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You might not think  hhbut there’s much to learn  about  performance  programming 
from the Great Buffald-  .Fiasco.  To  wit: 
The scene is Buffalo, j4ew York, in the  dead of winter,  with the snow piled several feet 
deep. Four college &dents, living in typical student housing, are frozen to the  bone. 
The third floor of their house, uninsulated and so cold that it’s uninhabitable, has an 
ancient bathrooW6One fabulously cold day, inspiration strikes: 
“Hey-we could make that  bathroom  into  a sauna! ” 

Pandemonium ensuks. Someone rushes out  and buys a gas heater, and at consider- 
able risk  to  life and limb hooks it up to an  abandoned  but still  live  gas pipe  that  once 
fed  a stove on  the third floor. Someone else gets sheets of plastic and lines the walls 
of the  bathroom to keep  the moisture in,  and yet another  student gets a bucket full 
of rocks. The remaining  chap brings up some old wooden chairs and sets them up to 
make benches  along the sides of the  bathroom. Voila-instant sauna! 
They crank up  the gas heater, put  the bucket of rocks in front of it, close the door, 
take off their clothes, and sit  down  to  steam  themselves.  Mind  you,  it’s not yet 50 degrees 
Fahrenheit  in this room,  but  the gas heater is roaring. Surely warmer times await. 
Indeed they do.  The  temperature climbs  to 55 degrees,  then 60, then 63, then 65, 
and finally creeps up to 68 degrees. 
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And there  it stops. 
68 degrees is  warm for an uninsulated  third  floor  in Buffalo in  the  dead of winter. 
Damn warm. It is not, however, particularly warm for  a sauna. Eventually someone 
acknowledges the obvious and allows that it might  have been a stupid  idea after all, and 
everyone  agrees, and they shut off the heater and leave, each no doubt offering  silent 
thanks that they had gotten out of  this  without  any incidents requiring major  surgery. 
And so we see that  the best idea in the world can fail for lack  of either  proper design 
or  adequate horsepower. The primary cause of the  Great Buffalo Sauna Fiasco was a 
lack  of horsepower; the gas heater was flat-out undersized. This is analogous to try- 
ing to  write programs  that  incorporate  features like bitmapped text and searching of 
multisegment buffers without using high-performance assembly language. Any PC 
language can perform  just  about any function you can think of-eventually. That 
heater would  eventually  have heated  the room to 110 degrees, too-along about  the 
first of June  or so. 
The Great Buffalo Sauna Fiasco  also suffered from  fundamental design flaws. A more 
powerful heater would indeed have made  the  room hotter-and might well  have 
burned  the house down in the process. Likewise, proper  algorithm selection and 
good design are  fundamental to performance. The extra horsepower a superb as- 
sembly language  implementation gives a  program is worth bothering with  only in 
the  context of a  good design. 

P Assembly language optimization is a small but crucial corner of the PCpmgramming 
world. Use it sparingly and only within the framework  of a good  design-but  ignore it 
and you  mayjind various portions of your anatomy out in the cold. 

So, drawing fortitude  from  the knowledge that  our quest is a  pure  and worthy one, 
let’s resume our exploration of assembly language instructions with hidden talents 
and instructions with  well-known talents that  are less than they appear to be.  In  the 
process, we’ll come to see that there is another, very important optimization level 
between the  algorithm/design level and  the cycle-counting/individual instruction 
level. I’ll call this middle level local optimization; it involves focusing on optimizing 
sequences of instructions rather  than individual instructions, all  with an eye  to imple- 
menting designs as  efficiently  as  possible  given the capabilities of the x86  family 
instruction set. 
And  yes, in case you’re wondering,  the above  story is indeed  true. Was I there? Let 
me put it this way:  If I were, I’d never admit it! 

When L O O P  Is a Bad  Idea 
Let’s examine first an  instruction  that is  less than  it  appears to be: LOOP. There’s no 
mystery about what LOOP does; it  decrements CX and branches if CX doesn’t dec- 
rement to zero. It’s so beautifully suited to the task of counting down loops that any 
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experienced x86 programmer instinctively  stuffs the  loop count in CX and reaches 
for LOOP when setting up a  loop. That’s fine-LOOP does, of course, work  as ad- 
vertised-but there is one problem: 

On halfofthe processors in the x86family, LOOP is  slower  than DEC CXfollowed by p JNZ. (Granted, DEC CWJNZ isn ’tprecisely equivalent to LOOE because DEC al- 
ters the Jags and LOOP doesn ?, but  in  most  situations they >e comparable.) 

How can this be? Don’t ask me, ask Intel. On the 8088 and 80286, LOOP is indeed 
faster than DEC  CX/JNZ by a cycle, and  LOOP is generally a little faster still be- 
cause it’s a byte shorter  and so can be fetched faster. On  the 386,  however, things 
change; LOOP is two cycles slower than DEC/JNZ, and  the fetch time for one extra 
byte on even an  uncached 386 generally isn’t significant. (Remember  that  the 386 
fetches four instruction bytes at a  pop.)  LOOP is three cycles  slower than DEC/JNZ 
on  the 486, and  the 486 executes instructions in so few  cycles that those three cycles 
mean that DEC/JNZ is nearly twice as  fast  as LOOP.  Then, too, unlike LOOP, DEC 
doesn’t  require  that CX be used, so the DEC/JNZ solution is both faster and  more 
flexible on  the 386 and 486, and  on  the Pentium as  well. (By the way, all  this is not 
just theory; I’ve timed the relative performances of LOOP and DEC CX/JNZ on a 
cached 386, and  LOOP really  is  slower.) 

Things  are  stranger stillfor LOOPk relative JCXZ, which branches ifand only if p CX is zero. JCXZ is  faster than AND CXCWJZ on the 8088  and  80286,  and 
equivalent  on the 80386-but is about  twice as slow  on  the 486! 

By the way, don’t fall  victim to the lures of JCXZ and  do  something like  this: 

and c x . o f h   : I s o l a t e   t h e   d e s i r e d   f i e l d  
j c x z  SkipLoop : I f   f i e l d  is  0,  don’ t   bo the r  

The AND instruction has already set  the Zero flag, so this 

and c x . 0 f h   : I s o l a t e   t h e   d e s i r e d   f i e l d  
j z  SkipLoop : I f   f i e l d  i s  0 .  don’ t   bo the r  

will do  just fine and is faster on all processors. Use JCXZ only  when the Zero  flag isn’t 
already set to reflect the status of CX. 

The Lessons of LOOP and JCXZ 
What can we learn  from LOOP and JCXZ? First, that  a single instruction that is 
intended to do a complex task is not necessarily faster than several instructions  that 
together do the same thing.  Second,  that  the relative merits of instructions and opti- 
mization rules vary to a surprisingly large degree across the x86  family. 
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In particular, if you’re going to write 386 protected  mode  code, which will run only 
on  the  386,486,  and  Pentium, you’d  be well advised to  rethink your use  of the  more 
esoteric members of the x86 instruction set. LOOP, JCXZ, the various accumulator- 
specific instructions, and even the string instructions in  many circumstances no longer 
offer the advantages they did on  the 8088. Sometimes they’re just  not any faster than 
more  general instructions, so they’re not worth going out of your way to use; some- 
times, as  with LOOP, they’re actually slower, and you’d do well to avoid them 
altogether in the 386/486 world. Reviewing the instruction cycle  times in  the MASM 
or TASM manuals, or looking over the cycle times in Intel’s literature, is a  good place 
to start; published cycle times are closer to actual execution times on  the 386 and 
486 than on the 8088, and  are reasonably reliable indicators of the relative perfor- 
mance levels  of  x86 instructions. 

Avoiding LOOPS of Any  Stripe 
Cycle counting and directly substituting instructions (DEC  CX/JNZ for LOOP, for 
example) are techniques  that  belong at  the lowest  level  of optimization. It’s an im- 
portant level, but it’s  fairly mechanical; once you’ve learned  the capabilities and 
relative performance levels  of the various instructions, you should be able to select 
the best instructions fairly easily. What’s more, this is a task at which compilers excel. 
What I’m saying  is that you shouldn’t get too  caught up in  counting cycles because 
that’s a small (albeit  important)  part of the optimization picture, and  not  the area in 
which your greatest advantage lies. 

Local Optimization 
One level at which  assembly language programming pays  off handsomely is that of 
local optimization; that is, selecting the best sequence of instructions  for  a task. The key 
to local optimization is viewing the 80x86 instruction set as a  set of building blocks, 
each with unique characteristics. Your job is to sequence those blocks so that they 
perform well. It doesn’t  matter what the  instructions are  intended to do  or what 
their  names  are; all that matters is what  they do. 
Our discussion of LOOP versus DEC/JNZ is an  excellent example of optimization 
by  cycle counting. It’s worth knowing, but  once you’ve learned it, you just routinely 
use DEC/JNZ at  the  bottom of loops in 386/486specific  code, and that’s that. Be- 
sides,  you’ll save at most a few  cycles each time, and while that  helps  a little, it’s not 
going to make all that much difference. 
Now let’s step back for  a  moment,  and with no preconceptions  consider what the 
x86 instruction set can do for us. The bulk of the time with both LOOP and DEC/ 
JNZ is taken up by branching, which just  happens to  be one of the slowest aspects of 
every processor in the x86  family, and  the rest is taken up by decrementing  the  count 
register and checking whether it’s zero. There may be ways to perform those tasks a 
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little  faster by selecting different instructions, but they can get only so fast, and branch- 
ing  can't even get all that fast. 

The trick, then, is not  to find the fastest way to decrement  a  count and branch 
conditionully, but  rather to figure  out how to accomplish the same result without 
decrementing  or  branching  as often. Remember the Kobiyashi  Muru  problem  in 
Star Trek? The  same  principle  applies  here:  Redefine  the  problem to one that of- 
fers better solutions. 

Consider Listing 7.1, which searches a buffer until  either  the specified  byte is found, 
a zero byte is found,  or  the specified number of characters have been checked. Such 
a function would be useful for scanning up to a maximum number of characters in a 
zero-terminated buffer.  Listing 7.1, which  uses LOOP in the main loop,  performs a 
search of the sample string for a period ('.') in 170 ps on a 20 MHz cached 386. 
When the LOOP in  Listing 7.1 is replaced with DEC CX/JNZ, performance im- 
proves  to 168 ps, less than 2 percent faster than Listing 7.1. Actually, instruction 
fetching, instruction alignment, cache characteristics, or something similar  is  affect- 
ing these results; I'd  expect a slightly larger improvement-around 7 percent-but 
that's the most that  counting cycles could buy us in this  case. (All right, already; 
LOOPNZ could  be used at  the  bottom of the  loop, and  other optimizations are 
surely  possible, but all that won't add  up to anywhere near  the benefits we're about 
to see from local optimization, and that's the whole point.) 

LISTING 7.1 17- 1 .ASM 
: Program t o   i l l u s t r a t e   s e a r c h i n g   t h r o u g h  a b u f f e r  o f  a s p e c i f i e d  
: l e n g t h   u n t i l   e i t h e r  a s p e c i f i e d   b y t e  o r  a z e r o   b y t e   i s  
: encountered. 
: A s t a n d a r d   l o o p   t e r m i n a t e d   w i t h  LOOP i s  used. 

.model  smal 1 
s t a c k  lOOh 
.da ta  

: Sample s t r i n g   t o   s e a r c h   t h r o u g h .  
S a m p l e s t r i n g   l a b e l   b y t e  

db ' T h i s   i s  a sample s t r i n g  o f  a l ong   enough   l eng th  ' 
db ' s o  t h a t  raw  searching  speed  can  outweigh  any ' 
db ' e x t r a   s e t - u p   t i m e   t h a t  may b e   r e q u i r e d . ' . O  

SAMPLE-STRING-LENGTH equ  $ -Samples t r ing  

: User  prompt. 
Prompt   db  'Enter   character  t o  s e a r c h   f o r : $ '  

; R e s u l t   s t a t u s  messages. 
ByteFoundMsg db 0dh.Oah 

ZeroByteFoundMsg  db 0dh.Oah 

NoByteFoundMsg db  0dh.Oah 

db   'Spec i f i ed   by te   f ound . ' ,Odh .Oah , ' $ '  

db   'Zero   by te  encountered.'.Odh.Oah.'$' 

db 'Buf fer   exhausted  wi th   no  rnatch. ' ,Odh.Oah. '$ '  
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,code 
S t a r t   p r o c   n e a r  

mov ax,Bdata  ;point  t o   s t a n d a r d   d a t a  segment 
mov ds.ax 
mov dx .o f fse t   Prompt  
mov ah.9 :OOS p r i n t   s t r i n g   f u n c t i o n  
i n t  21h  :prompt t h e   u s e r  
mov ah.1 :OOS g e t   k e y   f u n c t i o n  
i n t  21h  ;get   the  key t o   s e a r c h   f o r  
mov ah,al  
mov cx.SAMPLE-STRING-LENGTH :# o f   b y t e s   t o   s e a r c h  
mov s i   , o f f s e t   S a m p l e s t r i n g   : p o i n t   t o   b u f f e r   t o   s e a r c h  
c a l l  SearchMaxLength  :search t h e   b u f f e r  
mov d x , o f f s e t  ByteFoundMsg 
j c   P r i n t s t a t u s  

;assume we f o u n d   t h e   b y t e  
:we d i d   f i n d   t h e   b y t e  
;we d i d n ' t   f i n d   t h e   b y t e ,   f i g u r e   o u t  
:whether we found a z e r o   b y t e   o r  
: r a n   o u t   o f   b u f f e r  

;assume we d i d n ' t   f i n d  a z e r o   b y t e  

: p u t   c h a r a c t e r   t o   s e a r c h   f o r   i n  AH 

mov d x , o f f s e t  NoByteFoundMsg 

j c x z   P r i n t s t a t u s  ;we d i d n ' t   f i n d  a z e r o   b y t e  
mov dx,of fset   ZeroByteFoundMsg :we found a z e r o   b y t e  

mov ah.9 
i n t  21h 

:DOS p r i n t   s t r i n g   f u n c t i o n  
: r e p o r t   s t a t u s  

mov ah.4ch : r e t u r n   t o  OOS 
i n t   Z l h  

P r i n t s t a t u s :  

S t a r t  endp 

: F u n c t i o n   t o   s e a r c h  a b u f f e r  o f  a s p e c i f i e d   l e n g t h   u n t i l   e i t h e r  a 
: s p e c i f i e d   b y t e   o r  a z e r o   b y t e   i s   e n c o u n t e r e d .  
: I n p u t :  
; AH - c h a r a c t e r   t o   s e a r c h   f o r  
; C X  - maximum l e n g t h   t o  be  searched  (must  be > 0) 
: DS:SI - p o i n t e r   t o   b u f f e r   t o  be  searched 

: C X  - 0 i f  and o n l y  i f  we r a n   o u t   o f   b y t e s   w i t h o u t   f i n d i n g  

: DS:SI - p o i n t e r   t o   s e a r c h e d - f o r   b y t e  i f  found ,   o the rw ise   by te  

: o u t p u t :  

e i t h e r   t h e   d e s i r e d   b y t e   o r  a z e r o   b y t e  

a f t e r   z e r o   b y t e  i f  found. o t h e r w i s e   b y t e   a f t e r   l a s t  
byte  checked i f  n e i t h e r   s e a r c h e d - f o r   b y t e   n o r   z e r o  
b y t e   i s   f o u n d  

; Car ry   F lag  - s e t  i f  s e a r c h e d - f o r   b y t e   f o u n d ,   r e s e t   o t h e r w i s e  

SearchMaxLength  proc  near 

SearchMaxLengthLoop: 
c l  d 

1 odsb 
cmp a l .ah  
j z  ByteFound 
and  a1 . a l  
j z  ByteNotFound 
loop  SearchMaxLengthLoop 

ByteNotFound: 
c l  c 
r e t  

dec s i  

s t c  

ByteFound: 

: g e t   t h e   n e x t   b y t e  
; i s   t h i s   t h e   b y t e  we want? 
;yes.  we're  done w i th   success  
; i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
; yes .   we ' re   done   w i th   f a i l u re  
: i t ' s   n e i t h e r ,  so check   t he   nex t  
;by te ,  i f  any 

r e t u r n   " n o t   f o u n d "   s t a t u s  

p o i n t   b a c k   t o   t h e   l o c a t i o n   a t   w h i c h  
we f o u n d   t h e   s e a r c h e d - f o r   b y t e  
r e t u r n   " f o u n d "   s t a t u s  
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r e t  
SearchMaxLength  endp 

end S t a r t  

Unrolling Loops 
Listing 7.2 takes a different tack, unrolling  the  loop so that  four bytes are checked 
for  each LOOP performed.  The same instructions are used inside the loop in  each 
listing, but Listing 7.2 is arranged so that threequarters of the LOOPS are eliminated. 
Listings 7.1 and 7.2 perform exactly the same  task, and they  use the same instructions in 
the loop-the searching algorithm hasn't changed in  any way-but  we  have sequenced 
the  instructions differently in Listing 7.2, and that makes  all the difference. 

LISTING 7.2 17-2.ASM 
; Program t o   i l l u s t r a t e   s e a r c h i n g   t h r o u g h  a b u f f e r   o f  a s p e c i f i e d  
; l e n g t h   u n t i l  a s p e c i f i e d   z e r o   b y t e   i s   e n c o u n t e r e d .  
: A l o o p   u n r o l l e d   f o u r   t i m e s  and t e r m i n a t e d   w i t h  LOOP i s  used. 

.model sma l l  

. s t a c k  lOOh 

.da ta  
: Sample s t r i n g   t o   s e a r c h   t h r o u g h .  
Sampl e S t r i n g  1 abe l   by te  

db ' T h i s   i s  a sample s t r i n g   o f  a l o n g  enough l e n g t h  ' 
db 'so t h a t  raw  searching  speed  can  outweigh  any ' 
d b   ' e x t r a   s e t - u p   t i m e   t h a t  may be requ i red . ' .O  

SAMPLE-STRING-LENGTH equ $ -Samp les t r i ng  

Prompt  db ' E n t e r   c h a r a c t e r   t o   s e a r c h   f o r : $ '  
: User  prompt. 

: R e s u l t   s t a t u s  messages. 
ByteFoundMsg db Odh.Oah 

ZeroByteFoundMsg  db 0dh.Oah 

NoByteFoundMsg db  0dh.Oah 

db 'Spec i f ied   by te   found. ' .Odh.Oah. ' l '  

db ' Z e r o   b y t e  encountered. ' .Odh.Oah.'S' 

db 'Buf fer   exhausted  wi th   no  match. ' ,Odh.Oah. 'S '  

: T a b l e   o f   i n i t i a l ,   p o s s i b l y   p a r t i a l   l o o p   e n t r y   p o i n t s   f o r  
: SearchMaxLength. 
SearchMaxLengthEntryTable  label   word 

dw SearchMaxLengthEntry4 
dw SearchMaxLengthEntryl 
dw SearchMaxLengthEntry2 
dw SearchMaxLengthEntry3 

.code 
S t a r t   p r o c   n e a r  

mov ax ,@data   : po in t   t o   s tandard   da ta  segment 
mov ds.ax 
mov d x . o f f s e t  Prompt 
mov ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
i n t  21h  :prompt  the  user 
mov ah.1 :DOS g e t  key f u n c t i o n  
i n t  21h : g e t   t h e   k e y   t o   s e a r c h   f o r  
mov a h . a l   ; p u t   c h a r a c t e r   t o   s e a r c h   f o r   i n  AH 
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mov  cx.SAMPLELSTRING-LENGTH ;# o f   b y t e s   t o   s e a r c h  
mov s i   . o f f s e t   S a m p l e s t r i n g  
c a l l  SearchMaxLength 

; p o i n t   t o   b u f f e r   t o   s e a r c h  
; s e a r c h   t h e   b u f f e r  

mov d x . o f f s e t  ByteFoundMsg 
j c   P r i n t s t a t u s  

;assume we f o u n d   t h e   b y t e  
;we d i d   f i n d   t h e   b y t e  
;we d i d n ' t   f i n d   t h e   b y t e ,   f i g u r e   o u t  
;whether we found a z e r o   b y t e   o r  
; r a n   o u t   o f   b u f f e r  

;assume we d i d n ' t   f i n d  a z e r o   b y t e  
mov d x . o f f s e t  NoByteFoundMsg 

j c x z   P r i n t s t a t u s  ;we d i d n ' t   f i n d  a z e r o   b y t e  
mov d x , o f f s e t  ZeroByteFoundMsg ;we found a z e r o   b y t e  

mov ah.9 
i n t  21h 

P r i n t s t a t u s :  
;DOS p r i n t   s t r i n g   f u n c t i o n  
i r e p o r t   s t a t u s  

mov ah.4ch 
i n t  21h 

Start endp 

: r e t u r n   t o  DOS 

: F u n c t i o n   t o   s e a r c h  a b u f f e r   o f  a s p e c i f i e d   l e n g t h   u n t i l   e i t h e r  a 
; s p e c i f i e d   b y t e   o r  a z e r o   b y t e   i s   e n c o u n t e r e d .  
; I n p u t :  
; AH - c h a r a c t e r   t o   s e a r c h   f o r  
; C X  - maximum l e n g t h   t o  be  searched  (must  be > 0) 
: DS:SI - p o i n t e r   t o   b u f f e r   t o  be  searched 

; C X  - 0 i f  and o n l y  i f  we r a n   o u t   o f   b y t e s   w i t h o u t   f i n d i n g  

: DS:SI - p o i n t e r   t o   s e a r c h e d - f o r   b y t e  i f  f o u n d ,   o t h e r w i s e   b y t e  

: o u t p u t :  

e i t h e r   t h e   d e s i r e d   b y t e  o r  a z e r o   b y t e  

a f t e r   z e r o   b y t e  i f  f o u n d ,   o t h e r w i s e   b y t e   a f t e r   l a s t  
byte  checked i f  n e i t h e r   s e a r c h e d - f o r   b y t e   n o r   z e r o  
b y t e   i s   f o u n d  

: C a r r y   F l a g  - s e t  i f  s e a r c h e d - f o r   b y t e   f o u n d .   r e s e t   o t h e r w i s e  

SearchMaxLength  proc  near 
c l  d 
mov bx.cx 
add C X , ~  ; c a l c u l a t e   t h e  maximum I o f  passes 
s h r   c x . 1   ; t h r o u g h   t h e   l o o p ,   w h i c h   i s  
s h r   c x . 1   : u n r o l l e d  4 t imes  
a n d   b x . 3   ; c a l c u l a t e   t h e   i n d e x   i n t o   t h e   e n t r y  

; p o i n t   t a b l e   f o r   t h e   f i r s t ,  
; p o s s i b l y   p a r t i a l   l o o p  

s h l   b x . 1   : p r e p a r e   f o r  a w o r d - s i z e d   l o o k - u p  
jmp SearchMaxLengthEntryTable[bxl 

; b r a n c h   i n t o   t h e   u n r o l l e d   l o o p   t o  do 
: t h e   f i r s t ,   p o s s i b l y   p a r t i a l   l o o p  

SearchMaxLengthLoop: 
SearchMaxLengthEntry4: 

1 odsb : g e t   t h e   n e x t   b y t e  
cmp a 1  ,ah ; i s   t h i s   t h e   b y t e  we want? 
j z  ByteFound 
and  a1 .a1 

;yes.   we're  done  wi th  success 
: i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  

j z  By teNotFound  :yes ,   we ' re   done  w i th   fa i lu re  
SearchMaxLengthEntry3: 

1 odsb   ; ge t   t he   nex t   by te  
cmp a1  ,ah ; i s   t h i s   t h e   b y t e  we want? 
j z  ByteFound  ;yes.  we're  done  with  success 
and  a1  .a1 ; i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
j z  By teNotFound  ;yes ,   we ' re   done  w i th   fa i lu re  
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SearchMaxLengthEntry2: 
l odsb  : g e t   t h e   n e x t   b y t e  
cmp a1 ,ah : i s   t h i s   t h e   b y t e  we want? 
j z  EyteFound :yes.  we're  done  with  success 
and a1 .a1 : i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
j z  EyteNotFound : y e s .   w e ' r e   d o n e   w i t h   f a i l u r e  

1 odsb : g e t   t h e   n e x t   b y t e  
cmp  a1 ,ah ; i s  t h i s   t h e   b y t e  we want? 
jz ByteFound ;yes.  we're  done  with  success 
and a l . a l  : i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
j z  ByteNotFound : y e s .   w e ' r e   d o n e   w i t h   f a i l u r e  
l o o p  SearchMaxLengthLoop ; i t ' s   n e i t h e r .  s o  check   the   nex t  

SearchMaxLengthEntryl:  

; f o u r   b y t e s ,  i f  any 

c l  c : r e t u r n   " n o t   f o u n d "   s t a t u s  
r e t  

dec s i  : p o i n t   b a c k   t o   t h e   l o c a t i o n  a t  which 

s t c   : r e t u r n   " f o u n d "   s t a t u s  

ByteNotFound: 

ByteFound: 

: we found   the   sea rched- fo r   by te  

r e t  
SearchMaxLength  endp 

end S t a r t  

How much difference? Listing 7.2 runs  in 121 ps-40 percent faster than Listing 7.1, 
even though Listing 7.2 still  uses LOOP rather than DEC CX/JNZ. (The loop  in 
Listing 7.2 could  be  unrolled  further, too; it's just a question of  how much  more 
memory you  want to trade for ever-decreasing performance benefits.) That's typical 
of local optimization; it won't often yield the order-of-magnitude improvements that 
algorithmic improvements can produce,  but  it  can  get you a critical 50 percent  or 
100 percent  improvement when  you've exhausted all other avenues. 

The point  is simply this: You can gain far  more by stepping back a bit and thinking 1 of  the  fastest overall way for the CPU to  perform a task than you can by saving a 
cycle here or there usingdifferent instructions. T q  to  thinkat the level ofsequences 
of instructions rather than individual instructions, and learn to treat x86 instruc- 
tions as building blocks with unique characteristics rather than  as instructions 
dedicated to spec@ tasks. 

Rotating  and  Shifting  with Tables 
As another example  of  local optimization, consider the matter of rotating or shifting a 
mask into position.  First,  let's look at the simple task  of setting  bit N of AX to 1. 
The obvious way to do this is to place N in CL, rotate  the bit into position, and OR it 
with AX, as  follows: 

M O V  B X . l  
SHL EX.CL 
OR AX.BX 
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This solution is obvious because it takes good advantage of the special  ability  of the 
x86  family to shift or rotate by the variable number of bits specified by CL. However, 
it takes an average of about 45 cycles on  an 8088. It’s actually far faster to  precalculate 
the results, pass the bit number in BX, and look the  shifted bit up, as  shown  in 
Listing 7.3. 

LISTING 7.3 17-3.ASM 
SHL BX. l  : p r e p a r e   f o r   w o r d   s i z e d   l o o k   u p  
OR AX.ShiftTableCBX1 ; l o o k   u p   t h e   b i t  and OR it i n  

S h i f t T a b l e  LABEL WORD 
BIT-PATTERN-0001H 

REPT 16 
DW BIT-PATTERN 

ENOM 
BIT-PATTERN-BIT-PATTERN SHL 1 

Even though  it accesses  memory, this approach takes  only 20 cycles-more than 
twice as  fast  as the variable shift. Once  again, we were able  to improve performance 
considerably-not by knowing the fastest instructions,  but by selecting the fastest 
sequence of instructions. 
In  the  particular  example above, we once again run  into  the difficulty of optimizing 
across the x86  family. The table lookup is faster on the 8088 and 286, but it’s  slightly 
slower on the 386 and  no faster on  the 486.  However, 386/486specific  code  could 
use enhanced addressing to accomplish the whole job in  just  one instruction,  along 
the lines of the  code  snippet  in Listing 7.4. 

LISTING 7.4 17-4.ASM 
OR EAX,Shif tTableCEBX*4]  : look  up  the b i t  and OR i t  i n  

S h i f t T a b l e  LABEL DWORD 
BIT-PATTERN-0001H 

REPT 32 
DD BIT-PATTERN 

ENDM 
BIT-PATTERN-BIT-PATTERN SHL 1 

Besides illustrating the advantages of local optimization, this example also shows p that it generally pays toprecalculate results; this  is  often done at or before assem- 
bly time, butprecalculated tables can also be  built at run time. This is merely  one 
aspect of a fundamental optimization rule: Move as much work as  possible out of 
your critical code by whatever means necessary. 

NOT Flips Bits-Not Flags 
The NOT instruction flips  all the bits  in the  operand, from 0 to 1 or from 1 to 0. 
That’s as simple as could be, but NOT nonetheless has a  minor  but  interesting tal- 
ent: It doesn’t affect the flags. That can be irritating; I once  spent  a  good  hour tracking 
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down a bug caused by  my unconscious assumption that NOT does set the flags.  After 
all,  every other arithmetic and logical instruction sets the flags; why not NOT? Prob- 
ably  because NOT isn’t considered to be an arithmetic or logical instruction at all; 
rather, it’s a data  manipulation  instruction, like MOV and the various rotates. (These 
are RCR,  RCL, ROR, and ROL, which  affect  only the Carry and Overflow  flags.) 
NOT is often used for tasks, such as flipping masks,  where there’s no reason to  test 
the state of the result, and in that  context it can be handy to keep  the flags unmodi- 
fied for later testing. 

Besides, fyou want to NOT an  operand  and  set theJags in the process, you can p just XOR it  with -1. Put  another way, the only functional d@rence  between NOT 
AX and XOR AX,OFFFF’H is that XOR modifies the Jags and NOT doesn ’t. 

The x86 instruction set offers  many ways to  accomplish  almost  any  task. Understand- 
ing  the subtle distinctions between the instructions-whether and which  flags are 
set, for example-can be critical when you’re  trying  to optimize a code  sequence 
and you’re running  out of registers, or when you’re trying to minimize branching. 

Incrementing with  and  without Carry 
Another case in which there  are two slightly different ways to perform a task  involves 
adding 1 to an operand. You can do this  with INC, as in INC A X ,  or you can do it with 
ADD, as in ADD AX,1. What’s the difference? The obvious difference is that INC is 
usually a byte or two shorter (the exception  being ADD &,I, which at two bytes  is the 
same length as INC A L )  , and is faster on some processors.  Less  obvious, but  no less 
important, is that ADD sets the Carry  flag  while INC leaves the Carry  flag untouched. 
W h y  is that  important? Because  it  allows INC to function as a data  pointer manipula- 
tion instruction for multi-word arithmetic. You can use INC to advance the  pointers 
in code like that shown in Listing 7.5 without having  to do any  work to preserve the 
Carry  status from one addition to the next. 

LISTING 7.5 17-5.ASM 

LOOP-TOP: 
c LC ; c l e a r   t h e   C a r r y   f o r   t h e   i n i t i a l   a d d i t i o n  

MOV AX. [SI ] ;get   next   source  operand  word 
ADC COI1,AX;add w i t h   C a r r y   t o   d e s t   o p e r a n d   w o r d  
I N C  SI  ; p o i n t   t o   n e x t   s o u r c e   o p e r a n d   w o r d  
I N C  S I  
I N C  D I  
I N C  D l  
LOOP LOOP-TOP 

; p o i n t   t o   n e x t   d e s t   o p e r a n d   w o r d  

If ADD were used, the Carry  flag  would  have to  be saved  between additions, with 
code  along  the lines shown in Listing 7.6. 
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LISTING 7.6 L7-6.ASM 
CLC ; c l e a r   t h e   c a r r y   f o r   t h e   i n i t i a l   a d d i t i o n  

LOOP-TOP: 
MOV A X . C S 1 1  ;get   next   source  operand  word 
ADC [ D I I . A X  ;add w i t h   c a r r y   t o   d e s t   o p e r a n d   w o r d  
LAH F ; s e t   a s i d e   t h e   c a r r y   f l a g  
ADD SI.2 
ADD D I . 2  

: p o i n t  t o  next  source  operand  word 

SAHF 
; p o i n t   t o   n e x t   d e s t   o p e r a n d   w o r d  
; r e s t o r e   t h e   c a r r y   f l a g  

LOOP  LOOP-TOP 

It’s not  that  the Listing  7.6 approach is necessarily better or worse; that  depends  on the 
processor and the situation. The Listing  7.6 approach is di&mt, and if you understand 
the differences,  you’ll  be  able  to  choose the best approach  for whatever  code  you hap  
pen to write. (DEC has the same property of preserving the Carry  flag, by the way.) 
There  are  a couple of interesting aspects to the last example. First, note that LOOP 
doesn’t affect any  flags at all; this allows the Carry  flag  to remain  unchanged  from 
one addition to the  next. Not altering  the  arithmetic flags  is a  common  characteris- 
tic  of program  control  instructions  (as  opposed  to  arithmetic and logical instructions 
like SUB and AND, which do alter  the  flags). 

The rule is not  that  the arithmetic Jags change  whenever  the CPU performs a p calculation; rathei: theflags change  whenever you execute an arithmetic, logical, 
orflag control  (such as CLC to clear the Carryflag) instruction. 

Not only do LOOP and JCXZ not alter  the flags, but REP MOVS, which counts down 
CX to 0, doesn’t affect the flags either. 
The  other interesting  point  about  the last example is the use of LAHF and SAHF, 
which transfer  the low byte  of the FLAGS register to and from AH, respectively. These 
instructions were created to help provide compatibility with the 8080’s (that’s 8080, 
not 8088) PUSH PSW and POP PSW instructions,  but  turn out to  be  compact (one 
byte) instructions  for saving and restoring  the  arithmetic flags. A word of caution, 
however: SAHF restores  the Carry, Zero, Sign, Auxiliary  Carry, and Parity  flags-but 
not the Overflow flag, which resides in  the  high byte  of the FLAGS register. Also, be 
aware that LAHF and SAHF provide a fast way to preserve the flags on an 8088 but 
are relatively slow instructions on  the 486 and  Pentium. 
There  are times when it’s a  clear liability that INC doesn’t  set  the Carry  flag. For 
instance 

INC AX 
AOC DX.0 

does not increment the 32-bit  value in DX:AX. To do that, you’d need the following: 

ADD A X . l  
ADC DX.0 

As always,  pay attention! 
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