
chapter 36

the good, the bad, and the run-sliced



nham Lines with Run-Length 
Slice  Line  Diwrwing 

that asked  me to write  blazingly  fast  line-drawing 
lemented  the basic  Bresenham’s linedrawing algo 

ssible;  special-cased horizontal, diagonal, and 
mized  routines  for  lines  in  each  octant; and mas- 

done, I had line  drawing  down  to a mere five or six 
and I handed the  code over  to the AutoCAD driver  person,  con- 

shed the theoretical  limits of the Bresenham’s 
and  that this was  as fast  as line drawing could get 
ut a week, until Dave  Miller,  who these days  is a 

Windows  display-driver  whiz at Engenious Solutions,  casually mentioned Bresenham’s 
faster  run-length slice linedrawing algorithm. 
Remember Bill  Murray’s  safety tip in Ghostbusters? It goes something like  this. Harold 
Ramis  tells the Ghostbusters not to cross the beams of the antighost guns. ‘Why?” 
Murray  asks. 
“It would  be bad,” Ramis  says. 
Murray says,  “I’m  fuzzy on  the whole good/bad  thing. What exactly do you mean 
by ‘bad’?’’ It  turns out  that what  Ramis means by bad is basically the  destruction of 
the universe. 
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“Important safety tip,” Murray comments dryly. 
I  learned two important safety  tips from my line-drawing experience;  neither  in- 
volves the possible destruction of the universe, so far as I know, but they are 
nonetheless worth keeping in mind. First,  never,  never, never think you’ve written 
the fastest  possible code.  Odds  are, you  haven’t. Run your code past another good 
programmer, and  he  or she will probably say, “But why don’t you do this?” and you’ll 
realize that you  could indeed do that, and your code would then be  faster. Or relax and 
come back  to  your code later, and you  may  well see another, faster approach.  There 
are  a million ways to implement code for any task, and you can  almost always find a 
faster way if you need to. 
Second, when performance matters, never have your code  perform  the same calcu- 
lation more than once. This sounds obvious, but it’s astonishing how often it’s ignored. 
For example,  consider this snippet of code: 

f o r   ( i - 0 :   i < R u n L e n g t h :  i++) 
{ 

*Work ingScreenPtr  - C o l o r ;  
i f  ( X D e l t a  > 0 )  
I 

1 
e l s e  
( 

1 

WorkingScreenPtr++: 

W o r k i n g S c r e e n P t r - - :  

1 

Here,  the  programmer knows  which way the line is going  before the main loop be- 
gins-but nonetheless  performs  that test every time  through  the  loop,  when 
calculating the address of the  next pixel. Far better to perform  the test only once, 
outside the  loop, as  shown here: 

i f  ( X D e l t a  > 0 )  
I 

f o r  ( i -0 :  i<RunLength:  i++) 
{ 

I 
} 
e l s e  
{ 

*Work ingScreenPtr++ - C o l o r :  

f o r   ( i - 0 :   i < R u n L e n g t h :  i++) 
I 

I 
*Work ingScreenPt r - -  - C o l o r :  

3 

Think of it this way: A program is a state machine. It takes a  set of inputs and pro- 
duces  a  corresponding set of outputs by passing through  a set of states. Your primary 
job as a  programmer is to implement the desired state machine. Your additional job 
as a  performance  programmer is to minimize the  lengths of the paths through  the 
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state machine. This means performing as  many  tests and calculations  as  possible 
outside the loops, so that  the loops themselves can do as  little  work-that  is,  pass 
through as few  states-as possible. 
Which brings us  full  circle  to Bresenham's run-length slice  line-drawing algorithm, 
which just  happens to be an excellent example of a minimized  state machine. In case 
you're fuzzy on  the  good/bad  performance thing, that's "good"-as in fast. 

Run-Length  Slice  Fundamentals 
First  off, I have a confession to make: I'm not sure  that  the algorithm I'll discuss is 
actually,  precisely Bresenham's run-length slice algorithm. It's been a long time  since 
I read  about this algorithm; in the  intervening years,  I've  misplaced Bresenham's 
article, and have been  unable  to unearth it. As a result, I had to derive the algorithm 
from scratch, which was admittedly more  fun  than  reading  about  it,  and also en- 
sured  that I understood it inside and  out.  The upshot is that what I discuss  may or 
may not be Bresenham's run-length slice  algorithm-but  it  surely is fast. 
The place  to begin understanding  the  run-length slice algorithm is the  standard 
Bresenham's line-drawing algorithm. (I discussed the  standard Bresenham's line- 
drawing algorithm at  length in the previous chapter.) The basis  of the  standard 
approach is stepping one pixel at a time along  the major  axis (the longer dimension 
of the  line), while maintaining an  integer error term that indicates at each major- 
axis step how  close the line is to advancing halfway to  the  next pixel along  the  minor 
axis.  Figure 36.1 illustrates standard Bresenham's line drawing. The key point  here is 
that a calculation and a test are  performed  once for each step  along  the major  axis. 

0 0 0 0 
"""."""""""""""""..""""..""""..""~ 

Midway points / 
between  pixels 

along minor  axis '.\ t 
__"""."_"""."""".""" . ___""".""""". 

\\// 
Pixels are stepped  one at a time along the major axis, 
and the error term  evaluated  after  each  step,  to  see 

if it's  time  for  the minor axis  to  advance. 

Standard Bresenham 5 line drawing. 
Figure 36.1 
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The run-length slice algorithm  rotates  matters 90 degrees, with salubrious results. 
The basis  of the run-length slice  algorithm is stepping one pixel at  a time  along the 
minor axis (the shorter dimension), while maintaining an integer error term  indicating 
how  close the  line is  to advancing an  extra pixel along  the major axis, as illustrated by 
Figure 36.2. 
Consider this: When you’re called upon to draw a  line with an  Xdimension of 35 
and a Y-dimension  of 10, you  have a  great  deal of information available, some of 
which is ignored by standard Bresenham’s. In  particular, because the  slope is be- 
tween 1/3 and 1/4, you  know that every  single  run-a run being  a  set of pixels at  the 
same  minor-axis  coordinate-must  be either  three  or  four pixels long. No other 
length is possible,  as  shown  in Figure 36.3 (apart  from  the first and last runs, which 
are special  cases that I’ll discuss shortly).  Therefore,  for this line, there’s no need to 
perform  an  error-term calculation and test for  each pixel. Instead, we can just per- 
form one test per  run, to see whether  the run is three or four pixels long,  thereby 
eliminating  about 70 percent of the calculations in drawing this line. 
Take a  moment to let  the idea behind run-length slice  drawing  soak in. Periodic  deci- 
sions must be  made to control pixel placement. The key to speed is to make those 
decisions as infrequently and as quickly as possible.  Of  course,  it will  work to  make a 
decision at each pixel-that’s standard Bresenham’s.  However,  most  of  those  per-pixel 
decisions are  redundant,  and  in fact we have enough information  before we begin 
drawing to know  which are  the  redundant decisions.  Run-length  slice  drawing is  exactly 
equivalent to standard Bresenham’s, but it  pares  the decision-making process down 
to a  minimum. It’s  somewhat  analogous to the difference  between finding the greatest 
common divisor  of  two numbers using Euclid’s algorithm and finding  it by trying 

Error  terms 
(cumulative  partial  pixels) / at  ends of runs \ 

after each step, to see 
whether to draw 
RUNLENGTH or 
RUNLENGTH+l pixels 
along  the  major  axis. 

0 0 0 

Run-length slice line  drawing. 
Figure 36.2 
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Runs are four  pixels long 

Runs in a slope 1/3.5 line. 
Figure 36.3 

every  possible  divisor. Both approaches  produce  the  desired result, but  that which 
takes maximum advantage of the available information and minimizes redundant 
work is preferable. 

Run-Length  Slice  Implementation 
We know that  for any line,  a given run will  always be one of two possible lengths. 
How, though, do we  know  which length to  select?  Surprisingly,  this is easy to determine. 
For the following  discussion,  assume that we  have a slope of 1/3.5, so that X is the major 
axis;  however, the discussion  also applies to Y-major lines, with X and Y reversed. 
The minimum possible length  for any run in an X-major line is int(XDelta/YDelta), 
where XDelta is the X-dimension of the line and YDelta is the Y-dimension. The 
maximum possible length is int(XDelta/YDelta)+ 1. The trick, then, is knowing  which 
of these two lengths to select for each run. To see how we can make this selection, 
refer to  Figure 36.4. For each one-pixel step along the minor axis (x in this case), we 
advance at least three pixels. The full advance distance along  X (the major axis)  is 
actually three-plus pixels, because there is also a fractional portion to the advance 
along  X  for  a single-pixel Y step. This fractional advance is the key to deciding when 
to add  an extra pixel to a run.  The fraction indicates what portion of an  extra pixel 
we advance along X (the major axis) during each run. If  we keep a running sum of 
the fractional parts, we have a measure of  how  close we are to needing  an  extra pixel; 
when the fractional sum reaches 1, it's time to add  an  extra pixel to the  current  run. 
Then, we can subtract 1 from  the  running sum (because we just advanced one  pixel), 
and  continue  on. 
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so don't draw  an extra pixel an extra pixel 

How the error term determines run length. 
Figure 36.4 

Practically speaking, however, we can't work  with fractions because floating-point 
arithmetic is  slow and fixed-point arithmetic is imprecise. Therefore, we take a  cue 
from  standard Bresenham's and scale  all the  error-term calculations up so that we 
can work  with integers. The fractional X (major axis)  advance per one-pixel Y (minor 
axis) advance is the fractional portion ofXDelta/YDelta. This value is exactly  equiva- 
lent to D e l t a  % YDelta)/YDelta.  We'll  scale this up by multiplying it by YDelta"2, 
so that  the  amount by which we adjust the  error term up for each one-pixel minor- 
axis advance is  (XDelta % YDelta)*2. 
We'll  similarly  scale up the  one pixel by which we adjust the  error term down after it 
turns over, so our downward error-term  adjustment is  YDelta*2. Therefore,  before 
drawing each run, we'll add ( D e l t a  % YDelta)*2 to the  error term. If the  error term 
runs over (reaches one full pixel), we'll lengthen  the  run by 1, and subtract YDelta"2 
from  the error term. (All  values are multiplied by 2 so that the initial error term, 
which  involves a 0.5 term, can be scaled up to an  integer, as  discussed next.) 
This is not a complicated process; it involves  only integer  addition and subtraction 
and a single test, and it  lends itself to many and varied optimizations. For example, 
you could break out hardwired optimizations for drawing each possible pair of run 
lengths. For the  aforementioned line with a slope of 1/3.5, for  example, you could 
have one  routine hardwired to blast in a run of three pixels  as  quickly  as  possible, 
and  another hardwired to  blast in  a run of four pixels. These  routines would  ideally 
have no looping, but  rather  just  a series of instructions customized to draw the de- 
sired number of pixels at maximum speed. Each routine would  know that  the only 
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possibilities for  the  length of the  next  run would be  three  and four, so they could 
increment  the  error  term,  then jump directly to the  appropriate  one of the two 
routines  depending  on  whether  the  error term turned over. Properly implemented, 
it should  be possible to  reduce  the average per-run overhead of line drawing  to  less 
than  one  branch, with  only  two additions and two tests (the  number of runs must 
also be  counted  down), plus a subtraction half the time. On a 486, this amounts to 
something on  the  order of 150 nanoseconds of overhead per pixel,  exclusive  of the 
time required to actually  write the pixel  to  display  memory. 
That’s good. 

Run-Length  Slice  Details 
A couple of run-length slice implementation details  yet remain. First is the  matter of 
how error-term turnover is detected. This is done in much  the same way as it is  with 
standard Bresenham’s: The  error term is maintained as a negative valve and advances 
for each step; when the  error term reaches 0, it’s  time  to add an extra pixel  to the 
current  run. This means that we only  have to test for carry after advancing the  error 
term to determine  whether  or  not to add  an  extra pixel to each run. (Actually, the 
code in this chapter tests for  the error term being greater  than zero, but  the assem- 
bly code in the  next  chapter will use the very efficient  carry approach.) 
The second and  more difficult detail is balancing the  runs so that they’re centered 
around  the ideal line, and therefore draw the same pixels that  standard Bresenham’s 
would  draw. If  we just drew  full-length runs  from  the start, we’d end up with an 
unbalanced  line, as shown  in  Figure 36.5. Instead, we have to split the initial  pixel 
plus one full run as evenly as possible  between the first and last runs of the  line, and 
adjust the initial error term appropriately for  the initial half-run. 
The initial error term is advanced by one-half of the  normal per-step fractional ad- 
vance,  because  the  initial  step is only  one-half  pixel  along  the  minor  axis.  This  half-step 
gets us exactly  halfivay  between the initial  pixel and  the next pixel along the minor 
axis.  All the error-term adjustments are scaled up by  two times  precisely so that we 
can scale up this  halved error term for the initial run by  two times, and thereby make 
it an integer. 
The  other trick here is that if an odd  number of pixels are allocated between the first 
and last  partial runs, we’ll end  up with an odd pixel,  since we are  unable  to draw a 
half-pixel. This odd pixel is accounted  for by adding half a pixel to  the  error  term. 
That’s all there is to  run-length slice line drawing; the partial  first and last runs  are 
the only  tricky part. Listing 36.1 is a run-length slice implementation in C. This is not 
an optimized implementation, nor is it meant  to  be; this  listing is provided so that 
you can see  how the  run-length slice algorithm works. In  the  next chapter, I’ll  move 
on to an optimized version, but  for now, Listing 36.1 will make  it much easier  to 
grasp the principles of run-length slice  drawing, and to  understand  the optimized 
code I’ll present in the  next chapter. 
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Balancing run-length slice lines: a) unbalanced; b) balanced. 
Figure 36.5 

LISTING 36.1 136- 1 .C 
/ *  R u n - l e n g t h   s l i c e   l i n e   d r a w i n g   i m p l e m e n t a t i o n   f o r  mode 0x13.   the  VGA’s 
320x200   256 -co lo r  mode. N o t   o p t i m i z e d !   T e s t e d   w i t h   B o r l a n d  C++ i n  
the   sma l l   mode l .  * /  

li ncl   ude  <dos.   h> 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

v o i d   D r a w H o r i z o n t a l R u n ( c h a r   f a r   * * S c r e e n P t r ,   i n t   X A d v a n c e ,   i n t   R u n L e n g t h .  

v o i d   D r a w V e r t i c a l R u n ( c h a r  far **ScreenPtr .  i n t  XAdvance. i n t  RunLength. 

/*  Draws  a l i n e  b e t w e e n   t h e   s p e c i f i e d   e n d p o i n t s   i n   c o l o r   C o l o r .  * /  
v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t   Y S t a r t .   i n t  XEnd. i n t  YEnd. i n t   C o l o r )  
I. 

i n t  Temp. AdjUp.  AdjDown.  ErrorTerm.  XAdvance.  XDelta.  YDelta; 
i n t  W h o l e s t e p .   I n i t i a l P i x e l C o u n t .   F i n a l P i x e l C o u n t .  i. RunLength: 
c h a r   f a r   * S c r e e n P t r :  

i n t   C o l o r ) :  

i n t   C o l o r ) ;  
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/*  W e ' l l   a l w a y s   d r a w   t o p   t o   b o t t o m ,   t o   r e d u c e   t h e  number o f  cases we have t o  
handle,   and t o  make l i n e s   b e t w e e n   t h e  same e n d p o i n t s   d r a w   t h e  same p i x e l s  * /  
i f  ( Y S t a r t  > YEnd) { 

Temp - Y S t a r t :  
Y S t a r t  - YEnd; 
YEnd - Temp; 
Temp - X S t a r t ;  
X S t a r t  - XEnd; 
XEnd - Temp; 

I 
/ *  P o i n t   t o   t h e   b i t m a p   a d d r e s s   f i r s t   p i x e l   t o   d r a w  */  
S c r e e n P t r  - MK-FP(SCREEN_SEGMENT. Y S t a r t  * SCREEN-WIDTH + X S t a r t ) :  

/ *  F i g u r e   o u t   w h e t h e r   w e ' r e   g o i n g   l e f t   o r   r i g h t ,   a n d  how f a r   w e ' r e  

i f  ( ( X D e l t a  - XEnd - X S t a r t )  < 0 )  
{ 

g o i n g   h o r i z o n t a l l y  * /  

XAdvance - -1; 
XDel ta  - - X D e l t a :  

I 
e l s e  
I 

I 
/*  F i g u r e   o u t  how f a r   w e ' r e   g o i n g   v e r t i c a l l y  * /  
YDel ta  - YEnd - Y S t a r t ;  

XAdvance - 1; 

S p e c i a l - c a s e   h o r i z o n t a l ,   v e r t i c a l .   a n d   d i a g o n a l   l i n e s .   f o r   s p e e d  
and t o   a v o i d   n a s t y   b o u n d a r y   c o n d i t i o n s   a n d   d i v i s i o n   b y  0 * /  
( X D e l t a  - 0 )  

I* V e r t i c a l   l i n e  * I  
f o r   ( i - 0 ;   i < - Y D e l t a ;  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- SCREEN-WIDTH; 

I 
r e t u r n ;  

( Y D e l t a  - 0 )  

/*  H o r i z o n t a l   l i n e  * /  
f o r   ( i - 0 ;   i < - X D e l t a :  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- XAdvance; 

I 
r e t u r n ;  

( X D e l t a  - Y D e l t a )  

/ *  D i a g o n a l   l i n e  *I  
f o r   ( i - 0 :   i < - X D e l t a ;  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- XAdvance + SCREEN-WIDTH; 

I 
r e t u r n ;  
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/*  
i f  
{ 

3 

D e t e r m i n e   w h e t h e r   t h e   l i n e   i s  X o r  Y m a j o r ,   a n d   h a n d l e   a c c o r d i n g l y  * /  
( X D e l t a  >- Y D e l t a )  

/ *  X m a j o r   l i n e  * /  
/* Minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e  */  
WholeStep - XDel ta  / YDe l ta :  

/ *  E r r o r   t e r m   a d j u s t   e a c h   t i m e  Y s teps   by  1: used t o   t e l l  when one 
e x t r a   p i x e l   s h o u l d  be  drawn  as p a r t   o f  a r u n ,   t o   a c c o u n t   f o r  
f r a c t i o n a l   s t e p s   a l o n g   t h e  X a x i s   p e r   1 - p i x e l   s t e p s   a l o n g  Y * /  

AdjUp - ( X D e l t a  % YDe l ta )  * 2: 

/ *  E r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s   o v e r ,   u s e d   t o   f a c t o r  

AdjDown - YDe l ta  * 2: 

/*  I n i t i a l   e r r o r   t e r m :   r e f l e c t s  an i n i t i a l   s t e p  o f  0 .5  a l o n g   t h e  Y 

E r ro rTe rm - ( X D e l t a  % YDe l ta )  - ( Y D e l t a  * 2 ) ;  

/ *  The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  Y advances   on l y  0.5 

o u t   t h e  X s t e p  made a t   t h a t   t i m e  * I  

a x i s  * /  

f o r   t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n ,   p l u s   t h e  
i n i t i a l   p i x e l ,  b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s  * /  

I n i t i a l P i x e l C o u n t  - (Wholestep / 2 )  + 1: 
F i n a l P i x e l C o u n t  - I n i t i a l P i x e l C o u n t :  

/ *  I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l  
advance, we h a v e   o n e   p i x e l   t h a t   c o u l d   g o   t o   e i t h e r   t h e   i n i t i a l  
o r   l a s t   p a r t i a l   r u n ,   w h i c h   w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e  
l a s t   r u n  */  

i f  ( (Ad jUp  -- 0)  && ( (WholeStep & 0x01)  - 0 ) )  
{ 

3 
/*  I f  t h e r e ' r e  an odd  number o f   p i x e l s   p e r   r u n ,  we have 1 p i x e l   t h a t   c a n ' t  

I n i t i a l P i x e l C o u n t - - :  

be a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .  s o  w e ' l l  add 0 .5  
t o   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p  * /  
i f  ( (Who les tep  & 0x01)  !- 0 )  

E r ro rTe rm +- YDe l ta :  
t 

3 
I* Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s  * /  
DrawHor izonta lRun(&ScreenPtr .  XAdvance. I n i t i a l P i x e l C o u n t ,   C o l o r ) ;  
/ *  Draw all f u l l   r u n s  */  
f o r   ( i - 0 :   i < ( Y D e l t a - 1 ) ;  i++) 
t 

RunLength - Wholestep:  / *  r u n   i s   a t   l e a s t   t h i s   l o n g  */  
/*  Advance   the   e r ro r   t e rm  and   add  an e x t r a   p i x e l  i f  t h e   e r r o r  

i f  ( ( E r r o r T e r m  +- AdjUp) > 0 )  
t 

t e r m  so i n d i c a t e s  * /  

RunLength++; 
E r ro rTe rm -- AdjDown; / *  r e s e t   t h e   e r r o r   t e r m  */  

I 
/*  Draw t h i s   s c a n   l i n e ' s   r u n  */  
DrawHor izonta lRun(&ScreenPtr .  XAdvance.   RunLength.   Color ) :  

3 
/ *  Draw t h e   f i n a l   r u n   o f   p i x e l s  * /  
DrawHor izonta lRun(&ScreenPtr ,  X A d v a n c e ,   F i n a l P i x e l C o u n t .   C o l o r ) :  
r e t u r n :  
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e l s e  
{ 

/ *  Y m a j o r   l i n e  * /  

/* Minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e  * /  
Wholestep = YDel ta  / XDel ta :  

/ *  E r r o r   t e r m   a d j u s t   e a c h   t i m e  X s teps   by  1: used t o   t e l l  when 1 e x t r a  
p i x e l   s h o u l d   b e   d r a w n  as p a r t   o f  a r u n .   t o   a c c o u n t   f o r  
f r a c t i o n a l   s t e p s   a l o n g   t h e  Y a x i s   p e r   1 - p i x e l   s t e p s   a l o n g  X * /  

AdjUp = ( Y D e l t a  % X D e l t a )  * 2 ;  

/ *  E r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s   o v e r ,   u s e d   t o   f a c t o r  

AdjDown = XDel ta  * 2 :  

/ *  I n i t i a l   e r r o r   t e r m :   r e f l e c t s   i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  X a x i s  * /  
E r r o r T e r m  = ( Y D e l t a  % X D e l t a )  - ( X D e l t a  * 2 ) :  

/ *  The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  X advances   on ly   0 .5  

o u t   t h e  Y s t e p  made a t   t h a t   t i m e  * /  

f o r   t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n .   p l u s   t h e  
i n i t i a l   p i x e l ,  b e t w e e n   t h e   i n i t i a l   a n d   l a s t   r u n s  * /  

I n i t i a l P i x e l C o u n t  = (Wholes tep  / 2) + 1: 
F i n a l P i x e l C o u n t  = I n i t i a l P i x e l C o u n t :  

/ *  I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l   a d v a n c e .  we 
have 1 p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,  
w h i c h   w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n  */  

i f  ( ( A d j U p  == 0 )  && ( ( W h o l e s t e p  & 0x01)  -- 0 ) )  
c 

1 
/* I f  t h e r e   a r e  an  odd  number o f   p i x e l s   p e r   r u n ,  we have   one   p i xe l  

t h a t   c a n ' t  be a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l  
r u n ,  s o  w e ' l l  add  0.5 t o   t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will be 
h a n d l e d   b y   t h e   n o r m a l   f u l l   - r u n   l o o p  */  

I n i t i a l P i x e l C o u n t - - ;  

i f  ( ( W h o l e s t e p  & 0x01) != 0 )  
[ 

I 
/*  Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s  * /  
DrawVerticalRun(&ScreenPtr. X A d v a n c e .   I n i t i a l P i x e l C o u n t .   C o l o r ) :  

/ *  Draw a l l   f u l l   r u n s  */  
f o r   ( i = O ;   i < ( X D e l t a - 1 ) :  i++) 
( 

E r r o r T e r m  += XDel t a :  

RunLength = WholeStep: /* r u n  i s  a t   l e a s t   t h i s   l o n g  * /  
/ *  Advance   the   e r ro r   t e rm  and   add   an   ex t ra   p i xe l  i f  t h e   e r r o r  

i f  ( ( E r r o r T e r m  +- AdjUp) > 0 )  
1 

t e r m  s o  i n d i c a t e s  * /  

RunLength++; 
E r r o r T e r m  -= AdjDown: / *  r e s e t   t h e   e r r o r   t e r m  * /  

I 
/ *  Draw t h i s   s c a n   l i n e ' s   r u n  */  
DrawVer t i ca lRun(&ScreenPt r .  XAdvance,  RunLength.   Color) :  

1 
/*  Draw t h e   f i n a l   r u n   o f   p i x e l s  * /  
DrawVerticalRun(&ScreenPtr. X A d v a n c e .   F i n a l P i x e l C o u n t ,   C o l o r ) :  
r e t u r n :  

1 

The Good, the  Bad, and the  Run-Sliced 691 



1 
I* Draws a h o r i z o n t a l   r u n   o f   p i x e l s ,   t h e n   a d v a n c e s   t h e   b i t m a p   p o i n t e r   t o  

v o i d   D r a w H o r i z o n t a l R u n ( c h a r  far * * S c r e e n P t r .   i n t  XAdvance. 

{ 

t h e   f i r s t   p i x e l   o f   t h e   n e x t   r u n .  *I  

i n t  RunLength. i n t   C o l o r )  

i n t  i: 
c h a r   f a r   * W o r k i n g S c r e e n P t r  - *ScreenPt r ;  

f o r   ( i - 0 ;   i < R u n L e n g t h ;  i++) 
{ 

*Work ingScreenPtr  - C o l o r :  

1 
WorkingScreenPtr  +- XAdvance; 

I* Advance t o   t h e   n e x t   s c a n   l i n e  *I  
WorkingScreenPtr  +- SCREEN-WIDTH; 
*Sc reenPt r  - Work ingScreenPt r ;  

1 
/ *  Draws  a v e r t i c a l   r u n   o f   p i x e l s ,   t h e n   a d v a n c e s   t h e   b i t m a p   p o i n t e r   t o  

v o i d   D r a w V e r t i c a l R u n ( c h a r   f a r   * * S c r e e n P t r .   i n t  XAdvance. 

{ 

t h e   f i r s t   p i x e l   o f   t h e   n e x t   r u n .  *I  

i n t  RunLength. i n t   C o l o r )  

i n t  i: 
c h a r   f a r   * W o r k i n g S c r e e n P t r  - *ScreenPt r ;  

f o r  ( i - 0 ;  i<RunLength;  i++) 
( 

*Work ingScreenPtr  - C o l o r ;  
Work ingScreenPtr  +- SCREEN-WIDTH: 

1 
I* Advance t o   t h e   n e x t   c o l u m n  *I  
WorkingScreenPtr  +- XAdvance; 
*Sc reenPt r  - Work ingScreenPt r :  

1 

Notwithstanding  that it’s not optimized, Listing 36.1 is reasonably fast. If you run 
Listing 36.2 (a sample linedrawing program that you  can  use  to testdrive Listing 36.1), 
you  may be as surprised as I was at how  quickly the  screen fills with vectors, consider- 
ing  that Listing 36.1 is entirely  in C and has some redundant divides. Or perhaps you 
won’t be surprised-in  which  case I suggest you not miss the  next  chapter. 

LISTING 36.2 136-2.C 
I* Sample l i n e - d r a w i n g   p r o g r a m .  Uses t h e   o p t i m i z e d  
l i n e - d r a w i n g   f u n c t i o n s   c o d e d   i n   L L i s t i n g  L36.1.C. 
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

#i n c l  ude  <dos.  h> 

# d e f i n e  GRAPHICS-MODE 0x13 
# d e f i n e  TEXT-MODE 0x03 
# d e f i n e  BIOS-VIDEO-INT Ox10 
#de f  i ne X-MAX 320 / *  w o r k i n g   s c r e e n   w i d t h  *I  
# d e f i n e  Y-MAX 200 /*  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t  Y S t a r t .  i n t  XEnd. i n t  YEnd. i n t   C o l o r ) ;  
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I* S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s ,   o f   t h e   s p e c i f i e d  

void  VectorsUp(XCenter,   YCenter.   XLength.   YLength.   Color)  
i n t  XCenter.  YCenter: I* c e n t e r   o f   r e c t a n g l e   t o  fill *I  
i n t  XLength.  YLength: I* d i s t a n c e   f r o m   c e n t e r   t o  edge o f   r e c t a n g l e  *I  
i n t   C o l o r ;  
( 

* l e n g t h  and c o l o r ,   a r o u n d   t h e   s p e c i f i e d   r e c t a n g l e   c e n t e r .  *I  

I* c o l o r   t o  draw  1  ines i n  *I  

i n t  WorkingX.  WorkingY; 

I* l i n e s   f r o m   c e n t e r   t o   t o p  o f  r e c t a n g l e  *I 
WorkingX - XCenter - XLength: 
WorkingY - YCenter - YLength; 
f o r  ( ; WorkingX < ( XCenter + XLength 1: WorkingX++ 
t 

} 
I* l i n e s   f r o m   c e n t e r   t o   r i g h t   o f   r e c t a n g l e  *I  
WorkingX - XCenter + XLength - 1; 
WorkingY - YCenter - YLength; 
f o r  ( ; WorkingY < ( YCenter + YLength ) ;  WorkingY++ ) 

t 

1 
I* l i n e s   f r o m   c e n t e r   t o   b o t t o m   o f   r e c t a n g l e  * /  
WorkingX - XCenter + XLength - 1: 
WorkingY - YCenter + YLength - 1; 
f o r  ( ; WorkingX >- ( XCenter - XLength 1: WorkingX-- ) 

1. 

I 
I* l i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  *I  
WorkingX - XCenter - XLength; 
WorkingY - YCenter + YLength - 1; 
f o r  ( ; WorkingY >- ( YCenter - YLength ) ;  WorkingY-- ) 

r 
1 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

1 
I* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  *I  
i n t   m a i n 0  
( 

un ion  REGS regs ;  

I* S e t   g r a p h i c s  mode */ 
regs.x.ax - GRAPHICS-MODE; 
int86(BIOS-VIDEO-INT.  &regs.  &regs); 

I* Draw each o f   f o u r   r e c t a n g l e s   f u l l  o f  v e c t o r s  * I  
VectorsUp(X-MAX I 4 .  Y-MAX I 4 .  X-MAX I 4 .  Y-MAX I 4 .  1); 
VectorsUp(X-MAX * 3 1 4 .  Y-MAX / 4.  X-MAX 1 4 .  Y-MAX / 4.  2) ;  
VectorsUp(X-MAX I 4 .  Y-MAX * 3 I 4.  X-MAX I 4 .  Y-MAX I 4 ,  3 ) ;  
VectorsUp(X-MAX * 3 I 4 .  Y-MAX * 3 I 4 ,  X-MAX I 4 .  Y-MAX I 4 .  4 ) ;  

I* Wait f o r  a  key t o  be  pressed * I  
ge tch (  ) : 

I* R e t u r n   b a c k   t o   t e x t  mode * I  
regs.x.ax - TEXT-MODE; 
int86(BIDS-YIDED-INT.  &regs,  &regs): 

} 
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