
chapter 7

local optimization

You might not think hhbut there’s much to learn about performance programming
from the Great Buffald- .Fiasco. To wit:
The scene is Buffalo, j4ew York, in the dead of winter, with the snow piled several feet
deep. Four college &dents, living in typical student housing, are frozen to the bone.
The third floor of their house, uninsulated and so cold that it’s uninhabitable, has an
ancient bathrooW6One fabulously cold day, inspiration strikes:
“Hey-we could make that bathroom into a sauna! ”

Pandemonium ensuks. Someone rushes out and buys a gas heater, and at consider-
able risk to life and limb hooks it up to an abandoned but still live gas pipe that once
fed a stove on the third floor. Someone else gets sheets of plastic and lines the walls
of the bathroom to keep the moisture in, and yet another student gets a bucket full
of rocks. The remaining chap brings up some old wooden chairs and sets them up to
make benches along the sides of the bathroom. Voila-instant sauna!
They crank up the gas heater, put the bucket of rocks in front of it, close the door,
take off their clothes, and sit down to steam themselves. Mind you, it’s not yet 50 degrees
Fahrenheit in this room, but the gas heater is roaring. Surely warmer times await.
Indeed they do. The temperature climbs to 55 degrees, then 60, then 63, then 65,
and finally creeps up to 68 degrees.

.&“3g$$@@”q

137

optimizing halfway between algorithms and cycle countingoptimizing halfway between algorithms and cycle counting

And there it stops.
68 degrees is warm for an uninsulated third floor in Buffalo in the dead of winter.
Damn warm. It is not, however, particularly warm for a sauna. Eventually someone
acknowledges the obvious and allows that it might have been a stupid idea after all, and
everyone agrees, and they shut off the heater and leave, each no doubt offering silent
thanks that they had gotten out of this without any incidents requiring major surgery.
And so we see that the best idea in the world can fail for lack of either proper design
or adequate horsepower. The primary cause of the Great Buffalo Sauna Fiasco was a
lack of horsepower; the gas heater was flat-out undersized. This is analogous to try-
ing to write programs that incorporate features like bitmapped text and searching of
multisegment buffers without using high-performance assembly language. Any PC
language can perform just about any function you can think of-eventually. That
heater would eventually have heated the room to 110 degrees, too-along about the
first of June or so.
The Great Buffalo Sauna Fiasco also suffered from fundamental design flaws. A more
powerful heater would indeed have made the room hotter-and might well have
burned the house down in the process. Likewise, proper algorithm selection and
good design are fundamental to performance. The extra horsepower a superb as-
sembly language implementation gives a program is worth bothering with only in
the context of a good design.

P Assembly language optimization is a small but crucial corner of the PCpmgramming
world. Use it sparingly and only within the framework of a good design-but ignore it
and you mayjind various portions of your anatomy out in the cold.

So, drawing fortitude from the knowledge that our quest is a pure and worthy one,
let’s resume our exploration of assembly language instructions with hidden talents
and instructions with well-known talents that are less than they appear to be. In the
process, we’ll come to see that there is another, very important optimization level
between the algorithm/design level and the cycle-counting/individual instruction
level. I’ll call this middle level local optimization; it involves focusing on optimizing
sequences of instructions rather than individual instructions, all with an eye to imple-
menting designs as efficiently as possible given the capabilities of the x86 family
instruction set.
And yes, in case you’re wondering, the above story is indeed true. Was I there? Let
me put it this way: If I were, I’d never admit it!

When L O O P Is a Bad Idea
Let’s examine first an instruction that is less than it appears to be: LOOP. There’s no
mystery about what LOOP does; it decrements CX and branches if CX doesn’t dec-
rement to zero. It’s so beautifully suited to the task of counting down loops that any

138 Chapter 7

experienced x86 programmer instinctively stuffs the loop count in CX and reaches
for LOOP when setting up a loop. That’s fine-LOOP does, of course, work as ad-
vertised-but there is one problem:

On halfofthe processors in the x86family, LOOP is slower than DEC CXfollowed by p JNZ. (Granted, DEC CWJNZ isn ’tprecisely equivalent to LOOE because DEC al-
ters the Jags and LOOP doesn ?, but in most situations they >e comparable.)

How can this be? Don’t ask me, ask Intel. On the 8088 and 80286, LOOP is indeed
faster than DEC CX/JNZ by a cycle, and LOOP is generally a little faster still be-
cause it’s a byte shorter and so can be fetched faster. On the 386, however, things
change; LOOP is two cycles slower than DEC/JNZ, and the fetch time for one extra
byte on even an uncached 386 generally isn’t significant. (Remember that the 386
fetches four instruction bytes at a pop.) LOOP is three cycles slower than DEC/JNZ
on the 486, and the 486 executes instructions in so few cycles that those three cycles
mean that DEC/JNZ is nearly twice as fast as LOOP. Then, too, unlike LOOP, DEC
doesn’t require that CX be used, so the DEC/JNZ solution is both faster and more
flexible on the 386 and 486, and on the Pentium as well. (By the way, all this is not
just theory; I’ve timed the relative performances of LOOP and DEC CX/JNZ on a
cached 386, and LOOP really is slower.)

Things are stranger stillfor LOOPk relative JCXZ, which branches ifand only if p CX is zero. JCXZ is faster than AND CXCWJZ on the 8088 and 80286, and
equivalent on the 80386-but is about twice as slow on the 486!

By the way, don’t fall victim to the lures of JCXZ and do something like this:

and c x . o f h : I s o l a t e t h e d e s i r e d f i e l d
j c x z SkipLoop : I f f i e l d is 0, don’ t bo the r

The AND instruction has already set the Zero flag, so this

and c x . 0 f h : I s o l a t e t h e d e s i r e d f i e l d
j z SkipLoop : I f f i e l d i s 0 . don’ t bo the r

will do just fine and is faster on all processors. Use JCXZ only when the Zero flag isn’t
already set to reflect the status of CX.

The Lessons of LOOP and JCXZ
What can we learn from LOOP and JCXZ? First, that a single instruction that is
intended to do a complex task is not necessarily faster than several instructions that
together do the same thing. Second, that the relative merits of instructions and opti-
mization rules vary to a surprisingly large degree across the x86 family.

~ocal Optimization 139

In particular, if you’re going to write 386 protected mode code, which will run only
on the 386,486, and Pentium, you’d be well advised to rethink your use of the more
esoteric members of the x86 instruction set. LOOP, JCXZ, the various accumulator-
specific instructions, and even the string instructions in many circumstances no longer
offer the advantages they did on the 8088. Sometimes they’re just not any faster than
more general instructions, so they’re not worth going out of your way to use; some-
times, as with LOOP, they’re actually slower, and you’d do well to avoid them
altogether in the 386/486 world. Reviewing the instruction cycle times in the MASM
or TASM manuals, or looking over the cycle times in Intel’s literature, is a good place
to start; published cycle times are closer to actual execution times on the 386 and
486 than on the 8088, and are reasonably reliable indicators of the relative perfor-
mance levels of x86 instructions.

Avoiding LOOPS of Any Stripe
Cycle counting and directly substituting instructions (DEC CX/JNZ for LOOP, for
example) are techniques that belong at the lowest level of optimization. It’s an im-
portant level, but it’s fairly mechanical; once you’ve learned the capabilities and
relative performance levels of the various instructions, you should be able to select
the best instructions fairly easily. What’s more, this is a task at which compilers excel.
What I’m saying is that you shouldn’t get too caught up in counting cycles because
that’s a small (albeit important) part of the optimization picture, and not the area in
which your greatest advantage lies.

Local Optimization
One level at which assembly language programming pays off handsomely is that of
local optimization; that is, selecting the best sequence of instructions for a task. The key
to local optimization is viewing the 80x86 instruction set as a set of building blocks,
each with unique characteristics. Your job is to sequence those blocks so that they
perform well. It doesn’t matter what the instructions are intended to do or what
their names are; all that matters is what they do.
Our discussion of LOOP versus DEC/JNZ is an excellent example of optimization
by cycle counting. It’s worth knowing, but once you’ve learned it, you just routinely
use DEC/JNZ at the bottom of loops in 386/486specific code, and that’s that. Be-
sides, you’ll save at most a few cycles each time, and while that helps a little, it’s not
going to make all that much difference.
Now let’s step back for a moment, and with no preconceptions consider what the
x86 instruction set can do for us. The bulk of the time with both LOOP and DEC/
JNZ is taken up by branching, which just happens to be one of the slowest aspects of
every processor in the x86 family, and the rest is taken up by decrementing the count
register and checking whether it’s zero. There may be ways to perform those tasks a

1 40 Chapter 7

little faster by selecting different instructions, but they can get only so fast, and branch-
ing can't even get all that fast.

The trick, then, is not to find the fastest way to decrement a count and branch
conditionully, but rather to figure out how to accomplish the same result without
decrementing or branching as often. Remember the Kobiyashi Muru problem in
Star Trek? The same principle applies here: Redefine the problem to one that of-
fers better solutions.

Consider Listing 7.1, which searches a buffer until either the specified byte is found,
a zero byte is found, or the specified number of characters have been checked. Such
a function would be useful for scanning up to a maximum number of characters in a
zero-terminated buffer. Listing 7.1, which uses LOOP in the main loop, performs a
search of the sample string for a period ('.') in 170 ps on a 20 MHz cached 386.
When the LOOP in Listing 7.1 is replaced with DEC CX/JNZ, performance im-
proves to 168 ps, less than 2 percent faster than Listing 7.1. Actually, instruction
fetching, instruction alignment, cache characteristics, or something similar is affect-
ing these results; I'd expect a slightly larger improvement-around 7 percent-but
that's the most that counting cycles could buy us in this case. (All right, already;
LOOPNZ could be used at the bottom of the loop, and other optimizations are
surely possible, but all that won't add up to anywhere near the benefits we're about
to see from local optimization, and that's the whole point.)

LISTING 7.1 17- 1 .ASM
: Program t o i l l u s t r a t e s e a r c h i n g t h r o u g h a b u f f e r o f a s p e c i f i e d
: l e n g t h u n t i l e i t h e r a s p e c i f i e d b y t e o r a z e r o b y t e i s
: encountered.
: A s t a n d a r d l o o p t e r m i n a t e d w i t h LOOP i s used.

.model smal 1
s t a c k lOOh
.da ta

: Sample s t r i n g t o s e a r c h t h r o u g h .
S a m p l e s t r i n g l a b e l b y t e

db ' T h i s i s a sample s t r i n g o f a l ong enough l eng th '
db ' s o t h a t raw searching speed can outweigh any '
db ' e x t r a s e t - u p t i m e t h a t may b e r e q u i r e d . ' . O

SAMPLE-STRING-LENGTH equ $ -Samples t r ing

: User prompt.
Prompt db 'Enter character t o s e a r c h f o r : $ '

; R e s u l t s t a t u s messages.
ByteFoundMsg db 0dh.Oah

ZeroByteFoundMsg db 0dh.Oah

NoByteFoundMsg db 0dh.Oah

db 'Spec i f i ed by te f ound . ' ,Odh .Oah , ' $ '

db 'Zero by te encountered.'.Odh.Oah.'$'

db 'Buf fer exhausted wi th no rnatch. ' ,Odh.Oah. '$ '

Local Optimization 141

,code
S t a r t p r o c n e a r

mov ax,Bdata ;point t o s t a n d a r d d a t a segment
mov ds.ax
mov dx .o f fse t Prompt
mov ah.9 :OOS p r i n t s t r i n g f u n c t i o n
i n t 21h :prompt t h e u s e r
mov ah.1 :OOS g e t k e y f u n c t i o n
i n t 21h ;get the key t o s e a r c h f o r
mov ah,al
mov cx.SAMPLE-STRING-LENGTH :# o f b y t e s t o s e a r c h
mov s i , o f f s e t S a m p l e s t r i n g : p o i n t t o b u f f e r t o s e a r c h
c a l l SearchMaxLength :search t h e b u f f e r
mov d x , o f f s e t ByteFoundMsg
j c P r i n t s t a t u s

;assume we f o u n d t h e b y t e
:we d i d f i n d t h e b y t e
;we d i d n ' t f i n d t h e b y t e , f i g u r e o u t
:whether we found a z e r o b y t e o r
: r a n o u t o f b u f f e r

;assume we d i d n ' t f i n d a z e r o b y t e

: p u t c h a r a c t e r t o s e a r c h f o r i n AH

mov d x , o f f s e t NoByteFoundMsg

j c x z P r i n t s t a t u s ;we d i d n ' t f i n d a z e r o b y t e
mov dx,of fset ZeroByteFoundMsg :we found a z e r o b y t e

mov ah.9
i n t 21h

:DOS p r i n t s t r i n g f u n c t i o n
: r e p o r t s t a t u s

mov ah.4ch : r e t u r n t o OOS
i n t Z l h

P r i n t s t a t u s :

S t a r t endp

: F u n c t i o n t o s e a r c h a b u f f e r o f a s p e c i f i e d l e n g t h u n t i l e i t h e r a
: s p e c i f i e d b y t e o r a z e r o b y t e i s e n c o u n t e r e d .
: I n p u t :
; AH - c h a r a c t e r t o s e a r c h f o r
; C X - maximum l e n g t h t o be searched (must be > 0)
: DS:SI - p o i n t e r t o b u f f e r t o be searched

: C X - 0 i f and o n l y i f we r a n o u t o f b y t e s w i t h o u t f i n d i n g

: DS:SI - p o i n t e r t o s e a r c h e d - f o r b y t e i f found , o the rw ise by te

: o u t p u t :

e i t h e r t h e d e s i r e d b y t e o r a z e r o b y t e

a f t e r z e r o b y t e i f found. o t h e r w i s e b y t e a f t e r l a s t
byte checked i f n e i t h e r s e a r c h e d - f o r b y t e n o r z e r o
b y t e i s f o u n d

; Car ry F lag - s e t i f s e a r c h e d - f o r b y t e f o u n d , r e s e t o t h e r w i s e

SearchMaxLength proc near

SearchMaxLengthLoop:
c l d

1 odsb
cmp a l .ah
j z ByteFound
and a1 . a l
j z ByteNotFound
loop SearchMaxLengthLoop

ByteNotFound:
c l c
r e t

dec s i

s t c

ByteFound:

: g e t t h e n e x t b y t e
; i s t h i s t h e b y t e we want?
;yes. we're done w i th success
; i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
; yes . we ' re done w i th f a i l u re
: i t ' s n e i t h e r , so check t he nex t
;by te , i f any

r e t u r n " n o t f o u n d " s t a t u s

p o i n t b a c k t o t h e l o c a t i o n a t w h i c h
we f o u n d t h e s e a r c h e d - f o r b y t e
r e t u r n " f o u n d " s t a t u s

142 Chapter 7

r e t
SearchMaxLength endp

end S t a r t

Unrolling Loops
Listing 7.2 takes a different tack, unrolling the loop so that four bytes are checked
for each LOOP performed. The same instructions are used inside the loop in each
listing, but Listing 7.2 is arranged so that threequarters of the LOOPS are eliminated.
Listings 7.1 and 7.2 perform exactly the same task, and they use the same instructions in
the loop-the searching algorithm hasn't changed in any way-but we have sequenced
the instructions differently in Listing 7.2, and that makes all the difference.

LISTING 7.2 17-2.ASM
; Program t o i l l u s t r a t e s e a r c h i n g t h r o u g h a b u f f e r o f a s p e c i f i e d
; l e n g t h u n t i l a s p e c i f i e d z e r o b y t e i s e n c o u n t e r e d .
: A l o o p u n r o l l e d f o u r t i m e s and t e r m i n a t e d w i t h LOOP i s used.

.model sma l l

. s t a c k lOOh

.da ta
: Sample s t r i n g t o s e a r c h t h r o u g h .
Sampl e S t r i n g 1 abe l by te

db ' T h i s i s a sample s t r i n g o f a l o n g enough l e n g t h '
db 'so t h a t raw searching speed can outweigh any '
d b ' e x t r a s e t - u p t i m e t h a t may be requ i red . ' .O

SAMPLE-STRING-LENGTH equ $ -Samp les t r i ng

Prompt db ' E n t e r c h a r a c t e r t o s e a r c h f o r : $ '
: User prompt.

: R e s u l t s t a t u s messages.
ByteFoundMsg db Odh.Oah

ZeroByteFoundMsg db 0dh.Oah

NoByteFoundMsg db 0dh.Oah

db 'Spec i f ied by te found. ' .Odh.Oah. ' l '

db ' Z e r o b y t e encountered. ' .Odh.Oah.'S'

db 'Buf fer exhausted wi th no match. ' ,Odh.Oah. 'S '

: T a b l e o f i n i t i a l , p o s s i b l y p a r t i a l l o o p e n t r y p o i n t s f o r
: SearchMaxLength.
SearchMaxLengthEntryTable label word

dw SearchMaxLengthEntry4
dw SearchMaxLengthEntryl
dw SearchMaxLengthEntry2
dw SearchMaxLengthEntry3

.code
S t a r t p r o c n e a r

mov ax ,@data : po in t t o s tandard da ta segment
mov ds.ax
mov d x . o f f s e t Prompt
mov ah.9 :DOS p r i n t s t r i n g f u n c t i o n
i n t 21h :prompt the user
mov ah.1 :DOS g e t key f u n c t i o n
i n t 21h : g e t t h e k e y t o s e a r c h f o r
mov a h . a l ; p u t c h a r a c t e r t o s e a r c h f o r i n AH

Local Optimization 143

mov cx.SAMPLELSTRING-LENGTH ;# o f b y t e s t o s e a r c h
mov s i . o f f s e t S a m p l e s t r i n g
c a l l SearchMaxLength

; p o i n t t o b u f f e r t o s e a r c h
; s e a r c h t h e b u f f e r

mov d x . o f f s e t ByteFoundMsg
j c P r i n t s t a t u s

;assume we f o u n d t h e b y t e
;we d i d f i n d t h e b y t e
;we d i d n ' t f i n d t h e b y t e , f i g u r e o u t
;whether we found a z e r o b y t e o r
; r a n o u t o f b u f f e r

;assume we d i d n ' t f i n d a z e r o b y t e
mov d x . o f f s e t NoByteFoundMsg

j c x z P r i n t s t a t u s ;we d i d n ' t f i n d a z e r o b y t e
mov d x , o f f s e t ZeroByteFoundMsg ;we found a z e r o b y t e

mov ah.9
i n t 21h

P r i n t s t a t u s :
;DOS p r i n t s t r i n g f u n c t i o n
i r e p o r t s t a t u s

mov ah.4ch
i n t 21h

Start endp

: r e t u r n t o DOS

: F u n c t i o n t o s e a r c h a b u f f e r o f a s p e c i f i e d l e n g t h u n t i l e i t h e r a
; s p e c i f i e d b y t e o r a z e r o b y t e i s e n c o u n t e r e d .
; I n p u t :
; AH - c h a r a c t e r t o s e a r c h f o r
; C X - maximum l e n g t h t o be searched (must be > 0)
: DS:SI - p o i n t e r t o b u f f e r t o be searched

; C X - 0 i f and o n l y i f we r a n o u t o f b y t e s w i t h o u t f i n d i n g

: DS:SI - p o i n t e r t o s e a r c h e d - f o r b y t e i f f o u n d , o t h e r w i s e b y t e

: o u t p u t :

e i t h e r t h e d e s i r e d b y t e o r a z e r o b y t e

a f t e r z e r o b y t e i f f o u n d , o t h e r w i s e b y t e a f t e r l a s t
byte checked i f n e i t h e r s e a r c h e d - f o r b y t e n o r z e r o
b y t e i s f o u n d

: C a r r y F l a g - s e t i f s e a r c h e d - f o r b y t e f o u n d . r e s e t o t h e r w i s e

SearchMaxLength proc near
c l d
mov bx.cx
add C X , ~ ; c a l c u l a t e t h e maximum I o f passes
s h r c x . 1 ; t h r o u g h t h e l o o p , w h i c h i s
s h r c x . 1 : u n r o l l e d 4 t imes
a n d b x . 3 ; c a l c u l a t e t h e i n d e x i n t o t h e e n t r y

; p o i n t t a b l e f o r t h e f i r s t ,
; p o s s i b l y p a r t i a l l o o p

s h l b x . 1 : p r e p a r e f o r a w o r d - s i z e d l o o k - u p
jmp SearchMaxLengthEntryTable[bxl

; b r a n c h i n t o t h e u n r o l l e d l o o p t o do
: t h e f i r s t , p o s s i b l y p a r t i a l l o o p

SearchMaxLengthLoop:
SearchMaxLengthEntry4:

1 odsb : g e t t h e n e x t b y t e
cmp a 1 ,ah ; i s t h i s t h e b y t e we want?
j z ByteFound
and a1 .a1

;yes. we're done wi th success
: i s t h i s t h e t e r m i n a t i n g 0 b y t e ?

j z By teNotFound :yes , we ' re done w i th fa i lu re
SearchMaxLengthEntry3:

1 odsb ; ge t t he nex t by te
cmp a1 ,ah ; i s t h i s t h e b y t e we want?
j z ByteFound ;yes. we're done with success
and a1 .a1 ; i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
j z By teNotFound ;yes , we ' re done w i th fa i lu re

144 Chapter 7

SearchMaxLengthEntry2:
l odsb : g e t t h e n e x t b y t e
cmp a1 ,ah : i s t h i s t h e b y t e we want?
j z EyteFound :yes. we're done with success
and a1 .a1 : i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
j z EyteNotFound : y e s . w e ' r e d o n e w i t h f a i l u r e

1 odsb : g e t t h e n e x t b y t e
cmp a1 ,ah ; i s t h i s t h e b y t e we want?
jz ByteFound ;yes. we're done with success
and a l . a l : i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
j z ByteNotFound : y e s . w e ' r e d o n e w i t h f a i l u r e
l o o p SearchMaxLengthLoop ; i t ' s n e i t h e r . s o check the nex t

SearchMaxLengthEntryl:

; f o u r b y t e s , i f any

c l c : r e t u r n " n o t f o u n d " s t a t u s
r e t

dec s i : p o i n t b a c k t o t h e l o c a t i o n a t which

s t c : r e t u r n " f o u n d " s t a t u s

ByteNotFound:

ByteFound:

: we found the sea rched- fo r by te

r e t
SearchMaxLength endp

end S t a r t

How much difference? Listing 7.2 runs in 121 ps-40 percent faster than Listing 7.1,
even though Listing 7.2 still uses LOOP rather than DEC CX/JNZ. (The loop in
Listing 7.2 could be unrolled further, too; it's just a question of how much more
memory you want to trade for ever-decreasing performance benefits.) That's typical
of local optimization; it won't often yield the order-of-magnitude improvements that
algorithmic improvements can produce, but it can get you a critical 50 percent or
100 percent improvement when you've exhausted all other avenues.

The point is simply this: You can gain far more by stepping back a bit and thinking 1 of the fastest overall way for the CPU to perform a task than you can by saving a
cycle here or there usingdifferent instructions. T q to thinkat the level ofsequences
of instructions rather than individual instructions, and learn to treat x86 instruc-
tions as building blocks with unique characteristics rather than as instructions
dedicated to spec@ tasks.

Rotating and Shifting with Tables
As another example of local optimization, consider the matter of rotating or shifting a
mask into position. First, let's look at the simple task of setting bit N of AX to 1.
The obvious way to do this is to place N in CL, rotate the bit into position, and OR it
with AX, as follows:

M O V B X . l
SHL EX.CL
OR AX.BX

Local Optimization 145

This solution is obvious because it takes good advantage of the special ability of the
x86 family to shift or rotate by the variable number of bits specified by CL. However,
it takes an average of about 45 cycles on an 8088. It’s actually far faster to precalculate
the results, pass the bit number in BX, and look the shifted bit up, as shown in
Listing 7.3.

LISTING 7.3 17-3.ASM
SHL BX. l : p r e p a r e f o r w o r d s i z e d l o o k u p
OR AX.ShiftTableCBX1 ; l o o k u p t h e b i t and OR it i n

S h i f t T a b l e LABEL WORD
BIT-PATTERN-0001H

REPT 16
DW BIT-PATTERN

ENOM
BIT-PATTERN-BIT-PATTERN SHL 1

Even though it accesses memory, this approach takes only 20 cycles-more than
twice as fast as the variable shift. Once again, we were able to improve performance
considerably-not by knowing the fastest instructions, but by selecting the fastest
sequence of instructions.
In the particular example above, we once again run into the difficulty of optimizing
across the x86 family. The table lookup is faster on the 8088 and 286, but it’s slightly
slower on the 386 and no faster on the 486. However, 386/486specific code could
use enhanced addressing to accomplish the whole job in just one instruction, along
the lines of the code snippet in Listing 7.4.

LISTING 7.4 17-4.ASM
OR EAX,Shif tTableCEBX*4] : look up the b i t and OR i t i n

S h i f t T a b l e LABEL DWORD
BIT-PATTERN-0001H

REPT 32
DD BIT-PATTERN

ENDM
BIT-PATTERN-BIT-PATTERN SHL 1

Besides illustrating the advantages of local optimization, this example also shows p that it generally pays toprecalculate results; this is often done at or before assem-
bly time, butprecalculated tables can also be built at run time. This is merely one
aspect of a fundamental optimization rule: Move as much work as possible out of
your critical code by whatever means necessary.

NOT Flips Bits-Not Flags
The NOT instruction flips all the bits in the operand, from 0 to 1 or from 1 to 0.
That’s as simple as could be, but NOT nonetheless has a minor but interesting tal-
ent: It doesn’t affect the flags. That can be irritating; I once spent a good hour tracking

146 Chapter 7

down a bug caused by my unconscious assumption that NOT does set the flags. After
all, every other arithmetic and logical instruction sets the flags; why not NOT? Prob-
ably because NOT isn’t considered to be an arithmetic or logical instruction at all;
rather, it’s a data manipulation instruction, like MOV and the various rotates. (These
are RCR, RCL, ROR, and ROL, which affect only the Carry and Overflow flags.)
NOT is often used for tasks, such as flipping masks, where there’s no reason to test
the state of the result, and in that context it can be handy to keep the flags unmodi-
fied for later testing.

Besides, fyou want to NOT an operand and set theJags in the process, you can p just XOR it with -1. Put another way, the only functional d@rence between NOT
AX and XOR AX,OFFFF’H is that XOR modifies the Jags and NOT doesn ’t.

The x86 instruction set offers many ways to accomplish almost any task. Understand-
ing the subtle distinctions between the instructions-whether and which flags are
set, for example-can be critical when you’re trying to optimize a code sequence
and you’re running out of registers, or when you’re trying to minimize branching.

Incrementing with and without Carry
Another case in which there are two slightly different ways to perform a task involves
adding 1 to an operand. You can do this with INC, as in INC A X , or you can do it with
ADD, as in ADD AX,1. What’s the difference? The obvious difference is that INC is
usually a byte or two shorter (the exception being ADD &,I, which at two bytes is the
same length as INC A L) , and is faster on some processors. Less obvious, but no less
important, is that ADD sets the Carry flag while INC leaves the Carry flag untouched.
W h y is that important? Because it allows INC to function as a data pointer manipula-
tion instruction for multi-word arithmetic. You can use INC to advance the pointers
in code like that shown in Listing 7.5 without having to do any work to preserve the
Carry status from one addition to the next.

LISTING 7.5 17-5.ASM

LOOP-TOP:
c LC ; c l e a r t h e C a r r y f o r t h e i n i t i a l a d d i t i o n

MOV AX. [SI] ;get next source operand word
ADC COI1,AX;add w i t h C a r r y t o d e s t o p e r a n d w o r d
I N C SI ; p o i n t t o n e x t s o u r c e o p e r a n d w o r d
I N C S I
I N C D I
I N C D l
LOOP LOOP-TOP

; p o i n t t o n e x t d e s t o p e r a n d w o r d

If ADD were used, the Carry flag would have to be saved between additions, with
code along the lines shown in Listing 7.6.

Local Optimization 147

LISTING 7.6 L7-6.ASM
CLC ; c l e a r t h e c a r r y f o r t h e i n i t i a l a d d i t i o n

LOOP-TOP:
MOV A X . C S 1 1 ;get next source operand word
ADC [D I I . A X ;add w i t h c a r r y t o d e s t o p e r a n d w o r d
LAH F ; s e t a s i d e t h e c a r r y f l a g
ADD SI.2
ADD D I . 2

: p o i n t t o next source operand word

SAHF
; p o i n t t o n e x t d e s t o p e r a n d w o r d
; r e s t o r e t h e c a r r y f l a g

LOOP LOOP-TOP

It’s not that the Listing 7.6 approach is necessarily better or worse; that depends on the
processor and the situation. The Listing 7.6 approach is di&mt, and if you understand
the differences, you’ll be able to choose the best approach for whatever code you hap
pen to write. (DEC has the same property of preserving the Carry flag, by the way.)
There are a couple of interesting aspects to the last example. First, note that LOOP
doesn’t affect any flags at all; this allows the Carry flag to remain unchanged from
one addition to the next. Not altering the arithmetic flags is a common characteris-
tic of program control instructions (as opposed to arithmetic and logical instructions
like SUB and AND, which do alter the flags).

The rule is not that the arithmetic Jags change whenever the CPU performs a p calculation; rathei: theflags change whenever you execute an arithmetic, logical,
orflag control (such as CLC to clear the Carryflag) instruction.

Not only do LOOP and JCXZ not alter the flags, but REP MOVS, which counts down
CX to 0, doesn’t affect the flags either.
The other interesting point about the last example is the use of LAHF and SAHF,
which transfer the low byte of the FLAGS register to and from AH, respectively. These
instructions were created to help provide compatibility with the 8080’s (that’s 8080,
not 8088) PUSH PSW and POP PSW instructions, but turn out to be compact (one
byte) instructions for saving and restoring the arithmetic flags. A word of caution,
however: SAHF restores the Carry, Zero, Sign, Auxiliary Carry, and Parity flags-but
not the Overflow flag, which resides in the high byte of the FLAGS register. Also, be
aware that LAHF and SAHF provide a fast way to preserve the flags on an 8088 but
are relatively slow instructions on the 486 and Pentium.
There are times when it’s a clear liability that INC doesn’t set the Carry flag. For
instance

INC AX
AOC DX.0

does not increment the 32-bit value in DX:AX. To do that, you’d need the following:

ADD A X . l
ADC DX.0

As always, pay attention!

148 Chapter 7

	next:
	home:
	previous:

