
chapter 53

raw speed and more

uth About Speed in 3-D Animation
et’s call him Bert-went to Hawaii with three other
n from high school. This was an unchaperoned trip,
responsibly as you’d expect four teenagers to be-

a story about a rental car that, to this day, Bert can’t
ood time, though, save for one thing: no girls.
by the pool, but the boys couldn’t get past the hi-

they retired to their hotel room to plot a better approach. This
g slightly tipsy teenagers with raging hormones

ned IQ of four eggplants, it took them no time at all to come
: streaking. The girls had mentioned their room number, so

ed the button for the girls’ floor, shucked their
clothes as fast as they could, and sprinted to the girls’ door. They knocked on the
door and ran on down the hall. As the girls opened their door, Bert and his crew
raced past, toward the elevator, laughing hysterically.
Bert was by far the fastest of them all. He whisked between the elevator doors just as
they started to close; by the time his friends got there, it was too late, and the doors
slid shut in their faces. As the elevator began to move, Bert could hear the frantic
pounding of six fists thudding on the closed doors. As Bert stood among the clothes
littering the elevator floor, the thought of his friends stuck in the hall, naked as
jaybirds, was just too much, and he doubled over with helpless laughter, tears stream-

991

ing down his face. The universe had blessed him with one of those exceedingly rare
moments of perfect timing and execution.
The universe wasn’t done with Bert quite yet, though. He was still contorted with
laughter-and still quite thoroughly undressed-when the elevator doors opened
again. On the lobby.
And with that, we come to this chapter’s topics: raw speed and hidden surfaces.

Raw Speed, Part 1 : Assembly Language
I would like to state, here and for the record, that I am not an assembly language
fanatic. Frankly, I prefer programming in C; assembly language is hard work, and I
can get a whole lot more done with fewer hassles in C. However, I am a performance
fanatic, performance being defined as having programs be as nimble as possible in
those areas where the user wants fast response. And, in the course of pursuing per-
formance, there are times when a little assembly language goes a long way.
We’re now four chapters into development of the X-Sharp 3-D animation package.
In realtime animation, performance is sine qua non (Latin for “Make it fast or find
another line of work”), so some judiciously applied assembly language is in order. In
the previous chapter, we got up to a serviceable performance level by switching to
fixed-point math, then implementing the fixed-point multiplication and division
functions in assembly in order to take advantage of the 386’s 32-bit capabilities. There’s
another area of the program that fairly cries out for assembly language: matrix math.
The function to multiply a matrix by a vector (XformVec()) and the function to
concatenate matrices (ConcatXforms()) both loop heavily around calls to FixedMul();
a lot of calling and looping can be eliminated by converting these functions to pure
assembly language.
Listing 53.1 is the module FIXED.” from this chapter’s iteration of X-Sharp, with
XformVec() and ConcatXforms() implemented in assembly language. The code is
heavily optimized, to the extent of completely unrolling the loops via macros so that
looping is eliminated altogether. FIXED.ASM is highly effective; the time taken for
matrix math is now down to the point where it’s a fairly minor component of execu-
tion time, representing less than ten percent of the total. It’s time to turn our
optimization sights elsewhere.

LISTING 53.1 FIXED.ASM
; 3 8 6 - s p e c i f i c f i x e d p o i n t r o u t i n e s .

ROUNDING-ON
: T e s t e d w i t h TASM

equ 1 :1 f o r r o u n d i n g , 0 f o r no rounding
:no r o u n d i n g i s f a s t e r . r o u n d i n g i s
; more a c c u r a t e

ALIGNMENT equ 2
.model smal 1
. 3 8 6
.code

992 Chapter 53

; M u l t i p l i e s t w o f i x e d - p o i n t v a l u e s t o g e t h e r .
; C n e a r - c a l l a b l e a s :
; F i x e d p o i n t F i x e d M u l (F i x e d p 0 i n t M1. F i x e d p o i n t M2);
: F i x e d p o i n t F i x e d D i v (F i x e d p 0 i n t D i v i d e n d . F i x e d p o i n t D i v i s o r) :
FMparms s t r u c

M 1 dd ?
M2 dd ?
FMparms ends

dw 2 dup(?) : re tu rn add ress d pushed BP

a1 i g n ALIGNMENT
p u b l i c -FixedMul

- FixedMul p roc near
push bp
mov bp.sp
mov eax,[bp+Ml]
imu l dword p t r Cbp+M21

add eax.8000h
adc edx.O

shr eax.16

r e t

i f ROUNDING-ON

e n d i f ;ROUNDING-ON

POP bp

- FixedMul endp

; m u l t i p l y

: round by adding 2".(-17)
; w h o l e p a r t o f r e s u l t i s i n DX

; p u t t h e f r a c t i o n a l p a r t i n A X

: D i v i d e s one f i x e d - p o i n t v a l u e b y a n o t h e r .
: C n e a r - c a l l a b l e a s :
; F i x e d p o i n t F i x e d D i v (F i x e d p 0 i n t D i v i d e n d . F i x e d p o i n t D i v i s o r) :
FOparms s t r u c

dw 2 dup(?) : re tu rn add ress & pushed BP
D iv idend dd ?
D i v i s o r dd ?
FDparms ends

a1 i g n ALIGNMENT
p u b l i c - F i xedDi v

-Fi xedDi v p roc near
push bp
mov bp.sp

i f ROUNDING-ON
sub
mov
and
j n s
i nc
neg

FDP1: sub

r o l

mov
sub
mov
and
jns
dec
neg

CX .cx ;assume p o s i t i v e r e s u l t
eax, [bp+Dividend]
eax.eax
F D P l

; p o s i t i v e d i v i d e n d ?
;yes
;mark i t ' s a n e g a t i v e d i v i d e n d

eax :make t h e d i v i d e n d p o s i t i v e
edx , edx ;make i t a 6 4 - b i t d i v i d e n d , t h e n s h i f t

cx

: l e f t 16 b i t s s o t h a t r e s u l t will be
; i n EAX

: h i g h w o r d o f EAX
e a x . 1 6 ; p u t f r a c t i o n a l p a r t o f d i v i d e n d i n

d x , a x : p u t w h o l e p a r t o f d i v i d e n d i n DX
ax , ax :c lear low word o f EAX
ebx,dword p t r [b p + O i v i s o r]
ebx, ebx
FDP2 ;yes
cx ;mark i t ' s a n e g a t i v e d i v i s o r
ebx :make d i v i s o r p o s i t i v e

: p o s i t i v e d i v i s o r ?

Raw Speed and More 993

FDP2: d i v ebx
shr ebx .1
adc ebx.O
dec ebx
cmp ebx, edx
adc eax.O

and cx,cx
j z FOP3
neg eax

FDP3:
e l s e : !ROUNDING-ON

mov edx.Cbp+Dividendl
sub eax.eax
shrd eax.edx.16
sar edx, 16
i d i v dword p t r [b p + D i v i s o r]

s h l d edx.eax.16
endi f

POP bp
r e t

- FixedDi v endp

: d i v i d e
; d i v i s o r / 2 , m i n u s 1 i f t h e d i v i s o r i s
: even

; s e t C a r r y i f remainder i s a t l e a s t
; h a l f as l a r g e as t h e d i v i s o r . t h e n
; use t h a t t o r o u n d up if necessary
; s h o u l d t h e r e s u l t b e made n e g a t i v e ?
:no
:yes. negate i t

; p o s i t i o n s o t h a t r e s u l t ends up
; i n EAX

;ROUNDING-ON
; w h o l e p a r t o f r e s u l t i n D X ;
; f r a c t i o n a l p a r t i s a l r e a d y i n A X

~~ ~~ ~ ~~ ~ ~~ ~ ~~

; R e t u r n s t h e s i n e a n d c o s i n e o f an angle.
; C n e a r - c a l l a b l e a s :
; v o i d CosSin(TAng1e Angle, Fixedpoint *Cos. Fixedpoint *) :

~ ~~

a1 i g n ALIGNMENT
CosTable 1 abel dword

i n c l u d e c o s t a b l e . i n c

SCparms s t r u c

Angle dw ?
cos dw ?
S i n dw ?
SCparms ends

dw 2 dup(?)

a1 i g n ALIGNMENT
pub1 i c JosSi n

-CosSin p roc nea r
push bp
mov bp.sp

mov bx.Cbpl .Angle
and bx.bx
j n s CheckInRange

add bx.360*10
j s MakePos
jmp short CheckInRange

a1 i g n ALIGNMENT

sub bx.360*10

cmp bx, 360*10
j g MakeInRange

MakePos:

MakeInRange:

CheckInRange:

; re tu rn add ress & pushed BP
:ang le t o c a l c u l a t e s i n e & c o s i n e f o r
: p o i n t e r t o c o s d e s t i n a t i o n
; p o i n t e r t o s i n d e s t i n a t i o n

;p rese rve s tack f rame
: s e t up l o c a l s t a c k f r a m e

:make sure angle 's between 0 and 2*pi

; l e s s t h a n 0, so make i t p o s i t i v e

:make s u r e a n g l e i s no more than 2*p i

994 Chapter 53

cmp bx. 180*10
j a Eot tomHal f
cmp bx, 90*10
j a Q u a d r a n t l

sh l bx .2
mov eax.CosTable[bxl
neg bx
mov edx.CosTable[bx+90*10*41
jmp shor t CSDone

a l i g n ALIGNMENT

neg bx
add bx, 180*10
sh l bx.2
mov eax.CosTable[bx]
neg eax
neg bx
mov edx.CosTableCbx+90*10*4]
jmp s h o r t CSDone

a1 i g n ALIGNMENT

neg bx
add bx.360*10
cmp bx, 90*10
j a Quadrant2

sh l bx .2
mov eax.CosTable[bx]
neg bx
mov edx.CosTable[90*10*4+bx]
neg edx
jmp shor t CSDone

a1 i g n ALIGNMENT

neg bx
add bx.180*10
sh l bx.2
mov eax.CosTable[bxl
neg eax
neg bx
mov edx,CosTable[90*10*4+bxl
neg edx

mov b x , [b p l .Cos
mov Cbxl .eax
mov bx, [bp l .S in
mov [bx] , edx

Quadran t l :

Eot tomHal f :

Quadrant2:

CSDone:

POP bP
r e t

- CosSin endp

: f i g u r e o u t w h i c h q u a d r a n t
:quadrant 2 o r 3
:quadrant 0 o r 1

:quadrant 0

: l o o k up s i n e
: s i n (A n g l e) - cos (90 -Ang le)
: look up cos ine

: conve r t t o ang le be tween 0 and 90

: l o o k up cos ine
: n e g a t i v e i n t h i s q u a d r a n t
: s i n (A n g l e) - cos (90 -Ang le)
: l ook up cos ine

:quadrant 2 o r 3

: conve r t t o ang le be tween 0 and 180
:quadrant 2 o r 3

:quadrant 3

: l o o k up cos ine
; s in (Ang le) - cos(90-Angle)
: l o o k up s i n e
: n e g a t i v e i n t h i s q u a d r a n t

: conve r t t o ang le be tween 0 and 90

: look up cos ine
: n e g a t i v e i n t h i s q u a d r a n t
: s i n (A n g l e) - cos (90 -Ang le)
: l o o k up s i n e
:nega t i ve i n t h i s q u a d r a n t

: r e s t o r e s t a c k f r a m e

: M a t r i x m u l t i p l i e s X f o r m by SourceVec. and s tores the resul t i n
: O e s t V e c . M u l t i p l i e s a 4 x 4 m a t r i x t i m e s a 4 x 1 m a t r i x : t h e r e s u l t
: i s a 4x1 matr ix . Cheats by assuming the W coord i s 1 and t h e
: b o t t o m r o w o f t h e m a t r i x i s 0 0 0 1. a n d d o e s n ' t b o t h e r t o s e t

Raw Speed and More 995

: t h e W c o o r d i n a t e o f t h e d e s t i n a t i o n .
: C n e a r - c a l l a b l e a s :
: void XformVec(Xform WorkingXform, Fixedpoint *SourceVec,

F ixedpoint *DestVec) :

: This assembly code i s e q u i v a l e n t t o t h i s C code:
; i n t i:

: f o r (i - 0 : i < 3 : i+)
DestVecCi] - FixedMul(WorkingXform[il[Ol, SourceVecCOI) +

FixedMul(WorkingXform[~l[ll, SourceVecCl]) +
FixedMul(WorkingXformCilC21, SourceVecC21) +
Work ingXform[i l [3] : / * no need t o m u l t i p l y by W - 1 * /

XVparms s t r u c

WorkingXform dw ? : p o i n t e r t o t r a n s f o r m m a t r i x
SourceVec dw ’? : p o i n t e r t o s o u r c e v e c t o r
DestVec dw ? ; p o i n t e r t o d e s t i n a t i o n v e c t o r
XVparms ends

dw 2 dup (?) : re tu rn add ress a pushed BP

a1 i g n ALIGNMENT
pub1 i c -XformVec

- XformVec proc near
push bp
mov bp.sp
push s i
push d i

mov s i . [bp l .Work ingXform
mov bx.[bpl.SourceVec
mov di.Cbp1.DestVec

s o f f - 0
d o f f - 0

REPT 3
mov e a x . [s i + s o f f l
imul dword p t r [b x l

add eax.8000h
adc edx.0

e n d i f :ROUNDING-ON
shrd eax.edx.16
mov ecx, eax

mov eax . [s i+so f f+41
imul dword p t r [bx+41

add eax.8000h
adc edx.0

e n d i f :ROUNDING-ON
shrd eax.edx.16
add ecx.eax

mov eax . [s i+so f f+81
imul dword p t r Cbx+81

add eax.8000h
adc edx.O

i f ROUNDING-ON

i f ROUNDING-ON

i f ROUNDING-ON

:p reserve s tack f rame
:se t up loca l s tack f rame
: p r e s e r v e r e g i s t e r v a r i a b l e s

: S I p o i n t s t o x f o r m m a t r i x
:BX p o i n t s t o s o u r c e v e c t o r
: D I p o i n t s t o d e s t v e c t o r

:do once each f o r d e s t X , Y . and Z
:column 0 e n t r y on t h i s row
: x fo rm en t r y t imes sou rce X e n t r y

: round by adding 2A(-17)
: w h o l e p a r t o f r e s u l t i s i n OX

: s h i f t t h e r e s u l t b a c k t o 1 6 . 1 6 f o r m
: s e t r u n n i n g t o t a l

;column 1 e n t r y on t h i s row
: x f o r m e n t r y t i m e s s o u r c e Y e n t r y

: round by adding 2^(-17)
: w h o l e p a r t o f r e s u l t i s i n DX

: s h i f t t h e r e s u l t b a c k t o 16.16 form
: r u n n i n g t o t a l f o r t h i s row

:column 2 entry on t h i s row
: x f o r m e n t r y t i m e s s o u r c e Z e n t r y

: round by adding 2^(-17)
: w h o l e p a r t o f r e s u l t i s i n OX

996 Chapter 53

e n d i f ;ROUNDING-ON
shrd eax.edx.16
add ecx, eax

add ecx , [s i+so f f+ lZ]
mov [d i + d o f f] , e c x

s o f f - s o f f + l 6
do f f -do f f+4

ENDM

: s h i f t t h e r e s u l t b a c k t o 1 6 . 1 6 f o r m
: r u n n i n g t o t a l f o r t h i s row

:add i n t r a n s l a t i o n
: s a v e t h e r e s u l t i n t h e d e s t v e c t o r

pop d i : r e s t o r e r e g i s t e r v a r i ab1 es
pop s i

r e t
-XformVec endp

: M a t r i x m u l t i p l i e s S o u r c e X f o r m l by SourceXformZ and s t o r e s t h e
: r e s u l t i n D e s t X f o r m . M u l t i p l i e s a 4 x 4 m a t r i x t i m e s a 4x4 ma t r i x ;
: t h e r e s u l t i s a 4x4 matr ix . Cheats by assuming the bot tom row of
: each ma t r i x i s 0 0 0 1. and d o e s n ' t b o t h e r t o s e t t h e b o t t o m row
: o f t h e d e s t i n a t i o n .
: C n e a r - c a l l a b l e a s :

POP bP : r e s t o r e s t a c k f r a m e

. """"""Y""p""y.n-.

void ConcatXforms(Xform SourceXforml. Xform SourceXformZ.
Xform OestXform)

: This assembly code i s e q u i v a l e n t t o t h i s C code:
: i n t i, j :

: f o r (i - 0 : i < 3 : i++) {
f o r (j - 0 : j < 3 ; j++)

O e s t X f o r m [i l C j l -
FixedMul(SourceXforml~il[Ol, SourceXformZ[O1Cjl) +
FixedMul(SourceXforml~il[ll, SourceXfo rmZ[l]C j l) +
F ixedMu l (SourceXfo rm1Ci l~21 , SourceXformE[ZICj l) :

DestXformCilC31 -
F i x e d M u l (S o u r c e X f o r m l ~ i l ~ O 1 , SourceXformZCOIC3]) +
FixedMul(SourceXform1Ci l~l1, SourceXform2[11[31) +
FixedMul(SourceXforml~il~Z1, SourceXform2[21C31) +
SourceXfo rm l [i l [31 :

: I

CXparms s t r u c

SourceXforml dw ?
SourceXformZ dw ?
DestXform dw ?
CXparms ends

dw 2 dup(?)

a1 i g n A L I G N M E N T
publ ic _ConcatXforms

-ConcatXforms proc near
push bp
mov bp.sp
push s i
oush d i

mov bx.Cbpl.SourceXform2
mov s i .Cbpl .SourceXform1
mov d i . [bp l .Des tX fo rm

: re tu rn add ress & pushed BP
: p o i n t e r t o f i r s t s o u r c e x f o r m m a t r i x
: p o i n t e r t o second source x form matr ix
: p o i n t e r t o d e s t i n a t i o n x f o r m m a t r i x

; p rese rve s tack f rame
: s e t up l o c a l s t a c k f r a m e
: p r e s e r v e r e g i s t e r v a r i a b l e s

;BX p o i n t s t o x f o r m 2 m a t r i x
:SI p o i n t s t o x f o r m l m a t r i x
:DI p o i n t s t o d e s t x f o r m m a t r i x

Raw Speed and More 997

r o f f - 0

c o f f - 0
REPT 3

REPT 3

mov e a x . C s i + r o f f l
imul dword p t r C b x + c o f f l

add eax, 8000h

e n d i f ;ROUNDING-ON
adc edx.O

shrd eax.edx.16
mov ecx, eax

mov e a x . [s i + r o f f + 4 1
imul dword p t r [b x + c o f f + l 6 1

add eax.8000h
adc edx.O

e n d i f ;ROUNDING-ON
shrd eax.edx.16
add ecx, eax

mov eax , [s i+ ro f f+81
imul dword p t r [b x + c o f f + 3 2]

add eax.8000h
adc edx.O

e n d i f :ROUNDING-ON
shrd eax.edx.16
add ecx, eax

mov [d i + c o f f + r o f f l . e c x

ENDM

i f ROUNDING-ON

i f ROUNDING-ON

i f ROUNDING-ON

c o f f - c o f f + 4

mov e a x . [s i + r o f f l
imul dword p t r [b x + c o f f l

add eax.8000h
adc edx.O

e n d i f ;ROUNDING-ON
shrd eax.edx.16
mov ecx, eax

i f ROUNDING-ON

mov eax . [s i+ ro f f+41
imul dword p t r [b x + c o f f + l 6 1

add eax.8000h
adc edx.O

e n d i f ;ROUNDING-ON
shrd eax.edx.16
add ecx.eax

i f ROUNDING-ON

mov e a x . [s i + r o f f + 8]
imul dword p t r [b x + c o f f + 3 2 1

;row o f f s e t
:once f o r each row
;column o f f s e t
;once f o r e a c h o f t h e f i r s t 3 c o l u m n s ,
; assuming 0 as t h e b o t t o m e n t r y (n o
; t r a n s l a t i o n)
;column 0 e n t r y on t h i s row
; t imes row 0 e n t r y i n column

; round by adding 2^(-17)
; w h o l e p a r t o f r e s u l t i s i n DX

; s h i f t t h e r e s u l t b a c k t o 16.16 form
; s e t r u n n i n g t o t a l

;column 1 e n t r y on t h i s row
; t imes row 1 e n t r y i n c o l

; round by adding 2"(-17)
; w h o l e p a r t o f r e s u l t i s i n DX

; s h i f t t h e r e s u l t b a c k t o 1 6 . 1 6 f o r m
; r u n n i n g t o t a l

;column 2 e n t r y on t h i s row
; t imes row 2 ent ry i n c o l

; round by adding 2"(-17)
; w h o l e p a r t o f r e s u l t i s i n DX

s h i f t t h e r e s u l t b a c k t o 16.16 form
r u n n i n g t o t a l

save t h e r e s u l t i n d e s t m a t r i x
p o i n t t o n e x t col i n xform2 & d e s t

now do the f ou r th co lumn, assuming
; 1 as t h e b o t t o m e n t r y , c a u s i n g
; t r a n s l a t i o n t o be performed
;column 0 e n t r y on t h i s row
; t imes row 0 e n t r y i n column

: round by adding 2^(-17)
; w h o l e p a r t o f r e s u l t i s i n DX

: s h i f t t h e r e s u l t b a c k t o 1 6 . 1 6 f o r m
; s e t r u n n i n g t o t a l

;column 1 e n t r y on t h i s row
;times row 1 e n t r y i n c o l

; round by adding 2"(-17)
: w h o l e p a r t o f r e s u l t i s i n DX

; s h i f t t h e r e s u l t b a c k t o 1 6 . 1 6 f o r m
; r u n n i n g t o t a l

;column 2 entry on t h i s row
;t imes row 2 e n t r y i n c o l

998 Chapter 53

i f ROUNDING-ON
add eax.8000h
adc edx.O

e n d i f ;ROUNDING-ON
shrd eax.edx.16
add ecx.eax

; round by adding 2 ^ (- 1 7)
: w h o l e p a r t o f r e s u l t i s i n DX

: s h i f t t h e r e s u l t b a c k t o 1 6 . 1 6 f o r m
; r u n n i n g t o t a l

add ecx . [s i+ ro f f+ l21 :add i n t r a n s l a t i o n

mov [d i + c o f f + r o f f] . e c x ;save t h e r e s u l t i n d e s t m a t r i x
c o f f - c o f f + 4 : p o i n t t o n e x t c o l i n xform‘2 & d e s t

r o f f - r o f f + l 6
ENOM

pop d i
pop s i

r e t

end

POP bP

XoncatXforms endp

: p o i n t t o n e x t c o l i n x f o r m 2 & d e s t

; r e s t o r e r e g i s t e r v a r i a b l e s

: r e s t o r e s t a c k f r a m e

Raw Speed, Part II: Look it Up
It’s a funny thing about Turbo Profiler: Time spent in the Borland C++ 80x87 emulator
doesn’t show up directly anywhere that I can see in the timing results. The only way
to detect it is by way of the line that reports what percent of total time is represented
by all the areas that were profiled; if you’re profiling all areas, whatever’s not explic-
itly accounted for seems to be the floating-point emulator time. This quirk fooled
me for a while, leading me to think sine and cosine weren’t major drags on perfor-
mance, because the sin() and cos() functions spend most of their time in the emulator,
and that time doesn’t show up in Turbo Profiler’s statistics on those functions. Once
I figured out what was going on, it turned out that not only were sin() and cos()
major drags, they were taking up over half the total execution time by themselves.
The solution is a lookup table. Listing 53.1 contains a function called CosSin() that
calculates both the sine and cosine of an angle, via a lookup table. The function
accepts angles in tenths of degrees; I decided to use tenths of degrees rather than
radians because that way it’s always possible to look up the sine and cosine of the
exact angle requested, rather than approximating, as would be required with radi-
ans. Tenths of degrees should be fine enough control for most purposes; if not, it’s
easy to alter CosSin() for finer gradations yet. GENCOS.C, the program used to gen-
erate the lookup table (COSTABLE.INC), included in Listing 53.1, can be found in
the XSHARp22 subdirectory on the listings diskette. GENC0S.C can generate a co-
sine table with any integral number of steps per degree.
FIXED.ASM (Listing 53.1) speeds X-Sharp up quite a bit, and it changes the perfor-
mance balance a great deal. When we started out with 3-D animation, calculation
time was the dragon we faced; more than 90 percent of the total time was spent
doing matrix and projection math. Additional optimizations in the area of math

Raw Speed and More 999

could still be made (using 32-bit multiplies in the backface-removal code, for example),
but fixed-point math, the sine and cosine lookup, and selective assembly optimiza-
tions have done a pretty good job already. The bulk of the time taken by X-Sharp is
now spent drawing polygons, drawing rectangles (to erase objects), and waiting for
the page to flip. In other words, we’ve slain the dragon of 3-D math, or at least wounded
it grievously; now we’re back to the dragon of polygon filling. We’ll address faster
polygon filling soon, but for the moment, we have more than enough horsepower to
have some fun with. First, though, we need one more feature: hidden surfaces.

Hidden Surfaces
So far, we’ve made a number of simplifymg assumptions in order to get the anima-
tion to look good; for example, all objects must currently be convex polyhedrons.
What’s more, right now, objects can never pass behind or in front of each other.
What that means is that it’s time to have a look at hidden surfaces.
There are a passel of ways to do hidden surfaces. Way off at one end (the slow end)
of the spectrum is Z-buffering, whereby each pixel of each polygon is checked as it’s
drawn to see whether it’s the frontmost version of the pixel at those coordinates. At
the other end is the technique of simply drawing the objects in back-to-front order,
so that nearer objects are drawn on top of farther objects. The latter approach, depth
sorting, is the one we’ll take today. (Actually, true depth sorting involves detecting
and resolving possible ambiguities when objects overlap in 2; in this chapter, we’ll
simply sort the objects on Z and leave it at that.)
This limited version of depth sorting is fast but less than perfect. For one thing, it
doesn’t address the issue of nonconvex objects, so we’ll have to stick with convex
polyhedrons. For another, there’s the question of what part of each object to use as
the sorting key; the nearest point, the center, and the farthest point are all possibili-
ties-and, whichever point is used, depth sorting doesn’t handle some overlap cases
properly. Figure 53.1 illustrates one case in which back-to-front sorting doesn’t work,
regardless of what point is used as the sorting key.
For photo-realistic rendering, these are serious problems. For fast PC-based anima-
tion, however, they’re manageable. Choose objects that aren’t too elongated; arrange
their paths of travel so they don’t intersect in problematic ways; and, if they do over-
lap incorrectly, trust that the glitch will be lost in the speed of the animation and the
complexity of the screen.
Listing 53.2 shows X-Sharp file OLIST.C, which includes the key routines for depth
sorting. Objects are now stored in a linked list. The initial, empty list, created by
InitializeObjectList(), consists of a sentinel entry at either end, one at the farthest
possible z coordinate, and one at the nearest. New entries are inserted byAddObject()
in z-sorted order. Each time the objects are moved, before they’re drawn at their new
locations, Sortobjects0 is called to 2-sort the object list, so that drawing will proceed
from back to front. The Z-sorting is done on the basis of the objects’ center points; a

1000 Chapter 53

X axis

I Farthest points ' \ Middle points

V
Viewer

why back-to-font sorting doesn 't always workproperly
Figure 53.1

center-point field has been added to the object structure to support this, and the
center point for each object is now transformed along with the vertices. That's really
all there is to depth sorting-and now we can have objects that overlap in X and Y

LISTING 53.2 0LIST.C
/* Object list-related functions. */
#i ncl ude <stdi 0. h>
#include "polygon, h"

/* Set up the empty object list, with sentinels at both ends to

void InitializeObjectListO
{

terminate searches * /

0bjectListStart.NextObject - &ObjectListEnd:
0bjectListStart.PreviousObject - NULL:
0bjectListStart.CenterInView.Z - INT_TO_FIXED(-32768):
0bjectListEnd.NextObject - NULL:
0bjectListEnd.PreviousObject - &ObjectListStart;
ObjectListEnd.CenterInView.2 - Ox7FFFFFFFL:
NumObjects - 0:

1

/* Adds an object to the object list, sorted by center 2 coord. */
void AddObject(0bject *ObjectPtr)
{

Object *ObjectListPtr - 0bjectListStart.NextObject;
I* Find the insertion point. Guaranteed to terminate because of

while (ObjectPtr->CenterInView.Z > ObjectL is tPt r ->Center InV iew.Z) {

1

the end sentinel */

ObjectListPtr - O b j e c t L i s t P t r - > N e x t o b j e c t :

Raw Speed and More 1 00 1

/* L i n k i n t h e new o b j e c t * /
O b j e c t L i s t P t r - > P r e v i o u s o b j e c t - > N e x t o b j e c t - O b j e c t P t r ;
O b j e c t P t r - > N e x t o b j e c t - O b j e c t L i s t P t r ;
ObjectPt r ->Prev iousobjec t - Ob jec tL i s tP t r ->Prev iousOb jec t ;
O b j e c t L i s t P t r - > P r e v i o u s O b j e c t - O b j e c t P t r ;
NumObjects++;

I

/ * R e s o r t s t h e o b j e c t s i n o r d e r o f a s c e n d i n g c e n t e r 2 c o o r d i n a t e i n v i e w s p a c e ,
by moving each object i n t u r n t o t h e c o r r e c t p o s i t i o n i n t h e o b j e c t l i s t . * /

v o i d S o r t O b j e c t s O
I

i n t i;
Object *ObjectPtr . *ObjectCmpPtr . *NextObjectPtr :

/ * S t a r t c h e c k i n g w i t h t h e s e c o n d o b j e c t * /
ObjectCmpPtr - 0 b j e c t L i s t S t a r t . N e x t O b j e c t ;
O b j e c t P t r - ObjectCmpPtr->Nextobject;
f o r (i-1; i<NumObjects; i++) (

/* See i f we need t o move backward th rough the l i s t * /
i f (ObjectPtr->CenterInView.Z < ObjectCmpPtr->CenterInView.Z) [

/* Remember where t o resume s o r t i n g w i t h t h e n e x t o b j e c t * /
N e x t O b j e c t P t r - O b j e c t P t r - > N e x t o b j e c t ;
/ * Yes. move backward u n t i l we f i n d t h e p r o p e r i n s e r t i o n

do (

3 w h i l e (ObjectPtr->CenterInView.Z <
ObjectCmpPtr->CenterInView.Z);

p o i n t . T e r m i n a t i o n g u a r a n t e e d b e c a u s e o f s t a r t s e n t i n e l * /

ObjectCmpPtr - ObjectCmpPtr ->PreviousObject ;

/* Now move t h e o b j e c t t o i t s new l o c a t i o n */
/* U n l i n k t h e o b j e c t a t t h e o l d l o c a t i o n */
ObjectPtr->PreviousObject->Nextobject -

O b j e c t P t r - > N e x t o b j e c t ;
ObjectPt r ->Nextob jec t ->Prev iousobjec t -

ObjectPtr->PreviousObject:

/* L i n k i n t h e o b j e c t a t t h e new l o c a t i o n * /
ObjectCmpPtr->Nextobject->Previousobject - O b j e c t P t r ;
ObjectPt r ->Prev iousObjec t - ObjectCmpPtr;
O b j e c t P t r - > N e x t o b j e c t - ObjectCmpPtr->Nextobject;
ObjectCmpPtr->Nextobject - O b j e c t P t r ;

/ * Advance t o t h e n e x t o b j e c t t o s o r t */
ObjectCmpPtr - NextObjec tPt r ->Prev iousObjec t ;
O b j e c t P t r - N e x t O b j e c t P t r ;

/ * Advance t o t h e n e x t o b j e c t t o s o r t * /
ObjectCmpPtr - O b j e c t P t r :
O b j e c t P t r - O b j e c t P t r - > N e x t o b j e c t ;

1 e l s e (

1
I

I

Rounding
FIXED." contains the equate ROUNDING-ON. When this equate is 1 , the re-
sults of multiplications and divisions are rounded to the nearest fixed-point values;
when it's 0, the results are truncated. The difference between the results produced

1002 Chapter 53

by the two approaches is, at most, 2-16; you wouldn’t think that would make much
difference, now, would you? But it does. When the animation is run with rounding
disabled, the cubes start to distort visibly after a few minutes, and after a few minutes
more they look like they’ve been run over. In contrast, I’ve never seen any significant
distortion with rounding on, even after a half-hour or so. I think the difference with
rounding is not that it’s so much more accurate, but rather that the errors are evenly
distributed; with truncation, the errors are biased, and biased errors become very
visible when they’re applied to right-angle objects. Even with rounding, though, the
errors will eventually creep in, and reorthogonalization will become necessary at
some point.
The performance cost of rounding is small, and the benefits are highly visible. Still,
truncation errors become significant only when they accumulate over time, as, for
example, when rotation matrices are repeatedly concatenated over the course of many
transformations. Some time could be saved by rounding only in such cases. For ex-
ample, division is performed only in the course of projection, and the results do not
accumulate over time, so it would be reasonable to disable rounding for division.

Having a Ball
So far in our exploration of 3-D animation, we’ve had nothing to look at but tri-
angles and cubes. It’s time for something a little more visually appealing, so the
demonstration program now features a 72-sided ball. What’s particularly interesting
about this ball is that it’s created by the GENBALL.C program in the BALL
subdirectory of X-Sharp, and both the size of the ball and the number of bands of
faces are programmable. GENBALL.C spits out to a file all the arrays of vertices and
faces needed to create the ball, ready for inclusion in 1NITBALL.C. Ti-ue, if you
change the number of bands, you must change the Colors array in 1NITBALL.C to
match, but that’s a tiny detail; by and large, the process of generating a ball-shaped
object is now automated. In fact, we’re not limited to ball-shaped objects; substitute
a different vertex and face generation program for GENBALL.C, and you can make
whatever convex polyhedron you want; again, all you have to do is change the Colors
array correspondingly. You can easily create multiple versions of the base object, too;
1NITCUBE.C is an example of this, creating 11 different cubes.
What we have here is the first glimmer of an object-editing system. GENBALL.C is
the prototype for object definition, and 1NITBALL.C is the prototype for general-
purpose object instantiation. Certainly, it would be nice to someday have an interactive
3-D object editing tool and resource management setup. We have our hands full with
the drawing end of things at the moment, though, and for now it’s enough to be able
to create objects in a semiautomated way.

Raw Speed and More 1 003

	previous:
	home:
	next:

