
chapter 33

yogi bear and eurythmics confront vga colors

f VGA Color Generation
t the VGA’s 4bit to 8-bit to 18-bit color translation.
d out how to generate a look-up table containing

efault color palette. And surely they are only the
ing programmers from every corner of the planet

are no doubt tearing the place up looking for a discussion of VGA color, and venting
their frustration at my mailbox. Let’s have i t, they’ve said, clearly and in considerable

ics might say, who is this humble writer to disagree?
hope you all know what you’re getting into. To paraphrase

ter (and more confusing) than the average board. There’s the
basic 8-bit to 18-bit translation, there’s the EGA-compatible 4bit to 6-bit translation,
there’s the 2- or 4bit color paging register that’s used to pad 6- or 4bit pixel values
out to 8 bits, and then there’s 256-color mode. Fear not, it will all make sense in the end,
but it may take us a couple of additional chapters to get there-so let’s get started.
Before we begin, though, I must refer you to Michael Covington’s excellent article,
“Color Vision and the VGA,” in the June/July 1990 issue of PC TECHNIQUES. Michael,
one of the most brilliant people it has ever been my pleasure to meet, is an expert in
many areas I know nothing about, including linguistics and artificial intelligence.
Add to that list the topic of color perception, for his article superbly describes the
mechanisms by which we perceive color and ties that information to the VGA’s capa-
bilities. After reading Michael’s article, you’ll understand what colors the VGA is
capable of generating, and why.

625

Our topic in this chapter complements Michael’s article nicely. Where he focused
on color perception, we’ll focus on color generation; that is, the ways in which the
VGA can be programmed to generate those colors that lie within its capabilities. To
find out why a VGA can’t generate as pure a red as an LED, read Michael’s article. If
you want to find out how to flip between 16 different sets of 16 colors, though, don’t
touch that dial!
I would be remiss if I didn’t point you in the direction of two more articles, these in
the July 1990 issue of DX Dobb’s Journal. “Super VGA Programming,” by Chris Howard,
provides a good deal of useful information about SuperVGA chipsets, modes, and
programming. “Circles and the Digital Differential Analyzer,” by Tim Paterson, is a
good article about fast circle drawing, a topic we’ll tackle soon. All in all, the dog
days of 1990 were good times for graphics.

VGA Color Basics
Briefly put, the VGA color translation circuitry takes in one 4 or 8-bit pixel value at
a time and translates it into three &bit values, one each of red, green, and blue, that
are converted to corresponding analog levels and sent to the monitor. Seems simple
enough, doesn’t it? Unfortunately, nothing is ever that simple on the VGA, and color
translation is no exception.

The Palette RAM
The color path in the VGA involves two stages, as shown in Figure 33.1. The first
stage fetches a 4bit pixel from display memory and feeds it into the EGA-compatible
palette RAM (so called because it is functionally equivalent to the palette RAM color
translation circuitry of the EGA) , which translates it into a 6-bit value and sends it on
to the DAC. The translation involves nothing more complex than the 4bit value of a
pixel being used as the address of one of the 16 palette RAM registers; a pixel value
of 0 selects the contents of palette RAM register 0, a pixel value of 1 selects register 1,
and so on. Each palette RAM register stores 6 bits, so each time a palette RAM register is
selected by an incoming 4bit pixel value, 6 bits of information are sent out by the
palette R A M . (The operation of the palette RAM was described back in Chapter 29.)
The process is much the same in text mode, except that in text mode each 4bit pixel
value is generated based on the character’s font pattern and attribute. In 256-color
mode, which we’ll get to eventually, the palette RAM is not a factor from the
programmer’s perspective and should be left alone.

The DAC
Once the EGA-compatible palette RAM has fulfilled its karma and performed 4bit
to &bit translation on a pixel, the resulting value is sent to the DAC (Digital/Analog
Converter). The DAC performs an 8-bit to 18-bit conversion in much the same man-
ner as the palette RAM, converts the 18-bit result to analog red, green, and blue

626 Chapter 33

4-bit pixel value from display memory
(graphics mode) or from font/attribute

Color Select Register
(AC recl 14h) 1 Bits 0-3 in

Bits 2-3 out I 1 Bits 0-1 out
I I 4

I

If bit 7 of AC Mode
reg is 0, select
palette RAM source,
if 1 , select Color
Select reg source

Palette RAM
Uses incoming 4-bit
pixel values to look
up one of the 16 6-bit
registers, then sends
the contents of that
register out (4-bit to
6-bit conversion) c

Bits 4-5 out
Bits 0-3 out

~~~ ~ ~ 

DAC 
Uses incoming 8-bit pixel value  to look up one of 256 
18-bit registers,  then  sends  the  contents of  that 
register, organized as 6-bit red,  green, and blue  color 
components, on to analog conversion  circuitry,  where 
they are converted  to  three proportional analog signals 
and sent  to  the monitor (8-bit to 18-bit conversion) 

~~ 

I I 
J. 

Red analog signal 
to  monitor  (one  of 
64 possible  levels) 

Green analog signal Blue analog signal 
to  monitor (one of to  monitor  (one  of 

64 possible  levels) 64 possible  levels) 

The VGA color generation path. 
Figure 33.1 

Yogi  Bear and Eurythmics Confront VGA Colors 627 



signals (6 bits for  each  signal), and sends  the  three  analog signals to  the  monitor. 
The DAC is a  separate  chip,  external  to  the VGA chip,  but it’s an  integral  part of the 
VGA standard  and is present  on every VGA. 
(I’d like to take a moment to  point  out  that you can’t  speak of “color” at any point  in 
the  color  translation process until  the output stage of the DAC. The  4bit pixel values 
in memory,  &bit  values in  the  palette R A M ,  and 8-bit  values sent  to  the DAC are all 
attributes, not colors, because they’re  subject  to  translation by a  later stage. For  ex- 
ample,  a pixel with a 4bit value of 0 isn’t  black, it’s attribute 0. It will be translated  to 
3FH if palette RAM register 0 is set to 3FH, but that’s not  the  color white, just an- 
other attribute. The value  3FH coming  into  the DAC isn’t  white either, and if the 
value stored  in DAC register 63 is red=7, green=O, and blue=O, the  actual color dis- 
played for  that pixel that was 0 in display memory will be dim  red.  It isn’t color  until 
the DAC  says it’s color.) 
The DAC contains 256  18-bit storage  registers,  used to translate one of  256 possible 8-bit 
values into  one of  256K (262,144, to be precise) 18-bit  values. The 18-bit  values are 
actually  composed of three Gbit  values, one each for  red,  green, and blue; for each color 
component,  the higher  the  number,  the  brighter  the color, with 0 turning  that  color 
off in  the  pixel  and  63  (3FH)  making  that  color  maximum  brightness.  Got all that? 

Color  Paging  with  the  Color  Select  Register 
‘Wait a minute,” you say bemusedly. “Aren’t you  missing some bits between the pal- 
ette RAM and the DAC?” Indeed  I am. The palette RAM puts out 6 bits at  a  time, and 
the DAC takes in 8 bits at a time. The two missing bits-bits 6 and 7 going into  the 
DAC-are supplied by bits 2 and 3 of the  Color Select register  (Attribute  Controller 
register 14H). This has intriguing implications. In l k o l o r  modes,  pixel data can  select 
only one of 16 attributes, which the EGA palette RAM translates into  one of 64 attributes. 
Normally, those 64 attributes look up colors from registers 0 through  63  in  the DAC, 
because bits 2 and 3 of the  Color Select register are both  zero. By changing  the  Color 
Select register, however, one of three  other 64 color sets can be  selected instantly.  I’ll 
refer  to  the process of flipping  through  color sets in this manner as colmpuging. 
That’s interesting,  but frankly it seems somewhat half-baked; why bother  expanding 
16  attributes  to 64 attributes  before  looking up  the colors in the DAC? What we’d 
really like is to map  the  16  attributes  straight  through  the  palette RAM without  chang- 
ing  them  and supply the upper 4 bits going  to  the DAC from  a register, giving  us 16 
color pages. As it  happens, all we have to do to make that  happen is set  bit 7 of the 
Attribute  Controller Mode register  (register 10H) to 1. Once that’s  done, bits 0 
through  3 of the Color Select register  go  straight  to bits 4  through 7 of the DAC, and 
only bits 3  through 0 coming  out of the  palette RAM are used; bits 4 and 5  from  the 
palette RAM are  ignored.  In this mode,  the  palette RAM effectively contains 4bit, 
rather than &bit, registers, but  that’s no problem because the  palette RAM will be 
programmed to pass pixel values through  unchanged by having register 0 set to 0, 

628 Chapter 33 



register 1 set  to 1, and so on, a  configuration  in which the  upper two bits of all the 
palette RAM registers are  the same (zero)  and  therefore irrelevant. As a  matter of 
fact, you’ll generally want to  set the palette RAM to this pass-through state when 
working with VGA color, whether  you’re using color  paging or  not. 
Why  is it a  good  idea  to  set  the  palette RAM to a  pass-through  state? It’s a  good  idea 
because the palette RAM is programmed by the BIOS to EGA-compatible settings 
and  the first 64 DAC registers are  programmed to emulate  the 64 colors  that an EGA 
can display during  mode sets for  l6-color  modes.  This is done  for compatibility with 
EGA programs, and it’s  useless if you’re  going to tinker with the VGAs colors. As a 
VGA programmer, you  want to take a 4bit pixel value and  turn it into  an 18-bit RGB 
value; you can do that  without any help  from  the  palette RAM, and setting the pal- 
ette RAM to pass-through values  effectively takes it  out of the  circuit and simplifies 
life something  wonderful. The palette RAM exists  solely for EGA compatibility, and 
serves no useful purpose  that I know  of for VGA-only color  programming. 

256-Color Mode 
So far I’ve spoken only of 16-color modes; what of 256-color modes? 
The  rule in 256-color modes is: Don’t tinker  with the VGA palette. Period. You can select 
any colors you  want by reprogramming  the DAC, and  there’s  no  guarantee as to 
what will happen if you  mess around with the palette RAM. There’s no benefit  that I 
know  of to changing  the  palette RAM in 256-color mode,  and  the effect may  vary 
from VGA to VGA. So don’t do it unless you  know something I don’t. 
On  the  other  hand, feel free  to  alter  the DAC settings to your heart’s content in 256- 
color  mode, all the  more so because this is the only mode  in which  all  256 DAC 
settings can be displayed simultaneously. By the way, the Color Select register and bit 
7 of the Attribute  Controller Mode register are  ignored in 256-color mode; all 8 bits 
sent  from the VGA chip to the DAC come from display  memory. Therefore,  there is 
no color  paging  in 256-color mode. Of course,  that makes sense given that all  256 
DAC registers are simultaneously in use in 256-color mode. 

Setting  the  Palette RAM 
The palette RAM can  be  programmed  either directly or  through BIOS interrupt 
10H, function 10H. I strongly recommend using the BIOS interrupt; a  clone BIOS 
may  mask incompatibilities with genuine IBM silicon. Such  incompatibilities  could 
include  anything  from flicker to  trashing the palette RAM; or they may not exist at 
all, but why find  out  the  hard way? My policy is to use the BIOS unless there’s  a clear 
reason not to do so, and there’s no such reason  that I know  of in this case. 
When programming specifically for the VGA, the palette RAM needs to be loaded 
only once,  to store the pass-through values 0 through  15 in  palette RAM registers 0 
through 15.  Setting  the  entire  palette RAM is accomplished easily enough with 

Yogi  Bear and Eurythmics Confront VGA Colors 629 



subfunction 2 (AL=2) of function  10H  (AH=lOH) of interrupt  10H. A single call to 
this subfunction sets  all 16 palette RAM registers (and  the Overscan register) from  a 
block of 1’7 bytes pointed to by ES:DX,  with  ES:DX pointing to the value for register 
0, ES:DX+l pointing to the value for register 1,  and so on  up to ES:DX+16,  which 
points to the overscan value. The palette RAM registers store  6 bits each, so only the 
lower 6 bits of each of the first 16 bytes in the 17-byte  block are significant. (The 
Overscan register, which  specifies  what’s  displayed between the  area of the screen 
that’s controlled by the values in display memory and  the blanked region at  the 
edges of the screen, is an %bit register, however.) 
Alternatively,  any one palette RAM register can be set via subfunction 0 ( A L = O )  of 
function  10H  (AH=lOH) of interrupt  10H. For this subfunction, BL contains the 
number of the palette RAM register to set and  the lower 6 bits  of BH contain the 
value to which to set  that register. 
Having  said that, let’s  leave the palette RAM behind (presumably in a pass-through 
state) and move on to the DAC, which is the right place to do color translation on 
the VGA. 

Setting the DAC 
Like the palette R A M ,  the DAC registers can be set  either directly or  through  the 
BIOS. Again, the BIOS should be used whenever possible, but  there  are a few com- 
plications here. My experience is that varying degrees of flicker and screen bounce 
occur  on many VGAs when  a large block  of DAC registers is set through  the BIOS. 
That’s not a  problem  when  the DAC is loaded  just  once  and  then left that way,  as is 
the case in Listing  33.1,  which  we’ll get to  shortly, but it can be a serious problem 
when the color set is changed rapidly (“cycled”) to produce on-screen effects such as 
rippling colors. My (limited)  experience is that it’s  necessary to program  the DAC 
directly in order to cycle colors cleanly, although  input from readers who have  worked 
extensively  with VGA color is welcome. 
At any rate, the  code in this chapter will use the BIOS to set the DAC, so I’ll describe 
the BIOS  DAC-setting functions  next. Later, I’ll briefly describe how to set both  the 
palette RAM and DAC registers directly, and I’ll return to the topic in detail in an 
upcoming  chapter  when we discuss color cycling. 
An individual DAC register can be set by interrupt  10H, function  10H  (AH=lO), 
subfunction  10H  (AL=lOH), with BX indicating the register to be set and  the color 
to  which that register is to be set stored in DH (&bit red  component), CH (6-bit 
green  component),  and CL (6-bit blue component). 
A block  of sequential DAC registers ranging in size from  one register up to all  256 
can be setvia subfunction 12H (AL=12H)  of interrupt  10H, function  10H  (AH=lOH). 
In this case, BX contains the  number of the first register to set, CX contains the 
number of registers to set, and ES:DX contains the address of a table of color entries 
to which DAC registers BX through BX+CX-1 are to be set. The color entry  for  each 

630 Chapter 33 



DAC register consists of three bytes; the first byte  is a 6-bit red  component,  the sec- 
ond byte  is a 6-bit green  component,  and  the  third byte  is a 6-bit blue component, as 
illustrated by Listing 33.1. 

If You  Can’t Call the BIOS, Who Ya Gonna Call? 
Although the palette RAM and DAC registers should  be set through  the BIOS  when- 
ever possible, there  are times when the BIOS is not  the best choice or even a  choice 
at all; for  example, a protected-mode  program may not have  access to  the BIOS. 
Also, as mentioned earlier, it may be necessary to program  the DAC directly when 
performing  color cycling. Therefore, I’ll briefly describe how to set the palette RAM 
and DAC registers directly; in  Chapter A on  the  companion CD-ROM I’ll discuss 
programming  the DAC directly in  more  detail. 
The palette RAM registers are Attribute  Controller registers 0 through 15. They are 
set by first reading  the  Input Status 1 register (at 3DAH in  color  mode or 3BAH in 
monochrome  mode)  to reset the Attribute  Controller toggle to index  mode,  then 
loading  the Attribute Controller  Index register (at 3COH)  with the  number  (0  through 
15) of the register to be loaded. Do not set bit 5 of the  Index register to 1, as  you 
normally would, but  rather set  bit 5 to 0. Setting bit 5 to 0 allows  values to be written 
to the palette RAM registers, but it also causes the screen to blank, so you should wait 
for the start of vertical retrace  before  loading  palette RAM registers if  you don’t want 
the  screen to flicker. (Do you see why it’s easier to go  through  the BIOS?) Then, 
write the desired register value to 3COH, which has now toggled to become the At- 
tribute  Controller Data register. Write any desired number of additional register 
number/register  data pairs to 3COH, then write 20H to 3COH to unblank  the  screen. 
The process of loading the palette RAM registers depends heavily on  the  proper 
sequence  being followed; if the Attribute  Controller  Index  register  or  index/data 
toggle data gets changed  in  the  middle of the loading process, you’ll probably end 
up with a hideous display, or  no display at all. Consequently, for maximum safety  you 
may want to disable interrupts while  you load the palette RAM, to prevent any sort of 
interference  from a TSR or  the like that  alters the state of the  Attribute  Controller  in 
the middle of the  loading  sequence. 
The DAC registers are set by writing the  number of the first register to  set  to the DAC 
Write Index register at 3C8H, then writing three bytes-the  6-bit red  component, 
the 6-bit green  component,  and  the 6-bit blue component, in  that order-to the 
DAC Data register at 3C9H. The DAC Write Index register then  autoincrements, so 
if you write another three-byte RGB value to the DAC Data register, it’ll go  to  the 
next DAC register, and so on indefinitely; you can set all 256 registers by sending 
256*3 = 768  bytes to the DAC Data Register. 
Loading the DAC  is just as sequence-dependent  and potentially susceptible to inter- 
ference as is loading the  palette, so my personal  inclination is to go through  the 
whole process of disabling interrupts,  loading  the DAC Write Index,  and writing a 

Yogi Bear and Eurythmics Confront VGA Colors 63 1 



three-byte RGB value separately for  each DAC register; although  that  doesn’t take 
advantage of the  autoincrementing  feature, it seems to me to be least susceptible to 
outside influences. (It would  be  even better to  disable interrupts for the entire duration 
of DAC register loading, but that’s much too long a time  to  leave interrupts off.) How- 
ever, I have no hard evidence  to  offer in support of  my  conservative approach to  setting 
the DAC, just an uneasy  feeling, so I’d be  most interested in hearing from any readers. 
A final point is that the process of loading  both the palette RAM and DAC registers 
involves performing multiple OUTS to the same register. Many people whose opin- 
ions I  respect recommend delaying between 1 / 0  accesses to the same port by 
performing aJMP $+2 (jumping flushes the prefetch queue  and forces a  memory 
access-or at least a cache access-to fetch the next  instruction  byte). In fact,  some people 
recommend twoJMP $+2 instructions between 1 / 0  accesses  to the same  port,  and 
three jumps between 1 /0  accesses to the same port  that go in opposite  directions 
(OUT followed by IN or IN followed by OUT). This is clearly  necessary  when  accessing 
some motherboard chips, but I don’t know  how applicable it is when accessing VGAs, 
so make of it what you will. Input  from knowledgeable readers is eagerly solicited. 
In  the  meantime, if you can use the BIOS to set the DAC, do so; then you won’t have 
to  worry about  the real and potential complications of setting the DAC directly. 

An Example of Setting the DAC 
This chapter has gotten about as  big  as a chapter really ought to be; the VGA color 
saga will continue in the  next few. Quickly, then, Listing 33.1 is a simple example of 
setting the DAC that gives  you a taste  of the spectacular effects that color translation 
makes  possible. There’s nothing particularly complex about Listing 33.1; it just se- 
lects  256-color mode, fills the screen with  one-pixel-wide concentric  diamonds drawn 
with sequential attributes, and sets the DAC to produce a  smooth gradient of each of 
the  three primary colors and of a mix of red  and blue. Run the  program; I suspect 
you’ll be surprised at  the  stunning display this short  program produces. Clever color 
manipulation is perhaps the easiest way to produce truly  eye-catching  effects on the PC. 

LISTING 33.1 133- 1 .ASM 
: Program t o   d e m o n s t r a t e   u s e   o f   t h e  DAC r e g i s t e r s   b y   s e l e c t i n g  a 
: s m o o t h l y   c o n t i g u o u s   s e t   o f   2 5 6   c o l o r s ,   t h e n   f i l l i n g   t h e   s c r e e n  
; w i t h   c o n c e n t r i c   d i a m o n d s   i n   a l l   2 5 6   c o l o r s  so t h a t   t h e y   b l e n d  
: i n t o   o n e   a n o t h e r   t o   f o r m  a c o n t i n u u m   o f   c o l o r .  

.model   smal l  

. s t a c k   2 0 0 h  

. d a t a  

: T a b l e   u s e d   t o   s e t   a l l  256 DAC e n t r i e s  

: T a b l e   f o r m a t :  
: B y t e  0: DAC r e g i s t e r  0 r e d   v a l u e  
: B y t e  1: DAC r e g i s t e r  0 g r e e n   v a l u e  

632 Chapter 33 



: B y t e   2 :  DAC r e g i s t e r  0 b l u e  v a l u e  
: B y t e   3 :  DAC r e g i s t e r  1 r e d   v a l u e  
: B y t e  4: DAC r e g i s t e r  1 g r e e n   v a l u e  
: By te   5 :  DAC r e g i s t e r  1 b l u e   v a l u e  

: By te   765 :  DAC r e g i s t e r  255 r e d   v a l u e  
: By te   766 :  DAC r e g i s t e r  255  g reen  va lue  
: By te   767 :  DAC r e g i s t e r  255 b l u e   v a l u e  

C o l   o r T a b l e  1 a b e l   b y t e  

: The f i r s t  6 4   e n t r i e s   a r e   i n c r e a s i n g l y   d i m   p u r e   g r e e n .  
x-0 

REPT 64 
db 0 .63 -X .0  

x-x+l 
ENDM 

: T h e   n e x t   6 4   e n t r i e s   a r e   i n c r e a s i n g l y   s t r o n g   p u r e   b l u e .  
x-0 

REPT 64 
db 0,O.X 

ENDM 
X-X+ l  

; The n e x t   6 4   e n t r i e s   f a d e   t h r o u g h   v i o l e t   t o   r e d .  
x-0 

REPT 64 
db X.O.63-X 

x-x+l  
ENDM 

: The l a s t   6 4   e n t r i e s   a r e   i n c r e a s i n g l y   d i m   p u r e   r e d .  
x-0 

REPT 64 
db  63-X,O.O 

ENDM 
x-x+l 

.code 
S t a r t :  

mov ax.DO13h 

i n t  10h 

mov ax ,@data  
rnov es .ax  
mov d x . o f f s e t   C o l o r T a b l e  

mov ax,   1012h 

sub  bx.bx 

mov cx,   lOOh 
i n t  10h 

:AH-0 s e l e c t s   s e t  mode f u n c t i o n ,  
: AL-13h s e l e c t s   3 2 0 x 2 0 0   2 5 6 - c o l o r  
: mode 

: l o a d   t h e  DAC r e g i s t e r s   w i t h   t h e  
: c o l o r   s e t t i n g s  
: p o i n t  ES t o   t h e   d e f a u l t  
: data  segment  

: p o i n t  ES:DX t o   t h e   s t a r t   o f   t h e  
; b l o c k   o f  RGB t h r e e - b y t e   v a l u e s  
: t o   l o a d   i n t o   t h e  DAC r e g i s t e r s  
:AH-lOh s e l e c t s   s e t   c o l o r   f u n c t i o n ,  
: AL-12h s e l e c t s   s e t   b l o c k   o f  DAC 
: r e g i s t e r s   s u b f u n c t i o n  
: l o a d   t h e   b l o c k   o f   r e g i s t e r s  
: s t a r t i n g   a t  DAC r e g i s t e r  l o  
: s e t   a l l  2 5 6   r e g i s t e r s  
: l o a d   t h e  DAC r e g i s t e r s  

Yogi Bear and Eurythmics Confront VGA Colors 633 



mov ax ,  OaOOOh 
mov d s , a x  

mov a1 .2 
mov a h . - 1  
mov bx .320  

mov dx .160 
mov s i   , 1 0 0  
s u b   d i   , d i  
mov b p . 1  

c a l l   F i l l B l o c k  

mov a l , 2  
mov ah:l 
mov bx .320  

mov dx .160  
mov s i   , 1 0 0  
mov d i   , 3 1 9  
mov bp .  -1 

c a l l   F i l l B l o c k  

mov a l . 2  
mov ah:l 
mov bx ,   -320 

mov dx .160 
mov s i  ,100 
mov d i  .199*320 
mov bp .1  

c a l l   F i l l 8 1   o c k  

mov a l . 2  
mov ah:l 
mov bx .   -320  

mov dx,160 
mov s i   , 1 0 0  
mov d i  .199*320+319 
mov b p . - 1  

c a l l   F i  11 B1 ock  

:now fill t h e   s c r e e n   w i t h  
: c o n c e n t r i c   d i a m o n d s   i n   a l l  256 
: c o l o r   a t t r i b u t e s  
: p o i n t  DS t o   t h e   d i s p l a y  memory 
: segment 

: d r a w   d i a g o n a l   l i n e s   i n   t h e   u p p e r -  
: l e f t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   t o p   t o   b o t t o m   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t  (0 .0 )  
:d raw l e f t   t o   r i g h t   ( d i s t a n c e   f r o m  
: one  co lumn t o   t h e   n e x t )  
:d raw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   u p p e r -  
: r i g h t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  112 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   t o p   t o   b o t t o m   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 3 1 9 . 0 )  
: d r a w   r i g h t   t o   l e f t   ( d i s t a n c e   f r o m  
: one  co lumn t o   t h e   n e x t )  
:d raw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   l o w e r -  
: l e f t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   b o t t o m   t o   t o p   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 0 , 1 9 9 )  
:draw l e f t   t o   r i g h t   ( d i s t a n c e   f r o m  
: one  column t o   t h e   n e x t )  
:draw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   l o w e r -  
: r i g h t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   b o t t o m   t o   t o p   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 3 1 9 . 1 9 9 )  
: d r a w   r i g h t   t o   l e f t   ( d i s t a n c e   f r o m  
: one  column t o   t h e   n e x t )  
:draw i t  

mov ah .1  
i n t  21h 

: w a i t   f o r  a key 

634 Chapter 33 



mov ax.0003h 
i n t  10h 

mov ah.4ch 
i n t  21h 

; r e t u r n   t o   t e x t  mode 

: d o n e - - r e t u r n   t o  DOS 

: F i l l s   t h e   s p e c i f i e d   r e c t a n g u l a r   a r e a  o f  t h e   s c r e e n   w i t h   d i a g o n a l   l i n e s  

: I n p u t :  
; AL = i n i t i a l   a t t r i b u t e   w i t h   w h i c h   t o   d r a w  
: AH = amount by w h i c h   t o   a d v a n c e   t h e   a t t r i b u t e   f r o m  

: BX = d i s t a n c e   t o   a d v a n c e   f r o m   o n e   p i x e l   t o   t h e   n e x t  
: DX = w i d t h   o f   r e c t a n g l e   t o  fill 
; S I  = h e i g h t   o f   r e c t a n g l e   t o  fill 
; DS:ON = s c r e e n   a d d r e s s   o f   f i r s t   p i x e l   t o   d r a w  
; BP = o f f s e t   f r o m   t h e   s t a r t  o f  one  column t o   t h e   s t a r t   o f  

o n e   p i x e l   t o   t h e   n e x t  

t h e   n e x t  

F i l l B l o c k :  
F i  11  HorzLoop: 

p u s h   d i  
push  ax 
mov c x . s i  

F i l l   V e r t L o o p :  
mov [ d i l . a l  
add d i   . b x  
add a1 .ah 
1 oop F i  11  Ver tLoop 
POP ax 
add   a l . ah  

p o p   d i  
add d i   . b p  
dec  dx 
j n z   F i l l H o r z L o o p  
r e t  

; p r e s e r v e   p o i n t e r   t o   t o p   o f   c o l u m n  
; p r e s e r v e   i n i t i a l   a t t r i b u t e  
; c o l u m n   h e i g h t  

: s e t   t h e   p i x e l  
; p o i n t   t o   t h e   n e x t   r o w   i n   t h e   c o l u m n  
; a d v a n c e   t h e   a t t r i b u t e  

; r e s t o r e   i n i t i a l   a t t r i b u t e  
;advance t o   t h e   n e x t   a t t r i b u t e   t o  
: s t a r t   t h e   n e x t   c o l u m n  
: r e t r i e v e   p o i n t e r   t o   t o p  o f  column 
: p o i n t   t o   n e x t   c o l u m n  
;have we done a l l   c o l u m n s ?  
;no .  d o   t h e   n e x t   c o l u m n  

e n d   S t a r t  

Note  the  jagged lines at  the  corners of the  screen when  you run Listing 33.1. This 
shows  how coarse  the 320x200 resolution of mode 13H actually is. Now look  at how 
smoothly the colors blend  together  in  the  rest of the screen.  This is an  excellent 
example of how careful color selection can boost perceived resolution, as for ex- 
ample when drawing antialiased lines, as discussed in Chapter 42. 
Finally, note  that  the  border of the screen  turns  green when Listing 33.1 is run. 
Listing 33.1 reprograms DAC register 0 to  green,  and  the  border  attribute  (in  the 
Overscan register) happens  to  be 0, so the  border comes out  green even though we 
haven’t  touched the Overscan register. Normally, attribute 0 is black, causing the 
border  to vanish, but  the  border is an %bit attribute  that  has to pass through  the 
DAC just like any other pixel value, and it’s just as subject to DAC color  translation as 
the pixels controlled by display  memory.  However, the  border color is not affected 
by the  palette RAM or by the Color Select register. 

Yogi Bear and Eurythmics Confront VGA Colors 635 



In this  chapter, we traced  the surprisingly complex  path by which the VGA turns  a 
pixel value into RGB analog signals headed for  the  monitor. In the  next  chapter  and 
Chapter A on the  companion CD-ROM, we’ll look at  some  more  code  that plays  with 
VGA color. We’ll explore in more detail  the process of reading and writing the pal- 
ette RAM and DAC registers, and we’ll observe color paging and cycling in  action. 

636 Chapter 33 


	previous: 
	home: 
	next: 


