

i”B
” Back in high school, I took a precalculus class from Mr. Bourgeis, whose most notable

characteristics wer6bcessant pacing and truly enormous feet. My friend Barry, who
sat in the back row, rig$$ behind me, claimed that it was because of his large feet that
Mr. Bourgeis was so resd se feet were so heavy, Barry hypothesized, that if Mr.
Bourgeis remained id any one place for too long, the floor would give way under the
strain, plunging thekmfortunate teacher deep into the mantle of the Earth and pos-
sibly all the way thr&gh to China. Many amusing cartoons were drawn to this effect.
UnfortunatelyJ3dh-y -*,e”..’:“ was too busy drawing cartoons, or, alternatively, sleeping, to
actually learn any math. In the long run, that didn’t turn out to be a handicap for
Barry, who went on’ko become vice-president of sales for a ham-packing company,
where presumably he has rarely called upon to derive the quadratic equation. Barry’s
lack of scholarship caused some problems back then, though. On one memorable
occasion, Barry was half-asleep, with his eyes open but unfocused and his chin bal-
anced on his hand in the classic “if I fall asleep my head will fall off my hand and I’ll
wake up” posture, when Mr. Bourgeis popped a killer problem:
“Barry, solve this for X, please.” On the blackboard lay the equation:

8:

x - 1 = 0

“Minus 1,” Barry said promptly.

169

optimization odds and ends from the field

Mr. Bourgeis shook his head mournfully. “Try again.” Barry thought hard. He knew
the fundamental rule that the answer to most mathematical questions is either 0, 1,
infinity, -1, or minus infinity (do not apply this rule to balancing your checkbook,
however); unfortunately, that gave him only a 25 percent chance of guessing right.
“One,” I whispered surreptitiously.
“Zero,” Barry announced. Mr. Bourgeis shook his head even more sadly.
“One,” I whispered louder. Barry looked still more thoughtful-a bad sign-so I
whispered “one” again, even louder. Barry looked so thoughtful that his eyes nearly
rolled up into his head, and I realized that he was just doing his best to convince Mr.
Bourgeis that Barry had solved this one by himself.
As Barry neared the climax of his stimng performance and opened his mouth to speak,
Mr. Bourgeis looked at him with great concern. “Barry, can you hear me all right?”
“Yes, sir,” Barry replied. ‘Why?”
‘Well, I could hear the answer all the way up here. Surely you could hear it just one
row away?”
The class went wild. They might as well have sent us home early for all we accom-
plished the rest of the day.
I like to think I know more about performance programming than Barry knew about
math. Nonetheless, I always welcome good ideas and comments, and many readers
have sent me a slew of those over the years. So in this chapter, I think I’ll return the
favor by devoting a chapter to reader feedback.

Another Look at LEA
Several people have pointed out that while LEA is great for performing certain addi-
tions (see Chapter 6), it isn’t a perfect replacement for ADD. What’s the difference?
LEA, an addressing instruction by trade, doesn’t affect the flags, while the arithmetic
ADD instruction most certainly does. This is no problem when performing additions
that involve only quantities that fit in one machine word (32 bits in 386 protected
mode, 16 bits otherwise), but it renders LEAuseless for multiword operations, which
use the Carry flag to tie together partial results. For example, these instructions

A D D E A X , EBX
A D C E D X , E C X

could not be replaced

L E A EAX.CEAX+EBXI
A D C E D X , E C X

because LEA doesn’t affect the Carry flag.

170 Chapter 9

The no-carry characteristic of LEA becomes a distinct advantage when performing
pointer arithmetic, however. For instance, the following code uses LEA to advance
the pointers while adding one 128-bit memory variable to another such variable:

MOV E C X . 4 :# o f 3 2 - b i t w o r d s t o add
c L C

:no c a r r y i n t o t h e i n i t i a l ADC
ADDLOOP:

MOV E A X . [E S I I : g e t t h e n e x t e l e m e n t o f o n e a r r a y
ADC [EDII . € A X :add i t t o t h e o t h e r a r r a y , w i t h c a r r y
L E A E S I . [€ S I + 4 1 :advance one a r r a y ’ s p o i n t e r
L E A E D I , [E D I + 4] : a d v a n c e t h e o t h e r a r r a y ’ s p o i n t e r

LOOP ADDLOOP

(Yes, I could use LODSD instead of MOV/LEA, I’m just illustrating a point here.
Besides, LODS is only 1 cycle faster than MOV/LEA on the 386, and is actually more
than twice as slow on the 486.) If we used ADD rather than LEA to advance the
pointers, the carry from one ADC to the next would have to be preserved with either
PUSHF/POPF or LAHF/SAHF. (Alternatively, we could use multiple INCs, since
INC doesn’t affect the Carry flag.)
In short, LEA is indeed different from ADD. Sometimes it’s better. Sometimes not;
that’s the nature of the various instruction substitutions and optimizations that will
occur to you over time. There’s no such thing as “best” instructions on the x86; it all
depends on what you’re trying to do.
But there sure are a lot of interesting options, aren’t there?

The Kennedy Portfolio
ReaderJohn Kennedy regularly passes along intriguing assembly programming tricks,
many of which I’ve never seen mentioned anywhere else. John likes to optimize for
size, whereas I lean more toward speed, but many of his optimizations are good for
both purposes. Here are a few of my favorites:
John’s code for setting AX to its absolute value is:

CWD
XOR AX.DX
SUB AX.DX

This does nothing when bit 15 of AX is 0 (that is, if AX is positive). When AX is
negative, the code “nots” it and adds 1, which is exactly how you perform a two’s
complement negate. For the case where AX is not negative, this trick usually beats
the stuffing out of the standard absolute value code:

A N D A X . A X : n e g a t i v e ?
JNS I s p o s i t i v e ;no
NEG AX :yes,negate i t

I s p o s i t i v e :

Hints My Readers Gave Me 171

However, John’s code is slower on a 486; as you’re no doubt coming to realize (and as
I’ll explain in Chapters 12 and 13), the 486 is an optimization world unto itself.
Here’s how John copies a block of bytes from DS:SI to ES:DI, moving as much data as
possible a word at a time:

SHR C X . l
REP MOVSW

:word count
:copy as many words as poss ib le

ADC C X , C X :CX-1 i f c o p y l e n g t h was odd,

REP MOVSB
;O e l s e
:copy any odd byte

(ADC CX,CX can be replaced with RCL CX,l; which is faster depends on the proces-
sor type.) It might be hard to believe that the above is faster than this:

SHR C X . l :word c o u n t
REP MOVSW :copy as many words as

: p o s s i b l e
JNC CopyDone ;done i f even copy length
MOVSB : c o p y t h e odd b y t e

CopyDone:

However, it generally is. Sure, if the length is odd, John’s approach incurs a penalty
approximately equal to the REP startup time for MOVSB. However, if the length is
even, John’s approach doesn’t branch, saving cycles and not emptylng the prefetch
queue. If copy lengths are evenly distributed between even and odd, John’s approach
is faster in most x86 systems. (Not on the 486, though.)
John also points out that on the 386, multiple LEAs can be combined to perform
multiplications that can’t be handled by a single L E A , much as multiple shifts and
adds can be used for multiplication, only faster. LEA can be used to multiply in a
single instruction on the 386, but only by the values 2,3,4,5,8, and 9; several LEAS
strung together can handle a much wider range of values. For example, video pro-
grammers are undoubtedly familiar with the following code to multiply AX times 80
(the width in bytes of the bitmap in most PC display modes) :

SHL A X . l :*2
SHL A X . l : *4
SHL A X . l : *8
SHL A X . l :*16
MOV B X . A X
SHL A X . l ;*32
SHL A X . l : *64
ADD A X . B X ;*EO

Using LEA on the 386, the above could be reduced to

LEA E A X . [EAX*ZI
LEA EAX.[EAX*81

: *2
;*16

LEA EAX.[EAX+EAX*41 :*EO

1 72 Chapter 9

which still isn’t as fast as using a lookup table like

M O V EAX.MultiplesOf80Table[EAX*41

but is close and takes a great deal less space.
Of course, on the 386, the shift and add version could also be reduced to this consid-
erably more efficient code:

SHL A X . 4
MOV B X . A X

; *16

SHL A X . 2 ;*64
A D D A X . B X ; *80

Speeding Up Multiplication
That brings us to multiplication, one of the slowest of x86 operations and one that
allows for considerable optimization. One way to speed up multiplication is to use shift
and add, LEA, or a lookup table to hard-code a multiplication operation for a fixed
multiplier, as shown above. Another is to take advantage of the early-out feature of the
386 (and the 486, but in the interests of brevity I’ll just say “386” from now on) by
arranging your operands so that the multiplier (always the rightmost operand follow-
ing MUL or IMUL) is no larger than the other operand.

Why? Because the 386 processes one multiplier bit per cycle and immediately P ends a multiplication when all sign@ant bits of the multiplier have been pro-
cessed, so f m e r cycles are required to multiply a large multiplicand times a small
multiplier than a small multiplicand times a large multipliel; by a factor of about
1 cycle for each significant multiplier bit eliminated.

(There’s a minimum execution time on this trick; below 3 significant multiplier bits,
no additional cycles are saved.) For example, multiplication of 32,767 times 1 is 12
cycles faster than multiplication of 1 times 32,727.
Choosing the right operand as the multiplier can work wonders. According to pub-
lished specs, the 386 takes 38 cycles to multiply by a multiplier with 32 significant bits
but only 9 cycles to multiply by a multiplier of 2, a performance improvement of
more than four times! (My tests regularly indicate that multiplication takes 3 to 4
cycles longer than the specs indicate, but the cycle-per-bit advantage of smaller mul-
tipliers holds true nonetheless.)
This highlights another interesting point: MUL and IMUL on the 386 are so fast that
alternative multiplication approaches, while generally still faster, are worthwhile only
in truly time-critical code.

On 386SXs and uncached 386s, where code size can significantly affect perfor- P mance due to instruction prefetching, the compact MUL and IMUL instructions
can approach and in some cases even outperform the “optimized ’’ alternatives.

Hints My Readers Gave Me 1 73

All in all, MUL and IMUL are reasonable performers on the 386, no longer to be
avoided in most cases-and you can help that along by arranging your code to make
the smaller operand the multiplier whenever you know which operand is smaller.
That doesn’t mean that your code should test and swap operands to make sure the
smaller one is the multiplier; that rarely pays off. I’m speaking more of the case
where you’re scaling an array up by a value that’s always in the range of, say, 2 to 10;
because the scale value will always be small and the array elements may have any
value, the scale value is the logical choice for the multiplier.

Optimizing Optimized Searching
Rob Williams writes with a wonderful optimization to the REPNZ SCASB-based opti-
mized searching routine I discussed in Chapter 5. As a quick refresher, I described
searching a buffer for a text string as follows: Scan for the first byte of the text string
with REPNZ SCASB, then use REPZ CMF’S to check for a full match whenever REPNZ

Start of - 0
buffer
being 1
searched 2

3
4
5
6
7
8
9

10
1 1
12
13
14
15

R
A
T
E

<blank>
A
N
D

c blan k>
E

Q
U
A
1

<blank>
s

The obvious
searching
approach is to
scan through the
buffer for just the

the search string,
- first character of :

, stopping when a , ;cl: , p ; match for the first j j
. : character is found; : - - - . i only when a first- I , : character

j character match is j
: found are buffer ; i bytes compared to j
;- the rest of the - - - - - a

: search string. In
: this case, 10 first-

1 ,

I D
I I comparisons are
; ; needed (requiring
: : starting REPNZ

SCASB twice),
: followed by two
I comparisons of the

- - 8 ’ rest of the string.

E
Q
U
A
L -

~ - Start of
search
string

Simple searching method for locating a text string.
Figure 9.1

1 74 Chapter 9

SCASB finds a match for the first character, as shown in Figure 9.1. The principle is
that most buffer characters won’t match the first character of any given string, so
REPNZ SCASB, by far the fastest way to search on the PC, can be used to eliminate
most potential matches; each remaining potential match can then be checked in its
entirety with REPZ CMPS.
Rob’s revelation, which he credits without explanation to Edgar Allen Poe (search
nevermore?), was that by far the slowest part of the whole deal is handling REPNZ
SCASB matches, which require checking the remainder of the string with REPZ
CMPS and restarting REPNZ SCASB if no match is found.

Rob points out that the number of REPNZ SCASB matches can easily be reduced P simply by scanning for the character in the searched-for string that appears least
often in the buffer being searched.

Imagine, if you will, that you’re searching for the string “EQUAL,.” By my approach,
you’d use REPNZ SCASB to scan for each occurrence of “E,” which crops up quite
often in normal text. Rob points out that it would make more sense to scan for ‘‘a”
then back up one character and check the whole string when a “ Q is found, as
shown in Figure 9.2. “ Q is likely to occur much less often, resulting in many fewer
whole-string checks and much faster processing.
Listing 9.1 implements the scan-on-first-character approach. Listing 9.2 scans for
whatever character the caller specifies. Listing 9.3 is a test program used to compare
the two approaches. How much difference does Rob’s revelation make? Plenty. Even
when the entire C function call to Findstring is timed-strlen calls, parameter push-
ing, calling, setup, and all-the version of Findstring in Listing 9.2, which is directed
by Listing 9.3 to scan for the infrequently-occurring ‘ Q ” is about 40 percent faster
on a 20 MHz cached 386 for the test search of Listing 9.3 than is the version of
Findstring in Listing 9.1, which always scans for the first character, in this case “E.”
However, when only the search loops (the code that actually does the searching) in
the two versions of Findstring are compared, Listing 9.2 is more than twice as fast as
Listing 9.1-a remarkable improvement over code that already uses REPNZ SCASB
and REPZ CMPS.
What I like so much about Rob’s approach is that it demonstrates that optimization
involves much more than instruction selection and cycle counting. Listings 9.1 and
9.2 use pretty much the same instructions, and even use the same approach of scan-
ning with REPNZ SCASB and using REPZ CMPS to check scanning matches.

The difference between Listings 9.1 and 9.2 (which gives you more than a dou- P bling ofperformance) is due entirely to understanding the nature of the data being
handled, and biasing the code to reject that knowledge.

Hints My Readers Gave Me 175

Start of - 0
buffer
being 1
searched 2

3
4
5
6
7
8
9

10
1 1
12
13
14
15

R
A
T
E

<blank>
A
N
D

<blank>
E
Q
U
A
L

<blank>
S -

A faster searching :"-
approach scan through is to the J ~ I - search Start Of

buffer for the least - common character ,
of the search
string, stopping , :4 ,
when a match for j j
that character is I - - -.
found; only when
such a match is j
found are buffer :
bytes compared to j

4 - the rest of the - - A

j search string. In
: this case, 10 least
j common character
: comparisons are
: needed (requiring

starting REPNZ
SCASB only once),
followed by one
comparison of the
full string.

string

"

Faster searching method for locating a text string.
Figure 9.2

LISTING 9.1 19- 1 .ASM
; Searches a t e x t b u f f e r f o r a t e x t s t r i n g . Uses REPNZ SCASB t o scan
; t h e b u f f e r f o r l o c a t i o n s t h a t m a t c h t h e f i r s t c h a r a c t e r of t h e
; searched- fo r s t r i ng , t hen uses REPZ CMPS t o check f u l l y o n l y t h o s e
; l o c a t i o n s t h a t REPNZ SCASB has i d e n t i f i e d as p o t e n t i a l matches.

; Adapted from Zen o f Assembly Language, by Michael Abrash

; C smal l mode l -ca l lab le as:
; unsigned char * FindStr ing(uns igned char * Buf fe r ,
; unsigned in t Bu f fe rLeng th . uns igned cha r * Searchst r ing.
; unsigned i n t S e a r c h S t r i n g L e n g t h) ;

: Returns a p o i n t e r t o t h e f i r s t match f o r S e a r c h s t r i n g i n B u f f e r . o r
; a NULL p o i n t e r i f no match i s f o u n d . B u f f e r s h o u l d n o t s t a r t a t
; o f f s e t 0 i n t h e d a t a segment t o a v o i d c o n f u s i n g a match a t 0 w i t h
; no match found.
Parms s t r u c

B u f f e r
Buf ferLength dw ? : l e n g t h o f b u f f e r t o s e a r c h

dw 2 dup(?) ;pushed BP/return address
dw ? ; p o i n t e r t o b u f f e r t o s e a r c h

176 Chapter 9

: p o i n t e r t o s t r i n g f o r w h i c h t o s e a r c h
: l e n g t h o f s t r i n g f o r w h i c h t o s e a r c h

S e a r c h s t r i n g dw
SearchSt r ingLength dw

?
?

Parms ends
.model smal 1
.code
p u b l i c - F i n d s t r i n g

p u s h b p ; p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
push d i
c l d ;make s t r i n g i n s t r u c t i o n s i n c r e m e n t p o i n t e r s
mov s i . [b p + S e a r c h S t r i n g] ; p o i n t e r t o s t r i n g t o s e a r c h f o r
mov bx . [bp+SearchSt r i ngLeng th l : l e n g t h o f s t r i n g
and bx.bx
j z F indStr ingNotFound :no match i f s t r i n g i s 0 l e n g t h
mov d x . [b p + B u f f e r L e n g t h l : l e n g t h o f b u f f e r
sub d x . b x ; d i f f e r e n c e b e t w e e n b u f f e r and s t r i n g l e n g t h s
j c FindStr ingNotFound :no match i f s e a r c h s t r i n g i s

i n c d x : d i f f e r e n c e b e t w e e n b u f f e r a n d s e a r c h s t r i n g

- F i n d s t r i n g p r o c n e a r

; l o n g e r t h a n b u f f e r

: l e n g t h s , p l u s 1 (# o f p o s s i b l e s t r i n g s t a r t
: l o c a t i o n s t o c h e c k i n t h e b u f f e r)

mov d i .ds
mov e s . d i
mov d i , [b p + B u f f e r l : p o i n t E S : D I t o b u f f e r t o s e a r c h t h r u
1 o d s b : p u t t h e f i r s t b y t e o f t h e s e a r c h s t r i n g i n AL
mov b p . s i : s e t a s i d e p o i n t e r t o t h e s e c o n d s e a r c h b y t e
d e c b x : d o n ' t n e e d t o c o m p a r e t h e f i r s t b y t e o f t h e

: s t r i n g w i t h CMPS: w e ' l l do i t w i t h SCAS
F i n d S t r i n g L o o p :

mov c x . d x : p u t r e m a i n i n g b u f f e r s e a r c h l e n g t h i n C X
r e p n z s c a s b : s c a n f o r t h e f i r s t b y t e o f t h e s t r i n g
j n z F indSt r ingNotFound :no t found, s o t he re ' s no ma tch

: found. s o we have a p o t e n t i a l m a t c h - c h e c k t h e
; r e s t o f t h i s c a n d i d a t e l o c a t i o n

push d i :remember t h e a d d r e s s o f t h e n e x t b y t e t o s c a n
mov d x . c x ; s e t a s i d e t h e r e m a i n i n g l e n g t h t o s e a r c h i n

mov s i .bp ; p o i n t t o t h e r e s t o f t h e s e a r c h s t r i n g
mov cx.bx : s t r i n g l e n g t h (m i n u s f i r s t b y t e)
s h r c x . 1 : c o n v e r t t o w o r d f o r f a s t e r s e a r c h
j n c F i n d S t r i n g W o r d :do word search i f no odd byte
cmpsb ;compare the odd byte
j n z F i n d S t r i n g N o M a t c h ;odd by te doesn ' t ma tch , so we

: t h e b u f f e r

; h a v e n ' t f o u n d t h e s e a r c h s t r i n g h e r e
F indSt r ingWord :

j cxz F indSt r ingFound ; tes t whether we 've a l ready checked
: t h e w h o l e s t r i n g : i f s o . t h i s i s a match
: b y t e s l o n g : i f s o . we've found a match

repz cmpsw : c h e c k t h e r e s t o f t h e s t r i n g a word a t a t i m e
j z F indSt r ingFound ; i t ' s a match

pop d i ; g e t b a c k p o i n t e r t o t h e n e x t b y t e t o s c a n
and dx.dx : i s t h e r e a n y t h i n g l e f t t o c h e c k ?
j n z F i n d S t r i n g L o o p : y e s - c h e c k n e x t b y t e

sub ax.ax ; r e t u r n a NULL p o i n t e r i n d i c a t i n g t h a t t h e
jmp F indStr ingDone : s t r i n g was n o t f o u n d

F indSt r ingNoMatch :

F indSt r ingNotFound:

Hints My Readers Gave Me 177

FindSt r ingFound:
pop ax ; p o i n t t o t h e b u f f e r l o c a t i o n a t w h i c h t h e
dec ax ; s t r i n g was f o u n d (e a r l i e r we pushed the

: a d d r e s s o f t h e b y t e a f t e r t h e s t a r t o f t h e
; p o t e n t i a l m a t c h)

F indSt r ingDone:
pop d i : r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s
pop s i
p o p b p ; r e s t o r e c a l l e r ' s s t a c k f r a m e
r e t

- F i n d s t r i n g e n d p
end

LISTING 9.2 L9-2.ASM
; Searches a t e x t b u f f e r f o r a t e x t s t r i n g . Uses REPNZ SCASB t o scan
; t h e b u f f e r f o r l o c a t i o n s t h a t m a t c h a s p e c i f i e d c h a r a c t e r o f t h e
; s e a r c h e d - f o r s t r i n g , t h e n u s e s REPZ CMPS t o check f u l l y o n l y t h o s e
; l o c a t i o n s t h a t REPNZ SCASB has i d e n t i f i e d as p o t e n t i a l m a t c h e s .

: C s m a l l m o d e l - c a l l a b l e a s :
; uns igned cha r * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r ,
: u n s i g n e d i n t B u f f e r L e n g t h . u n s i g n e d c h a r * S e a r c h s t r i n g .
; u n s i g n e d i n t S e a r c h S t r i n g L e n g t h .
; u n s i g n e d i n t S c a n C h a r O f f s e t) ;

; Returns a p o i n t e r t o t h e f i r s t match f o r S e a r c h s t r i n g i n B u f f e r . o r
: a NULL p o i n t e r i f no match i s f o u n d . B u f f e r s h o u l d n o t s t a r t a t
: o f f s e t 0 i n t h e d a t a segment t o a v o i d c o n f u s i n g a m a t c h a t 0 w i t h
; n o match found.
Parms s t r u c

B u f f e r dw ?
B u f f e r L e n g t h
S e a r c h s t r i n g dw ? ; p o i n t e r t o s t r i n g f o r w h i c h t o s e a r c h
SearchSt r ingLength dw ?
ScanCharOf fse t dw ? ; o f f s e t i n s t r i n g o f c h a r a c t e r f o r

Parms ends

dw 2 d u p (?) ;pushed BP/return address

dw ? ; l e n g t h o f b u f f e r t o s e a r c h
; p o i n t e r t o b u f f e r t o s e a r c h

; l e n g t h o f s t r i n g f o r w h i c h t o s e a r c h

; w h i c h t o s c a n

.model smal 1

.code
p u b l i c - F i n d s t r i n g

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
push s i ; p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
push d i
c l d :make s t r i n g i n s t r u c t i o n s i n c r e m e n t p o i n t e r s
mov s i . [b p + S e a r c h S t r i n g] ; p o i n t e r t o s t r i n g t o s e a r c h f o r
mov cx.[bp+SearchStringLengthl ; l e n g t h o f s t r i n g
j cxz F indS t r i ngNo tFound ;no match i f s t r i n g i s 0 l e n g t h
mov d x . [b p + B u f f e r L e n g t h l ; l e n g t h o f b u f f e r
sub dx .cx ; d i f f e rence be tween bu f fe r and sea rch

j c F indSt r ingNotFound ;no match i f s e a r c h s t r i n g i s
; l o n g e r t h a n b u f f e r

i n c d x ; d i f f e r e n c e b e t w e e n b u f f e r a n d s e a r c h s t r i n g
; l e n g t h s , p l u s 1 (# o f p o s s i b l e s t r i n g s t a r t
; l o c a t i o n s t o c h e c k i n t h e b u f f e r)

- F i n d S t r i n g p r o c n e a r

; l e n g t h s

mov d i .ds
mov e s . d i

178 Chapter 9

mov d i , [b p + B u f f e r l : p o i n t E S : D I t o b u f f e r t o s e a r c h t h r u
mov bx. [bp+ScanCharOf fset l ; o f f s e t i n s t r i n g o f c h a r a c t e r

add d i . b x : p o i n t E S : D I t o f i r s t b u f f e r b y t e t o scan
mov a l .Cs i+bx l : p u t t h e s c a n c h a r a c t e r i n AL
i n c b x : s e t BX t o t h e o f f s e t b a c k t o t h e s t a r t o f t h e

: on which t o scan

: p o t e n t i a l f u l l m a t c h a f t e r a scan match,
: a c c o u n t i n g f o r t h e 1 - b y t e o v e r r u n o f
: REPNZ SCASB

F indS t r i ngLoop :
rnov cx .dx : p u t r e m a i n i n g b u f f e r s e a r c h l e n g t h i n CX
repnz scasb : s c a n f o r t h e s c a n b y t e
j nz F indS t r i ngNo tFound :no t f ound , s o t h e r e ' s no match

; found. s o we have a p o t e n t i a l m a t c h - c h e c k t h e
: r e s t o f t h i s c a n d i d a t e l o c a t i o n

push d i :remember t h e a d d r e s s o f t h e n e x t b y t e t o s c a n
mov d x . c x : s e t a s i d e t h e r e m a i n i n g l e n g t h t o s e a r c h i n

sub d i . b x ; p o i n t b a c k t o t h e p o t e n t i a l s t a r t o f t h e

mov s i , [b p + S e a r c h S t r i n g l : p o i n t t o t h e s t a r t o f t h e s t r i n g
mov cx.[bp+SearchStringLengthl : s t r i n g l e n g t h
s h r c x . 1 : c o n v e r t t o w o r d f o r f a s t e r s e a r c h
j n c F i n d S t r i n g W o r d :do word search i f no o d d b y t e
cmpsb ;compare t h e odd b y t e
j n z F i n d S t r i n g N o M a t c h ;odd b y t e d o e s n ' t m a t c h . so we

; t h e b u f f e r

: match i n t h e b u f f e r

; h a v e n ' t f o u n d t h e s e a r c h s t r i n g h e r e
F indS t r i ngWord :

j c x z F i n d S t r i n g F o u n d ; i f t h e s t r i n g i s o n l y 1 b y t e l o n g ,

repz cmpsw ; c h e c k t h e r e s t o f t h e s t r i n g a word a t a t i m e
j z F i n d S t r i n g F o u n d : i t ' s a match

pop d i : g e t b a c k p o i n t e r t o t h e n e x t b y t e t o s c a n
and dx.dx ; i s t h e r e a n y t h i n g l e f t t o c h e c k ?
j n z F i n d S t r i n g L o o p ; y e s - c h e c k n e x t b y t e

sub ax .ax : re tu rn a NULL p o i n t e r i n d i c a t i n g t h a t t h e
jmp F indSt r ingDone : s t r i n g was n o t f o u n d

p o p a x : p o i n t t o t h e b u f f e r l o c a t i o n a t w h i c h t h e
sub ax.bx : s t r i n g was f o u n d (e a r l i e r we pushed t h e

: we've found a match

F indStr ingNoMatch:

F indStr ingNotFound:

F indS t r i ngFound :

: a d d r e s s o f t h e b y t e a f t e r t h e s c a n m a t c h)
F i n d S t r i ngDone:

pop d i : r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s
pop s i
p o p b p ; r e s t o r e c a l l e r ' s s t a c k f r a m e
r e t

_ F i n d s t r i n g endp
end

LISTING 9.3 19-3.C
I* Program t o e x e r c i s e b u f f e r - s e a r c h r o u t i n e s i n L i s t i n g s 9 . 1 & 9 . 2 * /
#i n c l ude < s t d i 0. h>
i n c l u d e < s t r i n g . h >

d e f i n e DISPLAYLLENGTH 40
e x t e r n u n s i g n e d c h a r * F i n d S t r i n g (u n s i g n e d c h a r *, u n s i g n e d i n t .

v o i d m a i n (v o i d 1 :
uns igned char *, u n s i g n e d i n t . u n s i g n e d i n t) ;

Hints My Readers Gave Me 179

s t a t i c u n s i g n e d c h a r T e s t B u f f e r C] - "When, i n t h e c o u r s e o f human \
events , i t becomes n e c e s s a r y f o r o n e p e o p l e t o d i s s o l v e t h e \
p o l i t i c a l bands wh ich have connected them w i th another , and to \
assume among the powers of the earth the separate and equal s t a t i o n \
t o w h i c h t h e l a w s o f n a t u r e a n d o f n a t u r e ' s God e n t i t l e t h e m . . . " :

v o i d m a i n 0 {
s t a t i c u n s i g n e d c h a r T e s t S t r i n g L l - "equa l " ;
uns igned char TempBufferCDISPLAY-LENGTH+ll;
uns igned char *MatchPt r :

/ * S e a r c h f o r T e s t s t r i n g and r e p o r t t h e r e s u l t s * /
i f ((M a t c h P t r - F i n d S t r i n g (T e s t 6 u f f e r .

(u n s i g n e d i n t) s t r l e n (T e s t 6 u f f e r) . T e s t s t r i n g .
(u n s i g n e d i n t) s t r l e n (T e s t S t r i n g) . 1)) - NULL) {

/ * T e s t s t r i n g w a s n ' t f o u n d */
p r i n t f (" \ " % s \ " n o t f o u n d \ n " , T e s t s t r i n g) ;

/ * T e s t s t r i n g was f o u n d . Z e r o - t e r m i n a t e T e m p B u f f e r ; s t r n c p y
won' t do it i f DISPLAY-LENGTH c h a r a c t e r s a r e c o p i e d * /

TempBuffer[DISPLAYLLENGTHl - 0:
p r i n t f (" \ " % s \ " f o u n d . N e x t %d c h a r a c t e r s a t m a t c h : \ n \ " % s \ " \ n " ,

1 e l s e I

T e s t s t r i n g . DISPLAY-LENGTH.
s t rncpy(TempBuf fe r . MatchPt r , DISPLAY-LENGTH)):

I
1

You'll notice that in Listing 9.2 I didn't use a table of character frequencies in En-
glish text to determine the character for which to scan, but rather let the caller make
that choice. Each buffer of bytes has unique characteristics, and English-letter fre-
quency could well be inappropriate. What if the buffer is filled with French text?
Cyrillic? What if it isn't text that's being searched? It might be worthwhile for an
application to build a dynamic frequency table for each buffer so that the best scan
character could be chosen for each search. Or perhaps not, if the search isn't time-
critical or the buffer is small.
The point is that you can improve performance dramatically by understanding the
nature of the data with which you work. (This is equally true for high-level language
programming, by the way.) Listing 9.2 is very similar to and only slightly more com-
plex than Listing 9.1; the difference lies not in elbow grease or cycle counting but in
the organic integrating optimizer technology we all carry around in our heads.

Short Sorts
David Stafford (recently of Borland and Borland Japan) who happens to be one of
the best assembly language programmers I've ever met, has written a C-callable rou-
tine that sorts an array of integers in ascending order. That wouldn't be particularly
noteworthy, except that David's routine, shown in Listing 9.4, is exactly 25 bytes long.
Look at the code; you'll keep saying to yourself, "But this doesn't work.. .oh, yes, I
guess it does." As they say in the Prego spaghetti sauce ads, it's in thereand what a
job of packing. Anyway, David says that a 24byte sort routine eludes him, and he'd
like to know if anyone can come up with one.

180 Chapter 9

LISTING 9.4 19-4.ASM

.-""..._".."___..."""""..""....""...""..""."""...."...

: S o r t s an a r r a y o f i n t s . C c a l l a b l e (s m a l l m o d e l) . 2 5 b y t e s .
; v o i d s o r t (i n t num. i n t a [] 1:

; C o u r t e s y o f D a v i d S t a f f o r d .
.".."___..."_.""""..""...""....""..""....""".""..""..

.model m a l 1
.code

pub1 i c - s o r t

t o p : mov
xchg
xchg

cmp
j l

i nc
i nc
1 oop

-so r t : pop
POP
POP
push
dec
push
push
j g

r e t

end

dx. Cbxl :swap two ad jacent in tegers
d x , [bx+E]
dx. Cbxl

dx. Cbxl
t o p

bx
bx
t o p

dx

bx
bx

c x

cx
cx

; d i d we put them i n
:no. swaD them back

:go t o n e x t i n t e g e r

: g e t r e t u r n a d d r e s s
; g e t c o u n t
; g e t p o i n t e r
: r e s t o r e p o i n t e r
:decrement count
:save count

t h e r i g h t o r d e r ?

(e n t r y p o i n t)

d x ; r e s t o r e r e t u r n a d d r e s s
t o p : i f cx > 0

FuII 32-Bit Division
One of the most annoying limitations of the x86 is that while the dividend operand
to the DIV instruction can be 32 bits in size, both the divisor and the result must be
16 bits. That's particularly annoying in regards to the result because sometimes you
just don't know whether the ratio of the dividend to the divisor is greater than 64K-1 or
not-and if you guess wrong, you get that godawful Divide By Zero interrupt. So, what is
one to do when the result might not fit in 16 bits, or when the dividend is larger than
32 bits? Fall back to a software division approach? That will work-but oh so slowly.
There's another technique that's much faster than a pure software approach, albeit
not so flexible. This technique allows arbitrarily large dividends and results, but the
divisor is still limited to16 bits. That's not perfect, but it does solve a number of
problems, in particular eliminating the possibility of a Divide By Zero interrupt from
a too-large result.
This technique involves nothing more complicated than breaking up the division
into word-sized chunks, starting with the most significant word of the dividend. The

Hints My Readers Gave Me 1 81

Bit 47 Dividend Bit 0

The most significant word
is divided by the divisor.

I The remainder is tacked onto
the front of the next most -1
significant word, and the result And so on...
is divided by the divisor.

1
The quotient goes to the The quotient goes to the
corresponding word of corresponding word of
the full quotient. the full quotient.

Bit 47 1 1 Bit 0

Quotient

Fast multiword division on the 386.
Figure 9.3

most significant word is divided by the divisor (with no chance of overflow because
there are only 16 bits in each) ; then the remainder is prepended to the next 16 bits
of dividend, and the process is repeated, as shown in Figure 9.3. This process is
equivalent to dividing by hand, except that here we stop to carry the remainder
manually only after each word of the dividend; the hardware divide takes care of the
rest. Listing 9.5 shows a function to divide an arbitrarily large dividend by a 16-bit
divisor, and Listing 9.6 shows a sample division of a large dividend. Note that the
same principle can be applied to handling arbitrarily large dividends in 386 native
mode code, but in that case the operation can proceed a dword, rather than a word,
at a time.
As for handling signed division with arbitrarily large dividends, that can be done
easily enough by remembering the signs of the dividend and divisor, dividing the
absolute value of the dividend by the absolute value of the divisor, and applying the
stored signs to set the proper signs for the quotient and remainder. There may be
more clever ways to produce the same result, by using IDN, for example; if you know
of one, drop me a line c/o Coriolis Group Books.

LISTING 9.5 L9-5.ASM
; Div ides an a r b i t r a r i l y l o n g u n s i g n e d d i v i d e n d by a 16-b i t uns igned
: d i v i s o r . C n e a r - c a l l a b l e a s :
: unsigned i n t D i v (u n s i g n e d i n t * Div idend,

182 Chapter 9

i n t D i v i d e n d L e n g t h , u n s i g n e d i n t D i v i s o r ,
uns igned i n t * Q u o t i e n t) ;

; R e t u r n s t h e r e m a i n d e r o f t h e d i v i s i o n .

: Tes ted w i th TASM 2.

D iv idendLeng th dw ?

D i v i s o r dw ?

Q u o t i e n t dw ?

parms s t r u c

D i v i d e n d dw ? ; p o i n t e r t o v a l u e t o d i v i d e . s t o r e d i n I n t e l
; o r d e r . w i th l s b a t l o w e s t a d d r e s s , msb a t
; h ighes t . Must be composed o f an i n t e g r a l
; number o f words
;# o f b y t e s i n D i v i d e n d . Must be a mu1 t i p l e
; o f 2
: v a l u e b y w h i c h t o d i v i d e . M u s t n o t b e z e r o ,
: o r a D i v i d e By Z e r o i n t e r r u p t will occur
: p o i n t e r t o b u f f e r i n w h i c h t o s t o r e t h e
: r e s u l t o f t h e d i v i s i o n , i n I n t e l o r d e r .
: The q u o t i e n t r e t u r n e d i s o f t h e same
; l e n g t h as t h e d i v i d e n d

dw 2 dup (?) ;pushed BP & r e t u r n a d d r e s s

Darms ends

.model small

.code
p u b l i c - D i v

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
push s i
push d i

; p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s

s t d ; w e ' r e w o r k i n g f r o m msb t o l s b
mov ax.ds
mov e s . a x ; f o r STOS
mov cx. [bp+Div idendLength]
sub cx.2
mov s i . [b p + D i v i d e n d l
add s i , c x ; p o i n t t o t h e l a s t w o r d o f t h e d i v i d e n d

mov d i , [bp+Ouot ient]
add d i . c x ; p o i n t t o t h e l a s t w o r d o f t h e q u o t i e n t

mov b x . [b p + D i v i s o r l
s h r c x , l
i n c c x ;# o f words t o process
sub dx.dx :convert i n i t i a l d i v i s o r word t o a 3 2 - b i t

- D i v p r o c n e a r

; (t h e m o s t s i g n i f i c a n t w o r d)

; b u f f e r (t h e most s i g n i f i c a n t w o r d)

; v a l u e f o r D I V
DivLoop:

1 odsw ; g e t n e x t m o s t s i g n i f i c a n t w o r d o f d i v i s o r
d i v b x
s t o s w ; s a v e t h i s w o r d o f t h e q u o t i e n t

:DX c o n t a i n s t h e r e m a i n d e r a t t h i s o o i n t .

1 oop D i vLoop
mov ax,dx

c l d
pop d i
pop s i
POP bP

ready t o prepend t o t h e n e x t d i v i i o r w o r d

r e t u r n t h e r e m a i n d e r

r e s t o r e d e f a u l t D i r e c t i o n f l a g s e t t i n g
r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s

r e s t o r e c a l l e r ' s s t a c k f r a m e

Hints My Readers Gave Me 183

r e t

end
-Div endp

LISTING 9.6 19-6.C
/* Sample use o f D i v f u n c t i o n t o p e r f o r m d i v i s i o n when t h e r e s u l t

d o e s n ' t f i t i n 16 b i t s * /

i n c l u d e < s t d i o . h >

e x t e r n u n s i g n e d i n t D i v (u n s i g n e d i n t * D i v i d e n d ,
i n t D i v i d e n d L e n g t h . u n s i g n e d i n t D i v i s o r ,
u n s i g n e d i n t * Q u o t i e n t) ;

m a i n 0 {
u n s i g n e d l o n g m, i - 0x20000001;
u n s i g n e d i n t k . j = 0x10;

k - D i v ((u n s i g n e d i n t *)&i. s i z e o f (i) . j. (u n s i g n e d i n t *) & I n) ;
p r i n t f (" % l u / %u - % l u r %u\n", i. j . m. k) ;

1

Sweet Spot Revisited
Way back in Volume 1, Number 1 of PC TECHNIQUES, (April/May 1990) I wrote the
very first of that magazine's HAX (#l), which extolled the virtues of placing your
most commonly-used automatic (stack-based) variables within the stack's "sweet spot,"
the area between +127 to -128 bytes away from BP, the stack frame pointer. The
reason was that the 8088 can store addressing displacements that fall within that
range in a single byte; larger displacements require a full word of storage, increasing
code size by a byte per instruction, and thereby slowing down performance due to
increased instruction fetching time.
This takes on new prominence in 386 native mode, where straying from the sweet
spot costs not one, but two or three bytes. Where the 8088 had two possible displace-
ment sizes, either byte or word, on the 386 there are three possible sizes: byte, word,
or dword. In native mode (32-bit protected mode), however, a prefix byte is needed
in order to use a word-sized displacement, so a variable located outside the sweet
spot requires either two extra bytes (an extra displacement byte plus a prefix byte)
or three extra bytes (a dword displacement rather than a byte displacement). Either
way, instructions grow alarmingly.
Performance may or may not suffer from missing the sweet spot, depending on the
processor, the memory architecture, and the code mix. On a 486, prefix bytes often
cost a cycle; on a 386SX, increased code size often slows performance because in-
structions must be fetched through the half-pint l6bi t bus; on a 386, the effect
depends on the instruction mix and whether there's a cache.

On balance, though, it b as important to keep your most-used variables in the stackb 1 sweet spot in 386 native mode as it was on the 8088.

184 Chapter 9

In assembly, it’s easy to control the organization of your stack frame. In C, however,
you’ll have to figure out the allocation scheme your compiler uses to allocate auto-
matic variables, and declare automatics appropriately to produce the desired effect.
It can be done: I did it in Turbo C some years back, and trimmed the size of a pro-
gram (admittedly, a large one) by several K-not bad, when you consider that the
“sweet spot” optimization is essentially free, with no code reorganization, change in
logic, or heavy thinking involved.

Hard-core Cycle Counting
Next, we come to an item that cycle counters will love, especially since it involves
apparently incorrect documentation on Intel’s part. According to Intel’s documents,
all RCR and RCL instructions, which perform rotations through the Carry flag, as
shown in Figure 9.4, take 9 cycles on the 386 when working with a register operand.
My measurements indicate that the 9-cycle execution time almost holds true for multibit
rotate-through-carries, which I’ve timed at 8 cycles apiece; for example, RCR AX,CL
takes 8 cycles on my 386, as does RCL DX,2. Contrast that with ROR and ROL, which
can rotate the contents of a register any number of bits in just 3 cycles.
However, rotating by one bit through the Carry flag does not take 9 cycles, contrary to
Intel’s 80386 Programmer’s Refwence Manual, or even 8 cycles. In fact, RCR reg,l and

I

-”+Ll”- car,,, Bit 15 AX Bit 0

RCR AX, 1

car,,, D“+- Bit 15
AX Bit 0

RCL AX, 1

AX
ROR AX, 1

car,,, cl“+ Bit 15
AX Bit 0

ROL AX, 1

Performing rotate instructions using the Carvflag.
Figure 9.4

Hints My Readers Gave Me 185

RCL reg1 take 3 cycles, just like ROR, ROL, SHR, and SHL. At least, that’s how fast
they run on my 386, and I very much doubt that you’ll find different execution times
on other 386s. (Please let me know if you do, though!)
Interestingly, according to Intel’s i486 Microprocessor Programmer’s Reference Manual,
the 486 can RCR or RCL a register by one bit in 3 cycles, but takes between 8 and 30
cycles to perform a multibit register RCR or RCL!
No great lesson here, just a caution to be leery of multibit RCR and RCL when
performance matters-and to take cycle-time documentation with a grain of salt.

Hardwired Far Jumps
Did you ever wonder how to code a far jump to an absolute address in assembly
language? Probably not, but if you ever do, you’re going to be glad for this next item,
because the obvious solution doesn’t work. You might think all it would take to jump
to, say, 1000:5 would be JMP FAR PTR 1000:5, but you’d be wrong. That won’t even
assemble. You might then think to construct in memory a far pointer containing
1000:5, as in the following:

Ptr dd ?

mov word p t r C P t r l . 5
mov word p t r CPtr+E].lDOOh
jmp CPtrl

That will work, but at a price in performance. On an 8088, JMP DWORD PTR [m m]
(an indirect far jump) takes at least 37 cycles; JMP DWORD PTR label (a direct far
jump) takes only 15 cycles (plus, almost certainly, some cycles for instruction fetch-
ing). On a 386, an indirect far jump is documented to take at least 43 cycles in real
mode (31 in protected mode); a direct far jump is documented to take at least 12
cycles, about three times faster. In truth, the difference between those two is no-
where near that big; the fastest I’ve measured for a direct far jump is 21 cycles, and
I’ve measured indirect farjumps as fast as 30 cycles, so direct is still faster, but not by
so much. (Oh, those cycle-time documentation blues!) Also, a direct far jump is
documented to take at least 27 cycles in protected mode; why the big difference in
protected mode, I have no idea.
At any rate, to return to our original problem of jumping to 1000:5: Although an
indirect far jump will work, a direct far jump is still preferable.
Listing 9.7 shows a short program that performs a direct far call to 1000:5. (Don’t
run it, unless you want to crash your system!) It does this by creating a dummy seg-
ment at 1000H, so that the label FarLabel can be created with the desired far attribute
at the proper location. (Segments created with “AT” don’t cause the generation of
any actual bytes or the allocation of any memory; they’re just templates.) It’s a little
kludgey, but at least it does work. There may be a better solution; if you have one,
pass it along.

186 Chapter 9

LISTING 9.7 19-7.ASM
: Program t o p e r f o r m a d i r e c t far jump t o address 1000:5.
: *** Do n o t r u n t h i s p r o g r a m ! I t ‘ s j u s t an example o f how ***
: *** t o b u i l d a d i r e c t f a r jump t o an abso lu te add ress ***

: T e s t e d w i t h TASM 2 and MASM 5 .

FarSeg segment a t OlOOOh

FarLabe l l abe l far
FarSeg ends

o r g 5

.model smal 1

.code

jmp FarLabel
end s t a r t

s t a r t :

By the way, if you’re wondering how I figured this out, I merely applied my good
friend Dan Illowsky’s long-standing rule for dealing with MASM:
If the obvious doesn’t work (and it usually doesn’t), just try everything you can think
of, no matter how ridiculous, until you find something that does-a rule with plenty
of history on its side.

Setting 32-Bit Registers: Time versus Space
To finish up this chapter, consider these two items. First, in 32-bit protected mode,

sub eax.eax
i n c eax

takes 4 cycles to execute, but is only 3 bytes long, while

mov eax.1

takes only 2 cycles to execute, but is 5 bytes long (because native mode constants are
dwords and the MOV instruction doesn’t sign-extend). Both code fragments are
ways to set EAX to 1 (although the first affects the flags and the second doesn’t) ; this
is a classic trade-off of speed for space. Second,

o r e b x . - 1

takes 2 cycles to execute and is 3 bytes long, while

mov ebx. -1

takes 2 cycles to execute and is 5 bytes long. Both instructions set EBX to -1; this is a
classic trade-off of-gee, it’s not a trade-off at all, is it? OR is a better way to set a 32-
bit register to all 1-bits, just as SUB or XOR is a better way to set a register to all 0-bits.
Who woulda thunk it? Just goes to show how the 32-bit displacements and constants
of 386 native mode change the familiar landscape of 80x86 optimization.

Hints My Readers Gave Me 187

Be warned, though, that I’ve found OR, AND, ADD, and the like to be a cycle slower
than MOV when working with immediate operands on the 386 under some circum-
stances, for reasons that thus far escape me. This just reinforces the first rule of
optimization: Measure your code in action, and place not your trust in documented
cycle times.

188 Chapter 9

	next:
	home:
	previous:

