3 6 0 x 4 8 0 D o t O ;
e x t e r n v o i d S e t 3 6 0 x 4 8 0 M o d e O ;

/ *
* Draws a l i n e i n o c t a n t 0 o r 3 (I D e l t a X l >- De l taY) .
* I D e l t a X I + l p o i n t s a r e d r a w n .
* I

v o i d O c t a n t O (X 0 . Y O . D e l t a X . D e l t a Y . X O i r e c t i o n . C o l o r)
u n s i g n e d i n t X O . Y O ; I* c o o r d i n a t e s o f s t a r t o f t h e l i n e * I
u n s i g n e d i n t D e l t a X . D e l t a Y ; / * l e n g t h o f t h e l i n e * /
i n t X D i r e c t i o n ; /* 1 i f l i n e i s drawn l e f t t o r i g h t ,

i n t C o l o r ;
I

-1 i f d r a w n r i g h t t o l e f t * /
/ * c o l o r i n w h i c h t o d r a w l i n e * I

i n t D e l t a Y x 2 ;
i n t D e l t a Y x Z M i n u s D e l t a X x Z :
i n t E r r o r T e r m ;

/* Set up i n i t i a l e r r o r t e r m a n d v a l u e s used i n s i d e d r a w i n g l o o p */
Oe l taYx2 = De l taY * 2 ;
Oe l taYxZMinusDel taXxZ - De l taYx2 - (i n t) (De l taX * 2 1;
E r r o r T e r m = De l taYx2 - (i n t) D e l t a X ;

/ * Draw t h e l i n e * /
Draw360x480Dot(XO. Y O . C o l o r) ; / * d r a w t h e f i r s t p i x e l * /
w h i l e (D e l t a X - - 1 {

/ * See i f i t ' s t i m e t o a d v a n c e t h e Y c o o r d i n a t e * /
i f (E r r o r T e r m >= 0) {

back down */
/* A d v a n c e t h e Y c o o r d i n a t e & a d j u s t t h e e r r o r t e r m

Be It Resolved: 360x480 61 5

YO++;

1 e l s e {
E r r o r T e r m +- De l taYxEMinusDel taXxZ;

I* Add t o t h e e r r o r t e r m *I
E r r o r T e r m +- De l taYxE;

1
X0 +- X D i r e c t i o n ;
Draw360x480Dot(XO, Y O , C o l o r) ;

1

I* a d v a n c e t h e X c o o r d i n a t e *I
I* draw a p i x e l *I

I*
* Draws a l i n e i n o c t a n t 1 o r 2 (I D e l t a X l < D e l t a Y) .

*I
* I D e l t a Y I + I p o i n t s a r e d r a w n .

v o i d O c t a n t l (X 0 . YO. D e l t a X . D e l t a Y . X D i r e c t i o n . C o l o r)
u n s i g n e d i n t XO, Y O ; I* c o o r d i n a t e s o f s t a r t o f t h e l i n e *I
u n s i g n e d i n t D e l t a X . De l taY : I* l e n g t h o f t h e l i n e *I
i n t X D i r e c t i o n ; I* 1 i f l i n e i s d r a w n l e f t t o r i g h t ,

i n t C o l o r ;
f

-1 i f d r a w n r i g h t t o l e f t *I
I* c o l o r i n w h i c h t o d r a w l i n e *I

i n t D e l t a X x 2 ;
i n t D e l t a X x Z M i n u s D e l t a Y x Z ;
i n t E r r o r T e r m :

/ * S e t u p i n i t i a l e r r o r t e r m a n d v a l u e s u s e d i n s i d e d r a w i n g l o o p *I
Del taXx2 - D e l t a X * 2;
De l taXxZMinusDe l taYxZ - De l taXxZ - (i n t) (De l taY * 2) ;
E r r o r T e r m - De l taXxZ - (i n t) D e l t a Y :

Draw360x480Dot(XO. Y O . C o l o r) ; I* d r a w t h e f i r s t p i x e l *I
w h i l e (D e l t a Y - -) {

I* See i f i t ' s t i m e t o a d v a n c e t h e X c o o r d i n a t e *I
i f (E r r o r T e r m >- 0 1 I

I* A d v a n c e t h e X c o o r d i n a t e & a d j u s t t h e e r r o r t e r m
back down *I

X0 +- X D i r e c t i o n :
E r r o r T e r m +- De l taXx2MinusDel taYxZ;

/ * Add t o t h e e r r o r t e r m *I
E r r o r T e r m +- De l taXxE:

1 e l s e I

1
YO++; I* a d v a n c e t h e Y c o o r d i n a t e *I
Draw360x480Dot(XO. YO.Color); I* draw a p i x e l *I

1

I*
* Draws a l i n e o n t h e EGA o r VGA.
*I

vo id EVGALine(X0. Y O , X 1 . Y 1 . C o l o r)
i n t X O . Y O ; I* c o o r d i n a t e s o f one e n d o f t h e l i n e *I
i n t X 1 , Y 1 ; I* c o o r d i n a t e s o f t h e o t h e r e n d o f t h e l i n e *I
u n s i g n e d c h a r C o l o r ; /* c o l o r i n w h i c h t o d r a w l i n e *I
I

i n t D e l t a X . D e l t a Y ;
i n t Temp:

61 6 Chapter 32

I* Save h a l f t h e l i n e - d r a w i n g c a s e s b y s w a p p i n g Y O w i t h Y 1
and X0 w i t h X 1 i f Y O i s g r e a t e r t h a n Y 1 . As a r e s u l t , D e l t a Y
i s a lways > 0. a n d o n l y t h e o c t a n t 0-3 cases need t o be
hand1 ed. *I

i f (Y O > Y 1 1 I
Temp - Y O ;
Y O - Y 1 ;
Y 1 - Temp;
Temp - X O ;
x0 - x1;
X 1 - Temp:

I

/ * H a n d l e a s f o u r s e p a r a t e c a s e s , f o r t h e four o c t a n t s i n w h i c h

f
Y 1 i s g r e a t e r t h a n Y O * /

D e l t a X - X 1 - X O ; / * c a l c u l a t e t h e l e n g t h o

D e l t a Y - Y 1 - Y O ;
i f (D e l t a X > 0 1 I

i n e a c h c o o r d i n a t e *I

i f (D e l t a X > De l taY (

) e l s e {

1
I e l s e (

Octan tO(X0. Y O , D e l t a X . D e l t a Y , 1. C o l o r

O c t a n t l (X 0 . Y O , D e l t a X . D e l t a Y . 1. C o l o r

t h e l i n e

D e l t a X - - D e l t a X ; / * a b s o l u t e v a l u e o f D e l t a X * I
i f (D e l t a X > D e l t a Y) (

I e l s e I

I

OctantO(X0. Y O , D e l t a X , D e l t a Y . -1. C o l o r) ;

O c t a n t l (X 0 . Y O , O e l t a X . D e l t a Y . -1. C o l o r) ;

I
I

I*
* S u b r o u t i n e t o d r a w a r e c t a n g l e f u l l o f v e c t o r s . o f t h e
* s p e c i f i e d l e n g t h and i n v a r y i n g c o l o r s , a r o u n d t h e
* s p e c i f i e d r e c t a n g l e c e n t e r .
*I

vo id Vec to rsUp(XCen te r . YCen te r . XLeng th . YLeng th)
i n t XCenter . YCenter ; / * c e n t e r o f r e c t a n g l e t o fill *I
i n t XLength. YLength; I* d i s t a n c e f r o m c e n t e r t o e d g e

I
o f r e c t a n g l e * /

i n t Work ingX. Work ingY, Co lor - 1;
/* L i n e s f r o m c e n t e r t o t o p o f r e c t a n g l e * /
WorkingX - XCenter - XLength;
WorkingY - YCenter - YLength;
f o r (; WorkingX < (XCenter + XLength 1; Work ingXW)

EVGALine(XCenter . YCenter . Work ingX, Work ingY. Color++) ;

I* L i n e s f r o m c e n t e r t o r i g h t o f r e c t a n g l e *I
WorkingX - XCenter + XLength - 1;
WorkingY - YCenter - YLength;
f o r (; WorkingY < (YCenter + YLength) ; WorkingY++ 1

EVGALine(XCenter . YCenter . Work ingX. Work ingY. Color++) ;

/ * L i n e s f r o m c e n t e r t o b o t t o m o f r e c t a n g l e */
WorkingX - XCenter + XLength - 1:
WorkingY - YCenter + YLength - 1:

Be It Resolved: 360x480 61 7

f o r (: WorkingX >= (XCenter - XLength) : WorkingX"
EVGALine(XCenter. YCenter. WorkingX. WorkingY. Color++):

I* L i n e s f r o m c e n t e r t o l e f t o f r e c t a n g l e *I
WorkingX = XCenter - XLength:
WorkingY = YCenter + YLength - 1;
f o r (: WorkingY >= (YCenter - YLength 1: Work ingY--)

1

I*

EVGALine(XCenter. YCenter. WorkingX. WorkingY. Color++):

* Sample program t o d r a w f o u r r e c t a n g l e s f u l l o f l i n e s .
* J

v o i d m a i n ()
{

char temp;

Set360x480ModeO;

/ * Draw each o f f o u r r e c t a n g l e s f u l l o f v e c t o r s * /
VectorsUp(X-MAX I 4. Y-MAX / 4 . X-MAX / 4 , Y-MAX / 4 . 1) :
VectorsUp(X_MAX * 3 / 4, Y-MAX I 4 , X-MAX / 4. Y-MAX I 4, 2) ;
VectorsUp(X-MAX I 4. Y-MAX * 3 / 4, X-MAX I 4. Y-MAX / 4. 3) :
VectorsUp(X-MAX * 3 I 4. Y-MAX * 3 / 4 . X-MAX / 4 , Y-MAX / 4 . 4) ;

/ * W a i t f o r t h e e n t e r k e y t o b e p r e s s e d * /
scanf ("%c" . & temp) :

/ * Back t o t e x t mode * /
-AX - TEXTLMODE;
geninter rupt (BIOS-VIDEO_INT):

I

The first thing you'll notice when you run this code is that the speed of 360x480 256-
color mode is pretty good, especially considering that most of the program is im-
plemented in C.

P Drawing in 360x480 256-color mode can sometimes actually be faster than in the
16-color modes, because the byte-per-pixel display memory organization of 256-
color mode eliminates the need to read display memory before writing to it in
order to isolate individual pixels coexisting within a single byte. In addition,
360x480 256-color mode is a variant of Mode X, which we'll encounter in detail
in Chapter 47, and supports all the high-perfrmance features of Mode X

The second thing you'll notice is that exquisite shading effects are possible in 360x480
256-color mode; adjacent lines blend together remarkably smoothly, even with the
default palette. The VGA allows you to select your 256 colors from a palette of 2568
so you could, if you wished, set up the colors to produce still finer shading albeit with
fewer distinctly different colors available. For more on this and related topics, see
the coverage of palette reprogramming that begins in the next chapter.
The one thing you may not notice right away is just how much detail is visible on the
screen, because the blending of colors tends to obscure the superior resolution of

61 8 Chapter 32

this mode. Each of the four rectangles displayed measures 180 pixels horizontally by
240 vertically. Put another way, each one of those rectangles has two-thirds as many
pixels as the entire mode 13H screen; in all, 360x480 256-color mode has 2.7 times
as many pixels as mode 13H! As mentioned above, the resolution is unevenly distrib-
uted, with vertical resolution matching that of mode 12H but horizontal resolution
barely exceeding that of mode 13H-but resolution is hot stuff, no matter how it’s
laid out, and 360x480 256-color mode has the highest 256-color resolution you’re
ever likely to see on a standard VGA. (SuperVGAs are quite another matter-but
when you require a SuperVGA you’re automatically excluding what might be a signifi-
cant chunk of the market for your code.)
Now that we’ve seen the wonders of which our new mode is capable, let’s take the
time to understand how it works.

How 360x480 256-Color Mode Works
In describing 360x480 256-color mode, I’m going to assume that you’re familiar with the
discussion of 320x400 256-color mode in the last chapter. If not, go back to that chapter
and read it; the two modes have a great deal in common, and I’m not going to bore you
by repeating myself when the goods are just a few page flips (the paper kind) away.
360x480 256-color mode is essentially 320x400 256-color mode, but stretched in both
dimensions. Let’s look at the vertical stretching first, since that’s the simpler of the two.

480 Scan Lines per Screen: A Little Slower, But No Big Deal
There’s nothing unusual about 480 scan lines; standard modes 11H and 12H sup-
port that vertical resolution. The number of scan lines has nothing to do with either
the number of colors or the horizontal resolution, so converting 320x400 256-color
mode to 320x480 256-color mode is a simple matter of reprogramming the VGA’s
vertical control registers-which control the scan lines displayed, the vertical sync
pulse, vertical blanking, and the total number of scan lines-to the 480-scan-line
settings, and setting the polarities of the horizontal and vertical sync pulses to tell
the monitor to adjust to a 480-line screen.
Switching to 480 scan lines has the effect of slowing the screen refresh rate. The VGA
always displays at 70 Hz except in 480-scan-line modes; there, due to the time required
to scan the extra lines, the refresh rate slows to 60 Hz. (VGA monitors always scan at the
same rate horizontally; that is, the distance across the screen covered by the electron
beam in a given period of time is the same in all modes. Consequently, adding extra
lines per frame requires extra time.) 60 Hz isn’t bad-that’s the only refresh rate the
EGA ever supported, and the EGA was the industry standard in its time-but it does
tend to flicker a little more and so is a little harder on the eyes than 70 Hz.

Be It Resolved: 360x480 61 9

360 Pixels per Scan Line: No Mean Feat
Converting from 320 to 360 pixels per scan line is more difficult than converting
from 400 to 480 scan lines per screen. None of the VGA’s graphics modes supports
360 pixels across the screen, or anything like it; the standard choices are 320 and 640
pixels across. However, the VGA does support the horizontal resolution we seek-360
pixels-in 40-column text mode.
Unfortunately, the register settings that select those horizontal resolutions aren’t
directly transferable to graphics mode. Text modes display 9 dots (the width of one
character) for each time information is fetched from display memory, while graph-
ics modes display just 4 or 8 dots per display memory fetch. (Although it’s a bit
confusing, it’s standard terminology to refer to the interval required for one display
memory fetch as a “character,” and I’ll follow that terminology from now on.) Conse-
quently, both modes display either 40 or 80 characters per scan line; the only
difference is that text modes display more pixels per character. Given that graphics
modes cun’tdisplay 9 dots per character (there’s only enough information for eight
lfkolor pixels or four 256-color pixels in each memory fetch, and that’s that) , we’d
seem to be at an impasse.
The key to solving this problem lies in recalling that the VGA is designed to drive a
monitor that sweeps the electron beam across the screen at exactly the same speed,
no matter what mode the VGA is in. If the monitor always sweeps at the same speed,
how does the VGA manage to display both 640 pixels across the screen (in high-
resolution graphics modes) and 720 pixels across the screen (in 80-column text
modes)? Good question indeed-and the answer is that the VGA has not one but two
clocks on board, and one of those clocks is just sufficiently faster than the other
clock so that an extra 80 (or 40) pixels can be displayed on each scan line.
In other words, there’s a slow clock (about 25 MHz) that’s usually used in graphics
modes to get 640 (or 320) pixels on the screen during each scan line, and a second,
fast clock (about 28 MHz) that’s usually used in text modes to crank out 720 (or 360)
pixels per scan line. In particular, 320x400 256-color mode uses the 25 MHz clock.
I’ll bet that you can see where I’m headed: We can switch from the 25 MHz clock to
the 28 MHz clock in 320x480 256color mode in order to get more pixels. It takes
two clocks to produce one 256-color pixel, so we’ll get 40 rather than 80 extra pixels
by doing this, bringing our horizontal resolution to the desired 360 pixels.
Switching horizontal resolutions sounds easy, doesn’t it? Alas, it’s not. There’s no stan-
dard VGA mode that uses the 28 MHz clock to draw 8 rather than 9 dots per character, so
the timing parameters have to be calculated from scratch. John Bridges has already
done that for us, but I want you to appreciate that producing this mode took some
work. The registers controlling the total number of characters per scan line, the
number of characters displayed, the horizontal sync pulse, horizontal blanking, the off-
set from the start of one line to the start of the next, and the clock speed all have to be

620 Chapter 32

altered in order to set up 360x480 256color mode. The function Set360x480Mode in
Listing 32.1 does all that, and sets up the registers that control vertical resolution, as well.
Once all that’s done, the VGA is in 360x480 mode, awaiting our every high-resolu-
tion 256-color graphics whim.

Accessing Display Memory in 360x480 256-Color Mode
Setting up for 360x480 256color mode proved to be quite a task. Is drawing in this
mode going to be as difficult?
No. In fact, if you know how to draw in 320x400 256-color mode, you already know
how to draw in 360x480 256-color mode; the conversion between the two is a simple
matter of changing the working screen width from 320 pixels to 360 pixels. In fact, if
you were to take the 320x400 256color pixel reading and pixel writing code from
Chapter 31 and change the SCREEN-WIDTH equate from 320 to 360, those rou-
tines would work perfectly in 360x480 256color mode.
The organization of display memory in 360x480 256-color mode is almost exactly
the same as in 320x400 256color mode, which we covered in detail in the last chap-
ter. However, as a quick refresher, each byte of display memory controls one 256-color
pixel, just as in mode 13H. The VGA is reprogrammed by the mode set so that adja-
cent pixels lie in adjacent planes of display memory. Look back to Figure 31.1 in the
last chapter to see the organization of the first few pixels on the screen; the bytes
controlling those pixels run cross-plane, advancing to the next address only every
fourth pixel. The address of the pixel at screen coordinate (x,y) is
address = ((y*360)+x) /4
and the plane of a given pixel is:
plane = x modulo 4
A new scan line starts every 360 pixels, or 90 bytes, as shown in Figure 32.1. This is
the major programming difference between the 360x480 and 320x400 256-color
modes; in the 320x400 mode, a new scan line starts every 80 bytes.
The other programming difference between the two modes is that the area of dis-
play memory mapped to the screen is longer in 360x480 256-color mode, which is
only common sense given that there are more pixels in that mode. The exact amount
of memory required in 360x480 256-color mode is 360 times 480 = 172,800 bytes.
That’s more than half of the VGA’s 256 Kb memory complement, so page-flipping is
out; however, there’s no reason you couldn’t use that extra memory to create a vir-
tual screen larger than 360x480, around which you could then scroll, if you wish.
That’s really all there is to drawing in 360x480 256color mode. From a program-
ming perspective, this mode is no more complicated than 320x400 256-color mode
once the mode set is completed, and should be capable of good performance given
some clever coding. It’s not particular straightforward to implement bitblt, block

Be It Resolved: 360x480 621

AOOOO

A005A

AOOB4

A O l O E

A0 168

0.. OOO....
0...0000..
o.........
..000000.. 000.. 0 1 OF 01 14 22

0 1 00 00 28 86

Plane 0 of Display Memory The Screen

~~ ~" ~" ."

Pixel organization in 360x480 256-color mode.
Figure 32.1

move, or fast line-drawing code for any of the extended 256-color modes, but it can
be done-and it's worth the trouble. Even the small taste we've gotten of the capa-
bilities of these modes shows that they put the traditional CGA, EGA, and generally
even VGA modes to shame.
There's more and better to come, though; in later chapters, we'll return to high-
resolution 256-color programming in a big way, by exploring the tremendous potential
of these modes for real time 2-D and 3-D animation.

622 Chapter 32

	next:
	home:
	previous:

