
chapter 45

dog hair and dirty rectangles

,q

Ies on Animation
We brought our p&s with us when we moved to Seattle. At about the same time, our
Golden Retriever, S his third birthday. Sam is relatively intelligent, in
the sense that he is cf ter than a banana slug, although if he were in the
same room with Jeff Du ’s dog Mr. Byte, there’s a reasonable chance that he
would mistake Mr. B$e for something edible (a category that includes rocks, socks,
and a surprising nuhber of things too disgusting to mention), and Jeff would have

a of things to write about.
rtant now. What is important is that-and I am not making this

anaged to find the one pair of socks Sam hadn’t chewed holes
re important is that after we moved and Sam turned three, he

calmed down amazinkly. We had been waiting for this magic transformation since
Sam turned one, the age at which most puppies turn into normal dogs who lie around
a lot, waking up to eat their Science Diet (motto, “The dog food that costs more than
the average neurosurgeon makes in a year”) before licking themselves in embarrass-
ing places and going back to sleep. When Sam turned one and remained hopelessly
out of control we said, “Goldens take two years to calm down,” as if we had a clue.
When he turned two and remained undeniably Sam we said, “Any day now.” By the
time he turned three, we were reduced to figuring that it was only about seven more
years until he expired, at which point we might be able to take all the fur he had
shed in his lifetime and weave ourselves some clothes without holes in them, or quite
possibly a house.

84 1

But miracle of miracles, we moved, and Sam instantly turned into the dog we thought
we’d gotten when we forked over $500--calm, sweet, and obedient. Weeks went by,
and Sam was, if anything, better than ever. Clearly, the change was permanent.
And then we took Sam to the vet for his annual check-up and found that he had an ear
infection. Thanks to the wonders of modern animal medicine, a $5 bottle of liquid re-
stored his health in just two days. And with his health, we got, as a bonus, the old Sam.
You see, Sam hadn’t changed. He was just tired from being sick. Now he once again
joyously knocks down any stranger who makes the mistake of glancing in his direction,
and will, quite possibly, be booked any day now on suspicion of homicide by licking.

Plus cu Change
Okay, you give up. What exactly does this have to do with graphics? I’m glad you
asked. The lesson to be learned from Sam, The Dog With A Brain The Size Of A
Walnut, is that while things may look like they’ve changed, in fact they often haven’t.
Take VGA performance. If you buy a 486 with a SuperVGA, you’ll get performance
that knocks your socks off, especially if you run Windows. Things are liable to be so
fast that you’ll figure the SuperVGA has to deserve some of the credit. Well, maybe it
does if it’s a local-bus VGA. But maybe it doesn’t, even if it is local bus-and it cer-
tainly doesn’t if it’s an ISA bus VGA, because no ISA bus VGA can run faster than
about 300 nanoseconds per access, and VGAs capable of that speed have been com-
mon for at least a couple of years now.
Your 486 VGA system is fast almost entirely because it has a 486 in it. (486 systems
with graphics accelerators such as the AT1 Ultra or Diamond Stealth are another
story altogether.) Underneath it all, the VGA is still painfully slow-and if you have
an old VGA or IBM’s original PS/2 motherboard VGA, it’s incredibly slow. The fast-
est ISA-bus VGA around is two to twenty times slower than system memory, and the
slowest VGA around is as much as 100 times slower. In the old days, the rule was,
“Display memory is slow, and should be avoided.” Nowadays, the rule is, “Display
memory is not quite so slow, but should still be avoided.”
So, as I say, sometimes things don’t change. Of course, sometimes they do change.
For example, in just 49 dog years, I fully expect to own at least one pair of underwear
without a single hole in it. Which brings us, deus ex machina and the creek don’t
rise, to yet another animation method: dirty-rectangle animation.

VGA Access Times
Actually, before we get to dirty rectangles, I’d like to take you through a quick re-
fresher on VGA memory and 1 / 0 access times. I want to do this partly because the
slow access times of the VGA make dirty-rectangle animation particularly attractive,
and partly as a public service, because even I was shocked by the results of some 1/0
performance tests I recently ran.

842 Chapter 45

Table 45.1 shows the results of the aforementioned 1 / 0 performance tests, as run on
two 486/33 SuperVGA systems under the Phar Lap 3861DOS-Extender. (The systems
and VGAs are unnamed because this is a not-very-scientific spot test, and I don’t want
to unfairly malign, say, a VGA whose only sin is being plugged into a lousy
motherboard, or vice versa.) Under Phar Lap, 32” protected-mode apps run with
full 1 / 0 privileges, meaning that the OUT instructions I measured had the best
official cycle times possible on the 486: 10 cycles. OUT officially takes 16 cycles in
real mode on a 486, and officially takes a mind-boggling 30 cycles in protected mode
if running without full 1 /0 privileges (as is normally the case for protected-mode
applications). Basically, 1 / 0 is just plain slow on a 486.
As slow as 30 or even 10 cycles is for an OUT, one could only wish that VGA 1 /0 were
actually that fast. The fastest measured OUT to a VGA in Table 45.1 is 26 cycles, and
the slowest is 126“this for an operation that’s supposed to take 10 cycles. To put this
in context, MUL takes only 13 to 42 cycles, and a normal MOV to or from system
memory takes exactly one cycle on the 486. In short, OUTS to VGAs are as much as
100 times slower than normal memory accesses, and are generally two to four times
slower than even display memory accesses, although there are exceptions.
Of course, VGA display memory has its own performance problems. The fastest ISA
bus VGA can, at best, support sustained write times of about 10 cycles per word-sized

Dog Hair and Dirty Rectangles 843

write on a 486/33; 15 or 20 cycles is more common, even for relatively fast SuperVGAs;
the worst case I’ve seen is 65 cycles per byte. However, intermittent writes, mixed
with a lot of register and cache-only code, can effectively execute in one cycle, thanks
to the caching design of many VGAs and the 486’s 4-deep write buffer, which stores
pending writes while the CPU continues executing instructions. Display memory
reads tend to take longer, because coprocessing isn’t possible-one microsecond is a
reasonable rule of thumb for VGA reads, although there’s considerable variation. So
VGA memory tends not to be as bad as VGA I/O, but lord knows it isn’t good.

OUTs, in general, are lousy on the 486 (and to think they only took three cycles on
the 286!). OUTs to VGAs are particularly lousy. Display memory performance is
pretty pool; especially for reads. The conclusions are obvious, I would hope. Struc-
ture your graphics code, and, in general, all 486 code, to avoid OUTs.

For graphics, this especially means using write mode 3 rather than the bit-mask reg-
ister. When you must use the bit mask, arrange drawing so that you can set the bit
mask once, then do a lot of drawing with that mask. For example, draw a whole edge
at once, then the middle, then the other edge, rather than setting the bit mask sev-
eral times on each scan line to draw the edge and middle bytes together. Don’t read
from display memory if you don’t have to. Write each pixel once and only once.
It is indeed a strange concept: The key to fast graphics is staying away from the
graphics adapter as much as possible.

Dirty-Rectangle Animation
The relative slowness of VGA hardware is part of the appeal of the technique that I
call “dirty-rectangle” animation, in which a complete copy of the contents of display
memory is maintained in offscreen system (nondisplay) memory. All drawing is done
to this system buffer. As offscreen drawing is done, a list is maintained of the bound-
ing rectangles for the drawn-to areas; these are the dirty rectangles, “dirty” in the sense
that that have been altered and no longer match the contents of the screen. After all
drawing for a frame is completed, all the dirty rectangles for that frame are copied to
the screen in a burst, and then the cycle of off-screen drawing begins again.
Why, exactly, would we want to go through all this complication, rather than simply
drawing to the screen in the first place? The reason is visual quality. If we were to do
all our drawing directly to the screen, there’d be a lot of flicker as objects were erased
and then redrawn. Similarly, overlapped drawing done with the painter’s algorithm
(in which farther objects are drawn first, so that nearer objects obscure them) would
flicker as farther objects were visible for short periods. With dirty-rectangle anima-
tion, only the finished pixels for any given frame ever appear on the screen;
intermediate results are never visible. Figure 45.1 illustrates the visual problems as-
sociated with drawing directly to the screen; Figure 45.2 shows how dirty-rectangle
animation solves these problems.

844 Chapter 45

Dog Hair and Dirty Rectangles 845

So Why Not Use Page Flipping?
Well, then, if we want good visual quality, why not use page flipping? For one thing,
not all adapters and all modes support page flipping. The CGA and MCGA don’t,
and neither do the VGA’s 640x480 16color or 320x200 256-color modes, or many
SuperVGA modes. In contrast, all adapters support dirty-rectangle animation. Another
advantage of dirty-rectangle animation is that it’s generally faster. While it may seem
strange that it would be faster to draw off-screen and then copy the result to the
screen, that is often the case, because dirty-rectangle animation usually reduces the
number of times the VGA’s hardware needs to be touched, especially in 256-color modes.
This reduction comes about because when dirty rectangles are erased, it’s done in
system memory, not in display memory, and since most objects move a good deal less
than their full width (that is, the new and old positions overlap), display memory is
written to fewer times than with page flipping. (In 16-color modes, this is not neces-
sarily the case, because of the parallelism obtained from the VGA’s planar hardware.)
Also, read/modify/write operations are performed in fast system memory rather
than slow display memory, so display memory rarely needs to be read. This is particu-
larly good because display memory is generally even slower for reads than for writes.
Also, page flipping wastes a good deal of time waiting for the page to flip at the end
of the frame. Dirty-rectangle animation never needs to wait for anything because
partially drawn images are never present in display memory. Actually, in one sense,
partially drawn images are sometimes present because it’s possible for a rectangle to
be partially drawn when the scanning raster beam reaches that part of the screen.
This causes the rectangle to appear partially drawn for one frame, producing a phe-
nomenon I call “shearing.” Fortunately, shearing tends not to be particularly
distracting, especially for fairly small images, but it can be a problem when copying
large areas. This is one area in which dirty-rectangle animation falls short of page
flipping, because page flipping has perfect display quality, never showing anything
other than a completely finished frame. Similarly, dirty-rectangle copying may take
two or more frame times to finish, so even if shearing doesn’t happen, it’s still possible to
have the images in the various dirty rectangles show up non-simultaneously. In my
experience, this latter phenomenon is not a serious problem, but do be aware of it.

Dirty Rectangles in Action
Listing 45.1 demonstrates dirty-rectangle animation. This is a very simple implemen-
tation, in several respects. For one thing, it’s written entirely in C, and animation
fairly cries out for assembly language. For another thing, it uses far pointers, which C
often handles with less than optimal efficiency, especially because I haven’t used
library functions to copy and fill memory. (I did this so the code would work in any
memory model.) Also, Listing 45.1 doesn’t attempt to coalesce rectangles so as to
perform a minimum number of display-memory accesses; instead, it copies each
dirty rectangle to the screen, even if it overlaps with another rectangle, so some

846 Chapter 45

pixels are copied multiple times. Listing 45.1 runs pretty well, considering all of its
failings; on my 486/33, 10 11x1 1 images animate at a very respectable clip.

LISTING 45.1 145- 1 .C
/ * S a m p l e s i m p l e d i r t y - r e c t a n g l e a n i m a t i o n p r o g r a m . D o e s n ' t a t t e m p t t o c o a l e s c e

r e c t a n g l e s t o m i n i m i z e d i s p l a y memory accesses . No t even vague ly op t im ized !
T e s t e d w i t h B o r l a n d C++ i n t h e s m a l l m o d e l . * /

i n c l u d e < s t d l i b. h>
i n c l u d e < c o n i o . h >
#i ncl ude <a1 1 oc. h>
i n c l u d e <memory. h >
Pi ncl ude <dos . h>

d e f i n e SCREEN-WIDTH 320
d e f i n e SCREEN-HEIGHT 200
d e f i n e SCREENKSEGMENT OxAOOO

/ * D e s c r i b e s a r e c t a n g l e * /
t y p e d e f s t r u c t {

i n t Top;
i n t L e f t ;
i n t R i g h t ;
i n t Bottom;

I Rectang le ;

/* D e s c r i b e s a n a n i m a t e d o b j e c t * /
t y p e d e f s t r u c t {

i n t X : / * u p p e r l e f t c o r n e r i n v i r t u a l b i t m a p */
i n t Y ;
i n t X D i r e c t i o n : / * d i r e c t i o n a n d d i s t a n c e o f movement * /
i n t Y D i r e c t i o n ;

1 E n t i t y ;

/ * S t o r a g e u s e d f o r d i r t y r e c t a n g l e s * /
d e f i n e MAX-DIRTY-RECTANGLES 100
i n t NumDi r t y R e c t a n g l e s ;
R e c t a n g l e D i r t y R e c t a n g 1 es[MAX-DIRTY-RECTANGLES] :

/* I f s e t t o 1. i g n o r e d i r t y r e c t a n g l e l i s t and copy the who le sc reen. * /
i n t DrawWholeScreen - 0:

/ * P i x e l s f o r i m a g e w e ' l l a n i m a t e * /
#def
#def
char

15
15
15

9
9.

ne IMAGE-WIDTH 11
ne IMAGE-HEIGHT 11
I m a g e P i x e l s [l - [
15.15. 9 . 9 . 9 . 9 . 9 ,15,15.15,
15. 9 . 9 . 9 . 9 . 9 . 9 . 9 .15.15.

9. 9.14.14.14.14.14. 9. 9.15.
9.14.14.14.14.14.14.14, 9. 9.
9.14.14.14.14.14.14.14, 9. 9.

9. 9.14.14.14.14.14,14.14, 9. 9.
9. 9.14.14.14.14.14.14.14, 9 , 9 .
9. 9.14.14.14.14.14.14.14, 9. 9.

15. 9. 9.14.14.14.14.14. 9. 9.15.
15.15, 9 . 9 . 9 , 9 , 9 . 9 . 9 .15.15.
15.15.15. 9. 9. 9. 9. 9.15.15.15.

} :
/ * a n i m a t e d e n t i t i e s * /

Dog Hair and Dirty Rectangles 847

d e f i n e NUM-ENTITIES 10
Ent i ty Ent i t iesCNUM-ENTITIES] ;

/ * p o i n t e r t o s y s t e m b u f f e r i n t o w h i c h w e ' l l d r a w */
c h a r far * S y s t e m B u f f e r P t r ;

/ * p o i n t e r t o s c r e e n * I
char far *Sc reenPt r ;

v o i d E r a s e E n t i t i e s (v o i d 1 ;
v o i d CopyDi r tyRectang l esToScreen(vo id) ;
v o i d D r a w E n t i t i e s (v o i d) :

v o i d m a i n 0
I

i n t i. XTemp. YTemp;
u n s i g n e d i n t T e m p c o u n t :
c h a r far *TempPtr;
u n i o n REGS r e g s ;
/ * A l l o c a t e memory f o r t h e s y s t e m b u f f e r i n t o w h i c h w e ' l l d r a w */
i f (! (S y s t e m B u f f e r P t r - f a r m a l l o c ((u n s i g n e d int)SCREEN-WIDTH*

SCREEN-HEIGHT))) I
p r i n t f (" C o u 1 d n ' t g e t m e m o r y \ n ") ;
e x i t (1) ;

1
/* C l e a r t h e s y s t e m b u f f e r * /
TempPtr - S y s t e m B u f f e r P t r ;
f o r (Tempcount - ((unsigned)SCREEN-WIDTH*SCREENLHEIGHT); Tempcount- - ; 1 I

1
/* P o i n t t o t h e s c r e e n */
Sc reenPt r - MK-FP(SCREEN-SEGMENT. 0) ;

/ * S e t u p t h e e n t i t i e s w e ' l l a n i m a t e , a t r a n d o m l o c a t i o n s */
randomize(;
f o r (i - 0; i < NUM-ENTITIES: i++) I

*TempPtr++ - 0:

E n t i t i e s C i 1 . X - random(SCREENKW1DTH - IMAGE-WIDTH);
E n t i t i e s [i] . Y - random(SCREENKHE1GHT - IMAGE-HEIGHT);
E n t i t i e s [i l . X D i r e c t i o n - 1;
E n t i t i e s [i] . Y D i r e c t i o n - -1;

3
/ * S e t 3 2 0 x 2 0 0 2 5 6 - c o l o r g r a p h i c s mode */
regs.x .ax - 0x0013;
i n t 8 6 (0 x 1 0 . & r e g s . & r e g s) ;

I* Loop and draw u n t i l a key i s p r e s s e d */
do

/ * D r a w t h e e n t i t i e s t o t h e s y s t e m b u f f e r a t t h e i r c u r r e n t l o c a t i o n s ,

D r a w E n t i t i e s O ;
u p d a t i n g t h e d i r t y r e c t a n g l e l i s t * /

/* Draw t h e d i r t y r e c t a n g l e s , or t h e w h o l e s y s t e m b u f f e r i f

CopyDir tyRectanglesToScreenO;

/ * R e s e t t h e d i r t y r e c t a n g l e l i s t t o e m p t y * /
NumDi r t y R e c t a n g l e s - 0;

/ * E r a s e t h e e n t i t i e s i n t h e s y s t e m b u f f e r a t t h e i r o l d l o c a t i o n s ,

E r a s e E n t i t i e s O ;

a p p r o p r i a t e * /

u p d a t i n g t h e d i r t y r e c t a n g l e l i s t * /

848 Chapter 45

I* Move t h e e n t i t i e s , b o u n c i n g o f f t h e e d g e s o f t h e s c r e e n *I
f o r (i - 0; i < NUM-ENTITIES; i++) I

XTemp - E n t i t i e s L i 1 . X + E n t i t i e s [i l . X D i r e c t i o n :
YTemp - E n t i t i e s C i 1 . Y + E n t i t i e s [i l . Y D i r e c t i o n ;
i f ((XTemp < 0) 1 1 ((XTemp + IMAGE-WIDTH) > SCREEN-WIDTH)) I

E n t i t i e s [i] . X O i r e c t i o n - -Entities[il.XDirection;
XTemp - E n t i t i e s C i 1 . X + E n t i t i e s [i l . X D i r e c t i o n ;

I
i f ((YTemp < 0) 1 1 ((YTemp + IMAGE-HEIGHT) > SCREEN-HEIGHT)) {

E n t i t i e s [i] . Y D i r e c t i o n - -Entities[il.YDirection;
YTemp - E n t i t i e s C i 1 . Y + E n t i t i e s [i l . Y D i r e c t i o n ;

I
E n t i t i e s C i 1 . X - XTemp;
E n t i t i e s C i 1 . Y - YTemp;

3

} w h i l e (! k b h i t O) :
g e t c h 0 ; I* c l e a r t h e k e y p r e s s */
/* Back t o t e x t mode */
regs .x .ax - 0x0003;
i n t 8 6 (0 x 1 0 . & r e g s . & r e g s) ;

I
/* Draw e n t i t i e s a t c u r r e n t l o c a t i o n s , u p d a t i n g d i r t y r e c t a n g l e l i s t . * I
v o i d D r a w E n t i t i e s O

i n t i. j , k;
c h a r f a r * R o w P t r B u f f e r ;
c h a r f a r * T e m p P t r B u f f e r ;
cha r f a r *TempPt r Image ;
f o r (i - 0; i < NUM-ENTITIES; i++) I

I* Remember t h e d i r t y r e c t a n g l e i n f o f o r t h i s e n t i t y * /
i f (NumDi r t yRec tang les >- MAX-DIRTY-RECTANGLES) I

I* Too many d i r t y r e c t a n g l e s ; j u s t r e d r a w t h e w h o l e s c r e e n */
DrawWhol eScreen - 1;

/* Remember t h i s d i r t y r e c t a n g l e * /
DirtyRectanglesCNumDirtyRectangles1.Left - E n t i t i e s C i 1 . X ;
Dir tyRectangles[NumDir tyRectanglesl .Top - E n t i t i e s C i 1 . Y :
Dir tyRectangles[NumDir tyRectangles3.Right -
DirtyRectangles[NumDirtyRectangles++l.Bottom -

3 e l s e I

E n t i t i e s C i 1 . X + IMAGE-WIDTH;

E n t i t i e s E i 1 . Y + IMAGE-HEIGHT:
1
I* P o i n t t o t h e d e s t i n a t i o n i n t h e s y s t e m b u f f e r * /
RowPt rBu f fe r - S y s t e m B u f f e r P t r + (E n t i t i e s C i 1 . Y * SCREEN-WIDTH) +

E n t i t i e s C i 1 . X ;
/ * P o i n t t o t h e i m a g e t o d r a w *I
TempPtrImage - ImageP ixe l s ;
/ * Copy t h e i m a g e t o t h e s y s t e m b u f f e r *I
f o r (j - 0; j < IMAGE-HEIGHT; j++) I

/* Copy a row * I
f o r (k - 0. TempPt rBu f fe r - RowPt rBu f fe r ; k < IMAGE-WIDTH; k++) I

*TempPtrBuf fer++ - *TempPtrImage++;
I
I* P o i n t t o t h e n e x t s y s t e m b u f f e r r o w *I
RowPt rBu f fe r +- SCREEN-WIDTH;

3
l

/* Copy t h e d i r t y
t o t h e s c r e e n . *I

r e c t a n g l e s , o r t h e w h o l e s y s t e m b u f f e r i f a p p r o p r i a t e ,

Dog Hair and Dirty Rectangles 849

vo id CopyDi r tyRectang1 esToScreen(1
i

i n t i. j. k , Rec tWid th . Rec tHe igh t ;
u n s i g n e d i n t T e m p c o u n t :
u n s i g n e d i n t O f f s e t :
char fa r *TempPt rScreen;
c h a r f a r * T e m p P t r B u f f e r ;

i f (DrawWhol eScreen) I
I* J u s t c o p y t h e w h o l e b u f f e r t o t h e s c r e e n * I
DrawWhol eScreen - 0;
TempPtrScreen - S c r e e n P t r :
T e m p P t r B u f f e r - S y s t e m B u f f e r P t r ;
f o r (Tempcount - ((unsigned)SCREEN_WIDTH*SCREEN-HEIGHT): Tempcount - - ;)

>
I e l s e i

/* Copy o n l y t h e d i r t y r e c t a n g l e s * /
f o r (i = 0; i < NumDi r tyRectang les : i++) I

*TempPtrScreen++ - *TempPtrBuffer++;

/ * O f f s e t i n b o t h s y s t e m b u f f e r a n d s c r e e n o f i m a g e */
O f f s e t - (u n s i g n e d i n t) (D i r t y R e c t a n g l e s [i l . T o p * SCREENKWIDTH) +

DirtyRectangles[il.Left;
I* Dimensions o f d i r t y r e c t a n g l e * I
RectWid th - DirtyRectangles[il.Right - DirtyRectangles[il.Left:
R e c t H e i g h t - DirtyRectangles[il.Bottom - D i r t y R e c t a n g l e s [i l . T o p :
I* Copy a d i r t y r e c t a n g l e * /
f o r (j - 0; j < R e c t H e i g h t ; j++) {

I* P o i n t t o t h e s t a r t o f r o w o n s c r e e n * I
TempPtrScreen - S c r e e n P t r + O f f s e t :

/ * P o i n t t o t h e s t a r t o f r o w i n s y s t e m b u f f e r * I
T e m p P t r B u f f e r - S y s t e m B u f f e r P t r + O f f s e t ;

/ * Copy a row * /
f o r (k - 0; k < RectWid th ; k++) i

I
/* P o i n t t o t h e n e x t r o w * /
O f f s e t +- SCREEN-WIDTH;

*TempPtrScreen++ - *TempPtrBuffer++;

1
I

1
I
/* E r a s e t h e e n t i t i e s i n t h e s y s t e m b u f f e r a t t h e i r c u r r e n t l o c a t i o n s ,

v o i d E r a s e E n t i t i e s O
i

u p d a t i n g t h e d i r t y r e c t a n g l e l i s t . * /

i n t i. j , k :
c h a r f a r * R o w P t r ;
cha r f a r *TempPt r :

f o r (i - 0; i < NUM-ENTITIES; i++) {
/ * Remember t h e d i r t y r e c t a n g l e i n f o f o r t h i s e n t i t y * I
i f (NumDi r tyRectang les >- MAX-DIRTYLRECTANGLES) I

/* Too many d i r t y r e c t a n g l e s ; j u s t r e d r a w t h e w h o l e s c r e e n * /
DrawWhol eScreen - 1 :

/* Remember t h i s d i r t y r e c t a n g l e * /
DirtyRectangles[NumDirtyRectanglesl.Left - E n t i t i e s C i 1 . X :
D i r t yRec tang les [NumDi r t yRec tang les] .Top - E n t i t i e s C i 1 . Y ;

I e l s e {

850 Chapter 45

Di r t yRec tang les [NumDi r t yRec tang les l .R igh t -
D i r t yRec tang les [NumDi r t yRec tang1 es++l .Bo t tom - E n t i t i e s [i] . X + IMAGELWIDTH:

E n t i t i e s C i 1 . Y + IMAGE-HEIGHT;
1
/* P o i n t t o t h e d e s t i n a t i o n i n t h e s y s t e m b u f f e r * /
RowPtr - S y s t e m B u f f e r P t r + (Entities[i].Y*SCREEN-WIDTH) + E n t i t i e s C i 1 . X :

/ * C l e a r t h e e n t i t y ‘ s r e c t a n g l e * I
f o r (j - 0; j < IMAGE-HEIGHT; j++) {

/ * C l e a r a row */
f o r (k - 0, TempPtr - RowPtr: k < IMAGELWIDTH: k++) {

1
I* P o i n t t o t h e n e x t r o w * I
RowPtr +- SCREENCWIDTH:

*TempPtr++ - 0:

1
1

1

One point I’d like to make is that although the system-memory buffer in Listing 45.1
has exactly the same dimensions as the screen bitmap, that’s not a requirement, and
there are some good reasons not to make the two the same size. For example, if the
system buffer is bigger than the area displayed on the screen, it’s possible to pan the
visible area around the system buffer. Or, alternatively, the system buffer can be just
the size of a desired window, representing a window into a larger, virtual buffer. We
could then draw the desired portion of the virtual bitmap into the system-memory
buffer, then copy the buffer to the screen, and the effect will be of having panned
the window to the new location.

Another argument in favor of a small viewing window is that it restricts the amount p of display memory actually drawn to. Restricting the display memory used for
animation reduces the total number of display-memory accesses, which in turn
boosts overall performance; it also improves the performance and appearance of
panning, in which the whole window has to be redrawn or copied.

If you keep a close watch, you’ll notice that many high-performance animation games
similarly restrict their full-featured animation area to a relatively small region. Of-
ten, it’s hard to tell that this is the case, because the animation region is surrounded
by flashy digitized graphics and by items such as scoreboards and status screens, but
look closely and see if the animation region in your favorite game isn’t smaller than
you thought.

Hi-Res VGA Page Flipping
On a standard VGA, hi-res mode is mode 12H, which offers 640x480 resolution with
16 colors. That’s a nice mode, with plenty of pixels, and square ones at that, but it
lacks one thing-page flipping. The problem is that the mode 12H bitmap is 150 K
in size, and the standard VGA has only 256 K total, too little memory for two of those

Dog Hair and Dirty Rectangles 851

monster mode 12H pages. With only one page, flipping is obviously out of the ques-
tion, and without page flipping, top-flight, hi-res animation can’t be implemented.
The standard fallback is to use the EGA’s hi-res mode, mode 10H (640x350, 16 col-
ors) for page flipping, but this mode is less than ideal for a couple of reasons: It
offers sharply lower vertical resolution, and it’s lousy for handling scaled-up CGA
graphics, because the vertical resolution is a fractional multiple-1.75 times, to be
exact-of that of the CGA. CGA resolution may not seem important these days, but
many images were originally created for the CGA, as were many graphics packages
and games, and it’s at least convenient to be able to handle CGA graphics easily.
Then, too, 640x350 is also a poor multiple of the 200 scan lines of the popular 320x200
256-color mode 13H of the VGA.
There are a couple of interesting, if imperfect, solutions to the problem of hi-res
page flipping. One is to use the split screen to enable page flipping only in the top
two-thirds of the screen; see the previous chapter for details, and for details on the
mechanics of page flipping generally. This doesn’t address the CGA problem, but it
does yield square pixels and a full 640x480 screen resolution, although not all those
pixels are flippable and thus animatable.
A second solution is to program the screen to a 640x400 mode. Such a mode uses
almost every byte of display memory (64,000 bytes, actually; you could add another
few lines, if you really wanted to), and thereby provides the highest resolution pos-
sible on the VGA for a fully page-flipped display. It maps well to CGA and mode 13H
resolutions, being either identical or double in both dimensions. As an added ben-
efit, it offers an easy-on-the-eyes 70-Hz frame rate, as opposed to the 60 Hz that is the
best that mode 12H can offer, due to the design of standard VGA monitors. Best of
all, perhaps, is that 640x400 16-color mode is easy to set up.
The key to 640x400 mode is understanding that on a VGA, mode 10H (640x350) is,
at heart, a 400-scan-line mode. What I mean by that is that in mode 10H, the Vertical
Total register, which controls the total number of scan lines, both displayed and
nondisplayed, is set to 44’7, exactly the same as in the VGA’s text modes, which do in
fact support 400 scan lines. A properly sized and centered display is achieved in
mode 10H by setting the polarity of the sync pulses to tell the monitor to scan verti-
cally at a faster rate (to make fewer lines fill the screen), by starting the overscan
after 350 lines, and by setting the vertical sync and blanking pulses appropriately for
the faster vertical scanning rate. Changing those settings is all that’s required to turn
mode 10H into a 640x400 mode, and that’s easy to do, as illustrated by Listing 45.2,
which provides mode set code for 640x400 mode.

LISTING 45.2 L45-2.C
/* Mode s e t r o u t i n e for VGA 6 4 0 x 4 0 0 1 6 - c o l o r mode. T e s t e d w i t h

B o r l a n d C++ i n C c o m p i l a t i o n mode. * /

#i n c l ude <dos . h>

852 Chapter 45

v o i d S e t 6 4 0 x 4 0 0 0
{

u n i o n REGS r e g s e t :

I* F i r s t , s e t t o s t a n d a r d 6 4 0 x 3 5 0 mode (mode 10h) * /
r e g s e t . x . a x - 0x0010:
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) ;

/ * M o d i f y t h e s y n c p o l a r i t y b i t s (b i t s 7 & 6) o f t h e
M i s c e l l a n e o u s O u t p u t r e g i s t e r (r e a d a b l e a t Ox3CC. w r i t a b l e a t
Ox3C2) t o s e l e c t t h e 4 0 0 - s c a n - l i n e v e r t i c a l s c a n n i n g r a t e */

outp(Ox3C2, ((inp(Ox3CC) & Ox3F) I 0 x 4 0)) :

/ * Now, t w e a k t h e r e g i s t e r s n e e d e d t o c o n v e r t t h e v e r t i c a l

outpw(Ox3D4. Ox9C10): I* a d j u s t t h e V e r t i c a l Sync S t a r t r e g i s t e r

ou tpw(Ox3D4. Ox8El l) : I* a d j u s t t h e V e r t i c a l Sync End r e g i s t e r

outpw(Ox304. Ox8FlZ); I* a d j u s t t h e V e r t i c a l D i s p l a y End

outpw(Ox304, 0x9615): I* a d j u s t t h e V e r t i c a l B l a n k S t a r t

outpw(Ox3D4. 0x6916): / * a d j u s t t h e V e r t i c a l B l a n k End r e g i s t e r

t i m i n g s f r o m 3 5 0 t o 4 0 0 s c a n l i n e s *I

f o r 4 0 0 s c a n l i n e s * /

f o r 400 s c a n l i n e s */

r e g i s t e r f o r 4 0 0 s c a n l i n e s *I

r e g i s t e r f o r 4 0 0 s c a n l i n e s * /

f o r 400 scan l i n e s *I
1

In 640x400, 16-color mode, page 0 runs from offset 0 to offset 31,999 (7CFFH), and
page 1 runs from offset 32,000 (7DOOH) to 63,999 (OFSFFH). Page 1 is selected by
programming the Start Address registers (CRTC registers OCH, the high 8 bits, and
ODH, the low 8 bits) to 7DOOH. Actually, because the low byte of the start address is 0
for both pages, you can page flip simply by writing 0 or 7DH to the Start Address
High register (CRTC register OCH); this has the benefit of eliminating a nasty class
of potential synchronization bugs that can arise when both registers must be set.
Listing 45.3 illustrates simple 640x400 page flipping.

LISTING 45.3 L45-3.C
/ * Sample program t o e x e r c i s e VGA 6 4 0 x 4 0 0 1 6 - c o l o r mode page f l i p p i n g , by

draw ing a h o r i z o n t a l l i n e a t t h e t o p o f p a g e 0 and ano the r a t b o t t o m o f p a g e 1,
t h e n f l i p p i n g b e t w e e n t h e m o n c e e v e r y 30 f rames . Tes ted w i th Bo r land C++,
i n C c o m p i l a t i o n mode. *I

#i n c l ude <dos . h>
Pi n c l u d e < c o n i 0. h>

d e f i n e SCREEN-SEGMENT OxAOOO
d e f i n e SCREEN-HEIGHT 400
d e f i n e SCREEN-WIDTH-IN-BYTES 80
d e f i n e INPUT-STATUS-1 Ox3DA /* c o l o r - m o d e a d d r e s s o f I n p u t S t a t u s 1

/* The page s t a r t a d d r e s s e s m u s t b e e v e n m u l t i p l e s o f 2 5 6 . b e c a u s e p a g e

d e f i n e PAGE-0-START 0
d e f i n e PAGEL-START (400*SCREEN_WIDTHKIN_BYTES)

r e g i s t e r * /

f l i p p i n g i s p e r f o r m e d b y c h a n g i n g o n l y t h e u p p e r s t a r t a d d r e s s b y t e *I

Dog Hair and Dirty Rectangles 853

v o i d m a i n (v o i d) ;
v o i d W a i t 3 0 F r a m e s (v o i d) ;
e x t e r n v o i d S e t 6 4 0 x 4 0 0 (v o i d) ;

v o i d m a i n ()
{

i n t i;
u n s i g n e d i n t f a r * S c r e e n P t r :
u n i o n REGS r e g s e t ;

S e t 6 4 0 x 4 0 0 0 ; / * s e t t o 640x400 16 -co lo r mode */

/* P o i n t t o f i r s t l i n e o f page 0 and draw a h o r i z o n t a l l i n e a c r o s s s c r e e n */
FP-SEG(ScreenPtr) - SCREEN-SEGMENT;
FP-OFF(ScreenPtr) - PAGE-0-START;
f o r (i - 0 ; i<(SCREEN-WIDTH-IN-BYTESlZ) ; i++) *ScreenPtr++ - OxFFFF;

/ * P o i n t t o l a s t l i n e o f page 1 and draw a h o r i z o n t a l l i n e a c r o s s s c r e e n */
FP-OFF(ScreenPtr) -
f o r (i -0; i<(SCREEN_WIDTH_IN_BYTES/2); i++) *ScreenPtr++ - OxFFFF;

/ * Now f l i p pages once eve ry 30 f rames un t i l a key i s p r e s s e d */
do {

PAGE-1-START + ((SCREEN_HEIGHT-l)*SCREEN-WIDTH-IN-BYTES);

Wai t30FramesO;

I* F1 i p t o page 1 */
outpw(Ox3D4. OxOC I ((PAGELLSTART >> 8) << 8)) :

Wai t30FramesO:

/ * F l i p t o page 0 * I
outpw(Ox3D4. OxOC I ((PAGE-OKSTART >> 8) << 8)) ;

1 w h i l e (k b h i t 0 - 0) ;

g e t c h 0 ; / * c l e a r t h e k e y p r e s s * /

/* R e t u r n t o t e x t mode and e x i t * I
r e g s e t . x . a x - 0x0003; / * AL - 3 s e l e c t s 8 0 x 2 5 t e x t mode */
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) ;

I

void Wait30Frames.O
t

i n t i:

f o r (i - 0 ; i < 3 0 ; i++) {

w h i l e ((inp(1NPUT-STATUS-1) & 0x08) !- 0) ;
/* W a i t u n t i l w e ’ r e n o t i n v e r t i c a l s y n c , s o we c a n c a t c h l e a d i n g e d g e */

/* W a i t u n t i l we a r e i n v e r t i c a l s y n c * I
w h i l e ((inp(INPUT-STATUS-1) & 0x08) - 0) :

I
I

After I described 640x400 mode in a magazine article, Bill Lindley, of Mesa, Arizona,
wrote me to suggest that when programming the VGA to a nonstandard mode of this
sort, it’s a good idea to tell the BIOS about the new screen size, for a couple of
reasons. For one thing, pop-up utilities often use the BIOS variables; Bill’s memory-
resident screen printer, EGAD Screen Print, determines the number of scan lines to

854 Chapter 45

print by multiplying the BIOS “number of text rows” variable times the “character
height” variable. For another, the BIOS itself may do a poorjob of displaying text if not
given proper information; the active text area may not match the screen dimensions, or
an inappropriate graphics font may be used. (Of course, the BIOS isn’t going to be
able to display text anyway in highly nonstandard modes such as Mode X, but it will
do fine in slightly nonstandard modes such as 640x400 16-color mode.) In the case
of the 640x400 16-color model described a little earlier, Bill suggests that the code in
Listing 45.4 be called immediately after putting the VGA into that mode to tell the
BIOS that we’re working with 25 rows of 16-pixel-high text. I think this is an excel-
lent suggestion; it can’t hurt, and may save you from getting aggravating tech support
calls down the road.

LISTING 45.4 L45-4.C
I* F u n c t i o n t o t e l l t h e B I O S t o s e t up p r o p e r l y s i z e d c h a r a c t e r s f o r 25 rows o f

16 p i x e l h i g h t e x t i n 640x400 g raph ics mode. C a l l i m m e d i a t e l y a f t e r mode s e t .
Based on a c o n t r i b u t i o n b y Bill L i n d l e y . * I

#i n c l ude <dos . h>

v o i d S e t 6 4 0 x 4 0 0 0
I

u n i o n REGS regs :

regs.h.ah - 0x11: I* c h a r a c t e r g e n e r a t o r f u n c t i o n *I
regs .h .a l - 0x24; I* use ROM 8 x 1 6 c h a r a c t e r s e t f o r g r a p h i c s *I
r e g s . h . b l - 2: I* 25 rows *I
i n t 8 6 (0 x 1 0 . & r e g s . & r e g s) : I* i n v o k e t h e B I O S v i d e o i n t e r r u p t

1
t o s e t up t h e t e x t * I

The 640x400 mode I’ve described here isn’t exactly earthshaking, but it can come in
handy for page flipping and CGA emulation, and I’m sure that some of you will find
it useful at one time or another.

Another Interesting Twist on Page Flipping
I’ve spent a fair amount of time exploring various ways to do animation. I thought I
had pegged all the possible ways to do animation: exclusive-OlZing; simply drawing
and erasing objects; drawing objects with a blank fringe to erase them at their old
locations as they’re drawn; page flipping; and, finally, drawing to local memory and
copying the dirty (modified) rectangles to the screen, as I’ve discussed in this chapter.
To my surprise, someone threw me an interesting and useful twist on animation not
long ago, which turned out to be a cross between page flipping and dirty-rectangle
animation. That someone was Serge Mathieu of Concepteva Inc., in Rosemere, Que-
bec, who informed me that he designs everything “from a game point de vue.”

In normal page flipping, you display one page while you update the other page. Then
you display the new page while you update the other. This works fine, but the need to

Dog Hair and Dirty Rectangles 855

keep two pages current can make for a lot of bookkeeping and possibly extra draw-
ing, especially in applications where only some of the objects are redrawn each time.
Serge didn’t care to do all that bookkeeping in his animation applications, so he
came up with the following approach, which I’ve reworded, amplified, and slightly
modified in the summary here:
1.
2.
3.

4.

5 .

6.

Set the start address to display page 0.
Draw to page 1.
Set the start address to display page 1 (the newly drawn page), then wait for the leading
edge of vertical sync, at which point the page has flipped and it’s safe to modify page 0.
Copy, via the latches, from page 1 to page 0 the areas that changed from the previous
screen to the current one.
Set the start address to display page 0, which is now identical to page 1, then wait for
the leading edge of vertical sync, at which point the page has flipped and it’s safe to
modify page 1.
Go to step 2.

The great benefit of Serge’s approach is that the only page that is ever actually drawn
to (as opposed to being block-copied to) is page 1. Only one page needs to be main-
tained, and the complications of maintaining two separate pages vanish entirely.
The performance of Serge’s approach may be better or worse than standard page
flipping, depending on whether a lot of extra work is required to maintain two pages
or not. My guess is that Serge’s approach will usually be slower, owing to the consid-
erable amount of display-memory copying involved, and also to the double page-flip
per frame. There’s no doubt, however, that Serge’s approach is simpler, and the
resultant display quality is every bit as good as standard page flipping. Given page
flipping’s fair degree of complication, this approach is a valuable tool, especially for
lessexperienced animation programmers.
An interesting variation on Serge’s approach doesn’t page flip nor wait for vertical sync:
1. Set the start address to display page 0.
2. Draw to page 1.
3. Copy, via the latches, the areas that changed from the last screen to the current one

4. Go to step 2.
This approach totally eliminates page flipping, which can consume a great deal of
time. The downside is that images may shear for one frame if they’re only partially
copied when the raster beam reaches them. This approach is basically a standard
dirty-rectangle approach, except that the drawing buffer is stored in display memory,
rather than in system memory. Whether this technique is faster than drawing to
system memory depends on whether the benefit you get from the VGA’s hardware,

from page 1 to page 0.

856 Chapter 45

such as the Bit Mask, the &Us, and especially the latches (for copymg the dirty
rectangles) is sufficient to outweigh the extra display-memory accesses involved in
drawing and copying, since display memory is notoriously slow.
Finally, I’d like to point out that in any scheme that involves changing the display-
memory start address, a clever trick can potentially reduce the time spent waiting for
pages to flip. Normally, it’s necessary to wait for display enable to be active, then set
the two start address registers, and finally wait for vertical sync to be active, so that
you know the new start address has taken effect. The start-address registers must
never be set around the time vertical sync is active (the new start address is accepted
at either the start or end of vertical sync on the EGAs and VGAs I’m familiar with),
because it would then be possible to load a half-changed start address (one register
loaded, the other not yet loaded), and the screen would jump for a frame. Avoiding
this condition is the motivation for waiting for display enable, because display en-
able is active only when vertical sync is not active and will not become active for a
long while.
Suppose, however, that you arrange your page start addresses so that they both have
a low-byte value of 0 (page 0 starts at OOOOH, and page 1 starts at 8000H, for ex-
ample). Page flipping can then be done simply by setting the new high byte of the
start address, then waiting for the leading edge of vertical sync. This eliminates the
need to wait for display enable (the two bytes of the start address can never be mis-
matched) ; page flipping will often involve less waiting, because display enable becomes
inactive long before vertical sync becomes active. Using the above approach reclaims
all the time between the end of display enable and the start of vertical sync for doing
useful work. (The steps I’ve given for Serge’s animation approach assume that the
single-byte approach is in use; that’s why display enable is never waited for.)
In the next chapter, I’ll return to the original dirty-rectangle algorithm presented in
this chapter, and goose it a little with some assembly, so that we can see what dirty-
rectangle animation is really made of. (Probably not dog hair)

Dog Hair and Dirty Rectangles 857

	previous:
	home:
	next:

