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Abstract

Haskell threads provide a key, lightweight concurrency abstrac-
tion to simplify the programming of important network applica-
tions such as web servers and software-defined network (SDN)
controllers. The flagship Glasgow Haskell Compiler (GHC) intro-
duces a run-time system (RTS) to achieve a high-performance mul-
ticore implementation of Haskell threads, by introducing effective
components such as a multicore scheduler, a parallel garbage col-
lector, an 10 manager, and efficient multicore memory allocation.
Evaluations of the GHC RTS, however, show that it does not scale
well on multicore processors, leading to poor performance of many
network applications that try to use lightweight Haskell threads. In
this paper, we show that the GHC /0 manager, which is a crucial
component of the GHC RTS, is the scaling bottleneck. Through a
series of experiments, we identify key data structure, scheduling,
and dispatching bottlenecks of the GHC 10 manager. We then de-
sign a new multicore IO manager named Mio that eliminates all
these bottlenecks. Our evaluations show that the new Mio manager
improves realistic web server throughput by 6.5x and reduces ex-
pected web server response time by 5.7x. We also show that with
Mio, McNettle (an SDN controller written in Haskell) can scale ef-
fectively to 40+ cores, reach a throughput of over 20 million new
requests per second on a single machine, and hence become the
fastest of all existing SDN controllers.

Categories and Subject Descriptors D.3.4 [PROGRAMMING
LANGUAGES]: Processors—Run-time environments, Glasgow
Haskell Compiler; D.3.2 [PROGRAMMING LANGUAGES]: Lan-
guage Classifications—Applicative (functional) languages, Con-
current, distributed, and parallel languages; D.4.1 [OPERAT-
ING SYSTEMS]: Process Management—Concurrency, Scheduling,
Synchronization
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1. Introduction

Haskell threads (also known as green threads or user threads) pro-
vide a key abstraction for writing high-performance, concurrent
programs [16] in Haskell [12]. For example, consider a network
server such as a web server. Serving a web request may involve
disk 1Os to fetch the requested web page, which can be slow. To
achieve high performance, web servers process other requests, if
any are available, while waiting for slow disk operations to com-
plete. During high load, a large number of requests may arrive dur-
ing the I0s, which gives rise to many requests in progress con-
currently. A naive implementation, using one native thread (i.e.
OS thread) per request would lead to the use of a large number
of native threads, which would substantially degrade performance
due to the relatively high cost of OS context switches [22]. In con-
trast, Haskell threads are lightweight threads, which can be context
switched without incurring an OS context switch and with much
lower overhead. Hence, lightweight Haskell threads are particularly
well-suited for implementing high performance servers.

Haskell’s lightweight threads reduce the incentive for program-
mers to abandon the simple, threaded model in favor of more
complex, event-driven programming to achieve acceptable perfor-
mance, as is often done in practice [22]. Event-driven programs
require that a programmer reorganize a sequential program into
a harder-to-understand, more complex structure: pieces of non-
blocking code segments and a state machine that determines the
operations that will be performed upon each event. In contrast, the
processing logic at a network server to handle a client request is
typically much easier to understand when programmed as a single
thread of execution rather than as collection of event handlers [21].

Given the importance of Haskell threads, the Glasgow Haskell
Compiler (GHC) [9]], the flagship Haskell compiler and runtime
system (RTS), provides substantial support to implement Haskell
threads. For example, realizing that CPU may become a bottleneck,
GHC RTS introduces a load-balancing multicore scheduler to try
to leverage the current and future trend of multicore processors. To
avoid memory bottlenecks, GHC RTS introduces a parallel garbage
collector and efficient multicore memory allocation methods. To
avoid using one native thread for each blocking I/O operation,
GHC RTS introduces an 10 manager [10l [15] to support a large
number of Haskell threads over a small number of native threads.
The objective of these components is to provide a highly scalable
Haskell thread implementation.

Unfortunately, despite introducing many important compo-
nents, GHC RTS did not scale on multicores, leading to poor per-
formance of many network applications that try to use lightweight
Haskell threads. In particular, our experiments demonstrate that
even embarrassingly concurrent network servers are typically un-



able to make effective use of more than one or two cores using
current GHC RTS.

Our first contribution of this paper is that we diagnose the causes
for the poor multicore performance of Haskell network servers
compiled with GHC. We identify that the GHC IO manager (also
known as the “new IO manager” [[15]) as the scaling bottleneck.
Through a series of experiments, we identify key data structure,
scheduling, and dispatching bottlenecks of the GHC 10 manager.

Our next contribution is that we redesign the GHC 10 manager
to overcome multicore bottlenecks. Our new design, called Mio,
introduces several new techniques: (1) concurrent callback tables
to allow concurrent use of the IO manager facilities, (2) per-core
dispatchers to parallelize the work of dispatching work to waiting
threads, improve locality, and reduce cross-core interactions and
(3) scalable OS event registration to reduce the use of non-scalable
and expensive system calls. The new techniques are all “under-the-
hood” and will apply transparently to all Haskell programs without
modification. Mio is simple to implement, with only 874 new lines
of code added to the GHC code base and 359 old lines of code
deleted. Mio will be released as part of GHC 7.8.1.

We comprehensively evaluate Mio using two network applica-
tions. With Mio, realistic HTTP servers in Haskell scale to 20 CPU
cores, achieving peak performance up to factor of 6.5x compared
to the same servers using previous versions of GHC. The latency
of Haskell servers is also improved: using the threaded RTS with
Mio manager, when compared with non-threaded RTS, adds just 6
microseconds to the expected latency of the server under light load,
and under a moderate load, reduces expected response time by 5.7x
when compared with previous versions of GHC. We also show that
with Mio, McNettle (an SDN controller written in Haskell), can
scale effectively to 40+ cores, reach a throughput of over 20 mil-
lion new requests per second on a single machine, and hence be-
come the fastest of all existing SDN controllers.

The rest of the paper is organized as follows. Section 2] presents
background on the design and API of the GHC 10 manager. Sec-
tion[3|shows problems of the GHC IO manager and our approaches
to overcome them. Section 4] and 5] discuss implementation details
and OS bottlenecks and bugs, respectively. Section [f] presents an
evaluation of our techniques. Sections[7]and [§] present related work
and conclusion, respectively.

2. Background: GHC Threaded RTS

A GHC user can choose to link a Haskell program with either
threaded RTS or non-threaded RTS. In this section, we briefly
review the operation of the threaded RTS and the GHC 10 manager,
which are presented in more detail in [[10} 11} [15], respectively.

2.1 Threaded RTS Organization

A concurrent Haskell program is written using Haskell threads typ-
ically created as a result of invocations of forkIO by the user pro-
gram. These Haskell threads are multiplexed over a much smaller
number of native threads. Figure [I] shows the structure of GHC’s
threaded RTS. A Haskell program running with the threaded RTS
makes use of IV cores (or CPUs), where N is typically specified as
a command-line argument to the program. The RTS maintains an
array of capability (also called a Haskell Execution Context (HEC))
data structures with each capability maintaining the state needed to
run the RTS on one core. This state includes a run queue of runnable
Haskell threads and a message queue for interactions between ca-
pabilities. At any given time, a single native thread is executing on
behalf of the capability and holds a lock on many of its data struc-
tures, such as the run queue. The native thread running the capa-
bility repeatedly runs the thread scheduler, and each iteration of the
scheduler loop processes the message queue, balances its run queue

with other idle capabilities (i.e. performs load balancing) and exe-
cutes the next Haskell thread on its run queue (among other things).
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Figure 1. Components of the threaded RTS, consisting of N ca-
pabilities (caps), each running a scheduler which manages its capa-
bility’s run queue and services its messages from other capabilities.
At any given time, a single native thread is executing the capabil-
ity. The system uses a single GHC 10 manager component, shared
among all capabilities.

In order to support blocking foreign calls, the RTS may in fact
make use of more than N native threads. When a Haskell thread
performs a foreign call that may block, the native thread running
the capability releases the capability and creates a new native thread
to begin running the capability, and then performs the blocking
OS call. This allows the RTS to continue running other Haskell
threads and to participate in garbage collections, which requires
synchronization across all capabilities. In fact, a pool of native
threads is maintained per capability so as to avoid creating a new
native thread for each blocking call.

2.2 GHC IO Manager

Although the GHC IO manager is an ordinary Haskell library, dis-
tributed as part of the Haskell base libraries, it is in fact tightly
coupled with the threaded RTS, which is primarily written in C.
During the RTS initialization sequence, the RTS calls a function
implemented in the GHC 10 manager library (i.e. in Haskell) to
initialize the state of the GHC IO manager. This function initial-
izes a value of type FventManager and writes this to a global
variable. This value is indicated as the state labelled “IO Manager
State” in Figure|ll The FventManager structure contains several
pieces of state, including a callback table, which keeps track of the
events that are currently being waited on by other Haskell threads.
The callback table is a search tree, keyed on file descriptor, and has
type IntMap [FdData]. Each value stored in the table is a list of
FdData values, where an FdData value includes the file descrip-
tor, a unique key, the type of operation (i.e. read or write) being
waited on, and a callback function to invoke when the operation
is ready. Specifically, the GHC IO manager provides the following
API to retrieve the GHC IO manager and to register or unregister
interest in file-related events:

getSystemEventManager :: IO (Maybe EventManager)
registerF'd :: EventManager

— IO0Callback — Fd — Event — IO FdKey
unregisterF'd :: EventManager — FdKey — 10 ()

The Fd parameter is the file descriptor of an open file and
the Event parameter is either Read or Write. The FdKey value
returned by a call to registerF'd includes both the file descriptor
and the unique key, uniquely identifying the subscription. The



unique key is automatically generated by the GHC IO manager
in registerF'd and is used to allow subscriptions on the same file
descriptor by multiple threads, with each thread able to cancel its
subscription independently.

The callback table is stored in an M Var [16] in a field of the
EventManager value. An MVar is essentially a mutable vari-
able protected by a mutex. In addition, an M Var maintains a
FIFO queue of threads waiting to access the variable, ensuring that
threads are granted fair access to the variable. The registerF'd func-
tion takes the callback table lock, and then inserts (or modifies) an
entry in the callback table and registers the event subscription us-
ing the underlying OS event notification mechanism, for example
epoll [8] on Linux, kqueue [7] on BSD variants, and poll on
other OSes, and finally restores the callback table lock. Similarly,
unregisterFd takes the callback table lock, removes the appropri-
ate entry, removes the event subscription from the underlying OS
event queue, and then restores the lock. Note that the callback table
is stored in an M Var in order to control concurrent access to both
the callback table and the OS event queue, since Haskell threads
executing on different capabilities may attempt to register events
concurrently, possibly on the same file descriptor.

The GHC IO manager initialization function also forks a
Haskell thread, called the dispatcher thread. The dispatcher thread
executes a poll loop, repeating the following steps. It performs a
blocking call to the appropriate OS function to wait on all regis-
tered events (e.g. epoll_wait on Linux). When it returns from
the call, it retrieves the ready events, and for each one, it takes
the callback table lock, retrieves the relevant callback, restores the
lock and then invokes the provided callback. Having dispatched all
the callbacks, the dispatcher thread repeats the process indefinitely.
The dispatcher thread is shown in Figure |1| as the bold Haskell
thread on capability /N’s run queue. With this approach, the RTS
uses a single extra native thread to perform a blocking system call,
instead of using one native thread per Haskell thread performing a
blocking system call.

2.3 OS Event Notification

As alluded to above, each OS provides one or more event notifica-
tion facilities. Some mechanisms, such as select and poll, offer
a single system call which accepts an argument listing all the events
of interest to the caller and blocks until at least one of those events
is ready; upon returning the system call indicates which of the input
events have occurred. Other mechanisms, such as epoll on Linux
and kqueue on BSD allow the program to register or unregister in-
terest in events, and then separately wait on all registered events.
This second method is more efficient when a large number of files
is being monitored, since it avoids passing the full list of events of
interest to the OS each time the program checks for event readiness.
For concreteness, Figure 2] shows the API provided by epoll.

int epoll_create(int size);

int epoll_ctl(int epfd, int op, int fd,
struct epoll_event *event) ;

int epoll_wait(int epfd,
struct epoll_event *events,
int maxevents, int timeout);

Figure 2. Epoll APL

Specifically, epoll_create creates a new epoll instance and
returns a file descriptor for the instance. epoll_ctl registers or
unregisters (depending on the value of op) interest in an event on
file descriptor £d for events indicated by the event pointer with
the epoll instance epfd. In particular, struct epoll_event
includes a bitset (also known as an interest mask) indicating

which event types, such as EPOLLIN and EPOLLOUT (readable
and writable, respectively) the caller is interested in. Finally,
epoll_wait waits for events registered with epoll instance epfd
and receives up to maxevents events into the events array, or
returns with no events if timeout time has elapsed.

2.4 Thread API

The file registration API presented in the previous section is used to
implement more convenient functions used by Haskell threads. In
particular, the GHC 10 manager provides the following two Haskell
functions:

thread WaitRead, thread Wait Write :: Fd — 10 ()

These functions allow a Haskell thread to wait until the OS
indicates that a file can be read from or written to without blocking.
They are logically blocking, i.e. the calling Haskell thread will
appear to block until the requested operation can be performed by
the OS.

These two functions are typically used in the following way.
Haskell programs mark any files (e.g. sockets) they use as non-
blocking. Then, when performing a read or write on a file, the OS
will either perform the operation without blocking, or will return
an error code indicating that the operation could not be performed
without blocking. The Haskell thread then typically handles this
condition by executing the thread WaitRead or thread Wait Write
as appropriate. This call will only return when the file is readable
or writable, at which point the thread will attempt the preceding se-
quence again. More concretely, a thread may perform the following
command to send a number of bytes on a given socket:

send :: Fd — Ptr Word8 — Int — 10 Int
send sock ptr bytes = do
result <— c_send sock ptr (fromlIntegral bytes) 0
if result = —1 then do
err <— getErrno
if err = eAGAIN then do
thread Wait Write sock
send sock ptr bytes
else
error "unexpected error"
else
return (fromIntegral result)

In this code, sock is the file descriptor of an open socket, ptr
is a pointer to a byte array, and bytes is the number of bytes to
send from the beginning of p¢r. We assume that we have a function
c-send that calls the send() system call of the underlying OS.
We also assume that we have a function getErrno that provides
the error number returned and a constant eAGAIN that is used by
the OS to indicate when the operation would block. Such code is
typically implemented in a library that provides more convenient
functions. For example, the Network.Socket. Bytestring library
provides a function sendAll whose implementation is similar to
that given for send above.

thread WaitRead and thread Wait Write are both implemented
using thread Wait, shown in Figure 3} thread Wait first creates a
new, empty M Var (distinct from the M Var holding the callback
table), which we call the invoking thread’s wait variable, and uses
getSystemEventManager to get the manager value. It then regis-
ters a callback using registerF'd for the current file descriptor and
appropriate Fvent (i.e. read or write event), and then proceeds to
wait on the initially empty M Var. Since it encounters an empty
MVar (typically), the scheduler for the capability running this
thread will remove the current thread from its run queue. Later,
when the OS has indicated that the event is ready, the dispatcher



thread will invoke the registered callback, which first unregisters
the event (using unregisterFd_) with the IO manager and then
writes to the thread’s wait variable, causing the scheduler to make
the original thread runnable again. As a result, the original thread
will be placed on the run queue of the capability on which it was
previously running. At this point, the thread Wait function returns
and the original thread continues.

threadWait :: Event — Fd — 10 ()
thread Wait evt fd = mask-$ do
m <— newEmptyM Var
Just mgr < getSystemFEventManager
let callback reg e = unregisterFd_ mgr reg > putMVar m e
reg < registerF'd mgr callback fd evt
evt’ < takeMVar m ‘onEzception‘ unregisterFd_ mgr reg
when (evt’ ‘eventls‘ evtClose) $ ioError $
errnoTolOError "threadWait" eBADF Nothing Nothing

Figure 3. Method for a thread to wait on an event.

3. Analysis & Multicore IO Manager Design

In this section, we demonstrate the bottlenecks in the GHC IO
manager and the techniques we use to overcome these. We first
introduce a simple HTTP server written in Haskell, which we will
use throughout this section. We then diagnose and solve bottlenecks
one at a time, with each solution revealing a subsequent bottleneck
at a higher number of cores. In particular, we explain our three main
techniques to improve performance: concurrent callback tables,
per-core dispatchers and scalable OS event registration.

3.1 The Simple Server

We illustrate the problems with the GHC IO manager by using a
concurrent network server written in Haskell, called SimpleServe
that should be perfectly scalable: it serves each client indepen-
dently, using no shared state and no synchronization between
clients (e.g. locks) anywhere in the Haskell program. With a suf-
ficient number of concurrent clients, this is a plentiful, perfectly
parallelizable workload. As a result, we would expect that as we
utilize more cores, SimpleServer should be able to serve more re-
quests per second, provided there are a sufficient number of clients.
Unfortunately, as we will show, with the GHC 10 manager, this is
not the case.

SimpleServer is a drastically simplified HTTP server. Its key
parts are listed in Figure [f] The server consists of a main thread
that starts a listening socket and then repeatedly accepts incom-
ing connections on this socket, making use of the network pack-
age for basic datatypes and functions like accept. The main thread
then forks a new worker (Haskell) thread for each newly accepted
connection. A worker thread then repeatedly serves requests. To
handle a single request, it receives ByteString values (using the
Network.Socket. ByteString.recv function) until a single request
of length requestLen has been received, and then sends a single
response (using the Network.Socket. ByteString.sendAll func-
tion). The connection is closed when the worker thread receives
a zero length ByteString. The sendAll and recv functions in-
ternally call thread WaitWrite and thread WaitRead whenever
the respective operation would block, much as the send function
shown earlier does.

This highly simplified server performs no disk access, performs
no HTTP header parsing, and allocates only one ByteString for re-
sponses. Using this simplified server allows us to avoid application-
level bottlenecks that may arise from functions such as HTTP pars-
ing and protection against various denial of service attacks that are

Uhttps://github.com/AndreasVoellmy/SimpleServer

main :: 10 ()
main = do
listenSock < startListenSock
forever $ do
(sock, _) < accept listenSock
forkIO $ worker sock

worker :: Socket — 10 ()
worker sock = loop requestLen
where
loop left
| left =0 =do
sendAll sock reply
loop requestLen
| otherwise = do
bs < recv sock left
let len = B.length bs
when (len # 0) $ loop (left — len)

Figure 4. Main parts of SimpleServer.

required in real HTTP servers. In Section[6] we evaluate more real-
istic web servers.

We evaluate SimpleServer using a closed system, connecting
multiple clients to the server where each client repeatedly sends a
request, waits for the response, and then repeats. The clients gen-
erate requests with the fixed length expected by SimpleServer.
Throughout this section, we evaluate the server’s throughput, in re-
quests/second, using 400 concurrent clients. We run SimpleServer
and the clients on different Linux servers using a setup described
in detail in Section[6.1]

3.2 Concurrent Callback Tables

Unfortunately, as the curve labelled “Current” in Figure [5] shows,
the GHC IO manager scales poorly, reaching a maximum perfor-
mance at 2 cores serving 37,000 requests per second and then de-
clining, with per-core performance rapidly deteriorating. Despite
our application being perfectly parallelizable, the RTS essentially
forces a completely sequential execution.

S 600000
Q
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g 400000 —&-— Fina
g 300000 —m - ParDisp
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g’ 200000 P
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Figure 5. Throughput of SimpleServer shown as number of re-
quests served per second. “Current” means it runs with the GHC
10 manager. “Striped”, “ParDisp” and “Final” are described in Sec-

tions 3.2} [3.3]and [3.4] respectively.

The most severe problem in the GHC 10 manager is that a sin-
gle MVar is used to manage the callback table. The problem be-
comes evident by carefully examining an event log [6] recorded
during an execution of SimpleServer. By compiling and run-
ning SimpleServer with event logging turned on, an execution of
SimpleServer generates a log file that records the timing of vari-
ous events, such as thread start and stop times, thread wakeup mes-
sages, thread migrations, and user-defined events. We then visual-
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ize the event logs offline, using the Threadscope progranﬂ which
produces graphical timelines for an event log. Threadscope pro-
duces one timeline for each capability (labelled “HEC”) and also
produces an overall utilization timeline (labelled “Activity”). The
capability timelines are white when no Haskell thread is being exe-
cuted and are light gray when executing a Haskell thread. If there is
sufficient space, the thread ID is indicated in the light gray region
indicating a running Haskell thread. In the event logs shown in this
paper, we use solid, black bars to indicate when one thread sends
a thread wakeup message for another Haskell thread, and we use
dashed, gray bars to indicate when a SimpleServer worker thread
calls thread WaitRead on the thread’s socket.

Figure [6] shows a detailed fragment of an event log recorded
when running SimpleServer using the GHC IO manager and us-
ing 4 capabilities (i.e. N = 4) and which demonstrates contention
on the callback table variable. In particular, we see that thread 18
on HEC 1 attempts to wait on its socket (the dashed, gray bar),
but fails due to the callback table variable already being taken, in
this case by thread 2, which is the dispatcher thread of the GHC
IO manager. Therefore, thread 18 enqueues itself on the callback
table variable wait queue and is removed from the run queue, after
which HEC 1 becomes idle. Eventually, when the dispatcher thread
(thread 2) runs again on HEC 0 (after migrating from HEC 3 just
moments earlier), it releases the callback table variable and HEC 1
is messaged to indicate that thread 18 is next in line to take the call-
back table variable (the solid line on HEC 0 following thread 18’s
wait). The dispatcher thread then immediately attempts to take the
callback table variable again, causing it to be queued and desched-
uled. Just after this, thread 50 on HEC 2 also attempts to wait on its
socket (dashed gray line), but also finds the callback table variable
taken, and therefore also enqueues itself on the variable’s waiter
queue. HEC 1 then runs thread 18, which finishes its registration,
returns the lock, and notifies HEC 0 to run thread 2 again (second
solid bar for thread 18). When thread 2 runs again, it finishes its
work, in this case dispatching a new event to thread 13, and notifies
HEC 2 for thread 50.

| 58635 586355 5863555
Activity
HEC 0 s ] T || | [l |
s b ol W hel
HEC 2 |1f |50 : |5¢
HEC 3 20 R | |

Figure 6. Event log fragment from an execution of
SimpleServer with the GHC IO manager and 4 capabilities
and illustrating contention for the callback table variable.

This sequence shows in detail that not only are workers interfer-
ing with each other in order to register interest in events, but work-
ers may interfere with the dispatcher, preventing the dispatcher
from placing runnable threads on the run queues of idle cores. As
the wait queues on the callback table variable build up, the dis-
patcher thread may ultimately have to wait its turn in a long line to
get access to the callback table. This results in the episodic behavior
seen in Figure[7] When the dispatcher gains access to the callback
table, most activity has died down, and it is able to dispatch a large

Zhttp://www.haskell.org/haskellwiki/ThreadScope

number of threads. Subsequently, these threads serve their connec-
tions and then as they attempt to wait, large queues form, and the
dispatcher thread is unable to run long enough to dispatch any more
work. Thus, system activity begins to decline, until the dispatcher
gains access and starts the cycle again.

weco LT TIRET TIREL T IT0 W0 T
LGRS |
wec2 IR e T T
wecs ML I FIRELT T T

Figure 7. Event log fragment from an execution of
SimpleServer with the GHC IO manager and 4 capabilities: lock
contention leads to HECs mostly idling.

We can resolve this severe contention by using a data struc-
ture that allows for more concurrency. We apply a simple so-
Iution, which we call lock striping: we use an array of call-
back tables and hash file descriptors to array locations. Specif-
ically, we change the type of the callback table field of the
EventManager data type from MVar (IntMap [FdData]) to
Array Int (MVar (IntMap [FdData])) and use a fixed array
size of 2°. With this data structure, registration or notification on
a file descriptor simply performs the original registration or noti-
fication procedure to the callback table at the location that the file
descriptor hashes to. Hence, registrations or notifications on differ-
ent file descriptors do not interfere. We store the callback table in
each array location in an M Var so that we can perform both the
callback table update and the operation on the OS event subsystem
in one atomic step for any file descriptor. This prevents a race con-
dition in which two updates on the same file descriptor are applied
to the callback table in one order and to the OS event subsystem in
the reverse order.

To illustrate the effectiveness of this technique, we measure
performance applying only lock striping to the GHC IO manager.
The curve labelled “Striped” in Figure [5] shows that the resulting
server scales better through 4 cores, reaching a performance of over
80,000 requests per second, more than doubling peak performance
of the program using the GHC 10 manager.

Figure[8]shows a segment of an event log taken with 4 cores that
indicates in more detail how the severe contention is relieved and
how work is dispatched more smoothly. The activity time-graph is
close to maximum throughout this segment, indicating that all four
cores are now effectively utilized. In more detail, we can see the
dispatcher thread (thread 2) on HEC 0 is able to dispatch work to
threads (indicated by solid black bars on HEC 0) at the same time
that the worker threads serve client requests and register callbacks
to wait on again (dashed bars on HECs 1, 2 and 3).

3.3 Per-Core Dispatchers

Unfortunately, concurrent callback tables are not sufficient to al-
low SimpleServer to continue scaling beyond 4 cores. The event
log fragment shown in Figure [J]is taken from a run with 8 cores
and provides insight into the problem. In particular, we see that
the dispatcher thread (on HEC 1) is very busy, while other HECs
are mostly idle. We see that as the dispatcher thread notifies each
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Figure 8. Event log fragment from an execution of SimpleServer using the concurrent callback table and 4 capabilities and illustrating

concurrent registrations and dispatching.

thread, the notified thread quickly executes and finishes. The dis-
patcher is simply unable to create work fast enough to keep 7 other
cores busy. The underlying problem is that GHC 10 manager de-
sign essentially limits the notification work to consume no more
than 1 CPU core, and this workload (SimpleServer) results in
full utilization of the dispatcher component, creating a bottleneck
in the system.
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Figure 9. Timeline for an execution of SimpleServer using con-
current callback tables and 8 capabilities: The dispatcher thread on
HEC 1 is fully utilized and has become a bottleneck.

We solve this problem by introducing per-core dispatcher
threads, effectively eliminating the restriction of 1 CPU core for
dispatching work. In particular, the intialization sequence of the
RTS creates an array of N EventManager values, where N is
the number of capabilities used by the program. We also fork NV
dispatcher threads, each pinned to run only on a distinct capa-
bility, and each monitoring the files registered with its respective
EventManager. We modify the thread Wait functions so that
they register the callback with the manager for the capability that
the calling thread is currently running on. This design allows each
capability to perform the dispatching for Haskell threads running
on its capability. Since the RTS scheduler balances threads across
capabilities, this often leads to balancing the dispatching work as
well. Furthermore, since a newly awoken thread is scheduled on
the same capability that it previously ran on, the dispatcher’s in-
vocation of callbacks does not cause any cross-capability thread
wakeup messages to be sent, improving core locality.

Unfortunately, this design introduces a problem that threatens
to negate its benefits: a dispatcher thread often makes blocking
OS calls, and therefore relinquishes its HEC and causes a context
switch to another native thread which begins executing the HEC’s
work [11]]. Using one dispatcher per HEC increases the frequency
with which this expensive operation occurs. For example, running
SimpleServer using per-core dispatchers with 8 capabilities, we
incur 35,000 context switches per second.

To alleviate this problem, we modify the dispatcher loop, to
first perform a non-blocking poll for ready events (this can be
accomplished with epoll by calling epoll_wait with a timeout
of 0). If no events are ready, the dispatcher thread yields (by calling
the Control. Concurrent.yield function), causing the scheduler
to move it to the end of its capability’s run queue. When the
dispatcher thread returns to the front of the run queue, it again
performs a non-blocking poll, and only if it again finds no ready
events, then it performs a blocking OS call, which removes it from
the capability’s run queue. This optimization is effective when
events become ready frequently, as the dispatcher collects events
without incurring context switches. In the case that events become
ready infrequently, the loop falls back to blocking calls. With this
revision, the context switch rate for SimpleServer drops to 6,000
per second when using 8 capabilities.

The curve labelled “ParDisp” in Figure [5] shows the improved
scaling resulting from applying per-core dispatchers with the afore-
mentioned optimized dispatcher loop. SimpleServer now serves
nearly 300,000 requests per second using 8 cores, achieving over
triple the throughput of “Striped”. The event log shown in Fig-
ure[T0] shows how the 8 capabilities are now fully utilized and that
the work of dispatching is now distributed over many capabilities,
with HECs 0, 4, 5, and 7 visibly dispatching threads in this event
log fragment (the closely spaced solid bars indicate dispatching of
threads).

3.4 Scalable OS Event Registration

Even after adding per-core dispatchers, the server stops scaling af-
ter about 8 cores, despite all cores being fully utilized. The event
log fragment of Figure [I0] provides insight into the problem. Al-
though many worker threads finish quickly, returning to wait on
their socket, some workers, for example thread 380 on HEC 6 and
thread 126 on HEC 3 take 2-4 times as much time to service a re-
quest as other threads. Most interestingly, a large fraction of the
time for these anomalous threads occurs after they request to wait
on their socket (the dashed gray bar). For example thread 126 re-
quires more than 100 microseconds to register its callback with the
IO manager and block on its wait M Var, whereas thread 24 on



HEC 1 finishes in around 20 microseconds. While at 8 cores, these
slow-down occurrences are a small fraction of the overall thread
executions, the frequency of this behavior becomes larger as more
cores are added. This clearly suggests shared memory contention
for some data structures shared among the capabilities.
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Figure 10. Timeline of SimpleServer with per-core dispatcher
threads. All HECs are busy and dispatcher threads are running on
several HEC:s.

By performing detailed profiling, we observed that the poor
scaling is due to a global Linux kernel lock in the epoll sub-
system used by the IO manager on our Linux server. This lock,
named epmutex, is taken whenever an event is newly registered
or deleted from an epoll object. This lock is required to allow
epoll instances to be nested without forming cycles and is a truly
global lock affecting operations on distinct epoll instances. Un-
fortunately, in the GHC IO manager, every register and unregister
call invokes an epoll operation that causes epmutex to be taken.
Specifically, thread Wait adds a new event to its epoll instance.
Later, when the event is retrieved from the OS and the callback is
invoked, the callback unregisters the subscription, causing the 10
manager to delete the subscription from the epoll object. There-
fore, every threadWait call requires a global lock to be taken
twice. This results in increased contention as more cores are used.
Furthermore, a contended lock may cause the native thread run-
ning the capability to be descheduled by the OS (which does not,
unfortunately, show up in the event log trace).

We avoid this bottleneck by reusing epoll registrations and
thereby avoiding taking epmutex on every operation. In particular,
when we register an event, we first attempt to modify an existing
registered event. Only if that fails — and indeed it will fail on the first
registration on the file — we register a new event. Moreover, we reg-
ister the event subscription in one-shot mode; event subscriptions
registered in one-shot mode are automatically disabled by epoll
after the application retrieves the first event for the subscription.
Using one-shot mode allows us to safely leave the existing regis-
tration in place and has the added benefit that no extra epoll_ctl
call is needed to delete the event registration.

The curve labelled “Final” in Figure 5] shows the result of
applying this optimization on top of the previous improvements.
We see greatly improved scaling through 20 cores, serving up
to 668,000 requests per second at 20 cores, more than 18 times
throughput improvement over the same program using the threaded
RTS with the GHC IO manager. Furthermore, Mio improves the
single core performance of the server by 1.75x: with Mio, the server
serves 58,700 requests per second while with the GHC IO manager
it serves only 33,200 requests per second.

4. Implementation

Mio has been fully implemented, has been incorporated into the
GHC code base, and will be released as part of GHC 7.8.1. Mio
includes 874 new lines of code and 359 old lines of code deleted.
Of these changes, 21 lines were added in the RTS code written
in C. Most of these 21 lines are routine boilerplate while 7 are
needed to support dynamically changing number of capabilities.
In the following sections we describe our support for non-Linux
OSes, Mio’s treatment of timers and several minor GHC RTS
bugs and performance problems that we helped to address while
implementing Mio.

4.1 BSD and Windows Support

On BSD systems such as FreeBSD, NetBSD and OpenBSD, Mio
uses the kqueue subsystem, as epoll is unavailable on these plat-
forms. The kqueue API provides two C functions as listed in Fig-
ure [TT] The kqueue function creates a new kqueue. The kevent
function takes a changelist array to specify events to be reg-
istered, unregistered, or modified and an eventlist array to re-
ceive events. Hence, this function may carry out both event reg-
istration and event polling at the same time. If eventlist is a
NULL pointer, kevent performs event registration only, similar to
the function performed by the epoll_ctl. Similarly, kevent can
play the same role as epoll_wait by providing a NULL pointer for
the changelist argument. Moreover, the kqueue subsystem also
supports one-shot registrations. Hence, BSD variants can be sup-
ported using essentially the same approach we described in Section

&l

int kqueue(void);

int kevent(int kq,
const struct kevent *changelist, int nchanges,
struct kevent *eventlist, int nevents,
const struct timespec *timeout);

Figure 11. Kqueue APL

Mio also uses kqueue on OS X, since Darwin, the foundation
for Apple’s OS X, is a variant of BSD. However, we encountered
problems running parallel builds of the GHC compiler using Mio
as described above. We have been unable to uncover the underlying
source of the problem to our satisfaction. However, several Internet
discussions suggest that the implementation of kqueue and pipe
on OS X are unstable. We were able to resolve the observed prob-
lems on OS X by avoiding the use of one-shot mode on OS X,
instead unregistering events after they are delivered, and by send-
ing wakeup writes to a pipe monitored by the dispatcher threads’
kqueue instances on every event registration. With these changes,
the behavior on OS X, including parallel builds of GHC, has been
stable.

For UNIX platforms not supporting either epoll or kqueue,
Mio utilizes the pol1 backend. Since poll does not provide a sepa-
rate registration function, a Haskell thread must register interest for
an event by adding it to a queue of events that should be registered
and then interrupting the dispatcher if it is currently in a blocking
poll call. The registration function performs this by sending a con-
trol message on a pipe monitored by the dispatcher thread’s poll
calls. This mechanism is unchanged from the implementation in the
GHC IO manager for the pol1 backend.

GHC does not have an 10 manager for Windows. For reading
from and writing to files and sockets, blocking FFI calls are is-
sued. Implementing a high-performance 10 manager for Windows
is challenging because Windows does not have scalable poll-like
APIL. Windows I/0O Completion Ports (IOCP) provides a scalable



asynchronous API and substantial progress has been made in build-
ing an IO manager based on IOCPEI However, various complica-
tions prevented this work from being integrated into GHC. For this
reason, we have not yet implemented Mio for Windows.

4.2 Timers

In the GHC IO manager, timers are monitored in the dispatcher
loop. In Mio, the dispatcher loop has been modified to yield, which
can lead to the dispatcher thread being delayed by other Haskell
threads earlier on the run queue. Hence, the dispatcher loop can no
longer be used for dispatching functions waiting on timers. There-
fore, Mio moves timer monitoring into a separate timer dispatcher
thread. This timer dispatching thread is identical to the GHC 10
manager dispatcher thread, except that it no longer monitors file
descriptors.

4.3 Support for Event-driven Programs

Although the GHC'.Event module in the GHC IO manager is
considered “private”, a survey of hackage applications uncov-
ered several programs that use this module to implement event-
driven programs directly, rather than use Haskell threads and the
thread WaitRead and thread Wait Write functions. The GHC 10
manager leaves a subscription registered until the client deregisters
the subscription. However, as we described earlier, the typical use
(via the thread Wait function) is to deregister the subscription im-
mediately after the callback is invoked, and Mio optimizes for this
case by using the one-shot mode, automatically deregistering the
subscription. To continue to support clients using the private Man-
ager interface directly, we allow the Mio manager to be initialized
with a flag indicating that it should not deregister subscriptions au-
tomatically after receiving an event for the subscription. Therefore,
such programs can continue to use the Mio manager directly by
simply adding a single flag when initializing a Mio manager.

4.4 GHC RTS Issues

Although GHC'’s threaded RTS provides a high-performance paral-
lel garbage collector, we observed that garbage collection increas-
ingly becomes an impediment to multicore scaling. One commonly
used method for reducing the overhead of GC is to reduce the fre-
quency of collections by increasing the allocation area (aka nurs-
ery) used by the program. In particular, in our experience, provid-
ing a large allocation area (for example, 32MB) improves multicore
performance, confirming the observations of other researchers [24].

Each capability of GHC’s threaded RTS has a private nursery
that must be cleared at the end of a GC. This clearing consists
of traversing all blocks in the nursery, resetting the free pointer
of the block to the start of the block. In the parallel GC, the
clearing of all capabilities’ nursery blocks is done sequentially by
the capability that started the GC, causing many cache lines held
by other capabilities to be moved. Instead, we change the behavior
such that each capability clears its own nursery in parallel.

Furthermore, many network programs use pinned memory re-
gions, e.g. for ByteString values, in order to pass buffers to C
functions, such as send () and recv (). The threaded RTS allocates
such objects from the global allocator, which requires the allocat-
ing thread to acquire a global lock. Our insight led to a commit by
Simon Marlow to allocate necessary blocks for small pinned ob-
jects from the capability-local nursery, which can be done without
holding any global lockﬂ This change improves performance for
multicore programs that allocate many small ByteStrings.

Our dispatcher thread makes use of the yield function to place
the dispatcher thread on the end of the run queue when it finds

3http://ghc.haskell.org/trac/ghc/ticket/7353
4thread.gmane.org/gmane.comp.lang.haskell.paralle1/218

no ready events after polling once. GHC’s RTS had a bug in which
yield placed the thread back on the front of the run queue. This bug
was uncovered by our use of yield which requires that the thread
be placed at the end of the run queue.

All of these issues have been addressed by commits that are part
of the GHC master development branch.

5. OS Bottlenecks & Bugs

While implementing Mio, we encountered hardware performance
problems and a Linux kernel bug. To eliminate the possibility that
Haskell (or rather GHC) was causing these problems, we imple-
mented a C version of our SimpleServer program. This program,
called SimpleServer@’| is implemented in essentially the same
way as SimpleServer: the main thread accepts connections and a
configurable number of worker native threads service connections.
The accepted connections are assigned to worker threads in round-
robin order. Each worker thread uses a distinct epoll instance to
monitor the connections it has been assigned and uses the epoll
API in the same way that SimpleServer with Mio uses epoll.
On the other hand, it does not use a garbage collector, a thread
scheduler and other subsystems of the GHC RTS that may intro-
duce performance problems.

5.1 Load Balancing CPU Interrupts

In order to avoid interrupt handling from becoming a bottleneck,
Linux (in its default configuration) evenly distributes interrupts
(and hence workload) from network interface cards (NICs) to all of
the CPU cores in the system. Unfortunately, this feature interacts
poorly with power management features of our server. To save
power, modern CPU cores can aggressively enter deep sleep states.
Specifically, every CPU core on our multicore server can enter (1)
CO state in which the CPU core keeps busy in running code, (2) C1
state in which the CPU core turns off clocks and stops executing
instructions, (3) C3 state in which the CPU core flushes the core’s
L1 and L2 caches into the last level cache, and (4) C6 state in which
the CPU core saves all processor state in a dedicated SRAM and
then completely removes voltage from the core to eliminate leakage
power. When a CPU core wakes up from C6 state, it restores core
state from the SRAM, activates L1 and L2 caches and core clocks.
This expensive operation causes undesired application delays [1]].
Experimentally, we found that, by distributing interrupts well, the
workload of each CPU core is reduced to a level which triggers
the CPU cores to enter deep sleep states. Later, when new packets
arrive, the CPU cores have to wake up before they start processing
packets, an expensive operation which leads to undesired delays
and low throughput.

To verity this behavior, we compare SimpleServerC’s perfor-
mance on our server in the default configuration with the default
configuration with power-saving disabled, while varying the num-
ber of cores from 1 to 20. We disable power-saving by specifying
the maximum transition latency for the CPU, which forces the
CPU cores to stay in CO state. Figure shows the results, with
the curves labelled “Default” and “NoSleep” showing the perfor-
mance in the default configuration and the default configuration
with power-saving disabled, respectively. Without limiting the CPU
sleep states (curve “Default”), SimpleServerC cannot benefit
from using more CPU cores and the throughput is less than 218,000
requests per second. In contrast, after preventing CPU cores enter-
ing deep sleep states (curve “NoSleep”), SimpleServerC scales
up to 20 cores and can process 1.2 million requests per second,
approximately 6 times faster than with the default configuration.

S\github. com/AndreasVoellmy/epollbug
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Figure 12. Throughput scaling of SimpleServerC when using
different number of cores for interrupt handling and different
power-saving settings.

By profiling our server with perf in Linux and i7zﬁ from In-
tel, we observed that the CPU cores of the server in the default
configuration frequently entered deep sleep states. For example,
when running SimpleServerC with 16 worker threads in the de-
fault configuration, on average 51% of the CPU time is spent on
C6 state (including transition between C6 and running state), 33%
on C3 state, 9% on Cl1 state, and only 7% of the CPU time is spent
on running programs. In contrast, with power-saving disabled, the
CPUs remain in CO state throughout the program run.

Disabling sleep modes, however, is not a desirable solution for
real systems due to power consumption. Rather than distribute in-
terrupts of 10G NICs among all of the CPU cores in the system
and then disable power saving, we limit the number of CPU cores
used to handle hardware interrupts to a reasonably small num-
ber of CPU cores (In Linux, this can be achieved by adjusting
/proc/irq/N/smp_affinity settings appropriately). In addi-
tion, we set the CPU affinity (using taskset) of SimpleServerC
threads so that they run on the same CPU (NUMA) nodes as the
interrupt handlers , which improves stability of the results.

Curves labelled “17, “2”, “4”, and “8” in Figure @] show the
performance of SimpleServerC when interrupts are handled by
1, 2, 4, and 8 cores respectively with default power-saving set-
tings. By limiting the number of CPU cores to handle interrupts,
SimpleServerC can scale as well or better as when power-saving
is disabled. In particular, we see that using 4 cores for interrupt han-
dling is optimal. With this configuration, SimpleServerC scales
up to 20 workers and can process 1.5 million requests per second,
with 100% of the CPU time of CPU cores handling interrupts spent
on CO state. With too few CPU cores (curves 1 and 2), the server
cannot scale to more than 8 worker threads because the interrupt
handling CPUs become a bottleneck. With too many CPU cores
(e.g. curve 8) deep sleep is triggered frequently because the work-
load of each CPU core is reduced below a critical level.

We therefore prevent our server from entering deep sleep states
in all evaluations in this paper by using 4 CPU cores to handle
hardware interrupts from our 10 Gbps NICs.

5.2 Linux Concurrency Bug

After removing various bottlenecks in our system, SimpleServer
scaled to 20 cores and serves nearly 700,000 requests per second.
This workload places an unusual burden on the Linux kernel and
triggers a bug in Linux; Under such a heavy load, the epoll
subsystem occasionally does not return read events for a socket,
even though the socket has data ready, causing worker threads in
SimpleServer to wait for data indefinitely. To verify that this

Shttp://code.google.com/p/i7z/

problem is due to a kernel bug, we verified that SimpleServerC
also triggers the same problem (in fact, debugging this problem was
the initial motivation for developing SimpleServerC).

We reported the bug to the Linux community. Kernel developers
quickly identified the problem as a missing memory barrier in the
epoll subsystem. In particular, when subscribing for an event
on a socket, the interest mask for the socket is first updated and
then the socket is checked for data to see if it is already ready.
On the other hand, when processing incoming data, the Linux
network stack first writes data to the socket and then checks the
interest mask to determine whether to notify a waiter. To ensure that
these operations occur in the correct order even when executing on
different CPUs, memory barriers are required in both sequences.
Unfortunately, a memory fence was missing in the registration
code. This long-standing bug affects all Linux kernels since 2.4 and
a patch fixing the issue has been accepted into the Linux kerneﬂ

6. Evaluations
6.1 Methodology

We use a set of benchmark applications and workloads to character-
ize the performance of Mio. We use the following hardware, system
software, and GHC and Haskell library versions.

Hardware: We run Haskell server programs on a SuperMicro
X8OBN server, with 128 GB DDR3 memory and 8 Intel Xeon E7-
8850 2 GHz CPUs, each having 10 cores with a 24 MB smart cache
and 32 MB L3 cache. This server has four 10 Gbps Intel NICs. In
the experiments, we turn off hyper-threading to prevent the system
scheduler from scheduling multiple native threads that should run
in parallel to a single physical CPU core. Client and workload gen-
erator programs run on Dell PowerEdge R210 II servers, with 16
GB DDR3 memory and 8§ Intel Xeon E3-1270 CPUs (with hyper-
threading) running at 3.40 GHz. Each CPU core has 256 KB L2
cache and 8 MB shared L3 cache. The servers communicate over
a 10 Gbps Ethernet network and are configured so that each client
server has a dedicated 10 Gbps path the main server. This level of
network bandwidth was required to avoid network bottlenecks.

Software: The server software includes Ubuntu 12.04, Linux ker-
nel version 3.7.1 on the SuperMicro server and version 3.2.0 on
the Dell server, and Intel ixgbe driver (version 3.15.1). We use the
latest development version of GHC at the time of this writing. For
comparison of the threaded RTS of GHC without Mio, we use the
development version of GHC with Mio patches removed.

We run weightt}ﬂ on the Dell servers to benchmark HTTP
servers. weighttp simulates a number of clients making requests
of an HTTP server, with each client making the same number of
requests. Each client establishes a connection to the server and then
repeatedly requests a web page and then waits for the response. In
addition to recording the throughput for a given run, we extend
weighttp to uniformly and randomly sample the latency for a
fraction of the requests.

6.2 Web Server Performance

We evaluate two web servers written in Haskell, acmﬂ and
mighty [23], with the GHC IO manager and with Mio manager.
acme is a minimal web server which does basic request and HTTP
header parsing and generates a fixed response without perform-
ing any disk I/O, whereas mighty is a realistic, full-featured HTTP
server, with realistic features such as slowloris protection. For com-
parison, we also measure the performance of nginx, arguably the

"https://patchwork.kernel.org/patch/1970231/
8http://redmine.lighttpd.net/projects/weighttp/wiki
http://hackage.haskell.org/package/acme-http
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Figure 13. Throughput of Haskell web servers acme and mighty
with GHC IO manager and Mio manager and nginx in HTTP
requests per second as a function of number of capabilities used.
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Figure 14. Cumulative Distribution Function (CDF) of response
time of acme server with GHC IO manager and with Mio manager
at 12 cores and 400 concurrent clients.

world’s fastest web server, written in C specifically for high perfor-
mance. We evaluate all three servers with 400 concurrent clients,
a total of 500,000 requests and sample the latency of 1% of the
requests.

Figure [I3] shows the result. We see that when using the GHC
IO manager both acme and mighty scale only modestly to 4 cores
and then do not increase performance beyond 30,000 requests per
second. On the other hand, with Mio, acme scales well to 12 cores
serving up to 340,000 requests per second and mighty scales up to
20 cores serving 195,000 requests per second at peak performance,
resulting in a 8.4x and 6.5x increases (respectively) in peak server
throughput using Mio. The graph also demonstrates that a realistic
web server in Haskell, mighty, performs within a factor of 2.5x of
nginx for every number of cores and performs within 2x of nginx
for 8 cores and higher.

Figure [[4] shows the cumulative distribution function (CDF) of
the response time for the acme and mighty servers when run with
12 capabilities with and without Mio and for the nginx server
when run with 12 worker processes. The expected response time for
acme and mighty is 1.1 ms and 2.0 ms, respectively, using the Mio
manager and are both 11.3 ms with the GHC IO manager. Hence,
Mio improves the expected response time for acme and mighty
by 10.3x and 5.7x. The 95th percentile response time of acme and
mighty with Mio are 3.1 ms and 5.9 ms, whereas with the GHC
IO manager they are 13.9 ms and 14.5 ms, representing a 4.4x and
2.5x reduction in 95th percentile response time. We also observe
that the response time distribution of the Haskell servers closely
matches that of nginx.

Figure shows the throughput of acme and mighty on a
FreeBSD server. For this experiment, we use different hardware
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Figure 15. Throughput of Haskell web servers acme and mighty
with GHC IO manager and Mio manager on FreeBSD.

than other benchmarks. In particular, two 12 core (Intel Xeon
E5645, two sockets, 6 cores per 1 CPU, hyper-threading disabled)
servers are connected with 1 Gpbs Ethernet. One server runs Linux
version 3.2.0 (Ubuntu 12.04 LTS) while the other runs FreeBSD
9.1. The web servers are running on the FreeBSD server and they
are measured from the Linux server using the same benchmarking
software as our earlier evaluations. acme and mighty scale up to 7
and 8 cores, respectively, with Mio manager, but scale poorly with
the GHC IO manager. acme achieves a peak throughput of 330,000
requests per second, which saturates the 1 Gbps network connec-
tion between these two servers and inhibits further scaling. Using
this same hardware, we evaluated acme and mighty on the Linux
server with clients on the FreeBSD server. The resulting through-
puts were nearly identical to those in Figure T3] demonstrating that
performance with Mio on FreeBSD is comparable to that on Linux
up to 8 cores.

6.3 SDN Controllers

A major recent development in computer networking is the notion
of a Software-Defined Network (SDN), in which network behav-
ior is programmed through centralized policies at a conceptually
centralized network controller. In particular, the Openflow proto-
col [13] has established (1) flow tables as a standard abstraction for
network switches, (2) a protocol for the centralized controller to in-
stall flow rules and query states at switches, and (3) a protocol for a
switch to forward to the controller packets not matching any rules
in its switch-local flow table. Openflow provides a critical compo-
nent for realizing the vision that an operator configures a network
by writing a simple, centralized network control program with a
global view of network state, decoupling network control from the
complexities of managing distributed state.

The simplicity of a logically centralized controller, however, can
come at the cost of control-plane scalability. As the network scales
up — both in the number of switches and the number of end hosts
— the SDN controller can become a bottleneck. Therefore, several
extensible Openflow controllers have been developed that use mul-
ticore servers to scale event processing for Openflow controllers.

In particular, we compare the throughput and latency of three
Openflow controllers: McNettle[20], written in Haskell, Beacoﬂ
written in Java, and NOX-MT [19] written in C++ with Boost li-
braries for concurrent event processing. We compare their perfor-
mance on a standard network control algorithm, called the “learn-
ing switch controller” and generate load from several servers which
simulate flow requests from 100 switches using a modified version
of the cbenchy | tool. Each simulated switch generates Openflow
events simulating 1000 attached hosts and is limited so that at any

Ohttps://openflow.stanford.edu/display/Beacon/Home
"http://www.openflow.org/wk/index.php/0flops
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Figure 17. Latency comparison of SDN controllers

time it can have no more than 512 messages for which it has not
yet received a response from the controller.

Figure|16|shows the throughput as a function of the number of
cores used for all three systems. We observe that McNettle serves
over 20 million requests per second using 40 cores and scales
substantially better than Beacon or NOX-MT. In particular, Beacon
scales to less than 15 million requests per second, and NOX-MT
achieves only 5 million requests per second. Figure [17] shows the
latency CDF for all three systems run with 30 cores. The median
latency of McNettle is 1 ms, Beacon is almost 4 ms, and NOX-MT
reaches as high as 17 ms. The 95-percentile latency of McNettle is
still under 10 ms.

6.4 Threaded RTS Overhead

CloudHaskell [S] developers have noted that the threaded RTS of
GHC often introduces significant latency to their CloudHaskell
programﬂ for light loads which do not overwhelm the single-
threaded execution. Mio substantially reduces the latency overhead
of the threaded RTS for these loads.

We evaluate the threaded RTS overhead with a benchmark pro-
gram based on a similar program developed by the CloudHaskell
communit which consists of a server which simply echoes a
message sent by a client. We run this program using a single client
and measure the round-trip time for each echo request. Figure
shows the CDF of the response times for the non-threaded RTS,
the threaded RTS using the GHC IO manager, and the threaded
RTS using the Mio manager, with both threaded RTSs using a sin-
gle capability. The expected latencies are 63 microseconds (js),

2http://www.edsko.net/2013/02/06/
performance-problems-with-threaded/

13 github.com/haskell-distributed/network-transport-tcp
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Figure 18. Cumulative Distribution Function (CDF) of response
time of echo server with non-threaded RTS, threaded RTS with
GHC IO manager and threaded RTS with Mio manager.

69 s and 84 pus for the non-threaded RTS, threaded RTS with Mio
and threaded RTS with GHC IO manager, respectively, while the
99th percentile latencies are 73 ps, 83 pus and 119 pus, respectively.
The Mio manager therefore significantly reduces latency over the
GHC IO manager and adds just 6 ps latency on average over the
non-threaded RTS for this workload.

7. Related Work
7.1 Lightweight Components

Several prominent programming languages provide lightweight
threads or processes. Erlang [3]] provides lightweight processes that
communicate only using message passing. The Go programming
language [4] provides sophisticated coroutines, called goroutines.
The Go scheduler also uses /N (one per cpu) poll servers. In upcom-
ing releases, Go’s IO event notification will be integrated with the
scheduler, whereas with Mio, the event notification is implemented
entirely in Haskell.

7.2 Event Libraries

Event libraries such as libevenﬂ libe\E], and libqu] also
provide abstractions over platform-specific event notification APIs.
These APIs require programmers to express programs as event han-
dlers, while Mio is designed and optimized to support a lightweight
thread programming model. Furthermore, these libraries do not
support concurrent registration of events and notification; the pro-
gram is either polling the OS for events or executing a user’s event
handlers, where new registrations may occur. In contrast, with Mio,
a native thread may register event callbacks with a dispatcher while
that dispatcher is polling the OS for notifications.

7.3 Prefork Technique

A typical event-driven program runs one event loop in a single
process resulting in good utilization of one core but not scaling
on multiple cores. For web servers, the prefork technique is used to
utilize multiple cores. Historically, the prefork technique worked
as follows. After setting up a listen socket and before starting the
service, the main process forks multiple processes, called workers,
so that the workers share the same listen socket. When a new
connection arrives, one of the workers wins the race to accept the
new connection and then serves the connection until completion.
Recently, systems such as nginx [2] and Node.jﬂ have
adapted the prefork technique by creating N worker processes

4http://libevent.org/
Bhttp://software.schmorp.de/pkg/libev.html
"®https://github.com/joyent/libuv
"http://nodejs.org/


http://www.edsko.net/2013/02/06/performance-problems-with-threaded/
http://www.edsko.net/2013/02/06/performance-problems-with-threaded/
github.com/haskell-distributed/network-transport-tcp
http://libevent.org/
http://software.schmorp.de/pkg/libev.html
https://github.com/joyent/libuv
http://nodejs.org/

(where N is the number of cores) with each process running an
event-driven loop. The prefork technique can also be applied to
Haskell servers by simply forking several identical processes. For
instance, mighty can use the prefork technique to achieve good
multicore performance [23]] when using the GHC 10 manager.

However, there are two disadvantages when adopting the pre-
fork technique for event-driven programming: 1) boilerplate: code
for interprocess communication is necessary to manage workers
such as stopping services and reloading configuration files. 2) thun-
dering herd: all workers are unnecessarily rescheduled when a new
connection arrives [18]. Fortunately, the thundering herd problem
for original perfork-style servers has been addressed in recent OSes
(such as Linux 2.4 or later) by waking up only one process [[14] that
is blocking on an accept () call.

Unfortunately, a thundering herd problem can still occur with
the newer style of prefork servers, even on new OSes. In this case,
multiple processes watch the same listen socket using epoll or
kqueue (as opposed to blocking on accept () calls). These event
systems notify all listeners when an event occurs. High perfor-
mance servers should avoid unnecessary overhead to have resis-
tance to Slashdot effect (or flash crowd). With Mio, servers may
avoid thundering herd by using a single Haskell thread for accept-
ing new connections, as both acme and mighty do.

8. Conclusions and Future Work

We presented and evaluated a new multicore 10 manager that
improves realistic web server throughput by over 6.5x and expected
response time by 5.7x. As a result, the performance of network
servers in Haskell rivals that of servers written in C.

There are multiple directions for future work. In particular,
timer management has been reported as a bottleneck when han-
dling massive number of connections, each with a timeout. For in-
stance, Warp [17], a high performance web server, avoids using
System. Timeout.timeout for each connection and alternatively
creates one designated Haskell thread to keep track of all timeouts.
Improving the timer manager’s performance may make such spe-
cial techniques unnecessary.
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