
chapter 62

one story, two rules, 
and a bsp renderer
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As I’ve noted before,B&‘m working on Quake, id Software’s  follow-up to DOOM. A 
flipping to Quake, and  made  the startling discov- 
twice  as fast with page  flipping as it  did with the 
whole frame to system  memory, then copying it to 
his, but baffled. I did  a few tests and came up with 
ding slow writes through  the  external  cache,  poor 
che misses  when copying the  frame  from system 

each of these  can indeed affect performance, 
none  seemed to accaunt  for  the  magnitude of the  speedup, so I assumed there was 
some hidden hardware  interaction  at work. Anyway,  “why”  was secondary; what  really 
mattered was that we had a way to double  performance, which meant I had  a  lot of 
work to do to support page  flipping as  widely  as possible. 
A few  days ago, I was using the Pentium’s built-in performance  counters to seek out 
areas  for  improvement  in  Quake  and,  for no particular  reason,  checked the  number 
of writes performed while copying the frame  to the screen in non-page-flipped mode. 
The answer was 64,000. That  seemed  odd, since there were 64,000 byte-sized pixels 
to copy, and I was calling memcpyo, which  of course  performs copies a dword at  a 
time whenever possible. I thought maybe the Pentium  counters  report  the  number 
of bytes written rather  than  the  number of writes performed,  but fortunately, this 
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time I tested my assumptions by writing an ASM routine to copy the  frame a  dword at 
a time, without the  help of memcpy(). This time the  Pentium  counters  reported 
16,000  writes. 
whoops. 
As it  turns out,  the memcpy() routine in the DOS  version  of our  compiler (gcc) 
inexplicably copies memory  a byte at a time. With my  new routine,  the non-page- 
flipped approach suddenly became slightly faster than page flipping. 
The first relevant rule is pretty obvious: Assume  nothing. Measure early and often. 
Know what’s  really going  on when your program  runs, if you catch my drift. To do 
otherwise is to risk looking mighty foolish. 
The  second rule: when you do look foolish (and trust me, it will happen if you do 
challenging work) have a  good  laugh  at yourself, and use it as a reminder of  Rule #l. 
I  hadn’t done any extra page-flipping work  yet, so I didn’t waste  any time due to my 
faulty assumption that memcpy() performed a  maximum-speed copy, but  that was 
just luck. I  should have done  experiments until I was sure I knew what was going  on 
before drawing any conclusions and acting on  them. 

P In general, make it apoint not to fall into a tightly focused rut; stay loose and  think 
of alternative possibilities and  new approaches, and always,  always, always keep 
asking questions. It ’llpay off big in  the long run. IfI hadn ’t indulged my curiosity 
by running  the  Pentium counter test on  the copy to the screen, even though  there 
was no specific reason to do so, I would never have discovered the memcpyo 
problem-and by so doing I doubled the performance of  the entire program in five 
minutes, a rare accomplishment indeed. 

By the way, I have found  the Pentium’s performance  counters to be very useful in 
figuring out what my code really does and where the cycles are going. One useful  source 
of information on  the  performance  counters  and  other aspects of the  Pentium is 
Mike  Schmit’s  book, Pentium  Processor  Optimization Tools, AP Professional, 
ISBN 0-1 2-627230-1. 
Onward to rendering  from a BSP tree. 

BSP-based Rendering 
For the last  several chapters I’ve been discussing the  nature of BSP (Binary Space 
Partitioning) trees, and in Chapter 60  I presented a  compiler  for 2-D  BSP trees. Now 
we’re ready to use those compiled BSP trees to do realtime rendering. 
As you’ll recall, the BSP compiler took a list  of  vertical  walls and built a 2-D  BSP tree 
from  the walls,  as  viewed from above. The result is shown in Figure 62.1. The world is 
split into two pieces by the line of the  root wall, and  each half of the world is then 
split again by the root’s children, and so on, until the world is carved into subspaces 
along  the lines of  all the walls. 
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Vertical walls and a BSP tree to represent them. 
Figure 62.1 

Our objective is to draw the world so that  whenever walls overlap we see the  nearer 
wall at  each overlapped pixel. The simplest way to do that is with the painter’s algo- 
rithm;  that is, drawing the walls in  back-to-front order,  assuming  no polygons 
interpenetrate  or  form cycles.  BSP trees guarantee that no polygons interpenetrate 
(such polygons are automatically split),  and make it easy to walk the polygons in 
back-to-front (or front-to-back) order. 
Given a BSP tree, in order to render a view of that  tree, all we have  to do is descend 
the  tree,  deciding  at each node  whether we’re seeing the  front  or back of the wall at 
that node  from  the  current viewpoint. We use that knowledge  to first recursively 
descend  and draw the  farther subtree of that node,  then draw that node,  and finally 
draw the  nearer subtree of that  node. Applied recursively from  the  root of our BSP 
trees, this approach  guarantees  that overlapping polygons will  always be drawn in 
back-to-front order. Listing  62.1  draws a BSP-based  world in this fashion. (Because of 
the constraints of the  printed page, Listing  62.1 is only the core of the BSP renderer, 
without the  program framework, some  math  routines, and  the polygon rasterizer; 
but,  the  entire  program is on  the CD-ROM  as  DDJBSP2.ZIP. Listing 62.1 is in a  com- 
pressed format, with  relatively little whitespace; the full version on  the CD-ROM is 
formatted normally.) 

LISTING 62.1  162- 1 .C 
/ *  C o r e   r e n d e r e r   f o r   W i n 3 2   p r o g r a m   t o   d e m o n s t r a t e   d r a w i n g   f r o m  a 2-D 

BSP t r e e :   i l l u s t r a t e   t h e   u s e   o f  BSP t r e e s   f o r   s u r f a c e   v i s i b i l i t y .  
Upda teWor ldO i s   t h e   t o p - l e v e l   f u n c t i o n   i n   t h i s   m o d u l e .  
F u l l   s o u r c e   c o d e  f o r  t h e   B S P - b a s e d   r e n d e r e r ,   a n d   f o r   t h e  
accompanying BSP c o m p i l e r ,  may be d o w n l o a d e d   f r o m  
ftp.idsoftware.com/mikeab. i n   t h e   f i l e   d d j b s p 2 . z i p .  
T e s t e d   w i t h  VC++ 2 .0  running  on  Windows NT 3 .5 .  * /  

#def ine  FIXEDPOINT(x)  ((FIXEDPOINT)(((long)x)*((long)OxlOOOO))~ 
# d e f i n e   F I X T O I N T ( x )   ( ( i n t ) ( x  >> 1 6 ) )  
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l d e f  i ne 
# d e f i n e  
# d e f  i ne 
i d e f  i ne 
# d e f i n e  
# d e f i n e  
# d e f i n e  
P d e f  i ne 
# d e f i n e  
# d e f i n e  
# d e f  i ne 
l d e f i  ne 

t y p e d e f  
t y p e d e f  

ANGLE(x) ( ( 1 o n g ) x )  
STANDARD-SPEED (FIXEDPDINT(20))  
STANDARD-ROTATION (ANGLE(4))  
MAX-NUM-NODES 2000 
MAX-NUM-EXTRA-VERTICES 2000 
WORLD-MIN-X (FIXEDPOINT(-16000))  
WORLD-MAX-X (FIXEDPOINT(16000))  
WORLD-MIN-Y (F IXEDPOINT(-16000) )  
WORLD-MAX-Y (FIXEDPOINT(16000))  
WORLD-MIN-Z (FIXEDPOINT(-16000))  
WORLD-MAX-Z (FIXEDPDINT(16000))  
PROJECTION-RATIO (2 .011.0)  11 c o n t r o l s   f i e l d   o f   v i e w :   t h e  

I1 b i g g e r   t h i s   i s ,   t h e   n a r r o w e r   t h e   f i e l d   o f   v i e w  
l o n g  FIXEDPOINT; 
s t r u c t  -VERTEX ( . .  

FIXEDPOINT x .   z .   v i e w x ,   v i e w z :  
1 VERTEX, *PVERTEX; 
t y p e d e f   s t r u c t  -POINT2 { FIXEDPOINT x ,  z :  1 POINTE.  *PPOINT2; 
t y p e d e f   s t r u c t  -POINTZINT ( i n t  x :   i n t  y :  1 POINTLINT.  *PPOINTZINT; 
t y p e d e f   l o n g  ANGLE: 11 a n g l e s   a r e   s t o r e d  i n  degrees  
t y p e d e f   s t r u c t  -NODE ( 

VERTEX * p s t a r t v e r t e x .   * p e n d v e r t e x :  
FIXEDPOINT w a l l t o p .   w a l l b o t t o m .   t s t a r t .   t e n d :  
FIXEDPOINT c l i p p e d t s t a r t .   c l i p p e d t e n d :  
s t r u c t  -NODE * f r o n t t r e e .   * b a c k t r e e ;  
i n t   c o l o r ,   i s v i s i b l e :  
FIXEDPOINT s c r e e n x s t a r t .   s c r e e n x e n d ;  
FIXEDPOINT s c r e e n y t o p s t a r t ,   s c r e e n y b o t t o m s t a r t ;  
FIXEDPOINT sc reeny topend .   sc reenybo t tomend :  

1 NODE. *PNDDE; 
c h a r  * pDIB: / I  p o i n t e r   t o  D I B  s e c t i o n   w e ' l l   d r a w   i n t o  
HBITMAP hDIBSec t ion :  / I  h a n d l e   o f  DIB s e c t i o n  
HPALETTE hpa lD IB ;  
i n t   i t e r a t i o n  - 0.  Wor ld I sRunn ing  - 1; 
HWND hwndou tpu t ;  
i n t  D IBWid th .   D IBHe igh t .   D IBP i t ch .   numver t i ces ,   numnodes :  
FIXEDPOINT f x H a l f D I B W i d t h .   f x H a l f O I B H e i g h t ;  
VERTEX * p v e r t e x l i s t ,   * p e x t r a v e r t e x l i s t :  
NODE * p n o d e l i s t :  
POINT2 c u r r e n t l o c a t i o n .   c u r r e n t d i r e c t i o n .   c u r r e n t o r i e n t a t i o n :  
ANGLE c u r r e n t a n g l e :  
FIXEDPOINT c u r r e n t s p e e d .   f x V i e w e r Y .   c u r r e n t Y S p e e d :  
FIXEDPOINT F r o n t C l i p P l a n e  - FIXEDPOINT(10); 
FIXEDPOINT FixedMul  (FIXEDPOINT  x.  FIXEDPOINT y ) :  
FIXEDPOINT  FixedDiv(FIXEDPD1NT  x.  FIXEDPOINT y ) :  
FIXEDPOINT  FixedSin(ANGLE  angle).   FixedCos(ANGLE  angle):  
e x t e r n   i n t  FillConvexPolygon(POINT2INT * V e r t e x P t r .   i n t   C o l o r ) :  
11 R e t u r n s   n o n z e r o  i f  a w a l l   i s   f a c i n g   t h e   v i e w e r ,  0 e l s e .  
i n t  Wal lFac ingViewer (N0DE * p w a l l )  
( 

FIXEDPOINT v i e w x s t a r t  - pwall->pstartvertex->viewx: 
FIXEDPOINT v i e w z s t a r t  - pwall->pstartvertex->viewz: 
FIXEDPOINT v iewxend  - pwall->pendvertex->viewx: 
FIXEDPOINT v iewzend  - pwall->pendvertex->viewz: 
i n t  Temp; 

i f  ( (  ((pwall->pstartvertex->viewx >> 1 6 )  * 
I* I /  e q u i v a l e n t  C code 

((pwall->pendvertex->view2 - 

((pwall->pstartvertex->viewz >> 1 6 )  * 
pwall->pstartvertex->viewz) >> 1 6 ) )  + 
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((pwall->pstartvertex->viewx - 
pwall->pendvertex->viewx) >>  1 6 ) )  1 

< 0) 
r e t u r n ( 1 ) :  

r e t u r n ( 0 ) :  
e l s e  

* I  
I 

rnov eax .v iewzend 
s u b   e a x . v i e w z s t a r t  
i m u l   v i e w x s t a r t  
rnov ecx,   edx 
mov ebx .eax  
rnov e a x . v i e w x s t a r t  
sub   eax .v iewxend 
i m u l   v i e w z s t a r t  
add  eax.ebx 
adc  edx.ecx 
mov eax.O 
jns  s h o r t  WFVDone 
i n c   e a x  

mov Temp, eax 
WFVDone: 

I 
r e t u r n ( T e m p ) :  

1 
/ /  U p d a t e   t h e   v i e w p o i n t   p o s i t i o n  as  needed. 
v o i d   U p d a t e v i e w P o s o  
I 

i f  ( c u r r e n t s p e e d  != 0) { 
c u r r e n t 1 o c a t i o n . x  += FixedMul(currentdirection.x. 

i f  ( c u r r e n t 1 o c a t i o n . x  <= WORLDLMINKX) 
c u r r e n t l o c a t i o n . ~  = WORLDLMIN-X: 

i f  ( c u r r e n t l o c a t i o n . ~  >- WORLD-MAXLX) 
c u r r e n t 1 o c a t i o n . x  = WORLDLMAXLX - 1: 

c u r r e n t 1 o c a t i o n . z  += FixedMul(currentdirection.z. 

i f  ( c u r r e n t 1 o c a t i o n . z  <= WORLDLMINLZ) 
c u r r e n t 1 o c a t i o n . z  = WORLD-MIN-2: 

i f  ( c u r r e n t 1 o c a t i o n . z  >= WORLDLMAXLZ) 
c u r r e n t l o c a t i o n . ~  = WORLDLMAXKZ - 1; 

c u r r e n t s p e e d ) :  

c u r r e n t s p e e d ) :  

} 
i f  (cu r ren tYSpeed  != 0) { 

f xV iewerY  += cu r ren tYSpeed :  
i f  ( f x V i e w e r Y  <= WORLDLMINKY) 

f xV iewerY  = WORLO_MIN_Y: 
i f  ( f x V i e w e r Y  >= WORLD-MAX-Y) 

f xV iewerY  = WORLDLMAXKY - 1; 
I 

I 
/ /  T r a n s f o r m   a l l   v e r t i c e s   i n t o   v i e w s p a c e .  
v o i d   T r a n s f o r m v e r t i c e s 0  
( 

VERTEX * p v e r t e x :  
FIXEDPOINT  tempx.  tempz: 
i n t   v e r t e x :  
p v e r t e x  = p v e r t e x l i s t :  
f o r   ( v e r t e x  = 0 :  v e r t e x  < n u m v e r t i c e s ;   v e r t e x + + )  1 

I /  T r a n s l a t e   t h e   v e r t e x   a c c o r d i n g   t o   t h e   v i e w p o i n t  
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tempx - p v e r t e x - > x  - c u r r e n t 1 o c a t i o n . x :  
tempz - p v e r t e x - > z  - c u r r e n t 1 o c a t i o n . z ;  
11 R o t a t e   t h e   v e r t e x  s o  v i e w p o i n t   i s   l o o k i n g  down z a x i s  
p v e r t e x - > v i e w x  - FixedMul(F ixedMul( tempx.  

current orientation.^) + 
F i x e d M u l ( t e m p z .   - c u r r e n t o r i e n t a t i o n . x ) .  
F IXEDPOINT(PROJECTION_RATIO) ) :  

p v e r t e x - > v i e w 2  = F ixedMu l ( tempx .  current orientation.^) + 
F i x e d M u l ( t e m p z .   c u r r e n t o r i e n t a t i o n . z ) :  

pvertex++: 
I 

1 
/ I  3 - 0  c l i p   a l l   w a l l s .  If a n y   p a r t   o f   e a c h   w a l l   i s   s t i l l   v i s i b l e ,  
/ I  t r a n s f o r m   t o   p e r s p e c t i v e   v i e w s p a c e .  
v o i d   C l i p w a l l s o  
I 

NODE * p w a l l  : 
i n t   w a l l :  
FIXEDPOINT t e m p s t a r t x .   t e m p e n d x .   t e m p s t a r t z .   t e m p e n d z :  
FIXEDPOINT t e m p s t a r t w a l l t o p .   t e m p s t a r t w a l l b o t t o m :  
FIXEDPOINT tempendwa l l t op .   t empendwa l lbo t tom;  
VERTEX * p s t a r t v e r t e x .   * p e n d v e r t e x :  
VERTEX * p e x t r a v e r t e x  - p e x t r a v e r t e x l i s t :  
p w a l l  - p n o d e l i s t :  
f o r   ( w a l l  - 0: w a l l  < numnodes;  wall++) I 

I /  Assume t h e   w a l l   w o n ' t   b e   v i s i b l e  
p w a l l - > i s v i s i b l e  - 0:  
11 G e n e r a t e   t h e   w a l l   e n d p o i n t s ,   a c c o u n t i n g   f o r  t va lues   and  
I /  c l  i p p i   n g  
/ I  C a l c u l a t e   t h e   v i e w s p a c e   c o o r d i n a t e s   f o r   t h i s   w a l l  
p s t a r t v e r t e x  - p w a l l - > p s t a r t v e r t e x :  
p e n d v e r t e x  - p w a l l - > p e n d v e r t e x ;  
I /  L o o k   f o r  z c l i p p i n g   f i r s t  
/ I  C a l c u l a t e   s t a r t   a n d   e n d  z c o o r d i n a t e s   f o r   t h i s   w a l l  
i f  ( p w a l l - > t s t a r t  -- FIXEDPOINT(0))  

e l s e  
t e m p s t a r t z  - p s t a r t v e r t e x - > v i e w z :  

t e m p s t a r t z  - p s t a r t v e r t e x - > v i e w 2  + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
p w a l l - > t s t a r t ) ;  

i f  ( p w a l l - > t e n d  -- FIXEDPOINT(1))  

e l s e  
tempendz - p e n d v e r t e x - > v i e w z :  

tempendz - p s t a r t v e r t e x - > v i e w 2  + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
p w a l l - > t e n d ) :  

I /  C l i p   t o   t h e   f r o n t   p l a n e  
i f  ( tempendz < F r o n t C l i p P l a n e )  I 

i f  ( t e m p s t a r t z  < F r o n t C l i p P l a n e )  [ 
/ I  F u l l y   f r o n t - c l i p p e d  
g o t o   N e x t w a l l :  

p w a l l - > c l i p p e d t s t a r t  = p w a l l - > t s t a r t :  
/ I  C l i p   t h e   e n d   p o i n t   t o   t h e   f r o n t   c l i p   p l a n e  
p w a l l - k l i p p e d t e n d  - 

1 e l s e  { 

F i x e d D i v ( p s t a r t v e r t e x - > v i e w 2  - F r o n t C l i p P l a n e ,  
pstartvertex->viewz-pendvertex->viewz): 

tempendz - p s t a r t v e r t e x - > v i e w z  + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
p w a l l - > c l i p p e d t e n d ) :  

1 
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1 else { 
pwall->clippedtend - pwall->tend; 
if (tempstartz < FrontClipPlane) t 

/ /  Clip  the  start  point  to  the  front  clip  plane 
pwall->clippedtstart - 

FixedDiv(FrontClipP1ane - pstartvertex->viewz, 
pendvertex->viewz-pstartvertex->viewz): 

tempstartz - pstartvertex->view2 + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
pwall->clippedtstart): 

1 else t 

} 
pwall->clippedtstart - pwall->tstart; 

1 
/ /  Calculate  x  coordinates 
if (pwall-hlippedtstart - FIXEDPOINT(0)) 
else 

tempstartx - pstartvertex->viewx; 
tempstartx - pstartvertex->viewx + 

FixedMul((pendvertex->viewx-pstartvertex->viewx), 
pwall->clippedtstart); 

if  (pwall->clippedtend - FIXEDPOINT(1)) 
else 

tempendx - pendvertex->viewx; 
tempendx - pstartvertex->viewx + 

FixedMul((pendvertex->viewx-pstartvertex->viewx). 
pwall  ->cl  ippedtend) ; 

/ /  Clip in  x  as  needed 
if  ((tempstartx > tempstartz) 1 1  (tempstartx < -tempstartz)) I 

/ /  The  start  point  is  outside  the  view  triangle  in x: 
/ /  perform  a  quick  test  for  trivial  rejection by seeing  if 
/ /  the  end  point  is  outside  the  view  triangle on the  same 
/ /  side  as  the  start  point 
if (((tempstartx>tempstartz) && (tempendx>tempendz)) I I 

((tempstartx<-tempstartz) && (tempendx<-tempendz))) 
/ /  Fully  clipped-trivially  reject 
goto  NextWall ; 

/ /  Clip  the  start  point 
if  (tempstartx > tempstartz) { 

/ /  Clip  the  start  point on the  right  side 
pwall-klippedtstart - 

FixedDiv(pstartvertex->viewx-pstartvertex->viewz, 
pendver tex ->v iewz-pstar tver tex ->v iewz  - 
pendvertex->viewx+pstartvertex->viewx): 

tempstartx - pstartvertex->viewx + 
FixedMul((pendvertex->viewx-pstartvertex->viewx), 

pwall->clippedtstart): 
tempstartz - tempstartx: 
/ /  Clip  the  start  point on the  left  side 
pwall ->clippedtstart - 

} else { 

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz, 
pendvertex->viewx+pendvertex->view2 - 
pstartvertex->viewz-pstartvertex->viewx); 

tempstartx - pstartvertex->viewx + 
FixedMul((pendvertex->viewx-pstartvertex->viewx), 

pwall->clippedtstart); 

> 
tempstartz - -tempstartx: 

} 
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I1 See  if  the  end  point  needs  clipping 
if ((tempendx > tempendz) I I (tempendx < -tempendz)) { 

I1 Clip  the  end  point 
if (tempendx > tempendz) { 

I1 Clip  the  end  point  on  the  right  side 
pwall ->cl  ippedtend - 

FixedDiv(pstartvertex->viewx-pstartvertex->viewz, 
pendver tex ->v iewz-pstar tver tex ->v iew2 - 

pendvertex->viewx+pstartvertex->viewx); 
tempendx - pstartvertex->viewx + 

FixedMul((pendvertex->viewx-pstartvertex->viewx), 
pwall-klippedtend): 

tempendz - tempendx: 
I /  Clip  the  end  point  on  the  left  side 
pwall ->cl  ippedtend - 

1 else { 

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz, 
pendvertex->viewx+pendvertex->view2 - 
pstartvertex->viewz-pstartvertex->viewx): 

tempendx - pstartvertex->viewx + 
FixedMul((pendvertex->viewx-pstartvertex->viewx), 

pwall-klippedtend): 

1 
tempendz - -tempendx: 

1 
tempstartwall  top - FixedMul ((pwall ->wall  top - fxViewerY 1, 

tempendwalltop - tempstartwalltop: 
tempstartwall  bottom - FixedMul ((pwall ->wall  bottom-fxViewerY) , 

tempendwallbottom - tempstartwallbottom: 
I1 Partially  clip  in  y  (the  rest  is  done  later  in  2D) 
I /  Check  for  trivial  accept 
if  ((tempstartwalltop > tempstartz) I I 

F IXEDPOINT(PROJECTION_RATIO) ) :  

F IXEDPOINT(PROJECTION_RATIO) ) :  

(tempstartwallbottom < -tempstartz) 1 I 
(tempendwalltop > tempendz) I I 
(tempendwallbottom < -tempendz)) { 
I1 Not  trivially  unclipped:  check  for  fully  clipped 
if ((tempstartwallbottom > tempstartz) && 

(tempstartwalltop < -tempstartz) && 
(tempendwallbottom > tempendz) && 
(tempendwalltop < -tempendz)) { 
I /  Outside  view  triangle.  trivially  clipped 
goto  NextWall : 

1 
I 1  Partially  clipped  in Y:  we'll do Y  clipping  at 
/ I  drawing  time 

1 
I1 The wall  is  visible:  mark  it  as  such  and  project  it. 
I1 +1 on scaling  because  of  bottomlright  exclusive  polygon 
I1 filling 
pwall->isvisible - 1: 
pwall->screenxstart - 

( F i x e d M u l D i v ( t e m p s t a r t x .  fxHalfDIBWidth+FIXEDPOINT(O.5). 
tempstartz) + fxHalfDIBWidth + FIXEDPOINT(0.5)): 

(FixedMulDiv(tempstartwal1top. 
fxHalfDIBHeight + FIXEDPDINT(0.5). tempstartz) + 
fxHalfDIBHeight + FIXEDPOINT(0.5)); 

(FixedMulDiv(tempstartwal1bottom. 

pwall->screenytopstart - 

pwall->screenybottomstart - 
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/ I  
/ I  
/ I  
/ I  
/ I  
/ I  
/ I  
if 

fxHalfDIBHeight + FIXEOPOINT(0.5). tempstartz) + 
fxHalfDIBHeight + FIXEDPOINT(O.5)); 

(FixedMulDiv(tempendx. fxHalfDIBWidth+FIXEDPOINT(O.5). 
tempendz) + fxHalfDIBWidth + FIXEDPOINT(0.5)): 

(FixedMulDiv(tempendwal1top. 
fxHalfDIBHeight + FIXEDPOINT(0.5). tempendz) + 
fxHalfDIBHeight + FIXEDPOINT(0.5)): 

(FixedMulDiv(tempendwallbottom, 
fxHalfOIBHeight + FIXEDPOINT(0.5). tempendz) + 
fxHalfOIBHeight + FIXEDPOINT(0.5)): 

pwall->screenxend - 
pwall-hcreenytopend - 

pwall->screenybottomend - 

NextWall : 
pwa11++; 

I 
I 
I /  Walk  the  tree  back  to  front:  backface cull whenever  possible, 
11 and  draw  front-facing  walls in back-to-front  order. 
void  DrawWallsBackToFrontO 
( 

NODE  *pFarChildren.  *pNearChildren.  *pwall: 
NODE *pendingnodes[MAX-NUM-NODES]: 
NODE  **pendingstackptr: 
POINTLINT  apointC41; 
pwall - pnodelist: 
pendingnodesCO1 - (NODE *)NULL: 
pendingstackptr - pendingnodes + 1; 
for ( : : )  { 

for ( : : )  { 
Descend  as  far  as  Dossible  toward  the  back, 
remembering  the nodes we  pass  through  on  the  way. 
Figure  whether  this wall is  facing  frontward  or 
backward: do  in  viewspace  because  non-visible  walls 
aren't projected  into  screenspace.  and  we  need  to 
traverse all walls  in  the BSP tree,  visible  or  not, 
i n  order  to  find all the  visible  walls 
(WallFacingViewer(pwal1)) { 
I /  We're on the  forward  side  of  this  wall,  do  the  back 
/ /  children  first 
DFarChildren - pwall->backtree: 

j e i s e  I 
/ /  We're on the  back  side  of  this  wall,  do  the  front 
/ /  children  first 
pFarChildren - pwall->fronttree: 

1 
if (pFarChildren - NULL) 
*pendingstackptr - pwall: 
pendingstackptr++: 
pwall - pFarChildren: 

break: 

1 
for ( : : I  ( 

/ /  See if  the wall is  even  visible 
if  (pwall->isvisible1 { 

I /  See if we  can  backface cull this wall 
if  (pwall->screenxstart < pwall->screenxend) { 

/ /  Draw  the wall 
apointC0l.x - FIXTOINT(pwal1->screenxstart): 
apointC1l.x - FIXTOINT(pwal1->screenxstart): 
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1 
/ /  
/ /  
/ /  
/ /  
/ /  
/ /  
/ /  

i f  

a p o i n t C 2 l . x  - FIXTOINT(pwal1->screenxend): 
a p o i n t C 3 l . x  - FIXTOINT(pwal1->screenxend); 
a p o i n t C 0 l . y  - F IXTOINT(pwa l1 ->sc ree f l y tops ta r t ) :  
a p o i n t C l 1 . y  - FIXTOINT(pwal1->screenybottomstart): 
a p o i n t C 2 l . y  - FIXTOINT(pwal1->screenybottomend): 
a p o i n t C 3 l . y  - FIXTOINT(pwal1->screenytopend): 
FillConvexPolygon(apoint. p w a l l - > c o l o r ) ;  

1 

I f  t h e r e ' s  a n e a r   t r e e   f r o m   t h i s   n o d e .   d r a w  i t : 
o t h e r w i s e ,   w o r k   b a c k   u p   t o   t h e   l a s t - p u s h e d   p a r e n t  
node o f   t h e   b r a n c h  we j u s t   f i n i s h e d :   w e ' r e   d o n e  i f  
t h e r e   a r e  no p e n d i n g   p a r e n t   n o d e s .  
F i g u r e   w h e t h e r   t h i s   w a l l   i s   f a c i n g   f r o n t w a r d   o r  
backward:  do i n  v i e w s p a c e   b e c a u s e   n o n - v i s i b l e   w a l l s  
a r e n ' t   p r o j e c t e d   i n t o   s c r e e n s p a c e ,   a n d  we need t o  
/ /  t r a v e r s e  all w a l l s   i n   t h e  BSP t r e e ,   v i s i b l e   o r   n o t ,  
/ /  i n   o r d e r   t o   f i n d  all t h e   v i s i b l e   w a l l s  
(WallFacingViewer(pwal1)) { 
/ /  We're on t h e   f o r w a r d   s i d e   o f   t h i s   w a l l ,  d o   t h e  
/ /  f r o n t   c h i l d r e n  now 
p N e a r C h i l d r e n  - p w a l l - > f r o n t t r e e :  

3 e l s e  { 
/ /  We're on t h e   b a c k   s i d e   o f   t h i s  w a l l ,  do t h e   b a c k  
/ /  c h i l d r e n  now 

1 
p N e a r C h i l d r e n  - p w a l l - > b a c k t r e e ;  

/ /  Walk t h e   n e a r   s u b t r e e   o f   t h i s  w a l l  
i f  ( p N e a r C h i l d r e n  !- NULL) 

/ /  Pop t h e   l a s t - p u s h e d   w a l l  
p e n d i n g s t a c k p t r - ;  
p w a l l  - * p e n d i n g s t a c k p t r :  
i f  ( p w a l l  - NULL) 

g o t o  NodesDone: 

g o t o  Wal kNearTree;  

1 
Wal kNearTree:  

p w a l l  - p N e a r C h i l d r e n :  
1 

NodesDone: 

1 
/ /  R e n d e r   t h e   c u r r e n t   s t a t e  o f  t h e   w o r l d   t o   t h e   s c r e e n .  
v o i d   U p d a t e w o r l d 0  
{ 

HPALETTE h o l d p a l :  
HDC hdcScreen.   hdcDIBSect ion :  
HBITMAP h o l d b i t m a p ;  
/ /  D r a w  t h e   f r a m e  
Upda teV iewPosO;  
memset(pD1B. 0 .  D I B P i t c h * D I B H e i g h t ) :  / /  c l e a r   f r a m e  
T r a n s f o r m V e r t i c e s O ;  
C l i p W a l l s O :  
D r a w W a l l s B a c k T o F r o n t O ;  
/ /  We've  drawn  the  f rame:   copy i t  t o   t h e   s c r e e n  
hdcScreen - GetDC(hwnd0u tpu t ) :  
h o l d p a l  - S e l   e c t P a l   e t t e (   h d c S c r e e n .   h p a l  O IB .  FALSE) : 
RealizePalette(hdcScreen): 
hdcDIBSec t ion  - CreateCompatibleDC(hdcScreen); 
h o l d b i t m a p  - SelectObject(hdcD1BSection. h D I B S e c t i o n ) :  
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B i t B l t ( h d c S c r e e n .  0 .  0.  D I B W i d t h .   D I B H e i g h t .   h d c D I B S e c t i o n .  

SelectPalette(hdcScreen. h o l d p a l .  FALSE):  
Re leaseDC(hwnd0utpu t .   hdcScreen) :  
S e l e c t O b j e c t ( h d c D 1 B S e c t i o n .  h o l d b i t m a p ) :  
Re leaseDC(hwnd0utpu t .   hdcDIBSect ion) :  
i t e r a t i o n + + :  

0 .  0.  SRCCOPY); 

I 

The Rendering  Pipeline 
Conceptually rendering  from a BSP tree really  is that simple, but  the implementa- 
tion is  a bit  more complicated. The full rendering  pipeline, as  coordinated by 
Updateworld(), is  this: 

Update  the  current  location. 
Transform  all  wall  endpoints  into  viewspace  (the  world  as  seen  from  the  current 

Clip  all  walls  to  the  view  pyramid. 
Project  wall  vertices  to  screen  coordinates. 
Walk  the  walls  back  to front,  and  for  each  wall  that  lies  at  least  partially  in  the 
view  pyramid,  perform  backface  culling  (skip  walls  facing  away from the  viewer), 
and  draw  the  wall if it’s  not  culled. 

Next, we’ll look at  each  part of the pipeline more closely. The pipeline is too com- 
plex for  me to be able to discuss each part in complete  detail.  Some sources for 
further reading are Computer  Graphics, by Foley and van  Dam  (ISBN  0-201-121  10-’7), 
and  the DDJEssential Books on Graphics  Programming CD. 

location  with  the  current  viewing  angle). 

Moving the  Viewer 
The sample BSP program  performs first-person rendering;  that is, it renders the 
world  as seen  from  your eyes  as  you  move about.  The  rate of movement is controlled 
by key-handling code that’s not shown in Listing  62.1;  however, the variables set by 
the key-handling code  are used in UpdateViewPosO to bring  the  current location 
up to date. 
Note that  the view position can  change  not only in x and z (movement around  the 
plane upon which the walls are  set),  but also  in y (vertically). However, the view direction 
is  always horizontal; that is, the code in  Listing  62.1 supports moving  to any  3-D point, 
but only viewing  horizontally. Although the BSP tree is  only  2-D, it is quite possible to 
support  looking up  and down to at least some extent, particularly if the world dataset 
is restricted so that,  for  example,  there  are never two rooms stacked on  top of each 
other, or any tilted walls. For simplicity’s  sake, I have chosen not to implement  this  in 
Listing  62.1, but you  may find  it  educational  to add it to  the  program yourself. 
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Transformation  into  Viewspace 
The viewing angle (which controls direction of movement as  well  as  view direction) 
can sweep through  the full 360 degrees around  the viewpoint, so long as it remains 
horizontal. The viewing angle is controlled by the key handler, and is used to define 
a unit vector stored in currentorientation that explicitly defines the view direction 
(the z axis of viewspace), and implicitly defines the x axis  of  viewspace, because that 
axis  is at right angles to the z axis, where  x increases to the right of the viewer. 
As I discussed in the prekious chapter,  rotation to a new coordinate system can be 
performed by using the  dot  product to project points onto  the axes  of the new coor- 
dinate system, and that’s  what TransformVertices() does,  after first translating 
(moving) the coordinate system  to  have its origin at the viewpoint. (It’s necessary to 
perform  the translation first so that  the viewing rotation is around  the viewpoint.) 
Note  that this operation can equivalently be viewed  as a matrix math  operation,  and 
that this is in fact the  more  common way to handle transformations. 
At the same time, the points are scaled in  x  according to PROJECTION-RATIO to 
provide the desired field of  view. Larger scale  values result in narrower fields of  view. 
When this is done  the walls are in viewspace, ready to be clipped. 

Clipping 
In viewspace, the walls  may be anywhere  relative to the viewpoint: in  front,  behind, 
off  to the side. We only want to draw those parts of  walls that properly belong  on  the 
screen; that is, those parts  that lie in the view pyramid (view frustum), as  shown in 
Figure 62.2. Unclipped walls-walls that lie entirely in the frustum-should be drawn 
in  their entirety, fully clipped walls should  not be drawn, and partially clipped walls 
must be trimmed  before  being drawn. 
In Listing  62.1, Clipwalk() does this in three steps for  each wall in turn. First, the z 
coordinates of the two ends of the wall are calculated. (Remember, walls are vertical 
and  their  ends go straight up  and down, so the  top  and  bottom of each  end have the 
same  x and z coordinates.) If both  ends  are  on  the  near side of the  front clip plane, 
then  the polygon is fully clipped, and we’re done with it. If both  ends  are  on  the far 
side, then  the polygon isn’t z-clipped, and we leave it unchanged. If the polygon 
straddles the  near clip plane, then  the wall is trimmed to stop at  the  near clip plane 
by adjusting the t value  of the nearest endpoint appropriately; this calculation is a 
simple matter of scaling by z, because the  near clip plane is at  a  constant z distance. 
(The use of t  values for  parametric lines was discussed in Chapter 60.) The process is 
further simplified because the walls can be treated as lines viewed from above, so we 
can perform 2-D clipping in z; this would not  be  the case if  walls sloped or  had 
sloping edges. 
After clipping in z, we clip by viewspace x  coordinate, to ensure  that we draw  only 
wall portions  that lie between the left and right edges of the screen. Like  z-clipping, 
x-clipping can be done as a 2-D clip, because the walls and  the left and right sides of 
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x == z clip  plane 

-x == z clip plane z near  clip  plane 

Note: Solid lines are visible (unclipped) parts of walls, viewed from above. 

Clipping  to  the view pyramid. 
Figure 62.2 

the frustum are all vertical. We compare  both  the start and  endpoint of each wall  to 
the left and right sides of the frustum, and reject, accept, or clip each wall’s t values 
accordingly. The test for x clipping is very simple, because the edges of the frustum 
are defined as the planes where x==z and -x==z. 
The final clip stage is clipping by y coordinate, and this is the most complicated, 
because vertical walls can be clipped at an angle in y, as  shown in Figure 62.3, so true 
3-D clipping of  all four wall vertices is involved. We handle this in ClipWalls() by 
detecting trivial rejection in y, using y==z and -y==z as the y boundaries of the frus- 
tum. However, we leave partial clipping to be handled as a 2-D clipping problem; we 
are able to do this only because our earlier z-clip  to the  near clip plane  guarantees 
that no  remaining polygon point can have z<=O, ensuring  that  when we project we’ll 
always  pass valid,  y-clippable screenspace vertices to the polygon  filler. 

Projection  to  Screenspace 
At this point, we have  viewspace  vertices for each wall that’s at least partially visible. 
All we have to do is project these vertices according to z distance-that is, perform 
perspective projection-and  scale the results to the width  of the screen, then we’ll 
be ready to  draw. Although this step is logically separate  from clipping, it is per- 
formed as the last step  for visible  walls in Clipwalk(). 
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Z clip plane I 

-y == z clip plane I 
Why y clipping is more  complex than x or z clipping. 
Figure 62.3 

Walking the  Tree,  Backface  Culling and Drawing 
Now that we have  all the walls clipped to the frustum, with  vertices projected  into 
screen  coordinates, all we have to do is draw them back to front; that's the  job of 
DrawWallsBackToFront(). Basically, this routine walks the BSP tree,  descending re- 
cursively from  each  node to draw the  farther  children of each  node first, then  the 
wall at  the  node,  then  the  nearer  children.  In  the interests of  efficiency, this particu- 
lar  implementation  performs  a data-recursive walk  of the  tree,  rather  than  the  more 
familiar code recursion. Interestingly, the  performance  speedup  from data recur- 
sion turned  out to be more  modest  than  I  had  expected, based on past experience; 
see Chapter 59 for further details. 
As it comes to each wall, DrawWallsBackToFront() first descends to  draw the  farther 
subtree. Next, if the wall  is both visible and pointing toward the viewer, it is drawn as 
a solid polygon. The polygon filler (not shown in Listing 62.1) is a modification of 
the polygon filler I  presented in Chapters 38 and 39. 
It's worth noting how  backface culling and  front/back wall orientation testing are 
performed.  (Note  that walls are always one-sided, visible  only from  the  front.)  I dis- 
cussed  backface culling in general in the previous chapter, and  mentioned two possible 
approaches:  generating  a screenspace normal  (perpendicular vector) to the poly- 
gon  and seeing which way that points, or taking the world or screenspace dot  product 
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between the vector from  the viewpoint  to  any  polygon point  and  the polygon’s nor- 
mal and checking the sign.  Listing  62.1 does both,  but because our BSP tree is 2-D 
and  the viewer is always upright, we can save some work. 
Consider this: Walls are stored so that  the left end, as  viewed from  the  front side of 
the wall, is the start vertex, and  the right end is the  end vertex. There  are only two 
possible ways that  a wall can be positioned in screenspace, then: viewed from  the 
front, in which  case the start vertex is to the left of the  end vertex, or viewed from  the 
back, in which  case the start vertex is to the right of the  end vertex, as shown in 
Figure 62.4. So we can tell  which side of a wall  we’re seeing, and thus backface cull, 
simply by comparing  the screenspace x  coordinates of the start and  end vertices, a 
simple 2-D version  of checking the direction of the screenspace normal. 
The wall orientation test  used for walking the BSP tree, performed in WaUFacingViewer(), 
takes the  other  approach,  and checks the viewspace  sign  of the  dot  product of the 
wall’s normal with a vector from  the viewpoint to the wall.  Again, this code takes 
advantage of the 2-D nature of the tree to generate  the wall normal by swapping x 
and z and altering signs. We can’t use the quicker screenspace x test here that we 
used for backface culling, because not all walls can be projected  into screenspace; 
for  example, trying  to project  a wall at z==O would result in division by zero. 
All the visible, front-facing walls are drawn  into  a buffer by DrawWallsBackToFront(), 
then Updateworld() calls  Win32 to copy the new frame to the screen. The  frame of 
animation is complete. 

start  vertex end  vertex 

end  vertex  start  vertex 

Fast backspace culling test in screenspace. 
Figure 62.4 

One Story, Two Rules, and a BSP Renderer 1 1 61 



Notes on the BSP Renderer 
Listing 62.1 is far  from  complete  or  optimal.  There is no such  thing as a tiny BSP 
rendering  demo, because 3D rendering, even when based on  a 2-D BSP tree, re- 
quires  a  substantial amount of code  and complexity. Listing 62.1 is reasonably close 
to  a  minimum rendering  engine,  and is specifically intended to  illuminate basic BSP 
principles, given the space limitations of one  chapter  in  a book that’s already  larger 
than  it  should  be.  Think of Listing 62.1  as a  learning  tool  and  a  starting  point. 
The most obvious lack in Listing 62.1 is that  there is no  support  for  floors  and ceil- 
ings; the walls float  in  space,  unsupported. Is it necessary to go to 3-D BSP trees  to  get 
a  normal-looking  world? 
No. Although 3-D BSP trees offer many advantages in that they  allow arbitrary  datasets 
with  viewing  in  any arbitrary  direction  and,  in  truth,  aren’t  much  more  complicated 
than 2-D BSP trees  for back-to-front drawing, they do tend  to  be  larger  and  more 
difficult to  debug,  and they aren’t necessary for  floors and ceilings. One way to  get 
floors and ceilings out of  a 2-D BSP tree is to  change  the  nature of the BSP tree so 
that polygons are  no  longer  stored in the splitting  nodes.  Instead,  each leaf of the 
tree-that is, each  subspace carved out by the tree-would store  the polygons for  the 
walls, floors, and ceilings that lie on  the  boundaries of that space and face into  that 
space. The subspace would be convex, because all BSP subspaces are automatically 
convex, so the polygons in  that subspace  can  be drawn in any order.  Thus,  the s u b  
spaces in  the BSP tree would each be drawn in  turn as convex sets, back to front,  just 
as Listing 62.1  draws polygons back to front. 
This  sort of BSP tree,  organized  around volumes rather  than polygons, has  some 
additional  interesting  advantages  in  simulating physics, detecting collisions, doing 
line-of-sight determination,  and  performing volume-based operations  such as  dy- 
namic  illumination  and  event  triggering. However, that discussion will  have to wait 
until  another day. 
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