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Chapter I.

Complex Di�erential Calculus and

Pseudoconvexity

This introductive chapter is mainly a review of the basic tools and concepts which
will be employed in the rest of the book: di�erential forms, currents, holomor-
phic and plurisubharmonic functions, holomorphic convexity and pseudoconvexity.
Our study of holomorphic convexity is principally concentrated here on the case
of domains in C

n . The more powerful machinery needed for the study of general
complex varieties (sheaves, positive currents, hermitian di�erential geometry) will
be introduced in Chapters II to V. Although our exposition pretends to be almost
self-contained, the reader is assumed to have at least a vague familiarity with a few
basic topics, such as di�erential calculus, measure theory and distributions, holo-
morphic functions of one complex variable, : : : . Most of the necessary background
can be found in the books of (Rudin, 1966) and (Warner, 1971); the basics of distri-
bution theory can be found in Chapter I of (H�ormander 1963). On the other hand,
the reader who has already some knowledge of complex analysis in several variables
should probably bypass this chapter.

x1. Di�erential Calculus on Manifolds

x1.A. Di�erentiable Manifolds

The notion of manifold is a natural extension of the notion of submanifold

de�ned by a set of equations in Rn . However, as already observed by Riemann

during the 19th century, it is important to de�ne the notion of a manifold in

a exible way, without necessarily requiring that the underlying topological

space is embedded in an aÆne space. The precise formal de�nition was �rst

introduced by H. Weyl in (Weyl, 1913).

Let m 2 N and k 2 N [ f1; !g. We denote by Ck the class of functions

which are k-times di�erentiable with continuous derivatives if k 6= !, and

by C! the class of real analytic functions. A di�erentiable manifold M of

real dimension m and of class Ck is a topological space (which we shall

always assume Hausdor� and separable, i.e. possessing a countable basis of

the topology), equipped with an atlas of class Ck with values in Rm . An atlas

of class Ck is a collection of homeomorphisms �� : U� �! V�, � 2 I, called
di�erentiable charts, such that (U�)�2I is an open covering of M and V� an

open subset of Rm , and such that for all �; � 2 I the transition map

(1:1) ��� = �� Æ ��1� : ��(U� \ U�) �! ��(U� \ U�)
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Fig. I-1 Charts and transition maps

is a Ck di�eomorphism from an open subset of V� onto an open subset of V�
(see Fig. 1). Then the components ��(x) = (x�1 ; : : : ; x

�

m
) are called the local

coordinates on U� de�ned by the chart �� ; they are related by the transition

relation x� = ���(x
�).

If 
 �M is open and s 2 N [ f1; !g, 0 � s � k, we denote by Cs(
;R)
the set of functions f of class Cs on 
, i.e. such that f Æ ��1

�
is of class Cs

on ��(U� \
) for each � ; if 
 is not open, Cs(
;R) is the set of functions

which have a Cs extension to some neighborhood of 
.

A tangent vector � at a point a 2M is by de�nition a di�erential operator

acting on functions, of the type

C1(
;R) 3 f 7�! � � f =
X

1�j�m
�j

@f

@xj
(a)

in any local coordinate system (x1; : : : ; xm) on an open set 
 3 a. We then

simply write � =
P
�j @=@xj. For every a 2 
, the n-tuple (@=@xj)1�j�m is

therefore a basis of the tangent space to M at a, which we denote by TM;a.

The di�erential of a function f at a is the linear form on TM;a de�ned by

dfa(�) = � � f =
X

�j @f=@xj(a); 8� 2 TM;a:

In particular dxj(�) = �j and we may write df =
P
(@f=@xj)dxj. Therefore

(dx1; : : : ; dxm) is the dual basis of (@=@x1; : : : ; @=@xm) in the cotangent space

T ?
M;a

. The disjoint unions TM =
S
x2M TM;x and T

?

M
=
S
x2M T ?

M;x
are called

the tangent and cotangent bundles of M .

If � is a vector �eld of class Cs over 
, that is, a map x 7! �(x) 2 TM;x
such that �(x) =

P
�j(x) @=@xj has C

s coeÆcients, and if � is another vector

�eld of class Cs with s � 1, the Lie bracket [�; �] is the vector �eld such that
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(1:2) [�; �] � f = � � (� � f)� � � (� � f):
In coordinates, it is easy to check that

(1:3) [�; �] =
X

1�j;k�m

�
�j
@�k

@xj
� �j @�k

@xj

� @

@xk
:

x1.B. Di�erential Forms

A di�erential form u of degree p, or briey a p-form overM , is a map u onM

with values u(x) 2 �pT ?
M;x

. In a coordinate open set 
 � M , a di�erential

p-form can be written

u(x) =
X
jIj=p

uI(x) dxI ;

where I = (i1; : : : ; ip) is a multi-index with integer components, i1 < : : : < ip
and dxI := dxi1 ^ : : : ^ dxip . The notation jIj stands for the number of

components of I, and is read length of I. For all integers p = 0; 1; : : : ;m and

s 2 N [ f1g, s � k, we denote by Cs(M;�pT ?
M
) the space of di�erential

p-forms of class Cs, i.e. with Cs coeÆcients uI . Several natural operations

on di�erential forms can be de�ned.

x1.B.1. Wedge Product. If v(x) =
P
vJ (x) dxJ is a q-form, the wedge

product of u and v is the form of degree (p+ q) de�ned by

(1:4) u ^ v(x) =
X

jIj=p;jJj=q
uI(x)vJ(x) dxI ^ dxJ :

x1.B.2. Contraction by a tangent vector. A p-form u can be viewed as

an antisymmetric p-linear form on TM . If � =
P
�j @=@xj is a tangent vector,

we de�ne the contraction � u to be the di�erential form of degree p � 1

such that

(1:5) (� u)(�1; : : : ; �p�1) = u(�; �1; : : : ; �p�1)

for all tangent vectors �j . Then (�; u) 7�! � u is bilinear and we �nd easily

@

@xj
dxI =

�
0 if j =2 I,
(�1)l�1dxIrfjg if j = il 2 I.

A simple computation based on the above formula shows that contraction by

a tangent vector is a derivation, i.e.

(1:6) � (u ^ v) = (� u) ^ v + (�1)deg uu ^ (� v):
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x1.B.3. Exterior derivative. This is the di�erential operator
d : Cs(M;�pT ?

M
) �! Cs�1(M;�p+1T ?

M
)

de�ned in local coordinates by the formula

(1:7) du =
X

jIj=p; 1�k�m

@uI

@xk
dxk ^ dxI :

Alternatively, one can de�ne du by its action on arbitrary vector �elds

�0; : : : ; �p on M . The formula is as follows

du(�0; : : : ; �p) =
X

0�j�p
(�1)j�j � u(�0; : : : ; b�j; : : : ; �p)

+
X

0�j<k�p
(�1)j+ku([�j; �k]; �0; : : : ; b�j; : : : ; b�k; : : : ; �p):(1:70)

The reader will easily check that (1.7) actually implies (1:70). The advantage
of (1:70) is that it does not depend on the choice of coordinates, thus du

is intrinsically de�ned. The two basic properties of the exterior derivative

(again left to the reader) are:

d(u ^ v) = du ^ v + (�1)deguu ^ dv; (Leibnitz' rule )(1:8)

d2 = 0:(1:9)

A form u is said to be closed if du = 0 and exact if u can be written u = dv

for some form v.

x1.B.4. De Rham Cohomology Groups. Recall that a cohomological

complex K� =
L

p2Z is a collection of modules Kp over some ring, equipped

with di�erentials, i.e., linear maps dp : Kp ! Kp+1 such that dp+1 Æ dp =

0. The cocycle, coboundary and cohomology modules Zp(K�), Bp(K�) and
Hp(K�) are de�ned respectively by

(1:10)

8<:Zp(K�) = Ker dp : Kp ! Kp+1; Zp(K�) � Kp,

Bp(K�) = Im dp�1 : Kp�1 ! Kp; Bp(K�) � Zp(K�) � Kp,

Hp(K�) = Zp(K�)=Bp(K�):

Now, let M be a di�erentiable manifold, say of class C1 for simplicity. The

De Rham complex of M is de�ned to be the complex Kp = C1(M;�pT ?
M
)

of smooth di�erential forms, together with the exterior derivative dp = d as

di�erential, and Kp = f0g, dp = 0 for p < 0. We denote by Zp(M;R) the

cocycles (closed p-forms) and by Bp(M;R) the coboundaries (exact p-forms).

By convention B0(M;R) = f0g. The De Rham cohomology group of M in

degree p is

(1:11) Hp

DR(M;R) = Zp(M;R)=Bp(M;R):
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When no confusion with other types of cohomology groups may occur, we

sometimes denote these groups simply by Hp(M;R). The symbol R is used

here to stress that we are considering real valued p-forms; of course one can in-

troduce a similar group H
p

DR(M; C ) for complex valued forms, i.e. forms with

values in C 
 �pT ?
M
. Then H

p

DR(M; C ) = C 
 Hp

DR(M;R) is the complexi-

�cation of the real De Rham cohomology group. It is clear that H0
DR(M;R)

can be identi�ed with the space of locally constant functions on M , thus

H0
DR(M;R) = R�0 (X);

where �0(X) denotes the set of connected components of M .

Similarly, we introduce the De Rham cohomology groups with compact

support

(1:12) H
p

DR;c(M;R) = Zp
c
(M;R)=Bp

c
(M;R);

associated with the De Rham complex Kp = C1
c
(M;�pT ?

M
) of smooth dif-

ferential forms with compact support.

x1.B.5. Pull-Back. If F : M �! M 0 is a di�erentiable map to another

manifold M 0, dimRM
0 = m0, and if v(y) =

P
vJ (y) dyJ is a di�erential p-

form on M 0, the pull-back F ?v is the di�erential p-form on M obtained after

making the substitution y = F (x) in v, i.e.

(1:13) F ?v(x) =
X

vI
�
F (x)

�
dFi1 ^ : : : ^ dFip :

If we have a second map G : M 0 �! M 00 and if w is a di�erential form

on M 00, then F ?(G?w) is obtained by means of the substitutions z = G(y),

y = F (x), thus

(1:14) F ?(G?w) = (G Æ F )?w:
Moreover, we always have d(F ?v) = F ?(dv). It follows that the pull-back

F ? is closed if v is closed and exact if v is exact. Therefore F ? induces a

morphism on the quotient spaces

(1:15) F ? : H
p

DR(M
0;R) �! H

p

DR(M;R):

x1.C. Integration of Di�erential Forms

A manifold M is orientable if and only if there exists an atlas (��) such that

all transition maps ��� preserve the orientation, i.e. have positive jacobian

determinants. Suppose that M is oriented, that is, equipped with such an

atlas. If u(x) = f(x1; : : : ; xm) dx1 ^ : : : ^ dxm is a continuous form of ma-

ximum degree m = dimRM , with compact support in a coordinate open

set 
, we set
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(1:16)

Z
M

u =

Z
Rm

f(x1; : : : ; xm) dx1 : : : dxm:

By the change of variable formula, the result is independent of the choice

of coordinates, provided we consider only coordinates corresponding to the

given orientation. When u is an arbitrary form with compact support, the

de�nition of
R
M
u is easily extended by means of a partition of unity with

respect to coordinate open sets covering Supp u. Let F : M �! M 0 be a

di�eomorphism between oriented manifolds and v a volume form onM 0. The
change of variable formula yields

(1:17)

Z
M

F ?v = �
Z
M 0

v

according whether F preserves orientation or not.

We now state Stokes' formula, which is basic in many contexts. Let K be

a compact subset of M with piecewise C1 boundary. By this, we mean that

for each point a 2 @K there are coordinates (x1; : : : ; xm) on a neighborhood

V of a, centered at a, such that

K \ V =
�
x 2 V ; x1 � 0; : : : ; xl � 0

	
for some index l � 1. Then @K \ V is a union of smooth hypersurfaces with

piecewise C1 boundaries:

@K \ V =
[

1�j�l

�
x 2 V ; x1 � 0; : : : ; xj = 0; : : : ; xl � 0

	
:

At points of @K where xj = 0, then (x1; : : : ; bxj ; ; : : : ; xm) de�ne coordinates
on @K. We take the orientation of @K given by these coordinates or the

opposite one, according to the sign (�1)j�1. For any di�erential form u of

class C1 and degree m� 1 on M , we then have

(1.18) Stokes' formula.

Z
@K

u =

Z
K

du:

The formula is easily checked by an explicit computation when u has

compact support in V : indeed if u =
P

1�j�n uj dx1 ^ : : :ddxj : : : dxm and

@jK \ V is the part of @K \ V where xj = 0, a partial integration with

respect to xj yieldsZ
@jK\V

uj dx1 ^ : : :ddxj : : : dxm =

Z
V

@uj

@xj
dx1 ^ : : : dxm;Z

@K\V
u =

X
1�j�m

(�1)j�1
Z
@jK\V

uj dx1 ^ : : :ddxj : : : ^ dxm =

Z
V

du:

The general case follows by a partition of unity. In particular, if u has compact

support in M , we �nd
R
M
du = 0 by choosing K � Supp u.
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x1.D. Homotopy Formula and Poincar�e Lemma

Let u be a di�erential form on [0; 1]�M . For (t; x) 2 [0; 1]�M , we write

u(t; x) =
X
jIj=p

uI(t; x) dxI +
X

jJj=p�1
euJ (t; x) dt ^ dxJ :

We de�ne an operator

K : Cs([0; 1]�M;�pT ?[0;1]�M) �! Cs(M;�p�1T ?
M
)

Ku(x) =
X
jJj=p�1

�Z 1

0

euJ(t; x) dt�dxJ(1:19)

and say that Ku is the form obtained by integrating u along [0; 1]. A com-

putation of the operator dK + Kd shows that all terms involving partial

derivatives @euJ=@xk cancel, hence
Kdu+ dKu =

X
jIj=p

�Z 1

0

@uI

@t
(t; x) dt

�
dxI =

X
jIj=p

�
uI(1; x)� uI(0; x)

�
dxI ;

Kdu+ dKu = i?1u� i?0u;(1:20)

where it :M ! [0; 1]�M is the injection x 7! (t; x).

(1.20) Corollary. Let F;G :M �!M 0 be C1 maps. Suppose that F;G are

smoothly homotopic, i.e. that there exists a C1 map H : [0; 1]�M �! M 0

such that H(0; x) = F (x) and H(1; x) = G(x). Then

F ? = G? : H
p

DR(M
0;R) �! H

p

DR(M;R):

Proof. If v is a p-form on M 0, then

G?v � F ?v = (H Æ i1)?v � (H Æ i0)?v = i?1(H
?v)� i?0(H?v)

= d(KH?v) +KH?(dv)

by (1.20) applied to u = H?v. If v is closed, then F ?v and G?v di�er by an

exact form, so they de�ne the same class in H
p

DR(M;R). �

(1.21) Corollary. If the manifold M is contractible, i.e. if there is a smooth

homotopy H : [0; 1] � M ! M from a constant map F : M ! fx0g to

G = IdX , then H
0
DR(M;R) = R and H

p

DR(M;R) = 0 for p � 1.

Proof. F ? is clearly zero in degree p � 1, while F ? : H0
DR(M;R)

'�! R is

induced by the evaluation map u 7! u(x0). The conclusion then follows from

the equality F ? = G? = Id on cohomology groups. �
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(1.22) Poincar�e lemma. Let 
 � Rm be a starshaped open set. If a form

v =
P
vIdxI 2 Cs(
;�pT ?



), p � 1, satis�es dv = 0, there exists a form

u 2 Cs(
;�p�1T ?


) such that du = v.

Proof. Let H(t; x) = tx be the homotopy between the identity map 
 ! 


and the constant map 
 ! f0g. By the above formula

d(KH?v) = G?v � F ?v =
�
v � v(0) if p = 0,

v if p � 1.

Hence u = KH?v is the (p� 1)-form we are looking for. An explicit compu-

tation based on (1.19) easily gives

(1:23) u(x) =
X
jIj=p
1�k�p

�Z 1

0

tp�1vI(tx) dt
�
(�1)k�1xikdxi1 ^ : : :ddxik : : : ^ dxip :

x2. Currents on Di�erentiable Manifolds

x2.A. De�nition and Examples

Let M be a C1 di�erentiable manifold, m = dimRM . All the manifolds

considered in Sect. 2 will be assumed to be oriented. We �rst introduce a

topology on the space of di�erential forms Cs(M;�pT ?
M
). Let 
 � M be

a coordinate open set and u a p-form on M , written u(x) =
P
uI(x) dxI

on 
. To every compact subset L � 
 and every integer s 2 N , we associate
a seminorm

(2:1) psL(u) = sup
x2L

max
jIj=p;j�j�s

jD�uI(x)j;

where � = (�1; : : : ; �m) runs over Nm and D� = @j�j=@x�11 : : : @x�mm is a

derivation of order j�j = �1 + � � �+ �m. This type of multi-index, which will

always be denoted by Greek letters, should not be confused with multi-indices

of the type I = (i1; : : : ; ip) introduced in Sect. 1.

(2.2) De�nition.

a) We denote by Ep(M)
�
resp. sEp(M)

�
the space C1(M;�pT ?

M
)
�
resp. the

space Cs(M;�pT ?
M
)
�
, equipped with the topology de�ned by all seminorms

ps
L
when s, L, 
 vary (resp. when L, 
 vary).

b) If K �M is a compact subset, Dp(K) will denote the subspace of elements

u 2 Ep(M) with support contained in K, together with the induced topo-

logy; Dp(M) will stand for the set of all elements with compact support,

i.e. Dp(M) :=
S
K
Dp(K).
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c) The spaces of Cs-forms sDp(K) and sDp(M) are de�ned similarly.

Since our manifolds are assumed to be separable, the topology of Ep(M)

can be de�ned by means of a countable set of seminorms ps
L
, hence Ep(M)

(and likewise sEp(M)) is a Fr�echet space. The topology of sDp(K) is induced

by any �nite set of seminorms ps
Kj

such that the compact sets Kj cover K ;

hence sDp(K) is a Banach space. It should be observed however that Dp(M)

is not a Fr�echet space; in factDp(M) is dense in Ep(M) and thus non complete

for the induced topology. According to (De Rham 1955) spaces of currents

are de�ned as the topological duals of the above spaces, in analogy with the

usual de�nition of distributions.

(2.3) De�nition. The space of currents of dimension p (or degree m�p) on
M is the space D0

p
(M) of linear forms T on Dp(M) such that the restriction

of T to all subspaces Dp(K), K ��M , is continuous. The degree is indicated

by raising the index, hence we set

D
0m�p(M) = D

0
p(M) := topological dual

�
D
p(M)

�0
:

The space sD0
p
(M) = sD0m�p(M) :=

�
sDp(M)

�0
is de�ned similarly and is

called the space of currents of order s on M .

In the sequel, we let hT; ui be the pairing between a current T and a test

form u 2 Dp(M). It is clear that sD0p(M) can be identi�ed with the subspace

of currents T 2 D0
p
(M) which are continuous for the seminorm ps

K
on Dp(K)

for every compact set K contained in a coordinate patch 
. The support

of T , denoted SuppT , is the smallest closed subset A � M such that the

restriction of T to Dp(M r A) is zero. The topological dual E0p(M) can be

identi�ed with the set of currents of D0
p
(M) with compact support: indeed,

let T be a linear form on Ep(M) such that

jhT; uij � Cmaxfps
Kj
(u)g

for some s 2 N , C � 0 and a �nite number of compact sets Kj ; it follows

that SuppT � SKj . Conversely let T 2 D0
p
(M) with support in a compact

set K. Let Kj be compact patches such that K is contained in the interior ofS
Kj and  2 D(M) equal to 1 on K with Supp � SKj . For u 2 Ep(M),

we de�ne hT; ui = hT;  ui ; this is independent of  and the resulting T is

clearly continuous on Ep(M). The terminology used for the dimension and

degree of a current is justi�ed by the following two examples.

(2.4) Example. Let Z � M be a closed oriented submanifold of M of

dimension p and class C1 ; Z may have a boundary @Z. The current of

integration over Z, denoted [Z], is de�ned by

h[Z]; ui =
Z
Z

u; u 2 0
D
p(M):
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It is clear that [Z] is a current of order 0 on M and that Supp[Z] = Z. Its

dimension is p = dimZ.

(2.5) Example. If f is a di�erential form of degree q on M with L1
loc coef-

�cients, we can associate to f the current of dimension m� q :

hTf ; ui =
Z
M

f ^ u; u 2 0
D
m�q(M):

Tf is of degree q and of order 0. The correspondence f 7�! Tf is injective.

In the same way L1
loc functions on R

m are identi�ed to distributions, we will

identify f with its image Tf 2 0D0 q(M) = 0D0
m�q(M).

x2.B. Exterior Derivative and Wedge Product

x2.B.1. Exterior Derivative. Many of the operations available for di�er-

ential forms can be extended to currents by simple duality arguments. Let

T 2 sD0 q(M) = sD0
m�p(M). The exterior derivative

dT 2 s+1D0 q+1(M) = s+1D0
m�q�1

is de�ned by

(2:6) hdT; ui = (�1)q+1 hT; dui; u 2 s+1Dm�q�1(M):

The continuity of the linear form dT on s+1Dm�q�1(M) follows from the

continuity of the map d : s+1Dm�q�1(K) �! sDm�q(K). For all forms f 2
1Eq(M) and u 2 Dm�q�1(M), Stokes' formula implies

0 =

Z
M

d(f ^ u) =
Z
M

df ^ u+ (�1)q f ^ du;

thus in example (2.5) one actually has dTf = Tdf as it should be. In example

(2.4), another application of Stokes' formula yields
R
Z
du =

R
@Z
u, therefore

h[Z]; dui = h[@Z]; ui and
(2:7) d[Z] = (�1)m�p+1[@Z]:

x2.B.2. Wedge Product. For T 2 sD0 q(M) and g 2 sEr(M), the wedge

product T ^ g 2 sD0 q+r(M) is de�ned by

(2:8) hT ^ g; ui = hT; g ^ ui; u 2 sDm�q�r(M):

This de�nition is licit because u 7! g ^ u is continuous in the Cs-topology.

The relation

d(T ^ g) = dT ^ g + (�1)deg TT ^ dg
is easily veri�ed from the de�nitions.
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(2.9) Proposition. Let (x1; : : : ; xm) be a coordinate system on an open sub-

set 
 � M . Every current T 2 sD0 q(M) of degree q can be written in a

unique way

T =
X
jIj=q

TI dxI on 
;

where TI are distributions of order s on 
, considered as currents of degree 0.

Proof. If the result is true, for all f 2 sD0(
) we must have

hT; f dx{Ii = hTI ; dxI ^ f dx{Ii = "(I; {I) hTI ; f dx1 ^ : : : ^ dxmi;
where "(I; {I) is the signature of the permutation (1; : : : ;m) 7�! (I; {I).

Conversely, this can be taken as a de�nition of the coeÆcient TI :

(2:10) TI(f) = hTI ; f dx1 ^ : : : ^ dxmi := "(I; {I) hT; f dx{Ii; f 2 sD0(
):

Then TI is a distribution of order s and it is easy to check that T =
P
TI dxI .

�

In particular, currents of order 0 on M can be considered as di�erential

forms with measure coeÆcients. In order to unify the notations concerning

forms and currents, we set

hT; ui =
Z
M

T ^ u

whenever T 2 sD0p(M) = sD0m�p(M) and u 2 sEp(M) are such that

SuppT \ Supp u is compact. This convention is made so that the notation

becomes compatible with the identi�cation of a form f to the current Tf .

x2.C. Direct and Inverse Images

x2.C.1. Direct Images. Assume now that M1, M2 are oriented di�eren-

tiable manifolds of respective dimensions m1, m2, and that

(2:11) F :M1 �!M2

is a C1 map. The pull-back morphism

(2:12) sDp(M2) �! sEp(M1); u 7�! F ?u

is continuous in the Cs topology and we have SuppF ?u � F�1(Supp u),
but in general SuppF ?u is not compact. If T 2 sD0

p
(M1) is such that the

restriction of F to SuppT is proper, i.e. if Supp T \ F�1(K) is compact for

every compact subset K � M2, then the linear form u 7�! hT; F ?ui is well
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de�ned and continuous on sDp(M2). There exists therefore a unique current

denoted F?T 2 sD0
p
(M2), called the direct image of T by F , such that

(2:13) hF?T; ui = hT; F ?ui; 8u 2 sDp(M2):

We leave the straightforward proof of the following properties to the reader.

(2.14) Theorem. For every T 2 sD0
p
(M1) such that F�SuppT is proper, the

direct image F?T 2 sD0p(M2) is such that

a) SuppF?T � F (Supp T ) ;
b) d(F?T ) = F?(dT ) ;

c) F?(T ^ F ?g) = (F?T ) ^ g, 8g 2 sEq(M2;R) ;

d) If G :M2 �!M3 is a C1 map such that (G Æ F )�SuppT is proper, then

G?(F?T ) = (G Æ F )?T:

Fig. I-2 Local description of a submersion as a projection.

(2.15) Special case. Assume that F is a submersion, i.e. that F is surjective

and that for every x 2 M1 the di�erential map dxF : TM1;x
�! TM2;F (x) is

surjective. Let g be a di�erential form of degree q onM1, with L
1
loc coeÆcients,

such that F�Supp g is proper. We claim that F?g 2 0D0
m1�q(M2) is the form

of degree q � (m1 �m2) obtained from g by integration along the �bers of

F , also denoted

F?g(y) =

Z
z2F�1(y)

g(z):

In fact, this assertion is equivalent to the following generalized form of Fu-

bini's theorem:
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M1

g ^ F ?u =
Z
y2M2

�Z
z2F�1(y)

g(z)
�
^ u(y); 8u 2 0

D
m1�q(M2):

By using a partition of unity on M1 and the constant rank theorem, the

veri�cation of this formula is easily reduced to the case where M1 = A�M2

and F = pr2, cf. Fig. 2. The �bers F
�1(y) ' A have to be oriented in such

a way that the orientation of M1 is the product of the orientation of A and

M2. Let us write r = dimA = m1 �m2 and let z = (x; y) 2 A�M2 be any

point of M1. The above formula becomesZ
A�M2

g(x; y) ^ u(y) =
Z
y2M2

� Z
x2A

g(x; y)
�
^ u(y);

where the direct image of g is computed from g =
P
gI;J (x; y) dxI ^ dyJ ,

jIj+ jJ j = q, by the formula

F?g(y) =

Z
x2A

g(x; y)(2:16)

=
X
jJj=q�r

�Z
x2A

g(1;:::;r);J(x; y) dx1 ^ : : : ^ dxr
�
dyJ :

In this situation, we see that F?g has L1
loc coeÆcients on M2 if g is L1

loc on

M1, and that the map g 7�! F?g is continuous in the Cs topology.

(2.17) Remark. If F : M1 �! M2 is a di�eomorphism, then we have

F?g = �(F�1)?g according whether F preserves the orientation or not. In

fact formula (1.17) gives

hF?g; ui =
Z
M1

g ^ F ?u = �
Z
M2

(F�1)?(g ^ F ?u) = �
Z
M2

(F�1)?g ^ u:

x2.C.2. Inverse Images. Assume that F :M1 �!M2 is a submersion. As

a consequence of the continuity statement after (2.16), one can always de�ne

the inverse image F ?T 2 sD0 q(M1) of a current T 2 sD0 q(M2) by

hF ?T; ui = hT; F?ui; u 2 sDq+m1�m2(M1):

Then dimF ?T = dimT +m1 �m2 and Th. 2.14 yields the formulas:

(2:18) d(F ?T ) = F ?(dT ); F ?(T ^ g) = F ?T ^ F ?g; 8g 2 sD�(M2):

Take in particular T = [Z], where Z is an oriented C1-submanifold of M2.

Then F�1(Z) is a submanifold of M1 and has a natural orientation given by

the isomorphism

TM1;x
=TF�1(Z);x �! TM2;F (x)=TZ;F (x);

induced by dxF at every point x 2 Z. We claim that
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(2:19) F ?[Z] = [F�1(Z)]:

Indeed, we have to check that
R
Z
F?u =

R
F�1(Z)

u for every u 2 sD�(M1). By

using a partition of unity on M1, we may again assume M1 = A �M2 and

F = pr2. The above equality can be writtenZ
y2Z

F?u(y) =

Z
(x;y)2A�Z

u(x; y):

This follows precisely from (2.16) and Fubini's theorem.

x2.C.3. Weak Topology. The weak topology on D0p(M) is the topology

de�ned by the collection of seminorms T 7�! jhT; fij for all f 2 Dp(M).

With respect to the weak topology, all the operations

(2:20) T 7�! dT; T 7�! T ^ g; T 7�! F?T; T 7�! F ?T

de�ned above are continuous. A set B � D0
p
(M) is bounded for the weak

topology (weakly bounded for short) if and only if hT; fi is bounded when

T runs over B, for every �xed f 2 Dp(M). The standard Banach-Alaoglu

theorem implies that every weakly bounded closed subset B � D0
p
(M) is

weakly compact.

x2.D. Tensor Products, Homotopies and Poincar�e Lemma

x2.D.1. Tensor Products. If S, T are currents on manifolds M , M 0 there
exists a unique current on M �M 0, denoted S 
 T and de�ned in a way

analogous to the tensor product of distributions, such that for all u 2 D�(M)

and v 2 D�(M 0)
(2:21) hS 
 T; pr?1u ^ pr?2vi = (�1)degT deg uhS; ui hT; vi:
One veri�es easily that d(S 
 T ) = dS 
 T + (�1)deg SS 
 dT .

x2.D.2. Homotopy Formula. Assume that H : [0; 1]�M1 �!M2 is a C
1

homotopy from F (x) = H(0; x) to G(x) = H(1; x) and that T 2 D0�(M1)

is a current such that H�[0;1]�SuppT is proper. If [0; 1] is considered as the

current of degree 0 on R associated to its characteristic function, we �nd

d[0; 1] = Æ0 � Æ1, thus
d
�
H?([0; 1]
 T )

�
= H?(Æ0 
 T � Æ1 
 T + [0; 1]
 dT )
= F?T �G?T +H?([0; 1]
 dT ):

Therefore we obtain the homotopy formula

(2:22) F?T �G?T = d
�
H?([0; 1]
 T )

��H?([0; 1]
 dT ):
When T is closed, i.e. dT = 0, we see that F?T and G?T are cohomologous

on M2, i.e. they di�er by an exact current dS.
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x2.D.3. Regularization of Currents. Let � 2 C1(Rm) be a function with

support in B(0; 1), such that �(x) depends only on jxj = (
P jxij2)1=2, � � 0

and
R
Rm

�(x) dx = 1. We associate to � the family of functions (�") such that

(2:23) �"(x) =
1

"m
�
�x
"

�
; Supp �" � B(0; ");

Z
Rm

�"(x) dx = 1:

We shall refer to this construction by saying that (�") is a family of smoothing

kernels. For every current T =
P
TI dxI on an open subset 
 � Rm , the

family of smooth forms

T ? �" =
X
I

(TI ? �") dxI ;

de�ned on 
" = fx 2 Rm ; d(x; {
) > "g, converges weakly to T as " tends

to 0. Indeed, hT ?�"; fi = hT; �" ? fi and �" ? f converges to f in Dp(
) with

respect to all seminorms ps
K
.

x2.D.4. Poincar�e Lemma for Currents. Let T 2 sD0 q(
) be a closed

current on an open set 
 � Rm . We �rst show that T is cohomologous to

a smooth form. In fact, let  2 C1(Rm) be a cut-o� function such that

Supp � 
, 0 <  � 1 and jd j � 1 on 
. For any vector v 2 B(0; 1) we set
Fv(x) = x+  (x)v:

Since x 7!  (x)v is a contraction, Fv is a di�eomorphism of Rm which leaves

{
 invariant pointwise, so Fv(
) = 
. This di�eomorphism is homotopic to

the identity through the homotopy Hv(t; x) = Ftv(x) : [0; 1]�
 �! 
 which

is proper for every v. Formula (2.22) implies

(Fv)?T � T = d
�
(Hv)?([0; 1]
 T )

�
:

After averaging with a smoothing kernel �"(v) we get � � T = dS where

� =

Z
B(0;")

(Fv)?T �"(v) dv; S =

Z
B(0;")

(Hv)?([0; 1]
 T ) �"(v) dv:

Then S is a current of the same order s as T and � is smooth. Indeed, for

u 2 Dp(
) we have

h�; ui = hT; u"i where u"(x) =

Z
B(0;")

F ?
v
u(x) �"(v) dv ;

we can make a change of variable z = Fv(x), v =  (x)�1(z� x) in the last

integral and perform derivatives on �" to see that each seminorm pt
K
(u") is

controlled by the sup norm of u. Thus � and all its derivatives are currents

of order 0, so � is smooth. Now we have d� = 0 and by the usual Poincar�e

lemma (1.22) applied to � we obtain
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(2.24) Theorem. Let 
 � Rm be a starshaped open subset and T 2 sD0 q(
)
a current of degree q � 1 and order s such that dT = 0. There exists a current

S 2 sD0 q�1(
) of degree q � 1 and order � s such that dS = T on 
. �

x3. Holomorphic Functions and Complex Manifolds

x3.A. Cauchy Formula in One Variable

We start by recalling a few elementary facts in one complex variable theory.

Let 
 � C be an open set and let z = x+ iy be the complex variable, where

x; y 2 R. If f is a function of class C1 on 
, we have

df =
@f

@x
dx+

@f

@y
dy =

@f

@z
dz +

@f

@z
dz

with the usual notations

(3:1)
@

@z
=

1

2

� @
@x
� i

@

@y

�
;

@

@z
=

1

2

� @
@x

+ i
@

@y

�
:

The function f is holomorphic on 
 if df is C -linear, that is, @f=@z = 0.

(3.2) Cauchy formula. Let K � C be a compact set with piecewise C1

boundary @K. Then for every f 2 C1(K; C )

f(w) =
1

2�i

Z
@K

f(z)

z � w dz �
Z
K

1

�(z � w)
@f

@z
d�(z); w 2 KÆ

where d�(z) = i
2
dz ^ dz = dx ^ dy is the Lebesgue measure on C .

Proof. Assume for simplicity w = 0. As the function z 7! 1=z is locally

integrable at z = 0, we getZ
K

1

�z

@f

@z
d�(z) = lim

"!0

Z
KrD(0;")

1

�z

@f

@z

i

2
dz ^ dz

= lim
"!0

Z
KrD(0;")

d
h 1

2�i
f(z)

dz

z

i
=

1

2�i

Z
@K

f(z)
dz

z
� lim
"!0

1

2�i

Z
@D(0;")

f(z)
dz

z

by Stokes' formula. The last integral is equal to 1
2�

R 2�
0
f("ei�) d� and con-

verges to f(0) as " tends to 0. �

When f is holomorphic on 
, we get the usual Cauchy formula
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(3:3) f(w) =
1

2�i

Z
@K

f(z)

z � w dz; w 2 KÆ;

from which many basic properties of holomorphic functions can be derived:

power and Laurent series expansions, Cauchy residue formula, : : : Another

interesting consequence is:

(3.4) Corollary. The L1
loc function E(z) = 1=�z is a fundamental solution

of the operator @=@z on C , i.e. @E=@z = Æ0 (Dirac measure at 0). As a conse-

quence, if v is a distribution with compact support in C , then the convolution

u = (1=�z) ? v is a solution of the equation @u=@z = v.

Proof. Apply (3.2) with w = 0, f 2 D(C ) and K � Supp f , so that f = 0 on

the boundary @K and f(0) = h1=�z;�@f=@zi. �

(3.5) Remark. It should be observed that this formula cannot be used to

solve the equation @u=@z = v when Supp v is not compact; moreover, if

Supp v is compact, a solution u with compact support need not always exist.

Indeed, we have a necessary condition

hv; zni = �hu; @zn=@zi = 0

for all integers n � 0. Conversely, when the necessary condition hv; zni = 0 is

satis�ed, the canonical solution u = (1=�z) ? v has compact support: this is

easily seen by means of the power series expansion (w� z)�1 =P znw�n�1,
if we suppose that Supp v is contained in the disk jzj < R and that jwj > R.

x3.B. Holomorphic Functions of Several Variables

Let 
 � C n be an open set. A function f : 
 ! C is said to be holomorphic if

f is continuous and separately holomorphic with respect to each variable, i.e.

zj 7! f(: : : ; zj ; : : :) is holomorphic when z1; : : : ; zj�1, zj+1; : : : ; zn are �xed.

The set of holomorphic functions on 
 is a ring and will be denoted O(
). We

�rst extend the Cauchy formula to the case of polydisks. The open polydisk

D(z0; R) of center (z0;1; : : : ; z0;n) and (multi)radius R = (R1; ; : : : ; Rn) is

de�ned as the product of the disks of center z0;j and radius Rj > 0 in each

factor C :

(3:6) D(z0; R) = D(z0;1; R1)� : : :�D(z0;n; Rn) � C n :

The distinguished boundary of D(z0; R) is by de�nition the product of the

boundary circles

(3:7) � (z0; R) = � (z0;1; R1)� : : :� � (z0;n; Rn):
It is important to observe that the distinguished boundary is smaller than

the topological boundary @D(z0; R) =
S
j
fz 2 D(z0; R) ; jzj � z0;j j = Rjg

when n � 2. By induction on n, we easily get the
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(3.8) Cauchy formula on polydisks. If D(z0; R) is a closed polydisk con-

tained in 
 and f 2 O(
), then for all w 2 D(z0; R) we have

f(w) =
1

(2�i)n

Z
� (z0;R)

f(z1; : : : ; zn)

(z1 � w1) : : : (zn � wn)
dz1 : : : dzn: �

The expansion (zj � wj)�1 =
P
(wj � z0;j)�j (zj � z0;j)��j�1, �j 2 N ,

1 � j � n, shows that f can be expanded as a convergent power series

f(w) =
P
�2Nn a�(w � z0)� over the polydisk D(z0; R), with the standard

notations z� = z�11 : : : z�nn , �! = �1! : : : �n! and with

(3:9) a� =
1

(2�i)n

Z
� (z0;R)

f(z1; : : : ; zn) dz1 : : : dzn

(z1 � z0;1)�1+1 : : : (zn � z0;n)�n+1
=
f (�)(z0)

�!
:

As a consequence, f is holomorphic over 
 if and only if f is C -analytic.

Arguments similar to the one variable case easily yield the

(3.10) Analytic continuation theorem. If 
 is connected and if there

exists a point z0 2 
 such that f (�)(z0) = 0 for all � 2 Nn , then f = 0

on 
. �

Another consequence of (3.9) is the Cauchy inequality

(3:11) jf (�)(z0)j �
�!

R�
sup

� (z0;R)

jf j; D(z0; R) � 
;

From this, it follows that every bounded holomorphic function on C n is con-

stant (Liouville's theorem), and more generally, every holomorphic function

F on C n such that jF (z)j � A(1 + jzj)B with suitable constants A;B � 0 is

in fact a polynomial of total degree � B.
We endow O(
) with the topology of uniform convergence on compact

sets K �� 
, that is, the topology induced by C0(
; C ). Then O(
) is

closed in C0(
; C ). The Cauchy inequalities (3.11) show that all derivations

D� are continuous operators on O(
) and that any sequence fj 2 O(
) that
is uniformly bounded on all compact sets K �� 
 is locally equicontinuous.

By Ascoli's theorem, we obtain

(3.12) Montel's theorem. Every locally uniformly bounded sequence (fj)

in O(
) has a convergent subsequence (fj(�)).

In other words, bounded subsets of the Fr�echet space O(
) are relatively

compact (a Fr�echet space possessing this property is called a Montel space).
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x3.C. Di�erential Calculus on Complex Analytic Manifolds

A complex analytic manifold X of dimension dimC X = n is a di�erentiable

manifold equipped with a holomorphic atlas (��) with values in C n ; this

means by de�nition that the transition maps ��� are holomorphic. The tan-

gent spaces TX;x then have a natural complex vector space structure, given

by the coordinate isomorphisms

d��(x) : TX;x �! C n ; U� 3 x ;
the induced complex structure on TX;x is indeed independent of � since the

di�erentials d��� are C -linear isomorphisms. We denote by TR
X

the underly-

ing real tangent space and by J 2 End(TR
X
) the almost complex structure,

i.e. the operator of multiplication by i =
p�1. If (z1; : : : ; zn) are complex

analytic coordinates on an open subset 
 � X and zk = xk + iyk, then

(x1; y1; : : : ; xn; yn) de�ne real coordinates on 
, and TR
X�
 admits (@=@x1,

@=@y1, : : :, @=@xn, @=@yn) as a basis ; the almost complex structure is given

by J(@=@xk) = @=@yk, J(@=@yk) = �@=@xk. The complexi�ed tangent space

C 
TX = C 
RTRX = TR
X
� iTR

X
splits into conjugate complex subspaces which

are the eigenspaces of the complexi�ed endomorphism Id 
 J associated to

the eigenvalues i and �i. These subspaces have respective bases

(3:13)
@

@zk
=

1

2

� @

@xk
� i

@

@yk

�
;

@

@zk
=

1

2

� @

@xk
+ i

@

@yk

�
; 1 � k � n

and are denoted T 1;0X (holomorphic vectors or vectors of type (1; 0)) and

T 0;1X (antiholomorphic vectors or vectors of type (0; 1)). The subspaces

T 1;0X and T 0;1X are canonically isomorphic to the complex tangent space

TX (with complex structure J) and its conjugate TX (with conjugate complex

structure �J), via the C -linear embeddings

TX�! T
1;0
X
� C 
 TX ; TX�! T

0;1
X
� C 
 TX

� 7�! 1
2
(� � iJ�); � 7�! 1

2
(� + iJ�):

We thus have a canonical decomposition C 
 TX = T
1;0
X
� T 0;1

X
' TX � TX ,

and by duality a decomposition

HomR(T
R

X ; C ) ' HomC (C 
 TX ; C ) ' T ?X � T ?X
where T ?

X
is the space of C -linear forms and T ?

X
the space of conjugate C -

linear forms. With these notations, (dxk; dyk) is a basis of HomR(TRX; C ),

(dzj) a basis of T ?
X
, (dzj) a basis of T ?

X
, and the di�erential of a function

f 2 C1(
; C ) can be written

(3:14) df =

nX
k=1

@f

@xk
dxk +

@f

@yk
dyk =

nX
k=1

@f

@zk
dzk +

@f

@zk
dzk:
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The function f is holomorphic on 
 if and only if df is C -linear, i.e. if and only

if f satis�es the Cauchy-Riemann equations @f=@zk = 0 on 
, 1 � k � n.

We still denote here by O(X) the algebra of holomorphic functions on X.

Now, we study the basic rules of complex di�erential calculus. The com-

plexi�ed exterior algebra C 
R ��R(TRX)? = ��
C
(C 
 TX)? is given by

�k(C 
 TX)? = �k
�
TX � TX

�?
=
M
p+q=k

�p;qT ?
X
; 0 � k � 2n

where the exterior products are taken over C , and where the components

�p;qT ?
X
are de�ned by

(3:15) �p;qT ?
X
= �pT ?

X

 �qT ?

X
:

A complex di�erential form u on X is said to be of bidegree or type (p; q) if

its value at every point lies in the component �p;qT ?
X

; we shall denote by

Cs(
;�p;qT ?
X
) the space of di�erential forms of bidegree (p; q) and class Cs

on any open subset 
 of X. If 
 is a coordinate open set, such a form can

be written

u(z) =
X

jIj=p;jJj=q
uI;J (z) dzI ^ dzJ ; uI;J 2 Cs(
; C ):

This writing is usually much more convenient than the expression in terms of

the real basis (dxI ^ dyJ )jIj+jJj=k which is not compatible with the splitting

of �kT ?
C
X in its (p; q) components. Formula (3.14) shows that the exterior

derivative d splits into d = d0 + d00, where

d0 : C1(X;�p;qT ?
X
) �! C1(X;�p+1;qT ?

X
);

d00 : C1(X;�p;qT ?X) �! C1(X;�p;q+1T ?X);

d0u =
X
I;J

X
1�k�n

@uI;J

@zk
dzk ^ dzI ^ dzJ ;(3:160)

d00u =
X
I;J

X
1�k�n:

@uI;J

@zk
dzk ^ dzI ^ dzJ :(3:1600)

The identity d2 = (d0 + d00)2 = 0 is equivalent to

(3:17) d02 = 0; d0d00 + d00d0 = 0; d002 = 0;

since these three operators send (p; q)-forms in (p + 2; q), (p + 1; q + 1) and

(p; q + 2)-forms, respectively. In particular, the operator d00 de�nes for each
p = 0; 1; : : : ; n a complex, called the Dolbeault complex

C1(X;�p;0T ?X)
d
00

�! � � � �! C1(X;�p;qT ?
X)

d
00

�! C1(X;�p;q+1T ?X)

and corresponding Dolbeault cohomology groups
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(3:18) Hp;q(X; C ) =
Ker d00 p;q

Im d00 p;q�1
;

with the convention that the image of d00 is zero for q = 0. The cohomo-

logy group Hp;0(X; C ) consists of (p; 0)-forms u =
P
jIj=p uI(z) dzI such that

@uI=@zk = 0 for all I; k, i.e. such that all coeÆcients uI are holomorphic.

Such a form is called a holomorphic p-form on X.

Let F : X1 �! X2 be a holomorphic map between complex manifolds.

The pull-back F ?u of a (p; q)-form u of bidegree (p; q) on X2 is again homo-

geneous of bidegree (p; q), because the components Fk of F in any coordinate

chart are holomorphic, hence F ?dzk = dFk is C -linear. In particular, the

equality dF ?u = F ?du implies

(3:19) d0F ?u = F ?d0u; d00F ?u = F ?d00u:

Note that these commutation relations are no longer true for a non holomor-

phic change of variable. As in the case of the De Rham cohomology groups,

we get a pull-back morphism

F ? : Hp;q(X2; C ) �! Hp;q(X1; C ):

The rules of complex di�erential calculus can be easily extended to currents.

We use the following notation.

(3.20) De�nition. There are decompositions

Dk(X; C ) =
M
p+q=k

Dp;q(X; C ); D0
k
(X; C ) =

M
p+q=k

D0
p;q
(X; C ):

The space D0
p;q
(X; C ) is called the space of currents of bidimension (p; q) and

bidegree (n� p; n� q) on X, and is also denoted D0n�p;n�q(X; C ).

x3.D. Newton and Bochner-Martinelli Kernels

The Newton kernel is the elementary solution of the usual Laplace operator

� =
P
@2=@x2

j
in Rm . We �rst recall a construction of the Newton kernel.

Let d� = dx1 : : : dxm be the Lebesgue measure on Rm . We denote by

B(a; r) the euclidean open ball of center a and radius r in Rm and by S(a; r) =

@B(a; r) the corresponding sphere. Finally, we set �m = Vol
�
B(0; 1)

�
and

�m�1 = m�m so that

(3:21) Vol
�
B(a; r)

�
= �mr

m; Area
�
S(a; r)

�
= �m�1r

m�1:

The second equality follows from the �rst by derivation. An explicit com-

putation of the integral
R
Rm

e�jxj
2

d�(x) in polar coordinates shows that

�m = �m=2=(m=2)! where x! = � (x + 1) is the Euler Gamma function.

The Newton kernel is then given by:
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(3:22)

8><>:
N(x) =

1

2�
log jxj if m = 2,

N(x) = � 1

(m� 2)�m�1
jxj2�m if m 6= 2.

The function N(x) is locally integrable on Rm and satis�es �N = Æ0. When

m = 2, this follows from Cor. 3.4 and the fact that � = 4@2=@z@z. When

m 6= 2, this can be checked by computing the weak limit

lim
"!0

�(jxj2 + "2)1�m=2 = lim
"!0

m(2�m)"2(jxj2 + "2)�1�m=2

= m(2�m) Im Æ0

with Im =
R
Rm

(jxj2 + 1)�1�m=2 d�(x). The last equality is easily seen by

performing the change of variable y = "x in the integralZ
Rm

"2(jxj2 + "2)�1�m=2 f(x) d�(x) =

Z
Rm

(jyj2 + 1)�1�m=2 f("y) d�(y);

where f is an arbitrary test function. Using polar coordinates, we �nd that

Im = �m�1=m and our formula follows.

The Bochner-Martinelli kernel is the (n; n � 1)-di�erential form on C n

with L1
loc coeÆcients de�ned by

kBM(z) = cn
X

1�j�n
(�1)j zj dz1 ^ : : : dzn ^ dz1 ^ : : :

ddzj : : : ^ dzn
jzj2n ;(3:23)

cn = (�1)n(n�1)=2 (n� 1)!

(2�i)n
:

(3.24) Lemma. d00kBM = Æ0 on C n .

Proof. Since the Lebesgue measure on C n is

d�(z) =
^

1�j�n

i

2
dzj ^ dzj =

� i
2

�n
(�1)

n(n�1)
2 dz1 ^ : : : dzn ^ dz1 ^ : : : dzn;

we �nd

d00kBM = � (n� 1)!

�n

X
1�j�n

@

@zj

� zj

jzj2n
�
d�(z)

= � 1

n(n� 1)�2n

X
1�j�n

@2

@zj@zj

� 1

jzj2n�2
�
d�(z)

= �N(z)d�(z) = Æ0: �

We let KBM(z; �) be the pull-back of kBM by the map � : C n � C n ! C n ,

(z; �) 7�! z � �. Then Formula (2.19) implies
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(3:25) d00KBM = �?Æ0 = [�];

where [�] denotes the current of integration on the diagonal � � C n � C n .

(3.26) Koppelman formula. Let 
 � C n be a bounded open set with

piecewise C1 boundary. Then for every (p; q)-form v of class C1 on 
 we

have

v(z) =

Z
@


K
p;q

BM(z; �) ^ v(�)

+ d00
z

Z



K
p;q�1
BM (z; �) ^ v(�) +

Z



K
p;q

BM(z; �) ^ d00v(�)

on 
, where K
p;q

BM(z; �) denotes the component of KBM(z; �) of type (p; q)

in z and (n� p; n� q � 1) in �.

Proof. Given w 2 Dn�p;n�q(
), we consider the integralZ
@
�


KBM(z; �) ^ v(�) ^ w(z):

It is well de�ned since KBM has no singularities on @
�Supp v �� @
�
.
Since w(z) vanishes on @
 the integral can be extended as well to @(
�
).
As KBM(z; �)^ v(�)^w(z) is of total bidegree (2n; 2n� 1), its di�erential d0

vanishes. Hence Stokes' formula yieldsZ
@
�


KBM(z; �) ^ v(�) ^ w(z) =
Z

�


d00
�
KBM(z; �) ^ v(�) ^ w(z)

�
=

Z

�


d00KBM(z; �) ^ v(�) ^ w(z)�Kp;q

BM(z; �) ^ d00v(�) ^ w(z)

� (�1)p+q
Z

�


K
p;q�1
BM (z; �) ^ v(�) ^ d00w(z):

By (3.25) we haveZ

�


d00KBM(z; �) ^ v(�) ^ w(z) =
Z

�


[�] ^ v(�) ^ w(z) =
Z



v(z) ^ w(z)

Denoting h ; i the pairing between currents and test forms on 
, the above

equality is thus equivalent to

h
Z
@


KBM(z; �) ^ v(�); w(z)i = hv(z)�
Z



Kp;q

BM(z; �) ^ d00v(�); w(z)i

� (�1)p+qh
Z



K
p;q�1
BM (z; �) ^ v(�); d00w(z)i;

which is itself equivalent to the Koppelman formula by integrating d00v by

parts. �
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(3.27) Corollary. Let v 2 sDp;q(C n ) be a form of class Cs with compact

support such that d00v = 0, q � 1. Then the (p; q � 1)-form

u(z) =

Z
Cn

K
p;q�1
BM (z; �) ^ v(�)

is a Cs solution of the equation d00u = v. Moreover, if (p; q) = (0; 1) and

n � 2 then u has compact support, thus the Dolbeault cohomology group with

compact support H0;1
c

(C n ; C ) vanishes for n � 2.

Proof. Apply the Koppelman formula on a suÆciently large ball 
 = B(0; R)

containing Supp v. Then the formula immediately gives d00u = v. Observe

that the coeÆcients of KBM(z; �) are O(jz � �j�(2n�1)), hence ju(z)j =
O(jzj�(2n�1)) at in�nity. If q = 1, then u is holomorphic on C n r B(0; R).

Now, this complement is a union of complex lines when n � 2, hence u = 0

on C n rB(0; R) by Liouville's theorem. �

(3.28) Hartogs extension theorem. Let 
 be an open set in C n , n � 2,

and let K � 
 be a compact subset such that 
rK is connected. Then every

holomorphic function f 2 O(
 rK) extends into a function ef 2 O(
).
Proof. Let  2 D(
) be a cut-o� function equal to 1 on a neighborhood of K.

Set f0 = (1� )f 2 C1(
), de�ned as 0 on K. Then v = d00f0 = �fd00 can

be extended by 0 outside 
, and can thus be seen as a smooth (0; 1)-form

with compact support in C n , such that d00v = 0. By Cor. 3.27, there is a

smooth function u with compact support in C n such that d00u = v. Thenef = f0 � u 2 O(
). Now u is holomorphic outside Supp , so u vanishes on

the unbounded component G of C n rSupp . The boundary @G is contained

in @ Supp � 
 r K, so ef = (1 �  )f � u coincides with f on the non

empty open set 
 \G � 
 rK. Therefore ef = f on the connected open set


 rK. �

A re�ned version of the Hartogs extension theorem due to Bochner will

be given in Exercise 8.13. It shows that f need only be given as a C1 function

on @
, satisfying the tangential Cauchy-Riemann equations (a so-called CR-

function). Then f extends as a holomorphic function ef 2 O(
) \ C0(
),

provided that @
 is connected.

x3.E. The Dolbeault-Grothendieck Lemma

We are now in a position to prove the Dolbeault-Grothendieck lemma (Dol-

beault 1953), which is the analogue for d00 of the Poincar�e lemma. The proof

given below makes use of the Bochner-Martinelli kernel. Many other proofs

can be given, e.g. by using a reduction to the one dimensional case in combi-

nation with the Cauchy formula (3.2), see Exercise 8.5 or (H�ormander 1966).
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(3.29) Dolbeault-Grothendieck lemma. Let 
 be a neighborhood of 0 in

C n and v 2 sEp;q(
; C ), [resp. v 2 sD0 p;q(
; C )], such that d00v = 0, where

1 � s � 1.

a) If q = 0, then v(z) =
P
jIj=p vI(z) dzI is a holomorphic p-form, i.e. a

form whose coeÆcients are holomorphic functions.

b) If q � 1, there exists a neighborhood ! � 
 of 0 and a form u in
sEp;q�1(!; C ) [resp. a current u 2 sD0 p;q�1(!; C )] such that d00u = v

on !.

Proof. We assume that 
 is a ball B(0; r) � C n and take for simplicity

r > 1 (possibly after a dilation of coordinates). We then set ! = B(0; 1). Let

 2 D(
) be a cut-o� function equal to 1 on !. The Koppelman formula

(3.26) applied to the form  v on 
 gives

 (z)v(z) = d00
z

Z



K
p;q�1
BM (z; �) ^  (�)v(�) +

Z



K
p;q

BM(z; �) ^ d00 (�) ^ v(�):

This formula is valid even when v is a current, because we may regularize v

as v ? �" and take the limit. We introduce on C n � C n � C n the kernel

K(z; w; �) = cn

nX
j=1

(�1)j(wj � �j)
((z � �) � (w � �))n

^
k

(dzk � d�k) ^
^
k 6=j

(dwk � d�k):

By construction, KBM(z; �) is the result of the substitution w = z in

K(z; w; �), i.e. KBM = h?K where h(z; �) = (z; z; �). We denote by Kp;q

the component of K of bidegree (p; 0) in z, (q; 0) in w and (n� p; n� q � 1)

in �. Then K
p;q

BM = h?Kp;q and we �nd

v = d00u0 + g?v1 on !,

where g(z) = (z; z) and

u0(z) =

Z



K
p;q�1
BM (z; �) ^  (�)v(�);

v1(z; w) =

Z



Kp;q(z; w; �) ^ d00 (�) ^ v(�):

By de�nition of Kp;q(z; w; �), v1 is holomorphic on the open set

U =
�
(z; w) 2 ! � ! ; 8� =2 !; Re(z � �) � (w � �) > 0

	
;

which contains the \conjugate-diagonal" points (z; z) as well as the points

(z; 0) and (0; w) in !�!. Moreover U clearly has convex slices (fzg�C n)\U
and (C n � fwg) \ U . In particular U is starshaped with respect to w, i.e.

(z; w) 2 U =) (z; tw) 2 U; 8t 2 [0; 1]:
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As u1 is of type (p; 0) in z and (q; 0) in w, we get d00
z
(g?v1) = g?dwv1 = 0,

hence dwv1 = 0. For q = 0 we have K
p;q�1
BM = 0, thus u0 = 0, and v1 does

not depend on w, thus v is holomorphic on !. For q � 1, we can use the

homotopy formula (1.23) with respect to w (considering z as a parameter) to

get a holomorphic form u1(z; w) of type (p; 0) in z and (q � 1; 0) in w, such

that dwu1(z; w) = v1(z; w). Then we get d00g?u1 = g?dwu1 = g?v1, hence

v = d00(u0 + g?u1) on !:

Finally, the coeÆcients of u0 are obtained as linear combinations of convolu-

tions of the coeÆcients of  v with L1
loc functions of the form �j j�j�2n. Hence

u0 is of class C
s (resp. is a current of order s), if v is. �

(3.30) Corollary. The operator d00 is hypoelliptic in bidegree (p; 0), i.e. if a

current f 2 D0 p;0(X; C ) satis�es d00f 2 Ep;1(X; C ), then f 2 Ep;0(X; C ).

Proof. The result is local, so we may assume that X = 
 is a neighborhood

of 0 in C n . The (p; 1)-form v = d00f 2 Ep;1(X; C ) satis�es d00v = 0, hence

there exists u 2 Ep;0( e
; C ) such that d00u = d00f . Then f � u is holomorphic

and f = (f � u) + u 2 Ep;0( e
; C ). �

x4. Subharmonic Functions

A harmonic (resp. subharmonic) function on an open subset of Rm is essen-

tially a function (or distribution) u such that �u = 0 (resp. �u � 0). A

fundamental example of subharmonic function is given by the Newton ker-

nel N , which is actually harmonic on Rmrf0g. Subharmonic functions are an

essential tool of harmonic analysis and potential theory. Before giving their

precise de�nition and properties, we derive a basic integral formula involving

the Green kernel of the Laplace operator on the ball.

x4.A. Construction of the Green Kernel

The Green kernel G
(x; y) of a smoothly bounded domain 
 �� Rm is the

solution of the following Dirichlet boundary problem for the Laplace operator

� on 
 :

(4.1) De�nition. The Green kernel of a smoothly bounded domain 
 �� Rm

is a function G
(x; y) : 
 �
 ! [�1; 0] with the following properties:

a) G
(x; y) is C
1 on 
 �
 r Diag
 (Diag
 = diagonal ) ;

b) G
(x; y) = G
(y; x) ;

c) G
(x; y) < 0 on 
 �
 and G
(x; y) = 0 on @
 �
 ;
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d) �xG
(x; y) = Æy on 
 for every �xed y 2 
.

It can be shown that G
 always exists and is unique. The uniqueness is

an easy consequence of the maximum principle (see Th. 4.14 below). In the

case where 
 = B(0; r) is a ball (the only case we are going to deal with),

the existence can be shown through explicit calculations. In fact the Green

kernel Gr(x; y) of B(0; r) is

(4:2) Gr(x; y) = N(x� y)�N
� jyj
r

�
x� r2

jyj2 y
��
; x; y 2 B(0; r):

A substitution of the explicit value of N(x) yields:

Gr(x; y) =
1

4�
log

jx� yj2
r2 � 2hx; yi+ 1

r2
jxj2 jyj2 if m = 2; otherwise

Gr(x; y) =
�1

(m� 2)�m�1

�
jx� yj2�m � �r2 � 2hx; yi+ 1

r2
jxj2 jyj2�1�m=2�:

(4.3) Theorem. The above de�ned function Gr satis�es all four properties

(4:1 a{d) on 
 = B(0; r), thus Gr is the Green kernel of B(0; r).

Proof. The �rst three properties are immediately veri�ed on the formulas,

because

r2 � 2hx; yi+ 1

r2
jxj2 jyj2 = jx� yj2 + 1

r2

�
r2 � jxj2��r2 � jyj2�:

For property d), observe that r2y=jyj2 =2 B(0; r) whenever y 2 B(0; r)r f0g.
The second Newton kernel in the right hand side of (4.1) is thus harmonic in

x on B(0; r), and

�xGr(x; y) = �xN(x� y) = Æy on B(0; r): �

x4.B. Green-Riesz Representation Formula and Dirichlet Problem

x4.B.1. Green-Riesz Formula. For all smooth functions u; v on a smoothly

bounded domain 
 �� Rm , we have

(4:4)

Z



(u�v � v �u) d� =
Z
@


�
u
@v

@�
� v @u

@�

�
d�

where @=@� is the derivative along the outward normal unit vector � of @


and d� the euclidean area measure. Indeed

(�1)j�1 dx1 ^ : : : ^ddxj ^ : : : ^ dxm �@
 = �j d�;

for the wedge product of h�; dxi with the left hand side is �j d�. Therefore
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@v

@�
d� =

mX
j=1

@v

@xj
�j d� =

mX
j=1

(�1)j�1 @v
@xj

dx1 ^ : : : ^ddxj ^ : : : ^ dxm:
Formula (4.4) is then an easy consequence of Stokes' theorem. Observe that

(4.4) is still valid if v is a distribution with singular support relatively compact

in 
. For 
 = B(0; r), u 2 C2
�
B(0; r);R

�
and v(y) = Gr(x; y), we get the

Green-Riesz representation formula:

(4:5) u(x) =

Z
B(0;r)

�u(y)Gr(x; y) d�(y) +

Z
S(0;r)

u(y)Pr(x; y) d�(y)

where Pr(x; y) = @Gr(x; y)=@�(y), (x; y) 2 B(0; r) � S(0; r). The function

Pr(x; y) is called the Poisson kernel. It is smooth and satis�es �xPr(x; y) = 0

on B(0; r) by (4.1 d). A simple computation left to the reader yields:

(4:6) Pr(x; y) =
1

�m�1r

r2 � jxj2
jx� yjm :

Formula (4.5) for u � 1 shows that
R
S(0;r)

Pr(x; y) d�(y) = 1. When x in

B(0; r) tends to x0 2 S(0; r), we see that Pr(x; y) converges uniformly to

0 on every compact subset of S(0; r) r fx0g ; it follows that the measure

Pr(x; y) d�(y) converges weakly to Æx0 on S(0; r).

x4.B.2. Solution of the Dirichlet Problem. For any bounded measurable

function v on S(a; r) we de�ne

(4:7) Pa;r[v](x) =

Z
S(a;r)

v(y)Pr(x� a; y � a) d�(y); x 2 B(a; r):

If u 2 C0
�
B(a; r);R

� \ C2
�
B(a; r);R

�
is harmonic, i.e. �u = 0 on B(a; r),

then (4.5) gives u = Pa;r[u] on B(a; r), i.e. the Poisson kernel reproduces

harmonic functions. Suppose now that v 2 C0
�
S(a; r);R

�
is given. Then

Pr(x� a; y � a) d�(y) converges weakly to Æx0 when x tends to x0 2 S(a; r),
so Pa;r[v](x) converges to v(x0). It follows that the function u de�ned by�

u = Pa;r[v] on B(a; r),

u = v on S(a; r)

is continuous on B(a; r) and harmonic on B(a; r) ; thus u is the solution of

the Dirichlet problem with boundary values v.

x4.C. De�nition and Basic Properties of Subharmonic Functions

x4.C.1. De�nition. Mean Value Inequalities. If u is a Borel function on

B(a; r) which is bounded above or below, we consider the mean values of u

over the ball or sphere:
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�B(u ; a; r) =
1

�mrm

Z
B(a;r)

u(x) d�(x);(4:8)

�S(u ; a; r) =
1

�m�1rm�1

Z
S(a;r)

u(x) d�(x):(4:80)

As d� = dr d� these mean values are related by

�B(u ; a; r) =
1

�mrm

Z
r

0

�m�1t
m�1 �S(u ; a; t) dt(4:9)

= m

Z 1

0

tm�1 �S(u ; a; rt) dt:

Now, apply formula (4.5) with x = 0. We get Pr(0; y) = 1=�m�1rm�1 and

Gr(0; y) = (jyj2�m � r2�m)=(2�m)�m�1 = �(1=�m�1)
R r
jyj t

1�mdt, thusZ
B(0;r)

�u(y)Gr(0; y) d�(y) = � 1

�m�1

Z
r

0

dt

tm�1

Z
jyj<t

�u(y) d�(y)

= � 1

m

Z
r

0

�B(�u ; 0; t) t dt

thanks to the Fubini formula. By translating S(0; r) to S(a; r), (4.5) implies

the Gauss formula

(4:10) �S(u ; a; r) = u(a) +
1

m

Z
r

0

�B(�u ; a; t) t dt:

Let 
 be an open subset of Rm and u 2 C2(
;R). If a 2 
 and �u(a) > 0

(resp. �u(a) < 0), Formula (4.10) shows that �S(u ; a; r) > u(a) (resp.

�S(u ; a; r) < u(a)) for r small enough. In particular, u is harmonic (i.e.

�u = 0) if and only if u satis�es the mean value equality

�S(u ; a; r) = u(a); 8B(a; r) � 
:
Now, observe that if (�") is a family of radially symmetric smoothing kernels

associated with �(x) = e�(jxj) and if u is a Borel locally bounded function, an

easy computation yields

u ? �"(a) =

Z
B(0;1)

u(a+ "x) �(x) d�

= �m�1

Z 1

0

�S(u ; a; "t) e�(t) tm�1 dt:(4:11)

Thus, if u is a Borel locally bounded function satisfying the mean value

equality on 
, (4.11) shows that u ? �" = u on 
", in particular u must be

smooth. Similarly, if we replace the mean value equality by an inequality, the

relevant regularity property to be required for u is just semicontinuity.
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(4.12) Theorem and de�nition. Let u : 
 �! [�1;+1[ be an upper

semicontinuous function. The following various forms of mean value inequal-

ities are equivalent:

a) u(x) � Pa;r[u](x); 8B(a; r) � 
; 8x 2 B(a; r) ;
b) u(a) � �S (u ; a; r); 8B(a; r) � 
 ;

c) u(a) � �B(u ; a; r); 8B(a; r) � 
 ;

d) for every a 2 
, there exists a sequence (r�) decreasing to 0 such that

u(a) � �B(u ; a; r�) 8� ;

e) for every a 2 
, there exists a sequence (r�) decreasing to 0 such that

u(a) � �S(u ; a; r�) 8�:
A function u satisfying one of the above properties is said to be subharmonic

on 
. The set of subharmonic functions will be denoted by Sh(
).

By (4.10) we see that a function u 2 C2(
;R) is subharmonic if and only

if �u � 0 : in fact �S(u ; a; r) < u(a) for r small if �u(a) < 0. It is also clear

on the de�nitions that every (locally) convex function on 
 is subharmonic.

Proof. We have obvious implications

a) =) b) =) c) =) d) =) e);

the second and last ones by (4.10) and the fact that �B(u ; a; r�) � �S(u ; a; t)
for at least one t 2 ]0; r�[. In order to prove e) =) a), we �rst need a suitable

version of the maximum principle.

(4.13) Lemma. Let u : 
 �! [�1;+1[ be an upper semicontinuous func-

tion satisfying property 4.12 e). If u attains its supremum at a point x0 2 
,
then u is constant on the connected component of x0 in 
.

Proof. We may assume that 
 is connected. Let

W = fx 2 
 ; u(x) < u(x0)g:
W is open by the upper semicontinuity, and distinct from 
 since x0 =2 W .

We want to show that W = ;. Otherwise W has a non empty connected

component W0, and W0 has a boundary point a 2 
. We have a 2 
 rW ,

thus u(a) = u(x0). By assumption 4.12 e), we get u(a) � �S(u ; a; r�) for

some sequence r� ! 0. For r� small enough, W0 intersects 
 rB(a; r�) and

B(a; r�) ; asW0 is connected, we also have S(a; r�)\W0 6= ;. Since u � u(x0)
on the sphere S(a; r�) and u < u(x0) on its open subset S(a; r�) \W0, we

get u(a) � �S(u ; a; r) < u(x0), a contradiction. �
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(4.14) Maximum principle. If u is subharmonic in 
 (in the sense that

u satis�es the weakest property 4.12 e)), then

sup



u = lim sup

3z!@
[f1g

u(z);

and sup
K
u = sup

@K
u(z) for every compact subset K � 
.

Proof. We have of course lim sup
z!@
[f1g u(z) � sup



u. If the inequality

is strict, this means that the supremum is achieved on some compact subset

L � 
. Thus, by the upper semicontinuity, there is x0 2 L such that sup


u =

supL u = u(x0). Lemma 4.13 shows that u is constant on the connected

component 
0 of x0 in 
, hence

sup



u = u(x0) = lim sup

03z!@
0[f1g

u(z) � lim sup

3z!@
[f1g

u(z);

contradiction. The statement involving a compact subset K is obtained by

applying the �rst statement to 
0 = KÆ. �

Proof of (4:12) e) =) a) Let u be an upper semicontinuous function sat-

isfying 4.12 e) and B(a; r) � 
 an arbitrary closed ball. One can �nd

a decreasing sequence of continuous functions vk 2 C0
�
S(a; r);R

�
such

that lim vk = u. Set hk = Pa;r[vk] 2 C0
�
B(a; r);R

�
. As hk is harmonic

on B(a; r), the function u � hk satis�es 4.12 e) on B(a; r). Furthermore

lim sup
x!�2S(a;r) u(x)� hk(x) � u(�)� vk(�) � 0, so u � hk � 0 on B(a; r)

by Th. 4.14. By monotone convergence, we �nd u � Pa;r[u] on B(a; r) when
k tends to +1. �

x4.C.2. Basic Properties. Here is a short list of the most basic properties.

(4.15) Theorem. For any decreasing sequence (uk) of subharmonic func-

tions, the limit u = limuk is subharmonic.

Proof. A decreasing limit of upper semicontinuous functions is again upper

semicontinuous, and the mean value inequalities 4.12 remain valid for u by

Lebesgue's monotone convergence theorem. �

(4.16) Theorem. Let u1; : : : ; up 2 Sh(
) and � : Rp �! R be a convex

function such that �(t1; : : : ; tp) is non decreasing in each tj. If � is extended

by continuity into a function [�1;+1[p�! [�1;+1[, then

�(u1; : : : ; up) 2 Sh(
):

In particular u1 + � � �+ up, maxfu1; : : : ; upg, log(eu1 + � � �+ eup) 2 Sh(
).

Proof. Every convex function is continuous, hence �(u1; : : : ; up) is upper

semicontinuous. One can write
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�(t) = sup
i2I

Ai(t)

where Ai(t) = a1t1+ � � �+aptp+ b is the family of aÆne functions that de�ne

supporting hyperplanes of the graph of �. As �(t1; : : : ; tp) is non-decreasing

in each tj , we have aj � 0, thusX
1�j�p

ajuj(x) + b � �B
�X

ajuj + b ;x; r
� � �B��(u1; : : : ; up) ;x; r�

for every ball B(x; r) � 
. If one takes the supremum of this inequality over

all the Ai 's , it follows that �(u1; : : : ; up) satis�es the mean value inequality

4.12 c). In the last example, the function �(t1; : : : ; tp) = log(et1 + � � �+ etp)

is convex becauseX
1�j;k�p

@2�

@tj@tk
�j�k = e��

X
�2
j
etj � e�2��X �j e

tj
�2

and
�P

�j e
tj
�2 � �P �2

j
etj
�
e� by the Cauchy-Schwarz inequality. �

(4.17) Theorem. If 
 is connected and u 2 Sh(
), then either u � �1 or

u 2 L1
loc(
).

Proof. Note that a subharmonic function is always locally bounded above.

Let W be the set of points x 2 
 such that u is integrable in a neighborhood

of x. Then W is open by de�nition and u > �1 almost everywhere on

W . If x 2 W , one can choose a 2 W such that ja � xj < r = 1
2
d(x; {
)

and u(a) > �1. Then B(a; r) is a neighborhood of x, B(a; r) � 
 and

�B(u ; a; r) � u(a) > �1. Therefore x 2W , W is also closed. We must have

W = 
 orW = ; ; in the last case u � �1 by the mean value inequality. �

(4.18) Theorem. Let u 2 Sh(
) be such that u 6� �1 on each connected

component of 
. Then

a) r 7�! �S(u ; a; r), r 7�! �B(u ; a; r) are non decreasing functions in the

interval ]0; d(a; {
)[ , and �B(u ; a; r) � �S(u ; a; r).
b) For any family (�") of smoothing kernels, u ? �" 2 Sh(
") \ C1(
";R),

the family (u ? �") is non decreasing in " and lim"!0 u ? �" = u.

Proof. We �rst verify statements a) and b) when u 2 C2(
;R). Then �u �
0 and �S(u ; a; r) is non decreasing in virtue of (4.10). By (4.9), we �nd

that �B(u ; a; r) is also non decreasing and that �B(u ; a; r) � �S(u ; a; r).

Furthermore, Formula (4.11) shows that " 7�! u ? �"(a) is non decreasing

(provided that �" is radially symmetric).

In the general case, we �rst observe that property 4.12 c) is equivalent to

the inequality
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u � u ? �r on 
r; 8r > 0;

where �r is the probability measure of uniform density on B(0; r). This in-

equality implies u?�" � u?�" ?�r on (
r)" = 
r+", thus u?�" 2 C1(
";R)
is subharmonic on 
". It follows that u ? �" ? �� is non decreasing in � ; by

symmetry, it is also non decreasing in ", and so is u ? �" = lim�!0 u ? �" ? ��.

We have u ? �" � u by (4.19) and lim sup
"!0 u ? �" � u by the upper semi-

continuity. Hence lim"!0 u ? �" = u. Property a) for u follows now from its

validity for u ? �" and from the monotone convergence theorem. �

(4.19) Corollary. If u 2 Sh(
) is such that u 6� �1 on each connected

component of 
, then �u computed in the sense of distribution theory is a

positive measure.

Indeed �(u?�") � 0 as a function, and �(u?�") converges weakly to �u

in D0(
). Corollary 4.19 has a converse, but the correct statement is slightly

more involved than for the direct property:

(4.20) Theorem. If v 2 D0(
) is such that �v is a positive measure, there

exists a unique function u 2 Sh(
) locally integrable such that v is the dis-

tribution associated to u.

We must point out that u need not coincide everywhere with v, even when

v is a locally integrable upper semicontinuous function: for example, if v is

the characteristic function of a compact subset K � 
 of measure 0, the

subharmonic representant of v is u = 0.

Proof. Set v" = v ? �" 2 C1(
";R). Then �v" = (�v) ? �" � 0, thus

v" 2 Sh(
"). Arguments similar to those in the proof of Th. 4.18 show that

(v") is non decreasing in ". Then u := lim"!0 v" 2 Sh(
) by Th. 4.15. Since

v" converges weakly to v, the monotone convergence theorem shows that

hv; fi = lim
"!0

Z



v" f d� =

Z



u f d�; 8f 2 D(
); f � 0;

which concludes the existence part. The uniqueness of u is clear from the fact

that u must satisfy u = limu ? �" = lim v ? �". �

The most natural topology on the space Sh(
) of subharmonic functions

is the topology induced by the vector space topology of L1
loc(
) (Fr�echet

topology of convergence in L1 norm on every compact subset of 
).

(4.21) Proposition. The convex cone Sh(
)\L1
loc(
) is closed in L1

loc(
),

and it has the property that every bounded subset is relatively compact.

Proof. Let (uj) be a sequence in Sh(
) \L1
loc(
). If uj ! u in L1

loc(
) then

�uj ! �u in the weak topology of distributions, hence �u � 0 and u can
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be represented by a subharmonic function thanks to Th. 4.20. Now, suppose

that kujkL1(K) is uniformly bounded for every compact subset K of 
. Let

�j = �uj � 0. If  2 D(
) is a test function equal to 1 on a neighborhood

! of K and such that 0 �  � 1 on 
, we �nd

�j(K) �
Z



 �uj d� =

Z



� uj d� � CkujkL1(K0);

where K 0 = Supp , hence the sequence of measures (�j) is uniformly

bounded in mass on every compact subset of 
. By weak compactness, there

is a subsequence (�j� ) which converges weakly to a positive measure � on 
.

We claim that f ? ( �j� ) converges to f ? ( �) in L
1
loc(R

m) for every function

f 2 L1
loc(R

m). In fact, this is clear if f 2 C1(Rm), and in general we use an

approximation of f by a smooth function g together with the estimate

k(f � g) ? ( �j� )kL1(A) � k(f � g)kL1(A+K0)�j� (K 0); 8A �� Rm

to get the conclusion. We apply this when f = N is the Newton kernel. Then

hj = uj �N ? ( �j) is harmonic on ! and bounded in L1(!). As hj = hj ?�"
for any smoothing kernel �", we see that all derivatives D

�hj = hj ? (D
��")

are in fact uniformly locally bounded in !. Hence, after extracting a new

subsequence, we may suppose that hj� converges uniformly to a limit h on !.

Then uj� = hj� + N ? ( �j� ) converges to u = h + N ? ( �) in L1
loc(!), as

desired. �

We conclude this subsection by stating a generalized version of the Green-

Riesz formula.

(4.22) Proposition. Let u 2 Sh(
) \ L1
loc(
) and B(0; r) � 
.

a) The Green-Riesz formula still holds true for such an u, namely, for every

x 2 B(0; r)

u(x) =

Z
B(0;r)

�u(y)Gr(x; y) d�(y) +

Z
S(0;r)

u(y)Pr(x; y) d�(y):

b) (Harnack inequality)

If u � 0 on B(0; r), then for all x 2 B(0; r)

0 � u(x) �
Z
S(0;r)

u(y)Pr(x; y) d�(y) � rm�2(r + jxj)
(r � jxj)m�1 �S(u ; 0; r):

If u � 0 on B(0; r), then for all x 2 B(0; r)

u(x) �
Z
S(0;r)

u(y)Pr(x; y) d�(y) � rm�2(r � jxj)
(r + jxj)m�1 �S(u ; 0; r) � 0:
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Proof. We know that a) holds true if u is of class C2. In general, we replace

u by u ? �" and take the limit. We only have to check thatZ
B(0;r)

� ? �"(y)Gr(x; y) d�(y) = lim
"!0

Z
B(0;r)

�(y)Gr(x; y) d�(y)

for the positive measure � = �u. Let us denote by eGx(y) the function such

that

eGx(y) = �Gr(x; y) if x 2 B(0; r)
0 if x =2 B(0; r).

ThenZ
B(0;r)

� ? �"(y)Gr(x; y) d�(y) =

Z
Rm

� ? �"(y) eGx(y) d�(y)
=

Z
Rm

�(y) eGx ? �"(y) d�(y):
However eGx is continuous on Rm r fxg and subharmonic in a neighborhood

of x, hence eGx ? �" converges uniformly to eGx on every compact subset of

Rm r fxg, and converges pointwise monotonically in a neighborhood of x.

The desired equality follows by the monotone convergence theorem. Finally,

b) is a consequence of a), for the integral involving �u is nonpositive and

1

�m�1rm�1
rm�2(r � jxj)
(r + jxj)m�1 � Pr(x; y) �

1

�m�1rm�1
rm�2(r + jxj)
(r � jxj)m�1

by (4.6) combined with the obvious inequality (r � jxj)m � jx � yjm �
(r + jxj)m. �

x4.C.3. Upper Envelopes and Choquet's Lemma. Let 
 � Rn and let

(u�)�2I be a family of upper semicontinuous functions 
 �! [�1;+1[.

We assume that (u�) is locally uniformly bounded above. Then the upper

envelope

u = sup u�

need not be upper semicontinuous, so we consider its upper semicontinuous

regularization:

u?(z) = lim
"!0

sup
B(z;")

u � u(z):

It is easy to check that u? is the smallest upper semicontinuous function

which is � u. Our goal is to show that u? can be computed with a countable

subfamily of (u�). Let B(zj ; "j) be a countable basis of the topology of 
.

For each j, let (zjk) be a sequence of points in B(zj ; "j) such that
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sup
k

u(zjk) = sup
B(zj ;"j)

u;

and for each pair (j; k), let �(j; k; l) be a sequence of indices � 2 I such that

u(zjk) = sup
l
u�(j;k;l)(zjk). Set

v = sup
j;k;l

u�(j;k;l):

Then v � u and v? � u?. On the other hand

sup
B(zj ;"j)

v � sup
k

v(zjk) � sup
k;l

u�(j;k;l)(zjk) = sup
k

u(zjk) = sup
B(zj ;"j)

u:

As every ball B(z; ") is a union of balls B(zj ; "j), we easily conclude that

v? � u?, hence v? = u?. Therefore:

(4.23) Choquet's lemma. Every family (u�) has a countable subfamily

(vj) = (u�(j)) such that its upper envelope v satis�es v � u � u? = v?. �

(4.24) Proposition. If all u� are subharmonic, the upper regularization u?

is subharmonic and equal almost everywhere to u.

Proof. By Choquet's lemma we may assume that (u�) is countable. Then

u = supu� is a Borel function. As each u� satis�es the mean value inequality

on every ball B(z; r) � 
, we get
u(z) = supu�(z) � sup�B(u� ; z; r) � �B(u ; z; r):

The right-hand side is a continuous function of z, so we infer

u?(z) � �B(u ; z; r) � �B(u? ; z; r)
and u? is subharmonic. By the upper semicontinuity of u? and the above

inequality we �nd u?(z) = limr!0 �B(u ; z; r), thus u
? = u almost everywhere

by Lebesgue's lemma. �

x5. Plurisubharmonic Functions

x5.A. De�nition and Basic Properties

Plurisubharmonic functions have been introduced independently by (Lelong

1942) and (Oka 1942) for the study of holomorphic convexity. They are the

complex counterparts of subharmonic functions.

(5.1) De�nition. A function u : 
 �! [�1;+1[ de�ned on an open subset


 � C n is said to be plurisubharmonic if
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a) u is upper semicontinuous ;

b) for every complex line L � C n , u�
\L is subharmonic on 
 \ L.
The set of plurisubharmonic functions on 
 is denoted by Psh(
).

An equivalent way of stating property b) is: for all a 2 
, � 2 C n ,

j�j < d(a; {
), then

(5:2) u(a) � 1

2�

Z 2�

0

u(a+ ei� �) d�:

An integration of (5.2) over � 2 S(0; r) yields u(a) � �S(u ; a; r), therefore
(5:3) Psh(
) � Sh(
):

The following results have already been proved for subharmonic functions

and are easy to extend to the case of plurisubharmonic functions:

(5.4) Theorem. For any decreasing sequence of plurisubharmonic functions

uk 2 Psh(
), the limit u = limuk is plurisubharmonic on 
.

(5.5) Theorem. Let u 2 Psh(
) be such that u 6� �1 on every connected

component of 
. If (�") is a family of smoothing kernels, then u ? �" is C
1

and plurisubharmonic on 
", the family (u ? �") is non decreasing in " and

lim"!0 u ? �" = u.

(5.6) Theorem. Let u1; : : : ; up 2 Psh(
) and � : Rp �! R be a convex func-

tion such that �(t1; : : : ; tp) is non decreasing in each tj. Then �(u1; : : : ; up)

is plurisubharmonic on 
. In particular u1 + � � � + up, maxfu1; : : : ; upg,
log(eu1 + � � �+ eup) are plurisubharmonic on 
.

(5.7) Theorem. Let fu�g � Psh(
) be locally uniformly bounded from above

and u = sup u�. Then the regularized upper envelope u? is plurisubharmonic

and is equal to u almost everywhere.

Proof. By Choquet's lemma, we may assume that (u�) is countable. Then u

is a Borel function which clearly satis�es (5.2), and thus u ? �" also satis�es

(5.2). Hence u ? �" is plurisubharmonic. By Proposition 4.24, u? = u almost

everywhere and u? is subharmonic, so

u? = limu? ? �" = limu ? �"

is plurisubharmonic. �

If u 2 C2(
;R), the subharmonicity of restrictions of u to complex lines,

C 3 w 7�! u(a+ w�), a 2 
, � 2 C n , is equivalent to
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@2

@w@w
u(a+ w�) =

X
1�j;k�n

@2u

@zj@zk
(a+ w�) �j�k � 0:

Therefore, u is plurisubharmonic on 
 if and only if the hermitian formP
@2u=@zj@zk(a) �j�k is semipositive at every point a 2 
. This equivalence

is still true for arbitrary plurisubharmonic functions, under the following

form:

(5.8) Theorem. If u 2 Psh(
), u 6� �1 on every connected component of


, then for all � 2 C n

Hu(�) :=
X

1�j;k�n

@2u

@zj@zk
�j�k 2 D0(
)

is a positive measure. Conversely, if v 2 D0(
) is such that Hv(�) is a positive
measure for every � 2 C n , there exists a unique function u 2 Psh(
) locally

integrable on 
 such that v is the distribution associated to u.

Proof. If u 2 Psh(
), then Hu(�) = weak lim H(u ? �")(�) � 0. Conversely,

Hv � 0 implies H(v ? �") = (Hv) ? �" � 0, thus v ? �" 2 Psh(
), and also

�v � 0, hence (v ? �") is non decreasing in " and u = lim"!0 v ? �" 2 Psh(
)

by Th. 5.4. �

(5.9) Proposition. The convex cone Psh(
)\L1
loc(
) is closed in L1

loc(
),

and it has the property that every bounded subset is relatively compact.

x5.B. Relations with Holomorphic Functions

In order to get a better geometric insight, we assume more generally that u is

a C2 function on a complex n-dimensional manifold X. The complex Hessian

of u at a point a 2 X is the hermitian form on TX de�ned by

(5:10) Hua =
X

1�j;k�n

@2u

@zj@zk
(a) dzj 
 dzk:

If F : X �! Y is a holomorphic mapping and if v 2 C2(Y;R), we have

d0d00(v ÆF ) = F ?d0d00v. In equivalent notations, a direct calculation gives for

all � 2 TX;a

H(v Æ F )a(�) =
X
j;k;l;m

@2v
�
F (a)

�
@zl@zm

@Fl
�
a)

@zj
�j
@Fm

�
a)

@zk
�k = HvF (a)

�
F 0(a):�

�
:

In particular Hua does not depend on the choice of coordinates (z1; : : : ; zn)

on X, and Hva � 0 on Y implies H(v ÆF )a � 0 on X. Therefore, the notion

of plurisubharmonic function makes sense on any complex manifold.
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(5.11) Theorem. If F : X �! Y is a holomorphic map and v 2 Psh(Y ),

then v Æ F 2 Psh(X).

Proof. It is enough to prove the result when X = 
1 � C n and X = 
2 � C p

are open subsets . The conclusion is already known when v is of class C2,

and it can be extended to an arbitrary upper semicontinuous function v by

using Th. 5.4 and the fact that v = lim v ? �". �

(5.12) Example. By (3.22) we see that log jzj is subharmonic on C , thus

log jf j 2 Psh(X) for every holomorphic function f 2 O(X). More generally

log
�jf1j�1 + � � �+ jfqj�q� 2 Psh(X)

for every fj 2 O(X) and �j � 0 (apply Th. 5.6 with uj = �j log jfj j ).

x5.C. Convexity Properties

The close analogy of plurisubharmonicity with the concept of convexity

strongly suggests that there are deeper connections between these notions.

We describe here a few elementary facts illustrating this philosophy. Another

interesting connection between plurisubharmonicity and convexity will be

seen in x 7.B (Kiselman's minimum principle).

(5.13) Theorem. If 
 = ! + i!0 where !, !0 are open subsets of Rn , and

if u(z) is a plurisubharmonic function on 
 that depends only on x = Re z,

then ! 3 x 7�! u(x) is convex.

Proof. This is clear when u 2 C2(
;R), for @2u=@zj@zk =
1
4
@2u=@xj@xk. In

the general case, write u = limu? �" and observe that u? �"(z) depends only

on x. �

(5.14) Corollary. If u is a plurisubharmonic function in the open polydisk

D(a;R) =
Q
D(aj; Rj) � C n , then

�(u ; r1; : : : ; rn) =
1

(2�)n

Z 2�

0

u(a1 + r1e
i�1 ; : : : ; an + rne

i�n) d�1 : : : d�n;

m(u ; r1; : : : ; rn) = sup
z2D(a;r)

u(z1; : : : ; zn); rj < Rj

are convex functions of (log r1; : : : ; log rn) that are non decreasing in each

variable.

Proof. That � is non decreasing follows from the subharmonicity of u along

every coordinate axis. Now, it is easy to verify that the functions
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e�(z1; : : : ; zn) = 1

(2�)n

Z 2�

0

u(a1 + ez1ei�1 ; : : : ; an + eznei�n) d�1 : : : d�n;

em(z1; : : : ; zn) = sup
jwj j�1

u(a1 + ez1w1; : : : ; an + eznwn)

are upper semicontinuous, satisfy the mean value inequality, and depend only

on Re zj 2 ]0; logRj[. Therefore e� and fM are convex. Cor. 5.14 follows from

the equalities

�(u ; r1; : : : ; rn) = e�(log r1; : : : ; log rn);
m(u ; r1; : : : ; rn) = em(log r1; : : : ; log rn): �

x5.D. Pluriharmonic Functions

Pluriharmonic functions are the counterpart of harmonic functions in the

case of functions of complex variables:

(5.15) De�nition. A function u is said to be pluriharmonic if u and �u are

plurisubharmonic.

A pluriharmonic function is harmonic (in particular smooth) in any C -

analytic coordinate system, and is characterized by the condition Hu = 0,

i.e. d0d00u = 0 or

@2u=@zj@zk = 0 for all j; k:

If f 2 O(X), it follows that the functions Re f; Im f are pluriharmonic.

Conversely:

(5.16) Theorem. If the De Rham cohomology group H1
DR(X;R) is zero,

every pluriharmonic function u on X can be written u = Re f where f is a

holomorphic function on X.

Proof. By hypothesis H1
DR(X;R) = 0, u 2 C1(X) and d(d0u) = d00d0u = 0,

hence there exists g 2 C1(X) such that dg = d0u. Then dg is of type (1; 0),
i.e. g 2 O(X) and

d(u� 2Re g) = d(u� g � g) = (d0u� dg) + (d00u� dg) = 0:

Therefore u = Re(2g + C), where C is a locally constant function. �
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x5.E. Global Regularization of Plurisubharmonic Functions

We now study a very eÆcient regularization and patching procedure for con-

tinuous plurisubharmonic functions, essentially due to (Richberg 1968). The

main idea is contained in the following lemma:

(5.17) Lemma. Let u� 2 Psh(
�) where 
� �� X is a locally �nite open

covering of X. Assume that for every index �

lim sup
�!z

u�(�) < max

�3z

fu�(z)g

at all points z 2 @
�. Then the function

u(z) = max

�3z

u�(z)

is plurisubharmonic on X.

Proof. Fix z0 2 X. Then the indices � such that z0 2 @
� or z0 =2 
� do not

contribute to the maximum in a neighborhood of z0. Hence there is a a �nite

set I of indices � such that 
� 3 z0 and a neighborhood V � T
�2I 
� on

which u(z) = max�2I u�(z). Therefore u is plurisubharmonic on V . �

The above patching procedure produces functions which are in general

only continuous. When smooth functions are needed, one has to use a reg-

ularized max function. Let � 2 C1(R;R) be a nonnegative function with

support in [�1; 1] such that
R
R
�(h) dh = 1 and

R
R
h�(h) dh = 0.

(5.18) Lemma. For arbitrary � = (�1; : : : ; �p) 2 ]0;+1[p, the function

M�(t1; : : : ; tp) =

Z
Rn

maxft1 + h1; : : : ; tp + hpg
Y

1�j�n
�(hj=�j) dh1 : : : dhp

possesses the following properties:

a) M�(t1; : : : ; tp) is non decreasing in all variables, smooth and convex on

Rn ;

b) maxft1; : : : ; tpg �M�(t1; : : : ; tp) � maxft1 + �1; : : : ; tp + �pg ;
c) M�(t1; : : : ; tp) =M

(�1;:::;b�j ;:::;�p)(t1; : : : ; btj; ; : : : ; tp)
if tj + �j � maxk 6=jftk � �kg ;

d) M�(t1 + a; : : : ; tp + a) =M�(t1; : : : ; tp) + a, 8a 2 R ;

e) if u1; : : : ; up are plurisubharmonic and satisfy H(uj)z(�) � z(�) where

z 7! z is a continuous hermitian form on TX , then u = M�(u1; : : : ; up)

is plurisubharmonic and satis�es Huz(�) � z(�).

Proof. The change of variables hj 7! hj � tj shows that M� is smooth. All

properties are immediate consequences of the de�nition, except perhaps e).



48 Chapter I. Complex Di�erential Calculus and Pseudoconvexity

That M�(u1; : : : ; up) is plurisubharmonic follows from a) and Th. 5.6. Fix a

point z0 and " > 0. All functions u0
j
(z) = uj(z)� z0(z � z0) + "jz � z0j2 are

plurisubharmonic near z0. It follows that

M�(u
0
1; : : : ; u

0
p
) = u� z0(z � z0) + "jz � z0j2

is also plurisubharmonic near z0. Since " > 0 was arbitrary, e) follows. �

(5.19) Corollary. Let u� 2 C1(
�)\Psh(
�) where 
� �� X is a locally

�nite open covering of X. Assume that u�(z) < maxfu�(z)g at every point

z 2 @
�, when � runs over the indices such that 
� 3 z. Choose a family

(��) of positive numbers so small that u�(z) + �� � max
�3zfu�(z) � ��g
for all � and z 2 @
�. Then the function de�ned by

eu(z) =M(��)

�
u�(z)

�
for � such that 
� 3 z

is smooth and plurisubharmonic on X. �

(5.20) De�nition. A function u 2 Psh(X) is said to be strictly plurisubhar-

monic if u 2 L1
loc(X) and if for every point x0 2 X there exists a neighbor-

hood 
 of x0 and c > 0 such that u(z)� cjzj2 is plurisubharmonic on 
, i.e.P
(@2u=@zj@zk)�j�k � cj�j2 (as distributions on 
) for all � 2 C n .

(5.21) Theorem (Richberg 1968). Let u 2 Psh(X) be a continuous function

which is strictly plurisubharmonic on an open subset 
 � X, with Hu � 

for some continuous positive hermitian form  on 
. For any continuous

function � 2 C0(
), � > 0, there exists a plurisubharmonic function eu in

C0(X) \ C1(
) such that u � eu � u+ � on 
 and eu = u on X r
, which

is strictly plurisubharmonic on 
 and satis�es Heu � (1��). In particular,eu can be chosen strictly plurisubharmonic on X if u has the same property.

Proof. Let (
�) be a locally �nite open covering of 
 by relatively compact

open balls contained in coordinate patches of X. Choose concentric balls


00� � 
0� � 
� of respective radii r00� < r0� < r� and center z = 0 in the

given coordinates z = (z1; : : : ; zn) near 
�, such that 
00
�
still cover 
. We

set

u�(z) = u ? �"�(z) + Æ�(r
02
�
� jzj2) on 
�:

For "� < "�;0 and Æ� < Æ�;0 small enough, we have u� � u + �=2 and

Hu� � (1� �) on 
�. Set

�� = Æ� minfr02
�
� r002

�
; (r2

�
� r02

�
)=2g:

Choose �rst Æ� < Æ�;0 such that �� < min

�

�=2, and then "� < "�;0 so

small that u � u ? �"� < u+ �� on 
�. As Æ�(r
02 � jzj2) is � �2�� on @
�
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and > �� on 

00
�
, we have u� < u � �� on @
� and u� > u + �� on 


00
�
, so

that the condition required in Corollary 5.19 is satis�ed. We de�ne

eu = �u on X r
,

M(��)(u�) on 
.

By construction, eu is smooth on 
 and satis�es u � eu � u+�, Hu � (1��)
thanks to 5.18 (b,e). In order to see that eu is plurisubharmonic on X, observe

that eu is the uniform limit of eu� with

eu� = max
�
u ; M(�1:::��)(u1 : : : u�)

	
on

[
1����


�

and eu� = u on the complement. �

x5.F. Polar and Pluripolar Sets.

Polar and pluripolar sets are sets of �1 poles of subharmonic and plurisub-

harmonic functions. Although these functions possess a large amount of exi-

bility, pluripolar sets have some properties which remind their loose relation-

ship with holomorphic functions.

(5.22) De�nition. A set A � 
 � Rm (resp. A � X; dimCX = n) is said

to be polar (resp. pluripolar) if for every point x 2 
 there exist a connected

neighborhood W of x and u 2 Sh(W ) (resp. u 2 Psh(W )), u 6� �1, such

that A \W � fx 2W ; u(x) = �1g.

Theorem 4.17 implies that a polar or pluripolar set is of zero Lebesgue

measure. Now, we prove a simple extension theorem.

(5.23) Theorem. Let A � 
 be a closed polar set and v 2 Sh(
 r A) such

that v is bounded above in a neighborhood of every point of A. Then v has a

unique extension ev 2 Sh(
).

Proof. The uniqueness is clear because A has zero Lebesgue measure. On the

other hand, every point of A has a neighborhood W such that

A \W � fx 2W ; u(x) = �1g; u 2 Sh(W ); u 6� �1:
After shrinking W and subtracting a constant to u, we may assume u � 0.

Then for every " > 0 the function v" = v+ "u 2 Sh(W rA) can be extended

as an upper semicontinuous on W by setting v" = �1 on A\W . Moreover,

v" satis�es the mean value inequality v"(a) � �S(v" ; a; r) if a 2 W r A, r <

d(a;A[ {W ), and also clearly if a 2 A, r < d(a; {W ). Therefore v" 2 Sh(W )

and ev = (sup v")
? 2 Sh(W ). Clearly ev coincides with v on W r A. A similar

proof gives:
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(5.24) Theorem. Let A be a closed pluripolar set in a complex analytic

manifold X. Then every function v 2 Psh(X r A) that is locally bounded

above near A extends uniquely into a function ev 2 Psh(X). �

(5.25) Corollary. Let A � X be a closed pluripolar set. Every holomorphic

function f 2 O(XrA) that is locally bounded near A extends to a holomorphic

function ef 2 O(X).

Proof. Apply Th. 5.24 to �Re f and � Im f . It follows that Re f and Im f

have pluriharmonic extensions to X, in particular f extends to ef 2 C1(X).

By density of X r A, d00 ef = 0 on X. �

(5.26) Corollary. Let A � 
 (resp. A � X) be a closed (pluri)polar set. If


 (resp. X) is connected, then 
 r A (resp. X r A) is connected.

Proof. If 
rA (resp. X rA) is a disjoint union 
1 [
2 of non empty open

subsets, the function de�ned by f � 0 on 
1, f � 1 on 
2 would have a

harmonic (resp. holomorphic) extension through A, a contradiction. �

x6. Domains of Holomorphy and Stein Manifolds

x6.A. Domains of Holomorphy in C n . Examples

Loosely speaking, a domain of holomorphy is an open subset 
 in C n such

that there is no part of @
 across which all functions f 2 O(
) can be

extended. More precisely:

(6.1) De�nition. Let 
 � C n be an open subset. 
 is said to be a domain

of holomorphy if for every connected open set U � C n which meets @
 and

every connected component V of U \
 there exists f 2 O(
) such that f�V
has no holomorphic extension to U .

Under the hypotheses made on U , we have ; 6= @V \U � @
. In order to

show that 
 is a domain of holomorphy, it is thus suÆcient to �nd for every

z0 2 @
 a function f 2 O(
) which is unbounded near z0.

(6.2) Examples. Every open subset 
 � C is a domain of holomorphy (for

any z0 2 @
, f(z) = (z � z0)�1 cannot be extended at z0 ). In C n , every

convex open subset is a domain of holomorphy: if Rehz � z0; �0i = 0 is a

supporting hyperplane of @
 at z0, the function f(z) = (hz � z0; �0i)�1 is

holomorphic on 
 but cannot be extended at z0.

(6.3) Hartogs �gure. Assume that n � 2. Let ! � C n�1 be a connected

open set and !0 ( ! an open subset. Consider the open sets in C n :
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 =
�
(D(R)rD(r))� !� [ �D(R)� !0� (Hartogs �gure),e
 = D(R)� ! (�lled Hartogs �gure).

where 0 � r < R and D(r) � C denotes the open disk of center 0 and radius

r in C .

Then every function f 2 O(
) can be extended to e
 = ! � D(R) by
means of the Cauchy formula:

ef(z1; z0) = 1

2�i

Z
j�1j=�

f(�1; z
0)

�1 � z1
d�1; z 2 e
; maxfjz1j; rg < � < R:

In fact ef 2 O(D(R)� !) and ef = f on D(R) � !0, so we must have ef = f

on 
 since 
 is connected. It follows that 
 is not a domain of holomorphy.

Let us quote two interesting consequences of this example.

(6.4) Corollary (Riemann's extension theorem). Let X be a complex ana-

lytic manifold, and S a closed submanifold of codimension � 2. Then every

f 2 O(X r S) extends holomorphically to X.

Proof. This is a local result. We may choose coordinates (z1; : : : ; zn) and a

polydisk D(R)n in the corresponding chart such that S \D(R)n is given by

equations z1 = : : : = zp = 0, p = codimS � 2. Then, denoting ! = D(R)n�1

and !0 = !rfz2 = : : : = zp = 0g, the complement D(R)nrS can be written

as the Hartogs �gure

D(R)n r S =
�
(D(R)r f0g)� !� [ �D(R)� !0�:

It follows that f can be extended to e
 = D(R)n. �

x6.B. Holomorphic Convexity and Pseudoconvexity

Let X be a complex manifold. We �rst introduce the notion of holomorphic

hull of a compact set K � X. This can be seen somehow as the complex

analogue of the notion of (aÆne) convex hull for a compact set in a real vec-

tor space. It is shown that domains of holomorphy in C n are characterized a

property of holomorphic convexity. Finally, we prove that holomorphic con-

vexity implies pseudoconvexity { a complex analogue of the geometric notion

of convexity.

(6.5) De�nition. Let X be a complex manifold and let K be a compact

subset of X. Then the holomorphic hull of K in X is de�ned to bebK = bKO(X) =
�
z 2 X ; jf(z)j � sup

K

jf j; 8f 2 O(X)
	
:

(6.6) Elementary properties.
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Fig. I-3 Hartogs �gure

a) bK is a closed subset of X containing K. Moreover we have

supbK jf j = sup
K

jf j; 8f 2 O(X);

hence
bbK = bK.

b) If h : X ! Y is a holomorphic map and K � X is a compact set, then

h( bKO(X)) � dh(K)
O(Y ). In particular, if X � Y , then bKO(X) � bKO(Y )\X.

This is immediate from the de�nition.

c) bK contains the union of K with all relatively compact connected compo-

nents of XrK (thus bK \�lls the holes" of K). In fact, for every connected

component U of X r K we have @U � @K, hence if U is compact the

maximum principle yields

sup
U

jf j = sup
@U

jf j � sup
K

jf j; for all f 2 O(X):

d) More generally, suppose that there is a holomorphic map h : U ! X

de�ned on a relatively compact open set U in a complex manifold S, such

that h extends as a continuous map h : U ! X and h(@U) � K. Then

h(U) � bK. Indeed, for f 2 O(X), the maximum principle again yields

sup
U

jf Æ hj = sup
@U

jf Æ hj � sup
K

jf j:

This is especially useful when U is the unit disk in C .

e) Suppose that X = 
 � C n is an open set. By taking f(z) = exp(A(z))

where A is an arbitrary aÆne function, we see that bKO(
) is contained
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in the intersection of all aÆne half-spaces containing K. Hence bKO(
) is
contained in the aÆne convex hull bKa� . As a consequence bKO(
) is always
bounded and bKO(Cn ) is a compact set. However, when 
 is arbitrary,bKO(
) is not always compact; for example, in case 
 = C n r f0g, n � 2,

then O(
) = O(C n ) and the holomorphic hull of K = S(0; 1) is the non

compact set bK = B(0; 1)r f0g.

(6.7) De�nition.A complex manifold X is said to be holomorphically convex

if the holomorphic hull bKO(X) of every compact set K � X is compact.

(6.8) Remark. A complex manifold X is holomorphically convex if and

only if there is an exhausting sequence of holomorphically compact subsets

K� � X, i.e. compact sets such that

X =
[
K� ; bK� = K� ; KÆ

�
� K��1:

Indeed, if X is holomorphically convex, we may de�ne K� inductively by

K0 = ; and K�+1 = (K 0
�
[ L�)^O(X), where K

0
�
is a neighborhood of K� and

L� a sequence of compact sets of X such that X =
S
L� . The converse is

obvious: if such a sequence (K�) exists, then every compact subset K � X

is contained in some K� , hence bK � bK� = K� is compact. �

We now concentrate on domains of holomorphy in C n . We denote by d

and B(z; r) the distance and the open balls associated to an arbitrary norm

on C n , and we set for simplicity B = B(0; 1).

(6.9) Proposition. If 
 is a domain of holomorphy and K � 
 is a compact

subset, then d( bK; {
) = d(K; {
) and bK is compact.

Proof. Let f 2 O(
). Given r < d(K; {
), we denote by M the supremum

of jf j on the compact subset K + rB � 
. Then for every z 2 K and � 2 B,
the function

(6:10) C 3 t 7�! f(z + t�) =

+1X
k=0

1

k!
Dkf(z)(�)k tk

is analytic in the disk jtj < r and bounded by M . The Cauchy inequalities

imply

jDkf(z)(�)kj �Mk! r�k; 8z 2 K; 8� 2 B:
As the left hand side is an analytic fuction of z in 
, the inequality must

also hold for z 2 bK, � 2 B. Every f 2 O(
) can thus be extended to any

ball B(z; r), z 2 bK, by means of the power series (6.10). Hence B(z; r) must

be contained in 
, and this shows that d( bK; {
) � r. As r < d(K; {
) was
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arbitrary, we get d( bK; {
) � d(K; {
) and the converse inequality is clear,

so d( bK; {
) = d(K; {
). As bK is bounded and closed in 
, this shows thatbK is compact. �

(6.11) Theorem. Let 
 be an open subset of C n . The following properties

are equivalent:

a) 
 is a domain of holomorphy;

b) 
 is holomorphically convex;

c) For every countable subset fzjgj2N � 
 without accumulation points in 


and every sequence of complex numbers (aj), there exists an interpolation

function F 2 O(
) such that F (zj) = aj.

d) There exists a function F 2 O(
) which is unbounded on any neighborhood
of any point of @
.

Proof. d) =) a) is obvious and a) =) b) is a consequence of Prop. 6.9.

c) =) d). If 
 = C n there is nothing to prove. Otherwise, select a dense

sequence (�j) in @
 and take zj 2 
 such that d(zj ; �j) < 2�j . Then the

interpolation function F 2 O(
) such that F (zj) = j satis�es d).

b) =) c). Let K� � 
 be an exhausting sequence of holomorphically convex

compact sets as in Remark 6.8. Let �(j) be the unique index � such that

zj 2 K�(j)+1 rK�(j). By the de�nition of a holomorphic hull, we can �nd a

function gj 2 O(
) such that

sup
K�(j)

jgjj < jgj(zj)j:

After multiplying gj by a constant, we may assume that gj(zj) = 1. Let

Pj 2 C [z1 ; : : : ; zn] be a polynomial equal to 1 at zj and to 0 at z0; z1; : : : ; zj�1.
We set

F =

+1X
j=0

�jPjg
mj

j
;

where �j 2 C and mj 2 N are chosen inductively such that

�j = aj �
X

0�k<j
�kPk(zj)gk(zj)

mk ;

j�jPjgmj

j
j � 2�j on K�(j) ;

once �j has been chosen, the second condition holds as soon as mj is large

enough. Since fzjg has no accumulation point in 
, the sequence �(j) tends

to +1, hence the series converges uniformly on compact sets. �
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We now show that a holomorphically convex manifold must satisfy some

more geometric convexity condition, known as pseudoconvexity, which is most

easily described in terms of the existence of plurisubharmonic exhaustion

functions.

(6.12) De�nition. A function  : X �! [�1;+1[ on a topological space

X is said to be an exhaustion if all sublevel sets Xc := fz 2 X ;  (z) < cg,
c 2 R, are relatively compact. Equivalently,  is an exhaustion if and only

if  tends to +1 relatively to the �lter of complements X rK of compact

subsets of X.

A function  on an open set 
 � Rn is thus an exhaustion if and only

if  (x) ! +1 as x ! @
 or x ! 1 . It is easy to check, cf. Exercise 8.8,

that a connected open set 
 � Rn is convex if and only if 
 has a locally

convex exhaustion function. Since plurisubharmonic functions appear as the

natural generalization of convex functions in complex analysis, we are led to

the following de�nition.

(6.13) De�nition. Let X be a complex n-dimensional manifold. Then X is

said to be

a) weakly pseudoconvex if there exists a smooth plurisubharmonic exhaustion

function  2 Psh(X) \ C1(X) ;

b) strongly pseudoconvex if there exists a smooth strictly plurisubharmonic

exhaustion function  2 Psh(X)\C1(X), i.e. H is positive de�nite at

every point.

(6.14) Theorem. Every holomorphically convex manifold X is weakly pseu-

doconvex.

Proof. Let (K�) be an exhausting sequence of holomorphically convex com-

pact sets as in Remark 6.8. For every point a 2 L� := K�+2 r KÆ
�+1, one

can select g�;a 2 O(
) such that sup
K�
jg�;aj < 1 and jg�;a(a)j > 1. Then

jg�;a(z)j > 1 in a neighborhood of a ; by the Borel-Lebesgue lemma, one can

�nd �nitely many functions (g�;a)a2I� such that

max
a2I�

�jg�;a(z)j	 > 1 for z 2 L� ; max
a2I�

�jg�;a(z)j	 < 1 for z 2 K� :

For a suÆciently large exponent p(�) we getX
a2I�
jg�;aj2p(�) � � on L� ;

X
a2I�
jg�;aj2p(�) � 2�� on K� :

It follows that the series

 (z) =
X
�2N

X
a2I�
jg�;a(z)j2p(�)
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converges uniformly to a real analytic function  2 Psh(X) (see Exer-

cise 8.11). By construction  (z) � � for z 2 L� , hence  is an exhaustion. �

(6.15) Example. The converse to Theorem 6.14 does not hold. In fact let

X = C 2=� be the quotient of C 2 by the free abelian group of rank 2 generated

by the aÆne automorphisms

g1(z; w) = (z + 1; ei�1w); g2(z; w) = (z + i; ei�2w); �1; �2 2 R:
Since � acts properly discontinuously on C 2 , the quotient has a structure of

a complex (non compact) 2-dimensional manifold. The function w 7! jwj2 is
� -invariant, hence it induces a function  ((z; w)�) = jwj2 on X which is in

fact a plurisubharmonic exhaustion function. Therefore X is weakly pseudo-

convex. On the other hand, any holomorphic function f 2 O(X) corresponds

to a � -invariant holomorphic function ef(z; w) on C 2 . Then z 7! ef(z; w) is
bounded for w �xed, because ef(z; w) lies in the image of the compact set

K � D(0; jwj), K = unit square in C . By Liouville's theorem, ef(z; w) does
not depend on z. Hence functions f 2 O(X) are in one-to-one correspondence

with holomorphic functions ef(w) on C such that ef(ei�jw) = ef(w). By looking
at the Taylor expansion at the origin, we conclude that ef must be a constant

if �1 =2 Q or �1 =2 Q (if �1; �2 2 Q and m is the least common denominator of

�1; �2, then ef is a power series of the form
P
�kw

mk). From this, it follows

easily that X is holomorphically convex if and only if �1; �2 2 Q .

x6.C. Stein Manifolds

The class of holomorphically convex manifolds contains two types of mani-

folds of a rather di�erent nature:

� domains of holomorphy X = 
 � C n ;

� compact complex manifolds.

In the �rst case we have a lot of holomorphic functions, in fact the functions

in O(
) separate any pair of points of 
. On the other hand, if X is com-

pact and connected, the sets Psh(X) and O(X) consist of constant functions

merely (by the maximum principle). It is therefore desirable to introduce a

clear distinction between these two subclasses. For this purpose, (Stein 1951)

introduced the class of manifolds which are now called Stein manifolds.

(6.16) De�nition. A complex manifold X is said to be a Stein manifold if

a) X is holomorphically convex ;

b) O(X) locally separates points in X, i.e. every point x 2 X has a neigh-

borhood V such that for any y 2 V r fxg there exists f 2 O(X) with

f(y) 6= f(x).
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The second condition is automatic if X = 
 is an open subset of C n .

Hence an open set 
 � C n is Stein if and only if 
 is a domain of holomorphy.

(6.17) Lemma. If a complex manifold X satis�es the axiom (6:16 b) of

local separation, there exists a smooth nonnegative strictly plurisubharmonic

function u 2 Psh(X).

Proof. Fix x0 2 X. We �rst show that there exists a smooth nonnegative

function u0 2 Psh(X) which is strictly plurisubharmonic on a neighborhood

of x0. Let (z1; : : : ; zn) be local analytic coordinates centered at x0, and if

necessary, replace zj by �zj so that the closed unit ball B = fP jzj j2 � 1g
is contained in the neighborhood V 3 x0 on which (6.16 b) holds. Then,

for every point y 2 @B, there exists a holomorphic function f 2 O(X)

such that f(y) 6= f(x0). Replacing f with �(f � f(x0)), we can achieve

f(x0) = 0 and jf(y)j > 1. By compactness of @B, we �nd �nitely many func-

tions f1; : : : ; fN 2 O(X) such that v0 =
P jfjj2 satis�es v0(x0) = 0, while

v0 � 1 on @B. Now, we set

u0(z) =

�
v0(z) on X rB,

M"fv0(z); (jzj2 + 1)=3g on B.

where M" are the regularized max functions de�ned in 5.18. Then u0 is

smooth and plurisubharmonic, coincides with v0 near @B and with (jzj2+1)=3
on a neighborhood of x0. We can cover X by countably many neighbor-

hoods (Vj)j�1, for which we have a smooth plurisubharmonic functions

uj 2 Psh(X) such that uj is strictly plurisubharmonic on Vj . Then select

a sequence "j > 0 converging to 0 so fast that u =
P
"juj 2 C1(X). The

function u is nonnegative and strictly plurisubharmonic everywhere on X.

�

(6.18) Theorem. Every Stein manifold is strongly pseudoconvex.

Proof. By Th. 6.14, there is a smooth exhaustion function  2 Psh(X). If

u � 0 is strictly plurisubharmonic, then  0 =  + u is a strictly plurisubhar-

monic exhaustion. �

The converse problem to know whether every strongly pseudoconvex man-

ifold is actually a Stein manifold is known as the Levi problem, and was raised

by (Levi 1910) in the case of domains 
 � C n . In that case, the problem has

been solved in the aÆrmative independently by (Oka 1953), (Norguet 1954)

and (Bremermann 1954). The general solution of the Levi problem has been

obtained by (Grauert 1958). Our proof will rely on the theory of L2 estimates

for d00, which will be available only in Chapter VIII.

(6.19) Remark. It will be shown later that Stein manifolds always have

enough holomorphic functions to separate �nitely many points, and one can
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Fig. I-4 Hartogs �gure with excrescence

even interpolate given values of a function and its derivatives of some �xed

order at any discrete set of points. In particular, we might have replaced

condition (6.16 b) by the stronger requirement that O(X) separates any pair

of points. On the other hand, there are examples of manifolds satisfying

the local separation condition (6.16 b), but not global separation. A simple

example is obtained by attaching an excrescence inside a Hartogs �gure, in

such a way that the resulting map � : X ! D = D(0; 1)2 is not one-to-one

(see Figure I-4 above); then O(X) coincides with �?O(D).

x6.D. Heredity Properties

Holomorphic convexity and pseudoconvexity are preserved under quite a

number of natural constructions. The main heredity properties can be sum-

marized in the following Proposition.

(6.20) Proposition. Let C denote the class of holomorphically convex (resp.

of Stein, or weakly pseudoconvex, strongly pseudoconvex manifolds).

a) If X;Y 2 C, then X � Y 2 C.
b) If X 2 C and S is a closed complex submanifold of X, then S 2 C.
c) If (Sj)1�j�N is a collection of (not necessarily closed) submanifolds of a

complex manifold X such that S =
T
Sj is a submanifold of X, and if

Sj 2 C for all j, then S 2 C.
d) If F : X ! Y is a holomorphic map and S � X, S0 � Y are (not

necessarily closed) submanifolds in the class C, then S \ F�1(S0) is in C,
as long as it is a submanifold of X.

e) If X is a weakly (resp. strongly) pseudoconvex manifold and u is a smooth

plurisubharmonic function on X, then the open set 
 = u�1(]�1; c[ is
weakly (resp. strongly) pseudoconvex. In particular the sublevel sets
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Xc =  �1(]�1; c[)
of a (strictly) plurisubharmonic exhaustion function are weakly (resp.

strongly) pseudoconvex.

Proof. All properties are more or less immediate to check, so we only give

the main facts.

a) For K � X, L � Y compact, we have (K � L)^
O(X�Y )

= bKO(X) � bKO(Y ),
and if ',  are plurisubharmonic exhaustions of X, Y , then '(x) +  (y) is a

plurisubharmonic exhaustion of X � Y .
b) For a compact set K � S, we have bKO(S) � bKO(X)\S, and if  2 Psh(X)

is an exhaustion, then  � S 2 Psh(S) is an exhaustion (since S is closed).

c)
T
Sj is a closed submanifold in

Q
Sj (equal to its intersection with the

diagonal of XN ).

d) For a compact set K � S \ F�1(S0), we have
bKO(S\F�1(S0)) � bKO(S) \ F�1( dF (K)

O(S0));

and if ',  are plurisubharmonic exhaustions of S, S0, then ' +  Æ F is a

plurisubharmonic exhaustion of S \ F�1(S0).
e) '(z) :=  (z) + 1=(c � u(z)) is a (strictly) plurisubharmonic exhaustion

function on 
. �

x7. Pseudoconvex Open Sets in Cn

x7.A. Geometric Characterizations of Pseudoconvex Open Sets

We �rst discuss some characterizations of pseudoconvex open sets in C n . We

will need the following elementary criterion for plurisubharmonicity.

(7.1) Criterion. Let v : 
 �! [�1;+1[ be an upper semicontinuous

function. Then v is plurisubharmonic if and only if for every closed disk � =

z0+D(1)� � 
 and every polynomial P 2 C [t] such that v(z0+t�) � ReP (t)

for jtj = 1, then v(z0) � ReP (0).

Proof. The condition is necessary because t 7�! v(z0 + t�)� ReP (t) is sub-

harmonic in a neighborhood of D(1), so it satis�es the maximum principle

on D(1) by Th. 4.14. Let us prove now the suÆciency. The upper semiconti-

nuity of v implies v = lim�!+1 v� on @� where (v�) is a strictly decreasing

sequence of continuous functions on @�. As trigonometric polynomials are

dense in C0(S1;R), we may assume v�(z0 + ei��) = ReP�(e
i�), P� 2 C [t].

Then v(z0 + t�) � ReP�(t) for jtj = 1, and the hypothesis implies
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v(z0) � ReP�(0) =
1

2�

Z 2�

0

ReP�(e
i�) d� =

1

2�

Z 2�

0

v�(z0 + ei��) d�:

Taking the limit when � tends to +1 shows that v satis�es the mean value

inequality (5.2). �

For any z 2 
 and � 2 C n , we denote by
Æ
(z; �) = sup

�
r > 0 ; z +D(r) � � 
	

the distance from z to @
 in the complex direction �.

(7.2) Theorem. Let 
 � C n be an open subset. The following properties

are equivalent:

a) 
 is strongly pseudoconvex (according to Def. 6.13 b);

b) 
 is weakly pseudoconvex ;

c) 
 has a plurisubharmonic exhaustion function  .

d) � log Æ
(z; �) is plurisubharmonic on 
 � C n ;

e) � log d(z; {
) is plurisubharmonic on 
.

If one of these properties hold, 
 is said to be a pseudoconvex open set.

Proof. The implications a) =) b) =) c) are obvious. For the implication c)

=) d), we use Criterion 7.1. Consider a disk � = (z0; �0) + D(1) (�; �) in


 � C n and a polynomial P 2 C [t] such that

� log Æ
(z0 + t�; �0 + t�) � ReP (t) for jtj = 1:

We have to verify that the inequality also holds when jtj < 1. Consider the

holomorphic mapping h : C 2 �! C n de�ned by

h(t; w) = z0 + t� + we�P (t)(�0 + t�):

By hypothesis

h
�
D(1)� f0g� = pr1(�) � 
;

h
�
@D(1)�D(1)� � 
 (since je�P j � Æ
 on @�);

and the desired conclusion is that h
�
D(1)�D(1)� � 
. Let J be the set of

radii r � 0 such that h
�
D(1)�D(r)� � 
. Then J is an open interval [0; R[,

R > 0. If R < 1, we get a contradiction as follows. Let  2 Psh(
) be an

exhaustion function and

K = h
�
@D(1)�D(R)� �� 
; c = sup

K

 :

As  Æh is plurisubharmonic on a neighborhood ofD(1)�D(R), the maximum

principle applied with respect to t implies
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 Æ h(t; w) � c on D(1)�D(R);
hence h

�
D(1) �D(R)� � 
c �� 
 and h

�
D(1) �D(R + ")

� � 
 for some

" > 0, a contradiction.

d) =) e). The function � log d(z; {
) is continuous on 
 and satis�es the

mean value inequality because

� log d(z; {
) = sup
�2B

�� log Æ
(z; �)
�
:

e) =) a). It is clear that

u(z) = jzj2 +maxflog d(z; {
)�1; 0g
is a continuous strictly plurisubharmonic exhaustion function. Richberg's the-

orem 5.21 implies that there exists  2 C1(
) strictly plurisubharmonic such

that u �  � u+ 1. Then  is the required exhaustion function. �

(7.3) Proposition.

a) Let 
 � C n and 
0 � C p be pseudoconvex. Then 
�
0 is pseudoconvex.
For every holomorphic map F : 
 ! C p the inverse image F�1(
0) is
pseudoconvex.

b) If (
�)�2I is a family of pseudoconvex open subsets of C n , the interior

of the intersection 
 =
�T

�2I 
�
�Æ

is pseudoconvex.

c) If (
j)j2N is a non decreasing sequence of pseudoconvex open subsets of

C n , then 
 =
S
j2N
j is pseudoconvex.

Proof. a) Let ';  be smooth plurisubharmonic exhaustions of 
;
0. Then
(z; w) 7�! '(z) + (w) is an exhaustion of 
�
0 and z 7�! '(z) + (F (z))

is an exhaustion of F�1(
0).

b) We have � log d(z; {
) = sup
�2I � log d(z; {
�), so this function is pluri-

subharmonic.

c) The limit � log d(z; {
) = lim# j!+1 � log d(z; {
j) is plurisubharmonic,

hence 
 is pseudoconvex. This result cannot be generalized to strongly pseu-

doconvex manifolds: J.E. Fornaess in (Fornaess 1977) has constructed an

increasing sequence of 2-dimensional Stein (even aÆne algebraic) manifolds

X� whose union is not Stein; see Exercise 8.16. �

(7.4) Examples.

a) An analytic polyhedron in C n is an open subset of the form

P = fz 2 C n ; jfj(z)j < 1; 1 � j � Ng
where (fj)1�j�N is a family of analytic functions on C n . By 7.3 a), every

analytic polyhedron is pseudoconvex.
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b) Let ! � C n�1 be pseudoconvex and let u : ! �! [�1;+1[ be an upper

semicontinuous function. Then the Hartogs domain


 =
�
(z1; z

0) 2 C � ! ; log jz1j+ u(z0) < 0
	

is pseudoconvex if and and only if u is plurisubharmonic. To see that the

plurisubharmonicity of u is necessary, observe that

u(z0) = � log Æ

�
(0; z0); (1; 0)

�
:

Conversely, assume that u is plurisubharmonic and continuous. If  is a

plurisubharmonic exhaustion of !, then

 (z0) +
�� log jz1j+ u(z0)

���1
is an exhaustion of 
. This is no longer true if u is not continuous, but in

this case we may apply Property 7.3 c) to conclude that


" =
�
(z1; z

0) ; d(z0; {!) > "; log jz1j+ u ? �"(z
0) < 0

	
; 
 =

[

"

are pseudoconvex.

c) An open set 
 � C n is called a tube of base ! if 
 = !+iRn for some open

subset ! � Rn . Then of course � log d(z; {
) = � log(x; {!) depends only

on the real part x = Re z. By Th. 5.13, this function is plurisubharmonic if

and only if it is locally convex in x. Therefore 
 if pseudoconvex if and only

if every connected component of ! is convex.

d) An open set 
 � C n is called a Reinhardt domain if (ei�1z1; : : : ; e
i�nzn) is

in 
 for every z = (z1; : : : ; zn) 2 
 and �1; : : : ; �n 2 Rn . For such a domain,

we consider the logarithmic indicatrix

!? = 
? \ Rn with 
? = f� 2 C n ; (e�1 ; : : : ; e�n) 2 
g:
It is clear that 
? is a tube of base !?. Therefore every connected component

of !? must be convex if 
 is pseudoconvex. The converse is not true: 
 =

C nrf0g is not pseudoconvex for n � 2 although !? = Rn is convex. However,

the Reinhardt open set


� =
�
(z1; : : : ; zn) 2 (C r f0g)n ; (log jz1j; : : : ; log jznj) 2 !?

	 � 

is easily seen to be pseudoconvex if !? is convex: if � is a convex exhaustion

of !?, then  (z) = �(log jz1j; : : : ; log jznj) is a plurisubharmonic exhaustion

of 
�. Similarly, if !? is convex and such that x 2 !? =) y 2 !? for yj � xj ,
we can take � increasing in all variables and tending to +1 on @!?, hence

the sete
 =
�
(z1; : : : ; zn) 2 C n ; jzj j � exj for some x 2 !?	

is a pseudoconvex Reinhardt open set containing 0. �
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x7.B. Kiselman's Minimum Principle

We already know that a maximum of plurisubharmonic functions is plurisub-

harmonic. However, if v is a plurisubharmonic function on X � C n , the par-
tial minimum function on X de�ned by u(�) = infz2
 v(�; z) need not be

plurisubharmonic. A simple counterexample in C � C is given by

v(�; z) = jzj2 + 2Re(z�) = jz + �j2 � j�j2; u(�) = �j�j2:
It follows that the image F (
) of a pseudoconvex open set 
 by a holomor-

phic map F need not be pseudoconvex. In fact, if


 = f(t; �; z) 2 C 3 ; log jtj+ v(�; z) < 0g
and if 
0 � C 2 is the image of 
 by the projection map (t; �; z) 7�! (t; �),

then 
0 = f(t; �) 2 C 2 ; log jtj+u(�) < 0g is not pseudoconvex. However, the
minimum property holds true when v(�; z) depends only on Re z :

(7.5) Theorem (Kiselman 1978). Let 
 � C p � C n be a pseudoconvex open

set such that each slice


� = fz 2 C n ; (�; z) 2 
g; � 2 C p ;
is a convex tube !� + iRn , !� � Rn . For every plurisubharmonic function

v(�; z) on 
 that does not depend on Im z, the function

u(�) = inf
z2
�

v(�; z)

is plurisubharmonic or locally � �1 on 
0 = pr
Cn
(
).

Proof. The hypothesis implies that v(�; z) is convex in x = Re z. In addition,

we �rst assume that v is smooth, plurisubharmonic in (�; z), strictly convex in

x and limx!f1g[@!� v(�; x) = +1 for every � 2 
0. Then x 7�! v(�; x) has a

unique minimum point x = g(�), solution of the equations @v=@xj(x; �) = 0.

As the matrix (@2v=@xj@xk) is positive de�nite, the implicit function theorem

shows that g is smooth. Now, if C 3 w 7�! �0 + wa, a 2 C n , jwj � 1 is a

complex disk � contained in 
, there exists a holomorphic function f on the

unit disk, smooth up to the boundary, whose real part solves the Dirichlet

problem

Re f(ei�) = g(�0 + ei�a):

Since v(�0+wa; f(w)) is subharmonic in w, we get the mean value inequality

v(�0; f(0)) � 1

2�

Z 2�

0

v
�
�0 + ei�a; f(ei�)

�
d� =

1

2�

Z
@�

v(�; g(�))d�:
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The last equality holds because Re f = g on @� and v(�; z) = v(�;Re z)

by hypothesis. As u(�0) � v(�0; f(0)) and u(�) = v(�; g(�)), we see that u

satis�es the mean value inequality, thus u is plurisubharmonic.

Now, this result can be extended to arbitrary functions v as follows: let

 (�; z) � 0 be a continuous plurisubharmonic function on 
 which is inde-

pendent of Im z and is an exhaustion of 
 \ (C p � Rn), e.g.
 (�; z) = maxfj�j2 + jRe zj2;� log Æ
(�; z)g:

There is slowly increasing sequence Cj ! +1 such that each function

 j = (Cj� ?�1=j)�1 is an \exhaustion" of a pseudoconvex open set 
j �� 

whose slices are convex tubes and such that d(
j; {
) > 2=j. Then

vj(�; z) = v ? �1=j(�; z) +
1

j
jRe zj2 +  j(�; z)

is a decreasing sequence of plurisubharmonic functions on 
j satisfying our

previous conditions. As v = lim vj , we see that u = limuj is plurisubhar-

monic. �

(7.6) Corollary. Let 
 � C p � C n be a pseudoconvex open set such that all

slices 
� , � 2 C p , are convex tubes in C n . Then the projection 
0 of 
 on

C p is pseudoconvex.

Proof. Take v 2 Psh(
) equal to the function  de�ned in the proof of

Th. 7.5. Then u is a plurisubharmonic exhaustion of 
0. �

x7.C. Levi Form of the Boundary

For an arbitrary domain in C n , we �rst show that pseudoconvexity is a local

property of the boundary.

(7.7) Theorem. Let 
 � C n be an open subset such that every point z0 2 @

has a neighborhood V such that 
 \ V is pseudoconvex. Then 
 is pseudo-

convex.

Proof. As d(z; {
) coincides with d
�
z; {(
 \ V )� in a neighborhood of z0,

we see that there exists a neighborhood U of @
 such that � log d(z; {
) is

plurisubharmonic on 
\U . Choose a convex increasing function � such that

�(r) > sup
(
rU)\B(0;r)

� log d(z; {
); 8r � 0:

Then the function

 (z) = max
�
�(jzj);� log d(z; {
)
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coincides with �(jzj) in a neighborhood of 
rU . Therefore  2 Psh(
), and

 is clearly an exhaustion. �

Now, we give a geometric characterization of the pseudoconvexity prop-

erty when @
 is of class C2. Let � 2 C2(
) be a de�ning function of 
, i.e.

a function such that

(7:9) � < 0 on 
; � = 0 and d� 6= 0 on @
:

The holomorphic tangent space to @
 is by de�nition the largest complex

subspace which is contained in the tangent space T@
 to the boundary:

(7:9) hT@
 = T@
 \ JT@
 :
It is easy to see that hT@
;z is the complex hyperplane of vectors � 2 C n such

that

d0�(z) � � =
X

1�j�n

@�

@zj
�j = 0:

The Levi form on hT@
 is de�ned at every point z 2 @
 by

(7:10) L@
;z(�) =
1

jr�(z)j
X
j;k

@2�

@zj@zk
�j�k; � 2 hT@
;z:

The Levi form does not depend on the particular choice of �, as can be seen

from the following intrinsic computation of L@
 (we still denote by L@
 the

associated sesquilinear form).

(7.11) Lemma. Let �; � be C1 vector �elds on @
 with values in hT@
. Then

h[�; �]; J�i = 4 ImL@
(�; �)

where � is the outward normal unit vector to @
, [ ; ] the Lie bracket of

vector �elds and h ; i the hermitian inner product.

Proof. Extend �rst �; � as vector �elds in a neighborhood of @
 and set

�0 =
X

�j
@

@zj
=

1

2
(� � iJ�); �00 =

X
�
k

@

@zk
=

1

2
(� + iJ�):

As �; J�; �; J� are tangent to @
, we get on @
 :

0 = �0:(�00:�) + �00:(�0:�) =
X

1�j;k�n
2

@2�

@zj@zk
�j�k + �j

@�k
@zj

@�

@zk
+ �k

@�j

@zk

@�

@zj
:

Since [�; �] is also tangent to @
, we have Reh[�; �]; �i = 0, hence hJ [�; �]; �i
is real and
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h[�; �]; J�i = �hJ [�; �]; �i = � 1

jr�j
�
J [�; �]:�

�
= � 2

jr�j Re
�
J [�0; �00]:�

�
because J [�0; �0] = i[�0; �0] and its conjugate J [�00; �00] are tangent to @
. We

�nd now

J [�0; �00] = �i
X

�j
@�

k

@zj

@

@zk
+ �

k

@�j

@zk

@

@zj
;

Re
�
J [�0; �00]:�

�
= Im

X
�j
@�

k

@zj

@�

@zk
+ �k

@�j

@zk

@�

@zj
= �2 Im

X @2�

@zj@zk
�j�k;

h[�; �]; J�i = 4

jr�j Im
X @2�

@zj@zk
�j�k = 4 ImL@
(�; �): �

(7.12) Theorem. An open subset 
 � C n with C2 boundary is pseudoconvex

if and only if the Levi form L@
 is semipositive at every point of @
.

Proof. Set Æ(z) = d(z; {
), z 2 
. Then � = �Æ is C2 near @
 and satis�es

(7.9). If 
 is pseudoconvex, the plurisubharmonicity of � log(��) means that

for all z 2 
 near @
 and all � 2 C n one hasX
1�j;k�n

� 1

j�j
@2�

@zj@zk
+

1

�2
@�

@zj

@�

@zk

�
�j�k � 0:

Hence
P

(@2�=@zj@zk)�j�k � 0 if
P

(@�=@zj)�j = 0, and an easy argument

shows that this is also true at the limit on @
.

Conversely, if 
 is not pseudoconvex, Th. 7.2 and 7.7 show that � log Æ is

not plurisubharmonic in any neighborhood of @
. Hence there exists � 2 C n
such that

c =
� @2

@t@t
log Æ(z + t�)

�
jt=0

> 0

for some z in the neighborhood of @
 where Æ 2 C2. By Taylor's formula,

we have

log Æ(z + t�) = log Æ(z) + Re(at+ bt2) + cjtj2 + o(jtj2)
with a; b 2 C . Now, choose z0 2 @
 such that Æ(z) = jz � z0j and set

h(t) = z + t� + eat+bt
2

(z0 � z); t 2 C :
Then we get h(0) = z0 and

Æ(h(t)) � Æ(z + t�)� Æ(z)
��eat+bt2 ��

� Æ(z)
��eat+bt2 �� �ecjtj2=2 � 1

� � Æ(z) cjtj2=3
when jtj is suÆciently small. Since Æ(h(0)) = Æ(z0) = 0, we obtain at t = 0 :
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@

@t
Æ(h(t)) =

X @Æ

@zj
(z0)h

0
j
(0) = 0;

@2

@t@t
Æ(h(t)) =

X @2Æ

@zj@zk
(z0)h

0
j
(0)h0

k
(0) > 0;

hence h0(0) 2 hT@
;z0 and L@
;z0(h
0(0)) < 0. �

(7.13) De�nition. The boundary @
 is said to be weakly (resp. strongly)

pseudoconvex if L@
 is semipositive (resp. positive de�nite) on @
. The

boundary is said to be Levi at if L@
 � 0.

(7.14) Remark. Lemma 7.11 shows that @
 is Levi at if and only if the

subbundle hT@
 � T@
 is integrable (i.e. stable under the Lie bracket). As-

sume that @
 is of class Ck, k � 2. Then hT@
 is of class Ck�1. By Frobenius'
theorem, the integrability condition implies that hT@
 is the tangent bundle

to a Ck foliation of @
 whose leaves have real dimension 2n � 2. But the

leaves themselves must be complex analytic since hT@
 is a complex vector

space (cf. Lemma 7.15 below). Therefore @
 is Levi at if and only if it is

foliated by complex analytic hypersurfaces.

(7.15) Lemma. Let Y be a C1-submanifold of a complex analytic manifold

X. If the tangent space TY;x is a complex subspace of TX;x at every point

x 2 Y , then Y is complex analytic.

Proof. Let x0 2 Y . Select holomorphic coordinates (z1; : : : ; zn) on X centered

at x0 such that TY;x0 is spanned by @=@z1; : : : ; @=@zp. Then there exists a

neighborhood U = U 0 � U 00 of x0 such that Y \ U is a graph

z00 = h(z0); z0 = (z1; : : : ; zp) 2 U 0; z00 = (zp+1; : : : ; zn)

with h 2 C1(U 0) and dh(0) = 0. The di�erential of h at z0 is the composite

of the projection of C p � f0g on TY;(z0;h(z0)) along f0g � C n�p and of the

second projection C n ! C n�p . Hence dh(z0) is C -linear at every point and h

is holomorphic. �

x8. Exercises

8.1. Let 
 � C
n be an open set such that

z 2 
; � 2 C ; j�j � 1 =) �z 2 
:

Show that 
 is a union of polydisks of center 0 (with arbitrary linear changes of
coordinates) and infer that the space of polynomials C [z1 ; : : : ; zn] is dense in O(
)

for the topology of uniform convergence on compact subsets and in O(
) \ C0(
)



68 Chapter I. Complex Di�erential Calculus and Pseudoconvexity

for the topology of uniform convergence on 
.
Hint : consider the Taylor expansion of a function f 2 O(
) at the origin, writing

it as a series of homogeneous polynomials. To deal with the case of 
, �rst apply
a dilation to f .

8.2. Let B � C
n be the unit euclidean ball, S = @B and f 2 O(B) \ C0(B). Our

goal is to check the following Cauchy formula:

f(w) =
1

�2n�1

Z
S

f(z)

(1� hw; zi)n
d�(z):

a) By means of a unitary transformation and Exercise 8.1, reduce the question to
the case when w = (w1; 0; : : : ; 0) and f(z) is a monomial z�.

b) Show that the integral
R
B
z
�
z
k

1 d�(z) vanishes unless � = (k; 0; : : : ; 0). Compute
the value of the remaining integral by the Fubini theorem, as well as the integralsR
S
z
�
z
k

1 d�(z).

c) Prove the formula by a suitable power series expansion.

8.3. A current T 2 D0

p(M) is said to be normal if both T and dT are of order zero,
i.e. have measure coeÆcients.

a) If T is normal and has support contained in a C1 submanifold Y �M , show that
there exists a normal current � on Y such that T = j?�, where j : Y �!M is
the inclusion.
Hint : if x1 = : : : = xq = 0 are equations of Y in a coordinate system
(x1; : : : ; xn), observe that xjT = xjdT = 0 for 1 � j � q and infer that
dx1 ^ : : : ^ dxq can be factorized in all terms of T .

b) What happens if p > dimY ?

c) Are a) and b) valid when the normality assumption is dropped ?

8.4. Let T =
P

1�j�n
Tjdzj be a closed current of bidegree (0; 1) with compact

support in C n such that d00T = 0.

a) Show that the partial convolution S = (1=�z1) ?1 T1 is a solution of the
equation d00S = T .

b) Let K = SuppT . If n � 2, show that S has support in the compact set eK equal
to the union of K and of all bounded components of C n rK.
Hint : observe that S is holomorphic on C

n
r K and that S vanishes for

jz2j+ : : :+ jznj large.

8.5. Alternative proof of the Dolbeault-Grothendieck lemma. Let v =
P

jJj=qvJdzJ ,

q � 1, be a smooth form of bidegree (0; q) on a polydisk 
 = D(0; R) � C
n , such

that d00v = 0, and let ! = D(0; r) �� !. Let k be the smallest integer such that the
monomials dzJ appearing in v only involve dz1, : : :, dzk. Prove by induction on k
that the equation d00u = v can be solved on !.
Hint : set v = f ^ dzk + g where f , g only involve dz1, : : :, dzk�1. Then consider
v � d

00
F where

F =
X

jJj=q�1

FJdzJ ; FJ(z) = ( (zk)fJ) ?k

�
1

�zk

�
;

where ?k denotes the partial convolution with respect to zk,  (zk) is a cut-o�
function equal to 1 on D(0; rk + ") and f =

P
jJj=q�1 fJdzJ .
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8.6. Construct locally bounded non continuous subharmonic functions on C .
Hint : consider eu where u(z) =

P
j�1

2�j log jz � 1=jj.

8.7. Let ! be an open subset of Rn , n � 2, and u a subharmonic function which
is not locally �1.

a) For every open set ! �� 
, show that there is a positive measure � with support
in ! and a harmonic function h on ! such that u = N ? �+ h on !.

b) Use this representation to prove the following properties: u 2 L

p

loc for all p <
n=(n� 2) and @u=@xj 2 L

p

loc for all p < n=(n� 1).

8.8. Show that a connected open set 
 � R
n is convex if and only if 
 has a

locally convex exhaustion function '.
Hint : to show the suÆciency, take a path  : [0; 1]! 
 joining two arbitrary points
a; b 2 
 and consider the restriction of ' to [a; (t0)]\
 where t0 is the supremum
of all t such that [a; (u)] � 
 for u 2 [0; t].

8.9. Let r1; r2 2 ]1;+1[. Consider the compact set

K = fjz1j � r1 ; jz2j � 1g [ fjz1j � 1 ; jz2j � r2g � C
2
:

Show that the holomorphic hull of K in C 2 is

b
K = fjz1j � r1 ; jz2j � r2 ; jz1j

1= log r1 jz2j
1= log r2 � eg:

Hint : to show that bK is contained in this set, consider all holomorphic monomials
f(z1; z2) = z

�1
1 z

�2
2 . To show the converse inclusion, apply the maximum principle

to the domain jz1j � r1, jz2j � r2 on suitably chosen Riemann surfaces z�11 z

�2
2 = �.

8.10. Compute the rank of the Levi form of the ellipsoid jz1j
2 + jz3j

4 + jz3j
6
< 1

at every point of the boundary.

8.11. Let X be a complex manifold and let u(z) =
P

j2N
jfj j

2, fj 2 O(X), be a

series converging uniformly on every compact subset of X. Prove that the limit is
real analytic and that the series remains uniformly convergent by taking derivatives
term by term.

Hint : since the problem is local, take X = B(0; r), a ball in C n . Let gj(z) = gj(z) be
the conjugate function of fj and let U(z;w) =

P
j2N

fj(z)gj(w) on X �X. Using

the Cauchy-Schwarz inequality, show that this series of holomorphic functions is
uniformly convergent on every compact subset of X �X.

8.12. Let 
 � C
n be a bounded open set with C2 boundary.

a) Let a 2 @
 be a given point. Let en be the outward normal vector to

T@
;a, (e1; : : : ; en�1) an orthonormal basis of hTa(@
) in which the Levi form
is diagonal and (z1; : : : ; zn) the associated linear coordinates centered at a.
Show that there is a neighborhood V of a such that @
 \ V is the graph
Re zn = �'(z1; : : : ; zn�1; Im zn) of a function ' such that '(z) = O(jzj2) and
the matrix @2'=@zj@zk(0), 1 � j; k � n� 1 is diagonal.

b) Show that there exist local analytic coordinates w1 = z1; : : : ; wn�1 = zn�1,
wn = zn +

P
cjkzjzk on a neighborhood V 0 of a = 0 such that


 \ V
0

= V

0

\ fRewn +
X

1�j�n

�j jwj j
2
+ o(jwj

2
) < 0g; �j 2 R
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and that �n can be assigned to any given value by a suitable choice of the
coordinates.
Hint : Consider the Taylor expansion of order 2 of the de�ning function �(z) =
(Re zn + '(z))(1 + Re

P
cjzj) where cj 2 C are chosen in a suitable way.

c) Prove that @
 is strongly pseudoconvex at a if and only if there is a neighbor-
hood U of a and a biholomorphism � of U onto some open set of C n such that
�(
 \ U) is strongly convex.

d) Assume that the Levi form of @
 is not semipositive. Show that all holomorphic
functions f 2 O(
) extend to some (�xed) neighborhood of a.
Hint : assume for example �1 < 0. For " > 0 small, show that 
 contains the
Hartogs �gure

f"=2 < jw1j < "g � fjwj j < "

2g1<j<n � fjwnj < "

3=2
; Rewn < "

3g [

fjw1j < "g � fjwj j < "

2g1<j<n � fjwnj < "

3=2
; Rewn < �"2g:

8.13. Let 
 � C
n be a bounded open set with C

2 boundary and � 2 C
2(
;R)

such that � < 0 on 
, � = 0 and d� 6= 0 on @
. Let f 2 C1(@
; C ) be a function
satisfying the tangential Cauchy-Riemann equations

�

00 � f = 0; 8� 2 h
T@
; �

00

=
1

2
(� + iJ�):

a) Let f0 be a C
1 extension of f to 
. Show that d00f0 ^ d

00
� = 0 on @
 and infer

that v = 1l
d
00
f0 is a d

00-closed current on C n .

b) Show that the solution u of d00u = v provided by Cor. 3.27 is continuous and

that f admits an extension e
f 2 O(
) \ C0(
) if @
 is connected.

8.14. Let 
 � C
n be a bounded pseudoconvex domain with C2 boundary and let

Æ(z) = d(z; {
) be the euclidean distance to the boundary.

a) Use the plurisubharmonicity of � log Æ to prove the following fact: for every
" > 0 there is a constant C" > 0 such that

�HÆz(�)

Æ(z)
+ "

jd0Æz:�j
2

jÆ(z)j2
+ C"j�j

2
� 0

for � 2 C
n and z near @
.

b) Set  (z) = � log Æ(z) +Kjzj2. Show that for K large and � small the function

�(z) = � exp
�
� � (z)

�
= �

�
e

�Kjzj
2

Æ(z)
��

is plurisubharmonic.

c) Prove the existence of a plurisubharmonic exhaustion function u : 
 ! [�1; 0[
of class C2 such that ju(z)j has the same order of magnitude as Æ(z)� when z
tends to @
.
Hint : consult (Diederich-Fornaess 1976).
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8.15. Let 
 = ! + iRn be a connected tube in C n of base !.

a) Assume �rst that n = 2. Let T � R
2 be the triangle x1 � 0, x2 � 0, x1+x2 � 1,

and assume that the two edges [0; 1]� f0g and f0g � [0; 1] are contained in !.
Show that every holomorphic function f 2 O(
) extends to a neighborhood of
T + iR2 .
Hint : let � : C 2 �! R

2 be the projection on the real part and M" the intersec-
tion of ��1((1+ ")T ) with the Riemann surface z1+ z2�

"

2
(z21 + z

2
2) = 1 (a non

degenerate aÆne conic). Show that M" is compact and that

�(@M") � ([0; 1 + "]� f0g) [ (f0g � [0; 1 + "]) � !;

�([0; 1] �M") � T

for " small. Use the Cauchy formula along @M" (in some parametrization of the
conic) to obtain an extension of f to [0; 1] �M" + iRn .

b) In general, show that every f 2 O(
) extends to the convex hull b
.
Hint : given a; b 2 !, consider a polygonal line joining a and b and apply a)
inductively to obtain an extension along [a; b] + iRn .

8.16. For each integer � � 1, consider the algebraic variety

X� =
n
(z;w; t) 2 C

3
; wt = p�(z)

o
; p�(z) =

Y
1�k��

(z � 1=k);

and the map j� : X� ! X�+1 such that

j�(z;w; t) =

�
z; w; t

�
z �

1

� + 1

��
:

a) Show that X� is a Stein manifold, and that j� is an embedding of X� onto an
open subset of X�+1.

b) De�ne X = lim(X� ; j�), and let �� : X� ! C
2 be the projection to the �rst two

coordinates. Since ��+1 Æ j� = �� , there exists a holomorphic map � : X ! C
2 ,

� = lim�� . Show that

C
2
r �(X) =

n
(z; 0) 2 C

2
; z 6= 1=�; 8� 2 N; � � 1

o
;

and especially, that (0; 0) =2 �(X).
c) Consider the compact set

K = �

�1
�
f(z;w) 2 C

2
; jzj � 1; jwj = 1g

�
:

By looking at points of the forms (1=�; w; 0), jwj = 1, show that ��1(1=�; 1=�) 2b
KO(X). Conclude from this that X is not holomorphically convex (this example

is due to Fornaess 1977).

8.17. Let X be a complex manifold, and let � : eX ! X be a holomorphic unram-

i�ed covering of X (X and e
X are assumed to be connected).

a) Let g be a complete riemannian metric on X, and let ed be the geodesic distance
on eX associated to eg = �

?
g (see VIII-2.3 for de�nitions). Show that eg is complete

and that Æ0(x) := e
d(x; x0) is a continuous exhaustion function on e

X, for any

given point x0 2 e
X.
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b) Let (U�) be a locally �nite covering of X by open balls contained in coordinate
open sets, such that all intersections U� \U� are di�eomorphic to convex open
sets (see Lemma IV-6.9). Let �� be a partition of unity subordinate to the
covering (U�), and let Æ"� be the convolution of Æ0 with a regularizing kernel
�"� on each piece of ��1(U�) which is mapped biholomorphically onto U�.
Finally, set Æ =

P
(�� Æ �)Æ"� . Show that if ("�) is a collection of suÆciently

small positive numbers, then Æ is a smooth exhaustion function on e
X.

c) Using the fact that Æ0 is 1-Lipschitz with respect to ed, show that derivatives

@
j�j
Æ(x)=@x� of a given order with respect to coordinates in U� are uniformly

bounded in all components of ��1(U�), at least when x lies in the compact
subset Supp ��. Conclude from this that there exists a positive hermitian form

with continuous coeÆcients on X such that HÆ � ��? on e
X.

d) If X is strongly pseudoconvex, show that eX is also strongly pseudoconvex.
Hint : let  be a smooth strictly plurisubharmonic exhaustion function on X.
Show that there exists a smooth convex increasing function � : R ! R such
that Æ + � Æ  is strictly plurisubharmonic.



Chapter II.

Coherent Sheaves and Analytic Spaces

The chapter starts with rather general and abstract concepts concerning sheaves
and ringed spaces. Introduced in the decade 1950-1960 by Leray, Cartan, Serre and
Grothendieck, sheaves and ringed spaces have since been recognized as the adequate
tools to handle algebraic varieties and analytic spaces in a uni�ed framework. We
then concentrate ourselves on the theory of complex analytic functions. The sec-
ond section is devoted to a proof of the Weierstrass preparation theorem, which
is nothing but a division algorithm for holomorphic functions. It is used to derive
algebraic properties of the ring On of germs of holomorphic functions in C n . Coher-
ent analytic sheaves are then introduced and the fundamental coherence theorem
of Oka is proved. Basic properties of analytic sets are investigated in detail: local
parametrization theorem, Hilbert's Nullstellensatz, coherence of the ideal sheaf of
an analytic set, analyticity of the singular set. The formalism of complex spaces is
then developed and gives a natural setting for the proof of more global properties
(decomposition into global irreducible components, maximum principle). After a
few de�nitions concerning cycles, divisors and meromorphic functions, we investi-
gate the important notion of normal space and establish the Oka normalization
theorem. Next, the Remmert-Stein extension theorem and the Remmert proper
mapping theorem on images of analytic sets are proved by means of semi-continuity
results on the rank of morphisms. As an application, we give a proof of Chow's the-
orem asserting that every analytic subset of Pn is algebraic. Finally, the concept of
analytic scheme with nilpotent elements is introduced as a generalization of com-
plex spaces, and we discuss the concepts of bimeromorphic maps, modi�cations and
blowing-up.

x1. Presheaves and Sheaves

x1.A. Main De�nitions

Sheaves have become a very important tool in analytic or algebraic geometry

as well as in algebraic topology. They are especially useful when one wants to

relate global properties of an object to its local properties (the latter being

usually easier to establish). We �rst introduce the axioms of presheaves and

sheaves in full generality and give some basic examples.

(1.1) De�nition. Let X be a topological space. A presheaf A on X consists

of the following data:
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a) a collection of non empty sets A(U) associated with every open set U � X,

b) a collection of maps �U;V : A(V ) �! A(U) de�ned whenever U � V and

satisfying the transitivity property

c) �U;V Æ �V;W = �U;W for U � V � W; �U;U = IdU for every U .

The set A(U) is called the set of sections of the presheaf A over U .

Most often, the presheaf A is supposed to carry an additional algebraic

structure. For instance:

(1.2) De�nition. A presheaf A is said to be a presheaf of abelian groups

(resp. rings, R-modules, algebras) if all sets A(U) are abelian groups (resp.

rings, R-modules, algebras) and if the maps �U;V are morphisms of these

algebraic structures. In this case, we always assume that A(;) = f0g.

(1.3) Example. If we assign to each open set U � X the set C(U) of all

real valued continuous functions on U and let �U;V be the obvious restriction

morphism C(V ) ! C(U), then C is a presheaf of rings on X. Similarly if X

is a di�erentiable (resp. complex analytic) manifold, there are well de�ned

presheaves of rings Ck of functions of class Ck (resp. O) of holomorphic func-

tions) on X. Because of these examples, the maps �U;V in Def. 1.1 are often

viewed intuitively as \restriction homomorphisms", although the sets A(U)

are not necessarily sets of functions de�ned over U . For the simplicity of no-

tation we often just write �U;V (f) = f�U whenever f 2 A(V ), V � U . �

For the above presheaves C, Ck, O, the properties of functions under con-

sideration are purely local. As a consequence, these presheaves satisfy the

following additional gluing axioms, where (U�) and U =
S
U� are arbitrary

open subsets of X :

If F� 2 A(U�) are such that �U�\U� ;U�(F�) = �U�\U� ;U� (F�)(1:40)

for all �; �, there exists F 2 A(U) such that �U�;U (F ) = F� ;

(1:400) If F;G 2 A(U) and �U�;U (F ) = �U�;U (G) for all �, then F = G ;

in other words, local sections over the sets U� can be glued together if they

coincide in the intersections and the resulting section on U is uniquely de�ned.

Not all presheaves satisfy (1:40) and (1:400):

(1.5) Example. Let E be an arbitrary set with a distinguished element 0

(e.g. an abelian group, a R-module, : : :). The constant presheaf EX on X

is de�ned to be EX(U) = E for all ; 6= U � X and EX(;) = f0g, with
restriction maps �U;V = IdE if ; 6= U � V and �U;V = 0 if U = ;. Then
axiom (1:40) is not satis�ed if U is the union of two disjoint open sets U1, U2

and E contains a non zero element.
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(1.6) De�nition. A presheaf A is said to be a sheaf if it satis�es the gluing

axioms (1:40) and (1:400).

If A, B are presheaves of abelian groups (or of some other algebraic struc-

ture) on the same space X, a presheaf morphism ' : A! B is a collection of

morphisms 'U : A(U) ! B(U) commuting with the restriction morphisms,

i.e. such that for each pair U � V there is a commutative diagram

A(V )
'V�! B(V )

�B
U;V

?y ?y�A
U;V

A(U)
'U�! B(U):

We say that A is a subpresheaf of B in the case where 'U : A(U) � B(U)

is the inclusion morphism; the commutation property then means that

�B
U;V

(A(V )) � A(U) for all U , V , and that �A
U;V

coincides with �B
U;V

on A(V ).

If A is a subpresheaf of a presheaf B of abelian groups, there is a presheaf quo-

tient C = B=A de�ned by C(U) = B(U)=A(U). In a similar way, one de�nes

the presheaf kernel (resp. presheaf image, presheaf cokernel) of a presheaf

morphism ' : A! B to be the presheaves

U 7! Ker'U ; U 7! Im'U ; U 7! Coker'U :

The direct sum A � B of presheaves of abelian groups A, B is the presheaf

U 7! A(U)�B(U), the tensor product A
B of presheaves of R-modules is

U 7! A(U)
R B(U), etc : : :

(1.7) Remark. The reader should take care of the fact that the presheaf

quotient of a sheaf by a subsheaf is not necessarily a sheaf. To give a speci�c

example, let X = S1 be the unit circle in R2 , let C be the sheaf of continuous

complex valued functions and Z the subsheaf of integral valued continuous

functions (i.e. locally constant functions to Z). The exponential map

' = exp(2�i�) : C �! C?

is a morphism from C to the sheaf C? of invertible continuous functions, and

the kernel of ' is precisely Z. However 'U is surjective for all U 6= X but

maps C(X) onto the multiplicative subgroup of continuous functions of C?(X)

of degree 0. Therefore the quotient presheaf C=Z is not isomorphic with C?,

although their groups of sections are the same for all U 6= X. Since C? is a

sheaf, we see that C=Z does not satisfy property (1:40). �

In order to overcome the diÆculty appearing in Example 1.7, it is neces-

sary to introduce a suitable process by which we can produce a sheaf from a

presheaf. For this, it is convenient to introduce a slightly modi�ed viewpoint

for sheaves.
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(1.8) De�nition. If A is a presheaf, we de�ne the set eAx of germs of A at

a point x 2 X to be the abstract inductive limiteAx = lim�!
U3x

�
A(U); �U;V

�
:

More explicitely, eAx is the set of equivalence classes of elements in the

disjoint union
`
U3xA(U) taken over all open neighborhoods U of x, with

two elements F1 2 A(U1), F2 2 A(U2) being equivalent, F1 � F2, if and

only if there is a neighborhood V � U1; U2 such that F1�V = F2�V , i.e.,

�V U1(F1) = �V U2(F2). The germ of an element F 2 A(U) at a point x 2 U
will be denoted by Fx.

Let A be an arbitrary presheaf. The disjoint union eA =
`
x2X

eAx can be

equipped with a natural topology as follows: for every F 2 A(U), we set

F;U =

�
Fx ; x 2 U	

and choose the 
F;U to be a basis of the topology of eA ; note that this family

is stable by intersection: 
F;U \
G;V = 
H;W where W is the (open) set of

points x 2 U\V at which Fx = Gx andH = �W;U (F ). The obvious projection

map � : eA! X which sends eAx to fxg is then a local homeomorphism (it is

actually a homeomorphism from 
F;U onto U). This leads in a natural way

to the following de�nition:

(1.9) De�nition. Let X and S be topological spaces (not necessarily Haus-

dor�), and let � : S �! X be a mapping such that

a) � maps S onto X ;

b) � is a local homeomorphism, that is, every point in S has an open neigh-

borhood which is mapped homeomorphically by � onto an open subset of X.

Then S is called a sheaf-space on X and � is called the projection of S on X.

If x 2 X, then Sx = ��1(x) is called the stalk of S at x.

If Y is a subset of X, we denote by � (Y; S) the set of sections of S on

Y , i.e. the set of continuous functions F : Y ! S such that � Æ F = IdY . It

is clear that the presheaf de�ned by the collection of sets S0(U) := � (U; S)

for all open sets U � X together with the restriction maps �U;V satis�es

axioms (1:40) and (1:400), hence S0 is a sheaf. The set of germs of S0 at x
is in one-to-one correspondence with the stalk Sx = ��1(x), thanks to the

local homeomorphism assumption 1.9 b). This shows that one can associate

in a natural way a sheaf S0 to every sheaf-space S, and that the sheaf-space

(S0)� can be considered to be identical to the original sheaf-space S. Since

the assignment S 7! S0 from sheaf-spaces to sheaves is an equivalence of

categories, we will usually omit the prime sign in the notation of S0 and thus
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use the same symbols for a sheaf-space and its associated sheaf of sections;

in a corresponding way, we write � (U; S) = S(U) when U is an open set.

Conversely, given a presheaf A on X, we have an associated sheaf-spaceeA and an obvious presheaf morphism

(1:10) A(U) �! eA0(U) = � (U; eA); F 7�! eF = (U 3 x 7! Fx):

This morphism is clearly injective if and only if A satis�es axiom (1:400), and
it is not diÆcult to see that (1:40) and (1:400) together imply surjectivity.

Therefore A ! eA0 is an isomorphism if and only if A is a sheaf. According

to the equivalence of categories between sheaves and sheaf-spaces mentioned

above, we will use from now on the same symbol eA for the sheaf-space and its

associated sheaf eA0; one says that eA is the sheaf associated with the presheafA.

If A itself is a sheaf, we will again identify eA and A, but we will of course

keep the notational di�erence for a presheaf A which is not a sheaf.

(1.11) Example. The sheaf associated to the constant presheaf of stalk E

over X is the sheaf of locally constant functions X ! E. This sheaf will

be denoted merely by EX or E if there is no risk of confusion with the

corresponding presheaf. In Example 1.7, we have Z = ZX and the sheaf

(C=ZX)
� associated with the quotient presheaf C=ZX is isomorphic to C? via

the exponential map. �

In the sequel, we usually work in the category of sheaves rather than in the

category of presheaves themselves. For instance, the quotient B=A of a sheaf

B by a subsheaf A generally refers to the sheaf associated with the quotient

presheaf: its stalks are equal to Bx=Ax, but a section G of B=A over an open

set U need not necessarily come from a global section of B(U) ; what can be

only said is that there is a covering (U�) of U and local sections F� 2 B(U�)
representing G�U� such that (F��F�)�U�\U� belongs to A(U�\U�). A sheaf

morphism ' : A ! B is said to be injective (resp. surjective) if the germ

morphism 'x : Ax ! Bx is injective (resp. surjective) for every x 2 X. Let

us note again that a surjective sheaf morphism ' does not necessarily give

rise to surjective morphisms 'U : A(U)! B(U).

x1.B. Direct and Inverse Images of Sheaves

Let X, Y be topological spaces and let f : X ! Y be a continuous map. If

A is a presheaf on X, the direct image f?A is the presheaf on Y de�ned by

(1:12) f?A(U) = A
�
f�1(U)

�
for all open sets U � Y . When A is a sheaf, it is clear that f?A also satis�es

axioms (1:40) and (1:400), thus f?A is a sheaf. Its stalks are given by

(1:13) (f?A)y = lim�!
V 3y

A
�
f�1(V )

�
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where V runs over all open neighborhoods of y 2 Y .
Now, let B be a sheaf on Y , viewed as a sheaf-space with projection map

� : B! Y . We de�ne the inverse image f�1B by

(1:14) f�1B = B�Y X =
�
(s; x) 2 B�X ; �(s) = f(x)

	
with the topology induced by the product topology on B�X. It is then easy

to see that the projection �0 = pr2 : f
�1B ! X is a local homeomorphism,

therefore f�1B is a sheaf on X. By construction, the stalks of f�1B are

(1:15) (f�1B)x = Bf(x);

and the sections � 2 f�1B(U) can be considered as continuous mappings

s : U ! B such that � Æ � = f . In particular, any section s 2 B(V ) on an

open set V � Y has a pull-back

(1:16) f?s = s Æ f 2 f�1B
�
f�1(V )

�
:

There are always natural sheaf morphisms

(1:17) f�1f?A �! A; B �! f?f
�1B

de�ned as follows. A germ in (f�1f?A)x = (f?A)f(x) is de�ned by a local

section s 2 (f?A)(V ) = A(f�1(V )) for some neighborhood V of f(x) ; this

section can be mapped to the germ sx 2 Ax. In the opposite direction, the

pull-back f?s of a section s 2 B(V ) can be seen by (1.16) as a section of

f?f
�1B(V ). It is not diÆcult to see that these natural morphisms are not

isomorphisms in general. For instance, if f is a �nite covering map with

q sheets and if we take A = EX , B = EY to be constant sheaves, then

f?EX ' EqY and f�1EY = EX , thus f
�1f?EX ' EqX and f?f

�1EY ' EqY .

x1.C. Ringed Spaces

Many natural geometric structures considered in analytic or algebraic geome-

try can be described in a convenient way as topological spaces equipped with

a suitable \structure sheaf" which, most often, is a sheaf of commutative

rings. For instance, a lot of properties of Ck di�erentiable (resp. real ana-

lytic, complex analytic) manifolds can be described in terms of their sheaf of

rings Ck
X
of di�erentiable functions (resp. C!

X
of real analytic functions, OX of

holomorphic functions). We �rst recall a few standard de�nitions concerning

rings, referring to textbooks on algebra for more details (see e.g. Lang 1965).

(1.18) Some de�nitions and conventions about rings. All our rings R

are supposed implicitly to have a unit element 1R (if R = f0g, we agree that

1R = 0R ), and a ring morphism R ! R0 is supposed to map 1R to 1R0 . In

the subsequent de�nitions, we assume that all rings under consideration are

commutative.
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a) An ideal I � R is said to be prime if xy 2 I implies x 2 I or y 2 I, i.e.,
if the quotient ring R=I is entire.

b) An ideal I � R is said to be maximal if I 6= R and there are no ideals J

such that I ( J ( R (equivalently, if the quotient ring R=I is a �eld).

c) The ring R is said to be a local ring if R has a unique maximal ideal m

(equivalently, if R has an ideal m such that all elements of R r m are

invertible). Its residual �eld is de�ned to be the quotient �eld R=m.

d) The ring R is said to be Noetherian if every ideal I � R is �nitely gene-

rated (equivalently, if every increasing sequence of ideals I1 � I2 � : : :

is stationary).

e) The radical
p
I of an ideal I is the set of all elements x 2 R such that

some power xm, m 2 N? , lies in in I. Then
p
I is again an ideal of R.

f) The nilradical N(R) =
p
f0g is the ideal of nilpotent elements of R. The

ring R is said to be reduced if N(R) = f0g. Otherwise, its reduction is

de�ned to be the reduced ring R=N(R).

We now introduce the general notion of a ringed space.

(1.19) De�nition. A ringed space is a pair (X;RX) consisting of a topolo-

gical space X and of a sheaf of rings RX on X, called the structure sheaf.

A morphism

F : (X;RX)! (Y;RY )

of ringed spaces is a pair (f; F ?) where f : X ! Y is a continuous map and

F ? : f�1RY ! RX ; F ?
x

: RY;f(x) ! RX;x

a homomorphism of sheaves of rings on X, called the comorphism of F .

If F : (X;RX) ! (Y;RY ) and G : (Y;RY ) ! (Z;RZ) are morphisms of

ringed spaces, the composite G Æ F is the pair consisting of the map g Æ f :

X ! Z and of the comorphism (G Æ F )? = F ? Æ f�1G? :

(1:20) F ? Æ f�1G? : f�1g�1RZ
f
�1
G
?

���! f�1RY
F
?

��! RX ;

F ?x ÆG?f(x) : RZ;gÆf(x) ���! RY;f(x) ��! RX;x:

We say of course that F is an isomorphism of ringed spaces if there exists G

such that G Æ F = IdX and F ÆG = IdY .

If (X;RX) is a ringed space, the nilradical of RX de�nes an ideal subsheaf

NX of RX , and the identity map IdX : X ! X together with the ring

homomorphism RX ! RX=NX de�nes a ringed space morphism

(1:21) (X;RX=NX)! (X;RX)
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called the reduction morphism. Quite often, the letter X by itself is used to

denote the ringed space (X;RX) ; we then denote by Xred = (X;RX=NX)

its reduction. The ringed space X is said to be reduced if NX = 0, in which

case the reduction morphism Xred ! X is an isomorphism. In all examples

considered later on in this book, the structure sheaf RX will be a sheaf of

local rings over some �eld k. The relevant de�nition is as follows.

(1.22) De�nition.

a) A locally ringed space is a ringed space (X;RX) such that all stalks RX;x
are local rings. The maximal ideal of RX;x will be denoted by mX;x. A

morphism F = (f; F ?) : (X;RX) ! (Y;RY ) of locally ringed spaces is

a morphism of ringed spaces such that F ?x (mY;f(x)) � mX;x at any point

x 2 X (i.e., F ?
x
is a \local" homomorphism of rings).

b) A locally ringed space over a �eld k is a locally ringed space (X;RX) such

that all rings RX;x are local k-algebras with residual �eld RX;x=mX;x ' k.
A morphism F between such spaces is supposed to have its comorphism

de�ned by local k-homomorphisms F ?
x
: RY;f(x) ! RX;x.

If (X;RX) is a locally ringed space over k, we can associate to each section

s 2 RX(U) a function

s : U ! k; x 7! s(x) 2 k = RX;x=mX;x;

and we get a sheaf morphism RX ! RX onto a subsheaf of rings RX of the

sheaf of functions from X to k. We clearly have a factorization

RX ! RX=NX ! RX ;

and thus a corresponding factorization of ringed space morphisms (with IdX
as the underlying set theoretic map)

Xst-red ! Xred ! X

where Xst-red = (X;RX) is called the strong reduction of (X;RX). It is easy

to see that Xst-red is actually a reduced locally ringed space over k. We say

that X is strongly reduced if RX ! RX is an isomorphism, that is, if RX
can be identi�ed with a subsheaf of the sheaf of functions X ! k (in our

applications to the theory of algebraic or analytic schemes, the concepts of

reduction and strong reduction will actually be the same ; in general, these

notions di�er, see Exercise ??.??). It is important to observe that reduction

(resp. strong reduction) is a fonctorial process:

if F = (f; F ?) : (X;RX) ! (Y;RY ) is a morphism of ringed spaces (resp. of

locally ringed spaces over k), there are natural reductions

Fred = (f; F ?red) : Xred ! Yred; F ?red : RY;f(x)=NY;f(x) ! RX;x=NX;x;

Fst-red = (f; f?) : Xst-red ! Yst-red; f? : RY;f(x) ! RX;x; s 7! s Æ f
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where f? is the usual pull-back comorphism associated with f . Therefore,

if (X;RX) and (Y;RY ) are strongly reduced, the morphism F is completely

determined by the underlying set-theoretic map f . Our �rst basic examples

of (strongly reduced) ringed spaces are the various types of manifolds already

de�ned in Chapter I. The language of ringed spaces provides an equivalent

but more elegant and more intrinsic de�nition.

(1.23) De�nition. Let X be a Hausdor� separable topological space. One

can de�ne the category of Ck, k 2 N [f1; !g, di�erentiable manifolds (resp.
complex analytic manifolds) to be the category of reduced locally ringed spaces

(X;RX) over R (resp. over C ), such that every point x 2 X has a neighbor-

hood U on which the restriction (U;RX�U ) is isomorphic to a ringed space

(
;Ck


) where 
 � Rn is an open set and Ck



is the sheaf of Ck di�erentiable

functions (resp. (
;O
), where 
 � C n is an open subset, and O
 is the

sheaf of holomorphic functions on 
).

We say that the ringed spaces (
;Ck


) and (
;O
) are the models of

the category of di�erentiable (resp. complex analytic) manifolds, and that a

general object (X;RX) in the category is locally isomorphic to one of the given

model spaces. It is easy to see that the corresponding ringed spaces morphisms

are nothing but the usual concepts of di�erentiable and holomorphic maps.

x1.D. Algebraic Varieties over a Field

As a second illustration of the notion of ringed space, we present here a brief

introduction to the formalism of algebraic varieties, referring to (Hartshorne

1977) or (EGA 1967) for a much more detailed exposition. Our hope is that

the reader who already has some background of analytic or algebraic geome-

try will �nd some hints of the strong interconnections between both theories.

Beginners are invited to skip this section and proceed directly to the theory

of complex analytic sheaves in x;2. All rings or algebras occurring in this

section are supposed to be commutative rings with unit.

x1.D.1. AÆne Algebraic Sets. Let k be an algebraically closed �eld of

any characteristic. An aÆne algebraic set is a subset X � kN of the aÆne

space kN de�ned by an arbitrary collection S � k[T1; : : : ; TN ] of polynomials,

that is,

X = V (S) =
�
(z1; : : : ; zN ) 2 kN ; P (z1; : : : ; zN ) = 0; 8P 2 S	:

Of course, if J � k[T1; : : : ; TN ] is the ideal generated by S, then V (S) = V (J).

As k[T1; : : : ; TN ] is Noetherian, J is generated by �nitely many elements

(P1; : : : ; Pm), thus X = V (fP1; : : : ; Pmg) is always de�ned by �nitely many

equations. Conversely, for any subset Y � kN , we consider the ideal I(Y ) of
k[T1; : : : ; TN ], de�ned by
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I(Y ) =
�
P 2 k[T1; : : : ; TN ] ; P (z) = 0; 8z 2 Y 	:

Of course, if Y � kN is an algebraic set, we have V (I(Y )) = Y . In the

opposite direction, we have the following fundamental result.

(1.24) Hilbert's Nullstellensatz (see Lang 1965). If J � k[T1; : : : ; TN ] is
an ideal, then I(V (J)) =

p
J .

If X = V (J) � kN is an aÆne algebraic set, we de�ne the (reduced) ring

O(X) of algebraic functions on X to be the set of all functions X ! k which

are restrictions of polynomials, i.e.,

(1:25) O(X) = k[T1; : : : ; TN ]=I(X) = k[T1; : : : ; TN ]=
p
J:

This is clearly a reduced k-algebra. An (algebraic) morphism of aÆne alge-

braic sets X = V (J) � kN , Y = V (J 0) � kN
0

is a map f : Y ! X which

is the restriction of a polynomial map kN
0

tokN . We then get a k-algebra

homomomorphism

f? : O(X)! O(Y ); s 7! s Æ f;
called the comorphism of f . In this way, we have de�ned a contravariant

fonctor

(1:26) X 7! O(X); f 7! f?

from the category of aÆne algebraic sets to the category of �nitely generated

reduced k-algebras.

We are going to show the existence of a natural fonctor going in the

opposite direction. In fact, let us start with an arbitrary �nitely generated

algebra A (not necessarily reduced at this moment). For any choice of gene-

rators (g1; : : : ; gN ) of A we get a surjective morphism of the polynomial ring

k[T1; : : : ; TN ] onto A,

k[T1; : : : ; TN ]! A; Tj 7! gj ;

and thus A ' k[T1; : : : ; TN ]=J with the ideal J being the kernel of this mor-

phism. It is well-known that every maximal ideal m of A has codimension 1

in A (see Lang 1965), so that m gives rise to a k-algebra homomorphism

A! A=m = k. We thus get a bijection

Homalg(A; k)! Spm(A); u 7! Keru

between the set of k-algebra homomorphisms and the set Spm(A) of maximal

ideals of A. In fact, if A = k[T1; : : : ; TN ]=J , an element ' 2 Homalg(A; k) is

completely determined by the values zj = '(TjmodJ), and the correspond-

ing algebra homomorphism k[T1; : : : ; TN ] ! k, P 7! P (z1; : : : ; zN ) can be

factorized mod J if and only if z = (z1; : : : ; zN ) 2 kN satis�es the equations
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P (z1; : : : ; zN ) = 0; 8P 2 J:
We infer from this that

Spm(A) ' V (J) = �(z1; : : : ; zN ) 2 kN ; P (z1; : : : ; zN ) = 0; 8P 2 J	
can be identi�ed with the aÆne algebraic set V (J) � kN . If we are given an

algebra homomorphism � : A ! B of �nitely generated k-algebras we get a

corresponding map Spm(�) : Spm(B)! Spm(A) described either as

Spm(B)! Spm(A); m 7! ��1(m) or

Homalg(B; k)! Homalg(A; k); v 7! v Æ �:

If B = k[T 01; : : : ; T
0
N 0
]=J 0 and Spm(B) = V (J 0) � kN

0

, it is easy to see that

Spm(�) : Spm(B)! Spm(A) is the restriction of the polynomial map

f : kN
0 ! kN ; w 7! f(w) = (P1(w); : : : ; PN (w));

where Pj 2 k[T 01; : : : ; T 0N 0 ] are polynomials such that Pj = �(Tj)modJ 0 in B.
We have in this way de�ned a contravariant fonctor

(1:27) A 7! Spm(A); � 7! Spm(�)

from the category of �nitely generated k-algebras to the category of aÆne

algebraic sets.

Since A = k[T1; : : : ; TN ]=J and its reduction A=N(A) = k[T1; : : : ; TN ]=
p
J

give rise to the same algebraic set

V (J) = Spm(A) = Spm(A=N(A)) = V (
p
J);

we see that the category of aÆne algebraic sets is actually equivalent to the

subcategory of reduced �nitely generated k-algebras.

(1.28) Example. The simplest example of an aÆne algebraic set is the aÆne

space

kN = Spm(k[T1; : : : ; TN ]);

in particular Spm(k) = k0 is just one point. We agree that Spm(f0g) = ;
(observe that V (J) = ; when J is the unit ideal in k[T1; : : : ; TN ]).

x1.D.2. Zariski Topology and AÆne Algebraic Schemes. Let A be a

�nitely generated algebra and X = Spm(A). To each ideal a � A we associate

the zero variety V (a) � X which consists of all elements m 2 X = Spm(A)

such that m � a ; if

A ' k[T1; : : : ; TN ]=J and X ' V (J) � kN ;
then V (a) can be identi�ed with the zero variety V (Ja) � X of the inverse

image Ja of a in k[T1; : : : ; TN ]. For any family (a�) of ideals in A we have
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V (
X

a�) =
\
V (a�); V (a1) [ V (a2) = V (a1a2);

hence there exists a unique topology on X such that the closed sets consist

precisely of all algebraic subsets (V (a))a�A of X. This topology is called

the Zariski topology. The Zariski topology is almost never Hausdor� (for

example, if X = k is the aÆne line, the open sets are ; and complements of

�nite sets, thus any two nonempty open sets have nonempty intersection).

However, X is a Noetherian space, that is, a topological space in which every

decreasing sequence of closed sets is stationary; an equivalent de�nition is to

require that every open set is quasi-compact (from any open covering of an

open set, one can extract a �nite covering).

We now come to the concept of aÆne open subsets. For s 2 A, the

open set D(s) = X r V (s) can be given the structure of an aÆne al-

gebraic variety. In fact, if A = k[T1; : : : ; TN ]=J and s is represented by

a polynomial in k[T1; : : : ; TN ], the localized ring A[1=s] can be written as

A[1=s] = k[T1; : : : ; TN ; TN+1]=Js where Js = J [TN+1] + (sTN+1 � 1), thus

V (Js) = f(z; w) 2 V (J)� k ; s(z)w = 1g ' V (I)r s�1(0)

and D(s) can be identi�ed with Spm(A[1=s]). We have D(s1) \ D(s2) =

D(s1s2), and the sets (D(s))s2A are easily seen to be a basis of the Zariski

topology on X. The open sets D(s) are called aÆne open sets. Since the open

sets D(s) containing a given point x 2 X form a basis of neighborhoods, one

can de�ne a sheaf space OX such that the ring of germs OX;x is the inductive

limit

OX;x = lim�!
D(s)3x

A[1=s] = ffractions p=q ; p; q 2 A; q(x) 6= 0g:

This is a local ring with maximal ideal

mX;x = fp=q ; p; q 2 A; p(x) = 0; q(x) 6= 0g;
and residual �eld OX;x=mX;x = k. In this way, we get a ringed space (X;OX)

over k. It is easy to see that � (X;OX) coincides with the �nitely gener-

ated k-algebra A. In fact, from the de�nition of OX , a global section is ob-

tained by gluing together local sections pj=sj on aÆne open sets D(sj) withS
D(sj) = X, 1 � j � m. This means that the ideal a = (s1; : : : ; sm) � A

has an empty zero variety V (a), thus a = A and there are elements uj 2 A
with

P
ujsj = 1. The compatibility condition pj=sj = pk=sk implies that

these elements are induced byX
ujpj=

X
ujsj =

X
ujpj 2 A;

as desired. More generally, since the open sets D(s) are aÆne, we get

� (D(s);OX) = A[1=s]:
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It is easy to see that the ringed space (X;OX) is reduced if and only if A itself

is reduced; in this case, X is even strongly reduced as Hilbert's Nullstellensatz

shows. Otherwise, the reduction Xred can obtained from the reduced algebra

Ared = A=N(A).

Ringed spaces (X;OX) as above are called aÆne algebraic schemes over k

(although substantially di�erent from the usual de�nition, our de�nition can

be shown to be equivalent in this special situation; compare with (Hartshorne

1977); see also Exercise ??.??). The category of aÆne algebraic schemes is

equivalent to the category of �nitely generated k-algebras (with the arrows

reversed).

1.D.3. Algebraic Schemes. Algebraic schemes over k are de�ned to be

ringed spaces over k which are locally isomorphic to aÆne algebraic schemes,

modulo an ad hoc separation condition.

(1.29) De�nition. An algebraic scheme over k is a locally ringed space

(X;OX) over k such that

a) X has a �nite covering by open sets U� such that (U�;OX�U� ) is isomor-

phic as a ringed space to an aÆne algebraic scheme (Spm(A�);OSpm(A�)).

b) X satis�es the algebraic separation axiom, namely the diagonal �X of

X �X is closed for the Zariski topology.

A morphism of algebraic schemes is just a morphism of the underlying lo-

cally ringed spaces. An (abstract) algebraic variety is the same as a reduced

algebraic scheme.

In the above de�nition, some words of explanation are needed for b), since

the product X � Y of algebraic schemes over k is not the ringed space theo-

retic product, i.e., the product topological space equipped with the structure

sheaf pr?1OX 
k pr?2OY . Instead, we de�ne the product of two aÆne algebraic

schemes X = Spm(A) and Y = Spm(B) to be X � Y = Spm(A 
k B),
equipped with the Zariski topology and the structural sheaf associated

with A 
k B. Notice that the Zariski topology on X � Y is not the product

topology of the Zariski topologies on X, Y , as the example k2 = k� k shows;

also, the rational function 1=(1� z1 � z2) 2 Ok2;(0;0) is not in Ok;0 
k Ok;0.
In general, if X, Y are written as X =

S
U� and Y =

S
V� with aÆne open

sets U�, V� , we de�ne X�Y to be the union of all open aÆne charts U��V�
with their associated structure sheaves of aÆne algebraic varieties, the open

sets of X � Y being all unions of open sets in the various charts U� � V� .
The separation axiom b) is introduced for the sake of excluding pathological

examples such as an aÆne line kqf00g with the origin changed into a double

point.

1.D.4. Subschemes. If (X;OX) is an aÆne algebraic scheme and A =

� (X;OX) is the associated algebra, we say that (Y;OY ) is a subscheme
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of (X;OX) if there is an ideal a of A such that Y ,! X is the mor-

phism de�ned by the algebra morphism A ! A=a as its comorphism. As

Spm(A=a) ! Spm(A) has for image the set V (a) of maximal ideals m of

A containing a, we see that Y = V (a) as a set; let us introduce the ideal

subsheaf J = aOX � OX . Since the structural sheaf OY is obtained by taken

localizations A=a[1=s], it is easy to see that OY coincides with the quotient

sheaf OX=J restricted to Y . Since a has �nitely many generators, the ideal

sheaf J is locally �nitely generated (see x 2 below). This leads to the following
de�nition.

(1.30) De�nition. If (X;OX) is an algebraic scheme, a (closed) subscheme

is an algebraic scheme (Y;OY ) such that Y is a Zariski closed subset of X, and

there is a locally �nitely generated ideal subsheaf J � OX such that Y = V (J)

and OY = (OX=J)�Y .

If (Y;OY ), (Z;OZ) are subschemes of (X;OX) de�ned by ideal subsheaves

J; J0 � OX , there are corresponding subschemes Y \Z and Y [Z de�ned as

ringed spaces

(Y \ Z;OX=(J+ J0)); (Y [ Z;OX=JJ0):

x1.D.5. Projective Algebraic Varieties. A very important subcategory

of the category of algebraic varieties is provided by projective algebraic va-

rieties. Let PN
k

be the projective N -space, that is, the set kN+1 r f0g=k? of
equivalence classes of (N + 1)-tuples (z0; : : : ; zN ) 2 kN+1 r f0g under the
equivalence relation given by (z0; : : : ; zN ) � �(z0; : : : ; zN ), � 2 k?. The cor-
responding element of PN

k
will be denoted [z0 : z1 : : : : : zN ]. It is clear that

Pk
N

can be covered by the (N + 1) aÆne charts U�, 0 � � � N , such that

U� =
�
[z0 : z1 : : : : : zN ] 2 PNk z� 6= 0

	
:

The set U� can be identi�ed with the aÆne N -space kN by the map

U� ! kN ; [z0 : z1 : : : : : zN ] 7!
� z0
z�
;
z1

z�
; : : : ;

z��1
z�

;
z�+1

z�
; : : : ;

zN

z�

�
:

With this identi�cation, O(U�) is the algebra of homogeneous rational func-

tions of degree 0 in z0; : : : ; zN which have just a power of z� in their denom-

inator. It is easy to see that the structure sheaves OU� and OU� coincide in

the intersections U� \ U� ; they can be glued together to de�ne an algebraic

variety structure (PN
k
;OPN), such that OPN;[z] consists of all homogeneous

rational functions p=q of degree 0 (i.e., deg p = deg q), such that q(z) 6= 0.

(1.30) De�nition. An algebraic scheme or variety (X;OX) is said to be

projective if it is isomorphic to a closed subscheme of some projective space

(PN
k
;OPN).
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We now indicate a standard way of constructing projective schemes. Let

S be a collection of homogeneous polynomials Pj 2 k[z0; : : : ; zN ], of degree
dj 2 N . We de�ne an associated projective algebraic set

eV (S) = �[z0 : : : : : zN ] 2 PNk ; P (z) = 0; 8P 2 S	:
Let J be the homogeneous ideal of k[z0; : : : ; zN ] generated by S (recall that

an ideal J is said to be homogeneous if J =
L
Jm is the direct sum of its

homogeneous components, or equivalently, if J is generated by homogeneous

elements). We have an associated graded algebra

B = k[z0; : : : ; zN ]=J =
M

Bm; Bm = k[z0; : : : ; zN ]m=Jm

such that B is generated by B1 and Bm is a �nite dimensional vector space

over k for each k. This is enough to construct the desired scheme structure

on eV (J) := T eV (Jm), as we see in the next subsection.

1.D.6. Projective Scheme Associated with a Graded Algebra. Let

us start with a reduced graded k-algebra

B =
M
m2N

Bm

such that B is generated by B0 and B1 as an algebra, and B0, B1 are �nite

dimensional vector spaces over k (it then follows that B is �nitely generated

and that all Bm are �nite dimensional vector spaces). Given s 2 Bm, m > 0,

we de�ne a k-algebra As to be the ring of all fractions of homogeneous degree 0

with a power of s as their denominator, i.e.,

(1:31) As =
�
p=sd ; p 2 Bdm; d 2 N

	
:

Since As is generated by 1
s
Bm1 over B0, As is a �nitely generated algebra.

We de�ne Us = Spm(As) to be the associated aÆne algebraic variety. For

s 2 Bm and s0 2 Bm0 , we clearly have algebra homomorphisms

As ! Ass0 ; As0 ! Ass0 ;

since Ass0 is the algebra of all 0-homogeneous fractions with powers of s and

s0 in the denominator. As Ass0 is the same as the localized ring As[s
m
0

=s0m],
we see that Uss0 can be identi�ed with an aÆne open set in Us, and we thus

get canonical injections

Uss0 ,! Us; Uss0 ,! Us0 :

(1.32) De�nition. If B =
L

m2NBm is a reduced graded algebra gener-

ated by its �nite dimensional vector subspaces B0 and B1, we associate an

algebraic scheme (X;OX) = Proj(B) as follows. To each �nitely generated al-

gebra As =
�
p=sd ; p 2 Bdm; d 2 N

	
we associate an aÆne algebraic variety
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Us = Spm(As). We let X be the union of all open charts Us with the identi-

�cations Us\Us0 = Uss0 ; then the collection (Us) is a basis of the topology of

X, and OX is the unique sheaf of local k-algebras such that � (Us;OX) = As
for each Us.

The following proposition shows that only �nitely many open charts are

actually needed to describe X (as required in Def. 1.29 a)).

(1.33) Lemma. If s0; : : : ; sN is a basis of B1, then Proj(B) =
S

0�j�N
Usj .

Proof. In fact, if x 2 X is contained in a chart Us for some s 2 Bm, then
Us = Spm(As) 6= ;, and therefore As 6= f0g. As As is generated by 1

s
Bm1 , we

can �nd a fraction f = sj1 : : : sjm=s representing an element f 2 O(Us) such
that f(x) 6= 0. Then x 2 Us r f�1(0), and Us r f�1(0) = Spm(As[1=f ]) =

Us \ Usj1 \ : : : \ Usjm . In particular x 2 Usj1 . �

(1.34) Example. One can consider the projective space PN
k

to be the alge-

braic scheme

PNk = Proj(k[T0; : : : ; TN ]):

The Proj construction is fonctorial in the following sense: if we have a

graded homomorphism � : B ! B0 (i.e. an algebra homomorphism such

that �(Bm) � B0
m
, then there are corresponding morphisms As ! A0

�(s),

U 0
�(s) ! Us, and we thus �nd a scheme morphism

F : Proj(B0)! Proj(B):

Also, since p=sd = psl=sd+l, the algebras As depend only on components

Bm of large degree, and we have As = Asl . It follows easily that there is a

canonical isomorphism

Proj(B) ' Proj
�M

m

Blm

�
:

Similarly, we may if we wish change a �nite number of components Bm with-

out a�ecting Proj(B). In particular, we may alway assume that B0 = k 1B .

By selecting �nitely many generators g0; : : : ; gN in B1, we then �nd a sur-

jective graded homomorphism k[T0; : : : ; TN ]! B, thus B ' k[T0; : : : ; TN ]=J
for some graded ideal J � B. The algebra homomorphism k[T0; : : : ; TN ]! B

therefore yields a scheme embedding Proj(B)! PN onto V (J).

We will not pursue further the study of algebraic varieties from this point

of view ; in fact we are mostly interested in the case k = C , and algebraic

varieties over C are a special case of the more general concept of complex

analytic space.
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x2. The Local Ring of Germs of Analytic Functions

x2.A. The Weierstrass Preparation Theorem

Our �rst goal is to establish a basic factorization and division theorem for

analytic functions of several variables, which is essentially due to Weierstrass.

We follow here a simple proof given by C.L. Siegel, based on a clever use of the

Cauchy formula. Let g be a holomorphic function de�ned on a neighborhood

of 0 in C n , g 6� 0. There exists a dense set of vectors v 2 C n r f0g such that

the function C 3 t 7�! g(tv) is not identically zero. In fact the Taylor series

of g at the origin can be written

g(tv) =

+1X
k=0

1

k!
tk g(k)(v)

where g(k) is a homogeneous polynomial of degree k on C n and g(k0) 6� 0

for some index k0. Thus it suÆces to select v such that g(k0)(v) 6= 0. After

a change of coordinates, we may assume that v = (0; : : : ; 0; 1). Let s be the

vanishing order of zn 7�! g(0; : : : ; 0; zn) at zn = 0. There exists rn > 0

such that g(0; : : : ; 0; zn) 6= 0 when 0 < jznj � rn. By continuity of g and

compactness of the circle jznj = rn, there exists r
0 > 0 and " > 0 such that

g(z0; zn) 6= 0 for z0 2 C n�1 ; jz0j � r0; rn � " � jznj � rn + ":

For every integer k 2 N , let us consider the integral

Sk(z
0) =

1

2�i

Z
jznj=rn

1

g(z0; zn)

@g

@zn
(z0; zn) z

k

n
dzn:

Then Sk is holomorphic in a neighborhood of jz0j � r0. Rouch�e's theorem

shows that S0(z
0) is the number of roots zn of g(z0; zn) = 0 in the disk

jznj < rn, thus by continuity S0(z
0) must be a constant s. Let us denote

by w1(z
0); : : : ; ws(z0) these roots, counted with multiplicity. By de�nition

of rn, we have w1(0) = : : : = ws(0) = 0, and by the choice of r0, " we have
jwj(z0)j < rn � " for jz0j � r0. The Cauchy residue formula yields

Sk(z
0) =

sX
j=1

wj(z
0)k:

Newton's formula shows that the elementary symmetric function ck(z
0) of

degree k in w1(z
0); : : : ; ws(z0) is a polynomial in S1(z

0); : : : ; Sk(z0). Hence
ck(z

0) is holomorphic in a neighborhood of jz0j � r0. Let us set

P (z0; zn) = zsn � c1(z0)zs�1n + � � �+ (�1)scs(z0) =
sY
j=1

�
zn � wj(z0)

�
:
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For jz0j � r0, the quotient f = g=P (resp. f = P=g) is holomorphic in zn on

the disk jznj < rn + ", because g and P have the same zeros with the same

multiplicities, and f(z0; zn) is holomorphic in z0 for rn � " � jznj � rn + ".

Therefore

f(z0; zn) =
1

2�i

Z
jwnj=rn+"

f(z0; wn) dwn
wn � zn

is holomorphic in z on a neighborhood of the closed polydisk �(r0; rn) =

fjz0j � r0g � fjznj � rng. Thus g=P is invertible and we obtain:

(2.1) Weierstrass preparation theorem. Let g be holomorphic on a

neighborhood of 0 in C n , such that g(0; zn)=z
s

n
has a not zero �nite limit at

zn = 0. With the above choice of r0 and rn, one can write g(z) = u(z)P (z0; zn)
where u is an invertible holomorphic function in a neighborhood of the poly-

disk �(r0; rn), and P is a Weierstrass polynomial in zn, that is, a polynomial

of the form

P (z0; zn) = zsn + a1(z
0)zs�1n + � � �+ as(z

0); ak(0) = 0;

with holomorphic coeÆcients ak(z
0) on a neighborhood of jz0j � r0 in C n�1 .

(2.2) Remark. If g vanishes at order m at 0 and v 2 C n r f0g is selected
such that g(m)(v) 6= 0, then s = m and P must also vanish at order m at 0. In

that case, the coeÆcients ak(z
0) are such that ak(z

0) = O(jz0jk), 1 � k � s.

(2.3) Weierstrass division theorem. Every bounded holomorphic function

f on � = �(r0; rn) can be represented in the form

(2:4) f(z) = g(z)q(z) +R(z0; zn);

where q and R are analytic in �, R(z0; zn) is a polynomial of degree � s� 1

in zn, and

(2:5) sup
�

jqj � C sup
�

jf j; sup
�

jRj � C sup
�

jf j

for some constant C � 0 independent of f . The representation (2:4) is unique.

Proof (Siegel) It is suÆcient to prove the result when g(z) = P (z0; zn) is a
Weierstrass polynomial.

Let us �rst prove the uniqueness. If f = Pq1 + R1 = Pq2 + R2, then

P (q2 � q1) + (R2 �R1) = 0:

It follows that the s roots zn of P (z0; �) = 0 are zeros of R2 � R1. Since

degzn(R2 �R1) � s� 1, we must have R2 � R1 � 0, thus q2 � q1 � 0.

In order to prove the existence of (q; R), we set
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q(z0; zn) = lim
"!0+

1

2�i

Z
jwnj=rn�"

f(z0; wn)

P (z0; wn)(wn � zn)
dwn; z 2 � ;

observe that the integral does not depend on " when " < rn � jznj is small

enough. Then q is holomorphic on �. The function R = f � Pq is also

holomorphic on � and

R(z) = lim
"!0+

1

2�i

Z
jwnj=rn�"

f(z0; wn)

P (z0; wn)

hP (z0; wn)� P (z0; zn)
(wn � zn)

i
dwn:

The expression in brackets has the form

�
(ws

n
� zs

n
) +

sX
j=1

aj(z
0)(ws�j

n
� zs�j

n
)
�
=(wn � zn)

hence is a polynomial in zn of degree � s � 1 with coeÆcients that

are holomorphic functions of z0. Thus we have the asserted decomposition

f = Pq + R and

sup
�

jRj � C1 sup
�

jf j

where C1 depends on bounds for the aj(z
0) and on � = min jP (z0; zn)j on the

compact set fjz0j � r0g � fjznj = rng. By the maximum principle applied to

q = (f � R)=P on each disk fz0g � fjznj < rn � "g, we easily get

sup
�

jqj � ��1(1 + C1) sup
�

jf j: �

x2.B. Algebraic Properties of the Ring On

We give here important applications of the Weierstrass preparation theorem

to the study of the ring of germs of holomorphic functions in C n .

(2.6) Notation. We let On be the ring of germs of holomorphic functions

on C n at 0. Alternatively, On can be identi�ed with the ring C fz1 ; : : : ; zng of
convergent power series in z1; : : : ; zn.

(2.7) Theorem. The ring On is Noetherian, i.e. every ideal I of On is �nitely

generated.

Proof. By induction on n. For n = 1, On is principal: every ideal I 6= f0g is
generated by zs, where s is the minimum of the vanishing orders at 0 of the

non zero elements of I. Let n � 2 and I � On, I 6= f0g. After a change of

variables, we may assume that I contains a Weierstrass polynomial P (z0; zn).
For every f 2 I, the Weierstrass division theorem yields
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f(z) = P (z0; zn)q(z) + R(z0; zn); R(z0; zn) =
s�1X
k=0

ck(z
0) zk

n
;

and we have R 2 I. Let us consider the set M of coeÆcients (c0; : : : ; cs�1) in
O
�s
n�1 corresponding to the polynomials R(z0; zn) which belong to I. Then M

is a On�1-submodule of O�s
n�1. By the induction hypothesis On�1 is Noethe-

rian; furthermore, every submodule of a �nitely generated module over a

Noetherian ring is �nitely generated (Lang 1965, Chapter VI). Therefore M

is �nitely generated, and I is generated by P and by polynomials R1; : : : ; RN
associated with a �nite set of generators of M. �

Before going further, we need two lemmas which relate the algebraic prop-

erties of On to those of the polynomial ring On�1[zn].

(2.8) Lemma. Let P; F 2 On�1[zn] where P is a Weierstrass polynomial. If

P divides F in On, then P divides F in On�1[zn].

Proof. Assume that F (z0; zn) = P (z0; zn)h(z), h 2 On. The standard division

algorithm of F by P in On�1[zn] yields

F = PQ+R; Q;R 2 On�1[zn]; deg R < deg P:

The uniqueness part of Th. 2.3 implies h(z) = Q(z0; zn) and R � 0. �

(2.9) Lemma. Let P (z0; zn) be a Weierstrass polynomial.

a) If P = P1 : : : PN with Pj 2 On�1[zn], then, up to invertible elements of

On�1, all Pj are Weierstrass polynomials.

b) P (z0; zn) is irreducible in On if and only if it is irreducible in On�1[zn].

Proof. a) Assume that P = P1 : : : PN with polynomials Pj 2 On�1[zn] of
respective degrees sj ,

P
1�j�N sj = s. The product of the leading coeÆcients

of P1; : : : ; PN in On�1 is equal to 1; after normalizing these polynomials, we

may assume that P1; : : : ; PN are unitary and sj > 0 for all j. Then

P (0; zn) = zs
n
= P1(0; zn) : : : PN (0; zn);

hence Pj(0; zn) = z
sj
n and therefore Pj is a Weierstrass polynomial.

b) Set s = deg P and P (0; zn) = zsn. Assume that P is reducible in On, with

P (z0; zn) = g1(z)g2(z) for non invertible elements g1; g2 2 On. Then g1(0; zn)
and g2(0; zn) have vanishing orders s1; s2 > 0 with s1 + s2 = s, and

gj = ujPj ; deg Pj = sj; j = 1; 2;

where Pj is a Weierstrass polynomial and uj 2 On is invertible. Therefore

P1P2 = uP for an invertible germ u 2 On. Lemma 2.8 shows that P divides

P1P2 in On�1[zn] ; since P1, P2 are unitary and s = s1+s2, we get P = P1P2,
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hence P is reducible in On�1[zn]. The converse implication is obvious from a).

�

(2.10) Theorem. On is a factorial ring, i.e. On is entire and:

a) every non zero germ f 2 On admits a factorization f = f1 : : : fN in

irreducible elements ;

b) the factorization is unique up to invertible elements.

Proof. The existence part a) follows from Lemma 2.9 if we take f to be

a Weierstrass polynomial and f = f1 : : : fN be a decomposition of maximal

lengthN into polynomials of positive degree. In order to prove the uniqueness,

it is suÆcient to verify the following statement:

b0) If g is an irreducible element that divides a product f1f2, then g divides

either f1 or f2.

By Th. 2.1, we may assume that f1, f2, g are Weierstrass polynomials in

zn. Then g is irreducible and divides f1f2 in On�1[zn] thanks to Lemmas 2.8

and 2.9 b). By induction on n, we may assume that On�1 is factorial. The

standard Gauss lemma (Lang 1965, Chapter V) says that the polynomial

ring A[T ] is factorial if the ring A is factorial. Hence On�1[zn] is factorial by
induction and thus g must divide f1 or f2 in On�1[zn]. �

(2.11) Theorem. If f; g 2 On are relatively prime, then the germs fz; gz at

every point z 2 C n near 0 are again relatively prime.

Proof. One may assume that f = P; g = Q are Weierstrass polynomials. Let

us recall that unitary polynomials P;Q 2 A[X] (A = a factorial ring) are

relatively prime if and only if their resultant R 2 A is non zero. Then the

resultant R(z0) 2 On�1 of P (z0; zn) and Q(z0; zn) has a non zero germ at 0.

Therefore the germ Rz0 at points z
0 2 C n�1 near 0 is also non zero. �

x3. Coherent Sheaves

x3.1. Locally Free Sheaves and Vector Bundles

Section 9 will greatly develope this philosophy. Before introducing the more

general notion of a coherent sheaf, we discuss the notion of locally free sheaves

over a sheaf a ring. All rings occurring in the sequel are supposed to be

commutative with unit (the non commutative case is also of considerable

interest, e.g. in view of the theory of D-modules, but this subject is beyond

the scope of the present book).

(3.1) De�nition. Let A be a sheaf of rings on a topological space X and let S

a sheaf of modules over A (or briey a A-module). Then S is said to be locally
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free of rank r over A, if S is locally isomorphic to A�r on a neighborhood of

every point, i.e. for every x0 2 X one can �nd a neighborhood 
 and sections

F1; : : : ; Fr 2 S(
) such that the sheaf homomorphism

F : A�r�
 �! S�
 ; A�r
x
3 (w1; : : : ; wr) 7�!

X
1�j�r

wjFj;x 2 Sx

is an isomorphism.

By de�nition, if S is locally free, there is a covering (U�)�2I by open sets

on which S admits free generators F 1
�; : : : ; F

r

� 2 S(U�). Because the genera-
tors can be uniquely expressed in terms of any other system of independent

generators, there is for each pair (�; �) a r � r matrix

G�� = (G
jk

��
)1�j;k�r; G

jk

��
2 A(U� \ U�);

such that

F k
�
=
X

1�j�r
F j
�
G
jk

��
on U� \ U� :

In other words, we have a commutative diagram

A
�r
�U�\U�

F��! S�U�\U�

G��

x?? ��� ���
A
�r
�U�\U� �!F�

S�U�\U�

It follows easily from the equalityG�� = F�1
�
ÆF� that the transition matrices

G�� are invertible matrices satisfying the transition relation

(3:2) G� = G��G� on U� \ U� \ U
for all indices �; �;  2 I. In particular G�� = Id on U� and G�1

��
= G�� on

U� \ U� .
Conversely, if we are given a system of invertible r � r matrices G��

with coeÆcients in A(U�\U�) satisfying the transition relation (3.2), we can

de�ne a locally free sheaf S of rank r over A by taking S ' A�r over each

U�, the identi�cation over U� \ U� being given by the isomorphism G�� .

A section H of S over an open set 
 � X can just be seen as a collection of

sectionsH� = (H1
�; : : : ; H

r

�) of A
�r(
\U�) satisfying the transition relations

H� = G��H� over 
 \ U� \ U�.
The notion of locally free sheaf is closely related to another essential

notion of di�erential geometry, namely the notion of vector bundle (resp.

topological, di�erentiable, holomorphic : : :, vector bundle). To describe the

relation between these notions, we assume that the sheaf of rings A is a
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subsheaf of the sheaf CK of continous functions on X with values in the �eld

K = R or K = C , containing the sheaf of locally constant functions X ! K .

Then, for each x 2 X, there is an evaluation map

Ax ! K ; w 7! w(x)

whose kernel is a maximal ideal mx of Ax, and Ax=mx = K . Let S be a locally

free sheaf of rank r over A. To each x 2 X, we can associate a K -vector space

Ex = Sx=mxSx: since Sx ' A�r
x
, we have Ex ' (Ax=mx)

�r = K r . The set

E =
`
x2X Ex is equipped with a natural projection

� : E ! X; � 2 Ex 7! �(�) := x;

and the �bers Ex = ��1(x) have a structure of r-dimensional K -vector space:

such a structure E is called a K -vector bundle of rank r over X. Every section

s 2 S(U) gives rise to a section of E over U by setting s(x) = sx mod mx.

We obtain a function (still denoted by the same symbol) s : U ! E such

that s(x) 2 Ex for every x 2 U , i.e. � Æ s = IdU . It is clear that S(U) can be

considered as a A(U)-submodule of the K -vector space of functions U ! E

mapping a point x 2 U to an element in the �ber Ex. Thus we get a subsheaf

of the sheaf of E-valued sections, which is in a natural way a A-module

isomorphic to S. This subsheaf will be denoted by A(E) and will be called

the sheaf of A-sections of E. If we are given a K -vector bundle E over X and

a subsheaf S = A(E) of the sheaf of all sections of E which is in a natural

way a locally free A-module of rank r, we say that E (or more precisely the

pair (E;A(E))) is a A-vector bundle of rank r over X.

(3.3) Example. In case A = CX;K is the sheaf of all K -valued continuous

functions on X, we say that E is a topological vector bundle over X. When

X is a manifold and A = C
p

X;K
, we say that E is a Cp-di�erentiable vector

bundle; �nally, when X is complex analytic and A = OX , we say that E is a

holomorphic vector bundle.

Let us introduce still a little more notation. Since A(E) is a locally

free sheaf of rank r over any open set U� in a suitable covering of X, a

choice of generators (F 1
�
; : : : ; F r

�
) for A(E)�U� yields corresponding genera-

tors (e1
�
(x); : : : ; er

�
(x)) of the �bers Ex over K . Such a system of generators

is called a A-admissible frame of E over U�. There is a corresponding iso-

morphism

(3:4) �� : E�U� := ��1(U�) �! U� � K r

which to each � 2 Ex associates the pair (x; (�1�; : : : ; �r�)) 2 U��K r composed

of x and of the components (�j
�
)1�j�r of � in the basis (e1

�
(x); : : : ; er

�
(x))

of Ex. The bundle E is said to be trivial if it is of the form X � K r , which

is the same as saying that A(E) = A�r. For this reason, the isomorphisms
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�� are called trivializations of E over U�. The corresponding transition au-

tomorphisms are

��� := �� Æ ��1� : (U� \ U�)� K r �! (U� \ U�)� K r ;
���(x; �) = (x; g��(x) � �); (x; �) 2 (U� \ U�)� K r ;

where (g��) 2 GLr(A)(U�\U�) are the transition matrices already described

(except that they are just seen as matrices with coeÆcients in K rather than

with coeÆcients in a sheaf). Conversely, if we are given a collection of matrices

g�� = (g
jk

��
) 2 GLr(A)(U� \ U�) satisfying the transition relation

g� = g��g� on U� \ U� \ U ;
we can de�ne a A-vector bundle

E =
�a
�2I

U� � K r
�
= �

by gluing the charts U� � K r via the identi�cation (x�; ��) � (x�; ��) if and

only if x� = x� = x 2 U� \ U� and �� = g��(x) � ��.

(3.5) Example. When X is a real di�erentiable manifold, an interesting

example of real vector bundle is the tangent bundle TX ; if �� : U� ! Rn is a

collection of coordinate charts on X, then �� = � � d�� : TX�U� ! U� � Rm
de�ne trivializations of TX and the transition matrices are given by g��(x) =

d���(x
�) where ��� = �� Æ ��1� and x� = ��(x). The dual T ?

X
of TX is

called the cotangent bundle of X. If X is complex analytic, then TX has the

structure of a holomorphic vector bundle.

We now briey discuss the concept of sheaf and bundle morphisms. If

S and S0 are sheaves of A-modules over a topological space X, then by a

morphism ' : S ! S0 we just mean a A-linear sheaf morphism. If S = A(E)

and S0 = A(E0) are locally free sheaves, this is the same as a A-linear bundle

morphism, that is, a �ber preserving K -linear morphism '(x) : Ex ! E0
x

such that the matrix representing ' in any local A-admissible frames of E

and E0 has coeÆcients in A.

(3.6) Proposition. Suppose that A is a sheaf of local rings, i.e. that a section

of A is invertible in A if and only if it never takes the zero value in K . Let

' : S! S0 be a A-morphism of locally free A-modules of rank r, r0. If the rank
of the r0�r matrix '(x) 2Mr0r(K ) is constant for all x 2 X, then Ker' and

Im' are locally free subsheaves of S, S0 respectively, and Coker' = S0= Im'

is locally free.

Proof. This is just a consequence of elementary linear algebra, once we know

that non zero determinants with coeÆcients in A can be inverted. �
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Note that all three sheaves CX;K , C
p

X;K
, OX are sheaves of local rings, so

Prop. 3.6 applies to these cases. However, even if we work in the holomorphic

category (A = OX), a diÆculty immediately appears that the kernel or cok-

ernel of an arbitrary morphism of locally free sheaves is in general not locally

free.

(3.7) Examples.

a) Take X = C , let S = S0 = O be the trivial sheaf, and let ' : O ! O

be the morphism u(z) 7! z u(z). It is immediately seen that ' is in-

jective as a sheaf morphism (O being an entire ring), and that Coker'

is the skyscraper sheaf C 0 of stalk C at z = 0, having zero stalks at

all other points z 6= 0. Thus Coker' is not a locally free sheaf, al-

though ' is everywhere injective (note however that the corresponding

morphism ' : E ! E0, (z; �) 7! (z; z�) of trivial rank 1 vector bundles

E = E0 = C � C is not injective on the zero �ber E0).

b) Take X = C 3 , S = O�3, S0 = O and

' : O�3 ! O; (u1; u2; u3) 7!
X

1�j�3
zjuj(z1; z2; z3):

Since ' yields a surjective bundle morphism on C 3 r f0g, one easily sees

that Ker' is locally free of rank 2 over C 3 r f0g. However, by looking at

the Taylor expansion of the uj 's at 0, it is not diÆcult to check that Ker'

is the O-submodule of O�3 generated by the three sections (�z2; z1; 0),
(�z3; 0; z1) and (0; z3;�z2), and that any two of these three sections can-

not generate the 0-stalk (Ker')0. Hence Ker' is not locally free.

Since the category of locally free O-modules is not stable by taking kernels

or cokernels, one is led to introduce a more general category which will be

stable under these operations. This leads to the notion of coherent sheaves.

x3.2. Notion of Coherence

The notion of coherence again deals with sheaves of modules over a sheaf

of rings. It is a semi-local property which says roughly that the sheaf of

modules locally has a �nite presentation in terms of generators and relations.

We describe here some general properties of this notion, before concentrating

ourselves on the case of coherent OX -modules.

(3.8) De�nition. Let A be a sheaf of rings on a topological space X and S a

sheaf of modules over A (or briey a A-module). Then S is said to be locally

�nitely generated if for every point x0 2 X one can �nd a neighborhood 


and sections F1; : : : ; Fq 2 S(
) such that for every x 2 
 the stalk Sx is

generated by the germs F1;x; : : : ; Fq;x as an Ax-module.
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(3.9) Lemma. Let S be a locally �nitely generated sheaf of A-modules on X

and G1; : : : ; GN sections in S(U) such that G1;x0 ; : : : ; GN;x0 generate Sx0 at

x0 2 U . Then G1;x; : : : ; GN;x generate Sx for x near x0.

Proof. Take F1; : : : ; Fq as in Def. 3.8. As G1; : : : ; GN generate Sx0 , one can

�nd a neighborhood 
0 � 
 of x0 and Hjk 2 A(
0) such that Fj =
P
HjkGk

on 
0. Thus G1;x; : : : ; GN;x generate Sx for all x 2 
0. �

x3.2.1. De�nition of Coherent Sheaves. If U is an open subset ofX, we denote

by S�U the restriction of S to U , i.e. the union of all stalks Sx for x 2 U . If
F1; : : : ; Fq 2 S(U), the kernel of the sheaf homomorphism F : A

�q
�U �! S�U

de�ned by

(3:10) A�qx 3 (g1; : : : ; gq) 7�!
X

1�j�q
gjFj;x 2 Sx; x 2 U

is a subsheaf R(F1; : : : ; Fq) of A
�q
�U , called the sheaf of relations between

F1; : : : ; Fq.

(3.11) De�nition. A sheaf S of A-modules on X is said to be coherent if:

a) S is locally �nitely generated ;

b) for any open subset U of X and any F1; : : : ; Fq 2 S(U), the sheaf of

relations R(F1; : : : ; Fq) is locally �nitely generated.

Assumption a) means that every point x 2 X has a neighborhood 
 such

that there is a surjective sheaf morphism F : A
�q
�
 �! S�
 , and assumption b)

implies that the kernel of F is locally �nitely generated. Thus, after shrinking


, we see that S admits over 
 a �nite presentation under the form of an

exact sequence

(3:12) A
�p
�


G�! A
�q
�


F�! S�
 �! 0;

where G is given by a q� p matrix (Gjk) of sections of A(
) whose columns

(Gj1); : : : ; (Gjp) are generators of R(F1; : : : ; Fq).

It is clear that every locally �nitely generated subsheaf of a coherent sheaf

is coherent. From this we easily infer:

(3.13) Theorem. Let ' : F �! G be a A-morphism of coherent sheaves.

Then Im' and ker' are coherent.

Proof. Clearly Im' is a locally �nitely generated subsheaf of G, so it is coher-

ent. Let x0 2 X, let F1; : : : ; Fq 2 F(
) be generators of F on a neighborhood


 of x0, and G1; : : : ; Gr 2 A(
0)�q be generators of R
�
'(F1); : : : ; '(Fq)

�
on

a neighborhood 
0 � 
 of x0. Then ker' is generated over 
0 by the sections
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Hj =

qX
k=1

Gk
j
Fk 2 F(
0); 1 � j � r: �

(3.14) Theorem. Let 0 �! F �! S �! G �! 0 be an exact sequence

of A-modules. If two of the sheaves F; S;G are coherent, then all three are

coherent.

Proof. If S and G are coherent, then F = ker(S! G) is coherent by Th. 3.13.

If S and F are coherent, then G is locally �nitely generated; to prove the

coherence, let G1; : : : ; Gq 2 G(U) and x0 2 U . Then there is a neighborhood


 of x0 and sections ~G1; : : : ; ~Gq 2 S(
) which are mapped to G1; : : : ; Gq
on 
. After shrinking 
, we may assume also that F�
 is generated by sec-

tions F1; : : : ; Fp 2 F(
). Then R(G1; : : : ; Gq) is the projection on the last

q-components of R(F1; : : : ; Fp; ~G1; : : : ; ~Gq) � Ap+q, which is �nitely gener-

ated near x0 by the coherence of S. Hence R(G1; : : : ; Gq) is �nitely generated

near x0 and G is coherent.

Finally, assume that F and G are coherent. Let x0 2 X be any point, let

F1; : : : ; Fp 2 F(
) and G1; : : : ; Gq 2 G(
) be generators of F, G on a neigh-

borhood 
 of x0. There is a neighborhood 

0 of x0 such that G1; : : : ; Gq ad-

mit liftings ~G1; : : : ; ~Gq 2 S(
0). Then (F1; : : : ; Fq; ~G1; : : : ; ~Gq) generate S�
0 ,

so S is locally �nitely generated. Now, let S1; : : : ; Sq be arbitrary sections in

S(U) and S1; : : : ; Sq their images in G(U). For any x0 2 U , the sheaf of rela-
tions R(S1; : : : ; Sq) is generated by sections P1; : : : ; Ps 2 A(
)�q on a small

neighborhood 
 of x0. Set Pj = (P k
j
)1�k�q. Then Hj = P 1

j
S1 + : : :+ P

q

j
Sq,

1 � j � s, are mapped to 0 in G so they can be seen as sections of F. The

coherence of F shows that R(H1; : : : ; Hs) has generators Q1; : : : ; Qt 2 A(
0)s
on a small neighborhood 
0 � 
 of x0. Then R(S1; : : : ; Sq) is generated over


0 by Rj =
P
Qk
j
Pk 2 A(
0), 1 � j � t, and S is coherent. �

(3.15) Corollary. If F and G are coherent subsheaves of a coherent analytic

sheaf S, the intersection F \ G is a coherent sheaf.

Proof. Indeed, the intersection sheaf F \ G is the kernel of the composite

morphism F ,�! S �! S=G; and S=G is coherent. �

x3.2.2. Coherent Sheaf of Rings. A sheaf of rings A is said to be coherent

if it is coherent as a module over itself. By Def. 3.11, this means that for

any open set U � X and any sections Fj 2 A(U), the sheaf of relations

R(F1; : : : ; Fq) is �nitely generated. The above results then imply that all free

modules A�p are coherent. As a consequence:

(3.16) Theorem. If A is a coherent sheaf of rings, any locally �nitely gene-

rated subsheaf of A�p is coherent. In particular, if S is a coherent A-module



100 Chapter II. Coherent Sheaves and Analytic Spaces

and F1; : : : ; Fq 2 S(U), the sheaf of relations R(F1; : : : ; Fq) � A�q is also

coherent.

Let S be a coherent sheaf of modules over a coherent sheaf of ring A. By

an iteration of construction (3.12), we see that for every integer m � 0 and

every point x 2 X there is a neighborhood 
 of x on which there is an exact

sequence of sheaves

(3:17) A
�pm
�


Fm�! A
�pm�1
�
 �! � � � �! A

�p1
�


F1�! A
�p0
�


F0�! S�
 �! 0;

where Fj is given by a pj�1 � pj matrix of sections in A(
).

x3.3. Analytic Sheaves and the Oka Theorem

Many properties of holomorphic functions which will be considered in this

book can be expressed in terms of sheaves. Among them, analytic sheaves

play a central role. The Oka theorem (Oka 1950) asserting the coherence of

the sheaf of holomorphic functions can be seen as a far-reaching deepening of

the noetherian property seen in Sect. 1. The theory of analytic sheaves could

not be presented without it.

(3.18) De�nition. LetM be a n-dimensional complex analytic manifold and

let OM be the sheaf of germs of analytic functions on M . An analytic sheaf

over M is by de�nition a sheaf S of modules over OM .

(3.19) Coherence theorem of Oka. The sheaf of rings OM is coherent for

any complex manifold M .

Let F1; : : : ; Fq 2 O(U). Since OM;x is Noetherian, we already know that

every stalk R(F1; : : : ; Fq)x � O
�q
M;x

is �nitely generated, but the important

new fact expressed by the theorem is that the sheaf of relations is locally

�nitely generated, namely that the \same" generators can be chosen to gen-

erate each stalk in a neighborhood of a given point.

Proof. By induction on n = dimC M . For n = 0, the stalks OM;x are equal

to C and the result is trivial. Assume now that n � 1 and that the result

has already been proved in dimension n� 1. Let U be an open set of M and

F1; : : : ; Fq 2 OM (U). To show that R(F1; : : : ; Fq) is locally �nitely generated,

we may assume that U = � = �0��n is a polydisk in C
n centered at x0 = 0 ;

after a change of coordinates and multiplication of F1; : : : ; Fq by invertible

functions, we may also suppose that F1; : : : ; Fq are Weierstrass polynomials

in zn with coeÆcients in O(�0). We need a lemma.

(3.20) Lemma. If x = (x0; xn) 2 �, the O�;x-module R(F1; : : : ; Fq)x is

generated by those of its elements whose components are germs of analytic



x3. Coherent Sheaves 101

polynomials in O�0;x0 [zn] with a degree in zn at most equal to �, the maximum

of the degrees of F1; : : : ; Fq.

Proof. Assume for example that Fq is of the maximum degree �. By the

Weierstrass preparation Th. 1.1 and Lemma 1.9 applied at x, we can write

Fq;x = f 0f 00 where f 0; f 00 2 O�0;x0 [zn], f
0 is a Weierstrass polynomial in

zn � xn and f 00(x) 6= 0. Let �0 and �00 denote the degrees of f 0 and f 00 with
respect to zn, so �

0 + �00 = �. Now, take (g1; : : : ; gq) 2 R(F1; : : : ; Fq)x. The
Weierstrass division theorem gives

gj = Fq;xt
j + rj ; j = 1; : : : ; q � 1;

where tj 2 O�;x and rj 2 O�0;x0 [zn] is a polynomial of degree < �0. For
j = q, de�ne rq = gq +

P
1�j�q�1 t

jFj;x. We can write

(3:21) (g1; : : : ; gq) =
X

1�j�q
tj(0; : : : ; Fq; : : : ; 0;�Fj)x + (r1; : : : ; rq)

where Fq is in the j-th position in the q-tuples of the summation. Since these

q-tuples are in R(F1; : : : ; Fq)x, we have (r
1; : : : ; rq) 2 R(F1; : : : ; Fq)x, thusX

1�j�q�1
Fj;xr

j + f 0f 00rq = 0:

As the sum is a polynomial in zn of degree < �+�0, it follows from Lemma 1.9

that f 00rq is a polynomial in zn of degree < �. Now we have

(r1; : : : ; rq) = 1=f 00(f 00r1; : : : ; f 00rq)

where f 00rj is of degree < �0+�00 = �. In combination with (3.21) this proves

the lemma. �

Proof of Theorem 3.19 (end) If g = (g1; : : : ; gq) is one of the polynomials of

R(F1; : : : ; Fq)x described in Lemma 3.20, we can write

gj =
X

0�k��
ujkzkn; ujk 2 O�0;x0 :

The condition for (g1; : : : ; gq) to belong to R(F1; : : : ; Fq)x therefore consists

of 2�+ 1 linear conditions for the germ u = (ujk) with coeÆcients in O(�0).
By the induction hypothesis, O�0 is coherent and Th. 3.16 shows that the

corresponding modules of relations are generated over O�0;x0 , for x
0 in a

neighborhood 
0 of 0, by �nitely many (q��)-tuples U1; : : : ; UN 2 O(
0)q�.
By Lemma 3.20, R(F1; : : : ; Fq)x is generated at every point x 2 
 = 
0��n

by the germs of the corresponding polynomials

Gl(z) =
� X
0�k��

U
jk

l
(z0)zk

n

�
1�j�q

; z 2 
; 1 � l � N: �
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(3.22) Strong Noetherian property. Let F be a coherent analytic sheaf

on a complex manifold M and let F1 � F2 � : : : be an increasing sequence

of coherent subsheaves of F. Then the sequence (Fk) is stationary on every

compact subset of M .

Proof. Since F is locally a quotient of a free module O
�q
M
, we can pull back

the sequence to O
�q
M

and thus suppose F = OM (by easy reductions similar to

those in the proof of Th. 3.14). SupposeM connected and Fk0 6= f0g for some

index k0 (otherwise, there is nothing to prove). By the analytic continuation

theorem, we easily see that Fk0;x 6= f0g for every x 2 M . We can thus �nd

a non zero Weierstrass polynomial P 2 Fk0(V ), degznP (z
0; zn) = �, in a

coordinate neighborhood V = �0 � �n of any point x 2 M . A division by

P shows that for k � k0 and x 2 V , all stalks Fk;x are generated by Px and

by polynomials of degree < � in zn with coeÆcients in O�0;x0 . Therefore, we

can apply induction on n to the coherent O�0 -module

F0 = F \ �Q 2 O�0 [zn] ; degQ � �	
and its increasing sequence of coherent subsheaves F0

k
= Fk \ F0. �

x4. Complex Analytic Sets. Local Properties

x4.1. De�nition. Irreducible Components

A complex analytic set is a set which can be de�ned locally by �nitely many

holomorphic equations; such a set has in general singular points, because no

assumption is made on the di�erentials of the equations. We are interested

both in the description of the singularities and in the study of algebraic

properties of holomorphic functions on analytic sets. For a more detailed

study than ours, we refer to H. Cartan's seminar (Cartan 1950), to the books

of (Gunning-Rossi 1965), (Narasimhan 1966) or the recent book by (Grauert-

Remmert 1984).

(4.1) De�nition. Let M be a complex analytic manifold. A subset A �M is

said to be an analytic subset of M if A is closed and if for every point x0 2 A
there exist a neighborhood U of x0 and holomorphic functions g1; : : : ; gn in

O(U) such that

A \ U = fz 2 U ; g1(z) = : : : = gN (z) = 0g:
Then g1; : : : ; gN are said to be (local) equations of A in U .

It is easy to see that a �nite union or intersection of analytic sets is

analytic: if (g0
j
), (g00

k
) are equations of A0, A00 in the open set U , then the
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family of all products (g0
j
g00
k
) and the family (g0

j
) [ (g00

k
) de�ne equations of

A0 [A00 and A0 \A00 respectively.

(4.2) Remark. Assume that M is connected. The analytic continuation

theorem shows that either A = M or A has no interior point. In the latter

case, each piece A \ U = g�1(0) is the set of points where the function

log jgj2 = log(jg1j2 + � � �+ jgN j2) 2 Psh(U) takes the value �1, hence A is

pluripolar. In particularMrA is connected and every function f 2 O(MrA)

that is locally bounded near A can be extended to a function ~f 2 O(M). �

We focus now our attention on local properties of analytic sets. By de�-

nition, a germ of set at a point x 2M is an equivalence class of elements in

the power set P(M), with A � B if there is an open neighborhood V of x

such that A\ V = B \ V . The germ of a subset A �M at x will be denoted

by (A; x). We most often consider the case when A � M is a analytic set

in a neighborhood U of x, and in this case we denote by IA;x the ideal of

germs f 2 OM;x which vanish on (A; x). Conversely, if J = (g1; : : : ; gN) is

an ideal of OM;x, we denote by
�
V (J); x

�
the germ at x of the zero variety

V (J) = fz 2 U ; g1(z) = : : : = gN (z) = 0g, where U is a neighborhood of x

such that gj 2 O(U). It is easy to check that the germ (V (cJ); x) does not

depend on the choice of generators. Moreover, it is clear that

for every ideal J in the ring OM;x, IV (J);x � J;(4:30)

for every germ of analytic set (A; x),
�
V (IA;x); x

�
= (A; x):(4:300)

(4.4) De�nition. A germ (A; x) is said to be irreducible if it has no decom-

position (A; x) = (A1; x)[(A2; x) with analytic sets (Aj; x) 6= (A; x), j = 1; 2.

(4.5) Proposition. A germ (A; x) is irreducible if and only if IA;x is a prime

ideal of the ring OM;x.

Proof. Let us recall that an ideal J is said to be prime if fg 2 J implies f 2 J
or g 2 J. Assume that (A; x) is irreducible and that fg 2 IA;x. As we can

write (A; x) = (A1; x) [ (A2; x) with A1 = A \ f�1(0) and A2 = A \ g�1(0),
we must have for example (A1; x) = (A; x) ; thus f 2 IA;x and IA;x is prime.

Conversely, if (A; x) = (A1; x) [ (A2; x) with (Aj ; x) 6= (A; x), there exist

f 2 IA1;x
, g 2 IA2;x

such that f; g =2 IA;x. However fg 2 IA;x, thus IA;x is

not prime. �

(4.6) Theorem. Every decreasing sequence of germs of analytic sets (Ak; x)

is stationary.

Proof. In fact, the corresponding sequence of ideals Jk = IAk;x is increa-

sing, thus Jk = Jk0 for k � k0 large enough by the Noetherian property
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of OM;x. Hence (Ak; x) =
�
V (Jk); x

�
is constant for k � k0. This result has

the following straightforward consequence: �

(4.7) Theorem. Every analytic germ (A; x) has a �nite decomposition

(A; x) =
[

1�k�N
(Ak; x)

where the germs (Aj ; x) are irreducible and (Aj; x) 6� (Ak; x) for j 6= k. The

decomposition is unique apart from the ordering.

Proof. If (A; x) can be split in several components, we split repeatedly

each component as long as one of them is reducible. The process must

stop by Th. 4.6, whence the existence. For the uniqueness, assume that

(A; x) =
S
(A0

l
; x), 1 � l � N 0, is another decomposition. Since (Ak; x) =S

l
(Ak \ A0l; x), we must have (Ak; x) = (Ak \ A0l; x) for some l = l(k), i.e.

(Ak; x) � (A0
l(k); x), and likewise (A0

l(k); x) � (Aj ; x) for some j. Hence j = k

and (A0
l(k)

; x) = (Ak; x). �

x4.2. Local Structure of a Germ of Analytic Set

We are going to describe the local structure of a germ, both from the holo-

morphic and topological points of view. By the above decomposition theo-

rem, we may restrict ourselves to the case of irreducible germs Let J be a

prime ideal of On = OCn ;0 and let A = V (J) be its zero variety. We set

Jk = J \ C fz1 ; : : : ; zkg for each k = 0; 1; : : : ; n.

(4.8) Proposition. There exist an integer d, a basis (e1; : : : ; en) of C
n and

associated coordinates (z1; : : : ; zn) with the following properties: Jd = f0g and
for every integer k = d+ 1; : : : ; n there is a Weierstrass polynomial Pk 2 Jk
of the form

(4:9) Pk(z
0; zk) = zsk

k
+

X
1�j�sk

aj;k(z
0) zsk�j

k
; aj;k(z

0) 2 Ok�1;

where aj;k(z
0) = O(jz0jj). Moreover, the basis (e1; : : : ; en) can be chosen ar-

bitrarily close to any preassigned basis (e01; : : : ; e
0
n).

Proof. By induction on n. If J = Jn = f0g, then d = n and there is nothing

to prove. Otherwise, select a non zero element gn 2 J and a vector en such

that C 3 w 7�! gn(wen) has minimum vanishing order sn. This choice ex-

cludes at most the algebraic set g
(sn)
n (v) = 0, so en can be taken arbitrarily

close to e0
n
. Let (~z1; : : : ; ~zn�1; zn) be the coordinates associated to the ba-

sis (e01; : : : ; e
0
n�1; en). After multiplication by an invertible element, we may

assume that gn is a Weierstrass polynomial
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Pn(~z; zn) = zsn
n

+
X

1�j�sn
aj;n(~z) z

sn�j
n

; aj;n 2 On�1;

and aj;n(~z) = O(j~zjj) by Remark 2.2. If Jn�1 = J \ C f~zg = f0g then d =

n � 1 and the construction is �nished. Otherwise we apply the induction

hypothesis to the ideal Jn�1 � On�1 in order to �nd a new basis (e1; : : : ; en�1)
of Vect(e01; : : : ; e

0
n�1), associated coordinates (z1; : : : ; zn�1) and Weierstrass

polynomials Pk 2 Jk, d+ 1 � k � n� 1, as stated in the lemma. �

(4.10) Lemma. If w 2 C is a root of wd + a1w
d�1 + � � �+ ad = 0, aj 2 C ,

then jwj � 2max jajj1=j.

Proof. Otherwise jwj > 2jajj1=j for all j = 1; : : : ; d and the given equation

�1 = a1=w + � � �+ ad=w
d implies 1 � 2�1 + � � �+ 2�d, a contradiction. �

(4.11) Corollary. Set z0 = (z1; : : : ; zd), z
00 = (zd+1; : : : ; zn), and let �0 in

C d , �00 in C n�d be polydisks of center 0 and radii r0; r00 > 0. Then the germ

(A; 0) is contained in a cone jz00j � Cjz0j, C = constant, and the restriction

of the projection map C n �! C d , (z0; z00) 7�! z0 :

� : A \ (�0 ��00) �! �0

is proper if r00 is small enough and r0 � r00=C.

Proof. The polynomials Pk(z1; : : : ; zk�1 ; zk) vanish on (A; 0). By Lemma 4.10

and (4.9), every point z 2 A suÆciently close to 0 satis�es

jzkj � Ck(jz1j+ � � �+ jzk�1j); d+ 1 � k � n;
thus jz00j � Cjz0j and the Corollary follows. �

Since Jd = f0g, we have an injective ring morphism

(4:12) Od = C fz1 ; : : : ; zdg ,�! On=J:

(4.13) Proposition. On=J is a �nite integral extension of Od.

Proof. Let f 2 On. A division by Pn yields f = Pnqn +Rn with a remainder

Rn 2 On�1[zn], degzn Rn < sn. Further divisions of the coeÆcients of Rn by

Pn�1, Pn�2 etc : : : yield

Rk+1 = Pkqk + Rk; Rk 2 Ok[zk+1; : : : ; zn];
where degzj Rk < sj for j > k. Hence

(4:14) f = Rd +
X

d+1�k�n
Pkqk = Rd mod (Pd+1; : : : ; Pn) � J
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and On=J is �nitely generated as an Od-module by the family of monomials

z
�d+1

d+1 : : : z�n
n

with �j < sj . �

As J is prime, On=J is an entire ring. We denote by ~f the class of any

germ f 2 On in On=J, by MA and Md the quotient �elds of On=J and

Od respectively. Then MA = Md[~zd+1; : : : ; ~zn] is a �nite algebraic extension

of Md. Let q = [MA:Md] be its degree and let �1; : : : ; �q be the embeddings

of MA over Md in an algebraic closure MA. Let us recall that a factorial ring

is integrally closed in its quotient �eld (Lang 1965, Chapter IX). Hence every

element of Md which is integral over Od lies in fact in Od. By the primitive

element theorem, there exists a linear form u(z00) = cd+1zd+1+� � �+cnzn, ck 2
C , such thatMA =Md[~u] ; in fact, u is of degree q if and only if �1~u; : : : ; �q~u

are all distinct, and this excludes at most a �nite number of vector subspaces

in the space C n�d of coeÆcients (cd+1; : : : ; cn). As ~u 2 On=J is integral over
the integrally closed ring Od, the unitary irreducible polynomialWu of ~u over

Md has coeÆcients in Od :

Wu(z
0 ;T ) = T q +

X
1�j�q

aj(z1; : : : ; zd)T
q�j; aj 2 Od:

Wu must be a Weierstrass polynomial, otherwise there would exist a facto-

rization Wu = W 0Q in Od[T ] with a Weierstrass polynomial W 0 of degree
degW 0 < q = deg ~u and Q(0) 6= 0, hence W 0(~u) = 0, a contradiction. In the

same way, we see that ~zd+1; : : : ; ~zn have irreducible equationsWk(z
0 ; ~zk) = 0

where Wk 2 Od[T ] is a Weierstrass polynomial of degree = deg ~zk � q,

d+ 1 � k � n.

(4.15) Lemma. Let Æ(z0) 2 Od be the discriminant of Wu(z
0 ;T ). For every

element g of MA which is integral over Od (or equivalently over On=J) we

have Æg 2 Od[~u].

Proof. We have Æ(z0) =
Q
j<k

(�k~u��j ~u)2 6� 0 , and g 2MA =Md[~u] can be

written

g =
X

0�j�q�1
bj ~u

j ; bj 2Md;

where b0; : : : ; bd�1 are the solutions of the linear system �kg =
P
bj(�k~u)

j ;

the determinant (of Van der Monde type) is Æ1=2. It follows that Æbj 2Md are

polynomials in �kg and �k~u, thus Æbj is integral over Od. As Od is integrally

closed, we must have Æbj 2 Od, hence Æg 2 Od[~u]. �

In particular, there exist unique polynomials Bd+1, : : :, Bn 2 Od[T ] with
degBk � q � 1, such that

(4:16) Æ(z0)zk = Bk(z
0 ;u(z00)) (mod J):
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Then we have

(4:17) Æ(z0)qWk

�
z0 ;Bk(z

0 ; T )=Æ(z0)
� 2 ideal Wu(z

0 ; T )Od[T ] ;

indeed, the left-hand side is a polynomial in Od[T ] and admits T = ~u as a

root in On=J since Bk(z
0 ; ~u)=Æ(z0) = ~zk and Wk(z

0 ; ~zk) = 0.

(4.18) Lemma. Consider the ideal

G =
�
Wu(z

0 ;u(z00)) ; Æ(z0)zk �Bk(z0 ;u(z00))
� � J

and set m = maxfq; (n� d)(q � 1)g. For every germ f 2 On, there exists a

unique polynomial R 2 Od[T ], degT R � q � 1, such that

Æ(z0)mf(z) = R(z0 ;u(z00)) (mod G):

Moreover f 2 J implies R = 0, hence ÆmJ � G.

Proof. By (4.17) and a substitution of zk, we �nd Æ(z
0)qWk(z

0 ; zk) 2 G. The
analogue of formula (4.14) with Wk in place of Pk yields

f = Rd +
X

d+1�k�n
Wkqk; Rd 2 Od[zd+1; : : : ; zn];

with deg
zk
Rd < deg Wk � q, thus Æmf = ÆmRd mod G. We may therefore

replace f by Rd and assume that f 2 Od[zd+1; : : : ; zn] is a polynomial of total

degree � (n�d)(q�1) � m. A substitution of zk by Bk(z
0 ;u(z00))=Æ(z0) yields

G 2 Od[T ] such that

Æ(z0)mf(z) = G(z0 ;u(z00)) mod
�
Æ(z0)zk � Bk(z0 ;u(z00))

�
:

Finally, a division G = WuQ + R gives the required polynomial R 2 Od[T ].
The last statement is clear: if f 2 J satis�es Æm(z0)f(z) = R(z ;u(z00)) mod

G for deg
T
R < q, then R(z0 ; ~u) = 0, and as ~u 2 On=J is of degree q, we must

have R = 0. The uniqueness of R is proved similarly. �

(4.19) Local parametrization theorem. Let J be a prime ideal of On and

let A = V (J). Assume that the coordinates

(z0 ; z00) = (z1; : : : ; zd ; zd+1; : : : ; zn)

are chosen as above. Then the ring On=J is a �nite integral extension of Od ;

let q be the degree of the extension and let Æ(z0) 2 Od be the discriminant

of the irreducible polynomial of a primitive element u(z00) =
P
k>d

ckzk. If

�0; �00 are polydisks of suÆciently small radii r0; r00 and if r0 � r00=C with C

large, the projection map � : A\(�0��00) �! �0 is a rami�ed covering with

q sheets, whose rami�cation locus is contained in S = fz0 2 �0; Æ(z0) = 0g.
This means that:
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a) the open subset AS = A \ �(�0 r S) � �00� is a smooth d-dimensional

manifold, dense in A \ (�0 ��00) ;
b) � : AS �! �0 r S is a covering ;

c) the �bers ��1(z0) have exactly q elements if z0 =2 S and at most q if z0 2 S:
Moreover, AS is a connected covering of �0rS, and A\(�0��00) is contained
in a cone jz00j � Cjz0j (see Fig. 1).

Fig. 1 Rami�ed covering from A to �0 � C
p .

Proof. After a linear change in the coordinates zd+1; : : : ; zn, we may assume

u(z00) = zd+1, so Wu =Wd+1 and Bd+1(z
0 ;T ) = Æ(z0)T . By Lemma 4.18, we

have

G =
�
Wd+1(z

0; zd+1) ; Æ(z
0)zk �Bk(z0; zd+1)

�
k�d+2 � J; ÆmJ � G:

We can thus �nd a polydisk � = �0��00 of suÆciently small radii r0; r00 such
that V (J) � V (G) � V (ÆmJ) in �. As V (J) = A and V (Æ) \ � = S � �00,
this implies

A \� � V (G) \� � (A \�) [ (S ��00):
In particular, the set AS = A\ �(�0rS)��00� lying above �0rS coincides

with V (G) \ �(�0 r S)��00�, which is the set of points z 2 � parametrized

by the equations

(4:20)

�
Æ(z0) 6= 0; Wd+1(z

0; zd+1) = 0;

zk = Bk(z
0; zd+1)=Æ(z0); d+ 2 � k � n:

As Æ(z0) is the resultant of Wd+1 and @Wd+1=@T , we have

@Wd+1=@T (z
0; zd+1) 6= 0 on AS:
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The implicit function theorem shows that zd+1 is locally a holomorphic func-

tion of z0 on AS , and the same is true for zk = Bk(z
0; zd+1)=Æ(z0), k � d+ 2.

Hence AS is a smooth manifold, and for r0 � r00=C small, the projection

map � : AS �! �0rS is a proper local di�eomorphism; by (4.20) the �bers

��1(z0) have at most q points corresponding to some of the q roots w of

Wd+1(z
0 ;w) = 0. Since �0 r S is connected (Remark 4.2), either AS = ;

or the map � is a covering of constant sheet number q0 � q. However, if

w is a root of Wd+1(z
0; w) = 0 with z0 2 �0 r S and if we set zd+1 = w,

zk = Bk(z
0; w)=Æ(z0), k � d+2, relation (4:17) shows that Wk(z

0; zk) = 0, in

particular jzkj = O(jz0j1=q) by Lemma 4.10. For z0 small enough, the q points

z = (z0; z00) de�ned in this way lie in �, thus q0 = q. Property b) and the

�rst parts of a) and c) follow. Now, we need the following lemma.

(4.21) Lemma. If J � On is prime and A = V (J), then IA;0 = J.

Proof I t is obvious that IA;0 � J. Now, for any f 2 IA;0, Prop. 4.13 implies

that ~f satis�es in On=I an irreducible equation

fr + b1(z
0) fr�1 + � � �+ br(z

0) = 0 (mod J):

Then br(z
0) vanishes on (A; 0) and the �rst part of c) gives br = 0 on �0rS.

Hence ~br = 0 and the irreducibility of the equation of ~f implies r = 1, so

f 2 J, as desired. �

Proof of Theorem 4.19 (end). It only remains to prove that AS is connected

and dense in A \ � and that the �bers ��1(z0), z0 2 S, have at most q

elements. Let AS;1; : : : ; AS;N be the connected components of AS. Then � :

AS;j �! �0rS is a covering with qj sheets, q1+ � � �+qN = q. For every point

� 0 2 �0 r S, there exists a neighborhood U of � 0 such that AS;j \ ��1(U)
is a disjoint union of graphs z00 = gj;k(z

0) of analytic functions gj;k 2 O(U),
1 � k � qj . If �(z00) is an arbitrary linear form in zd+1; : : : ; zn and z

0 2 �0rS,
we set

P�;j(z
0 ;T ) =

Y
fz00 ; (z0;z00)2AS;jg

�
T � �(z00)� = Y

1�k�kj

�
T � � Æ gj;k(z0)

�
:

This de�nes a polynomial in T with bounded analytic coeÆcients on �0rS.
These coeÆcients have analytic extensions to �0 (Remark 4.2), thus P�;j 2
O(�0)[T ]. By construction, P�;j

�
z0 ;�(z00)

�
vanishes identically on AS;j. Set

P� =
Y

1�j�N
P�;j ; f(z) = Æ(z0)P�

�
z0 ;�(z00)

�
;

f vanishes on AS;1 [ : : : [ AS;N [ (S � �00) � A \ �. Lemma 4.21 shows

that IA;0 is prime; as Æ =2 IA;0, we get P�;j
�
z0 ;�(z00)

� 2 IA;0 for some j.

This is a contradiction if N � 2 and if � is chosen in such a way that �
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separates the q points z00
�
in each �ber ��1(z0

�
), for a sequence z0

�
! 0 in

�0 r S. Hence N = 1, AS is connected, and for every � 2 (C n�d )? we

have P�
�
z0; �(z00) 2 I(A;0). By construction P�

�
z0; �(z00)

�
vanishes on AS , so

it vanishes on AS ; hence, for every z0 2 S, the �ber AS \ ��1(z0) has at
most q elements, otherwise selecting � which separates q + 1 of these points

would yield q + 1 roots �(z00) of P�(z
0 ;T ), a contradiction. Assume now

that AS is not dense in A \� for arbitrarily small polydisks �. Then there

exists a sequence A 3 z� = (z0
�
; z00
�
) ! 0 such that z0

�
2 S and z00

�
is not

in F� := pr00
�
AS \ ��1(z0�)

�
. The continuity of the roots of the polynomial

P�(z
0 ;T ) as �0 r S 3 z0 ! z0

�
implies that the set of roots of P�(z

0
�
;T ) is

�(F�). Select � such that �(z00
�
) =2 �(F�) for all �. Then P�

�
z0
�
;�(z00

�
)
� 6= 0

for every � and P�
�
z0 ;�(z00)

�
=2 IA;0, a contradiction. �

At this point, it should be observed that many of the above statements

completely fail in the case of real analytic sets. In R2 , for example, the prime

ideal J = (x5 + y4) de�nes an irreducible germ of curve (A; 0) and there

is an injective integral extension of rings Rfxg ,�! Rfx; yg=J of degree 4;

however, the projection of (A; 0) on the �rst factor, (x; y) 7! x, has not a

constant sheet number near 0, and this number is not related to the degree

of the extension. Also, the prime ideal J = (x2+y2) has an associated variety

V (J) reduced to f0g, hence IA;0 = (x; y) is strictly larger than J, in contrast

with Lemma 4.21.

Let us return to the complex situation, which is much better behaved.

The result obtained in Lemma 4.21 can then be extended to non prime ideals

and we get the following important result:

(4.22) Hilbert's Nullstellensatz. For every ideal J � On
IV (J);0 =

p
J;

where
p
J is the radical of J, i.e. the set of germs f 2 On such that some

power fk lies in J.

Proof. Set B = V (J). If fk 2 J, then fk vanishes on (B; 0) and f 2 IB;0.
Thus

p
J � IB;0. Conversely, it is well known that

p
J is the intersection of

all prime ideals P � J (Lang 1965, Chapter VI). For such an ideal (B; 0) =�
V (J); 0) � �

V (P); 0
�
, thus IB;0 � IV (P);0 = P in view of Lemma 4.21.

Therefore IB;0 �
T
P�J P =

p
J and the Theorem is proved. �

In other words, if a germ (B; 0) is de�ned by an arbitrary ideal J � On
and if f 2 On vanishes on (B; 0), then some power fk lies in J.
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x4.3. Regular and Singular Points. Dimension

The above powerful results enable us to investigate the structure of singular-

ities of an analytic set. We �rst give a few de�nitions.

(4.23) De�nition. Let A � M be an analytic set and x 2 A. We say

that x 2 A is a regular point of A if A \ 
 is a C -analytic submanifold of


 for some neighborhood 
 of x. Otherwise x is said to be singular. The

corresponding subsets of A will be denoted respectively Areg and Asing.

It is clear from the de�nition that Areg is an open subset of A (thus

Asing is closed), and that the connected components of Areg are C -analytic

submanifolds of M (non necessarily closed).

(4.24) Proposition. If (A; x) is irreducible, there exist arbitrarily small

neighborhoods 
 of x such that Areg \
 is dense and connected in A \
.

Proof. Take 
 = � as in Th. 4.19. Then AS � Areg\
 � A\
, where AS is

connected and dense in A \
 ; hence Areg \
 has the same properties. �

(4.25) De�nition. The dimension of an irreducible germ of analytic set

(A; x) is de�ned by dim(A; x) = dim(Areg; x). If (A; x) has several irreducible

components (Al; x), we set

dim(A; x) = maxfdim(Al; x)g; codim(A; x) = n� dim(A; x):

(4.26) Proposition. Let (B; x) � (A; x) be germs of analytic sets. If (A; x)

is irreducible and (B; x) 6= (A; x), then dim(B; x) < dim(A; x) and B\
 has

empty interior in A \
 for all suÆciently small neighborhoods 
 of x.

Proof. We may assume x = 0, (A; 0) � (C n ; 0) and (B; 0) irreducible. Then

IA;0 � IB;0 are prime ideals. When we choose suitable coordinates for the

rami�ed coverings, we may at each step select vectors en; en�1; : : : that work
simultaneously for A and B. If dimB = dimA, the process stops for both at

the same time, i.e. we get rami�ed coverings

� : A \ (�0 ��00) �! �0; � : B \ (�0 ��00) �! �0

with rami�cation loci SA; SB. Then B \
�
(�0r (SA [ SB))��00

�
is an open

subset of the manifold AS = A \ �(�0 r SA)��00
�
, therefore B \ AS is an

analytic subset of AS with non empty interior. The same conclusion would

hold if B \� had non empty interior in A \�. As AS is connected, we get

B \ AS = AS, and as B \ � is closed in � we infer B \ � � AS = A \ �,
hence (B; 0) = (A; 0), in contradiction with the hypothesis. �
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(4.27) Example: parametrization of curves. Suppose that (A; 0) is an

irreducible germ of curve (dim(A; 0) = 1). If the disk �0 � C is chosen so

small that S = f0g, then AS is a connected covering of �0rf0g with q sheets.
Hence, there exists a covering isomorphism between � and the standard cov-

ering

C � �(r)r f0g �! �(rq)r f0g; t 7�! tq; rq = radius of �0;

i.e. a map  : �(r)r f0g �! AS such that � Æ (t) = tq. This map extends

into a bijective holomorphic map  : �(r) �! A \ � with (0) = 0. This

means that every irreducible germ of curve can be parametrized by a bijective

holomorphic map de�ned on a disk in C (see also Exercise 10.8).

x4.4. Coherence of Ideal Sheaves

Let A be an analytic set in a complex manifold M . The sheaf of ideals IA
is the subsheaf of OM consisting of germs of holomorphic functions on M

which vanish on A. Its stalks are the ideals IA;x already considered; note

that IA;x = OM;x if x =2 A. If x 2 A, we let OA;x be the ring of germs of

functions on (A; x) which can be extended as germs of holomorphic functions

on (M;x). By de�nition, there is a surjective morphism OM;x �! OA;x whose

kernel is IA;x, thus

(4:28) OA;x = OM;x=IA;x; 8x 2 A;
i.e. OA = (OM=IA)�A. Since IA;x = OM;x for x =2 A, the quotient sheaf

OM=IA is zero on M rA.

(4.29) Theorem (Cartan 1950). For any analytic set A � M , the sheaf of

ideals IA is a coherent analytic sheaf.

Proof. It is suÆcient to prove the result when A is an analytic subset in a

neighborhood of 0 in C n . If (A; 0) is not irreducible, there exists a neigh-

borhood 
 such that A \ 
 = A1 [ : : : [ AN where Ak are analytic sets

in 
 and (Ak; 0) is irreducible. We have IA\
 =
T
IAk , so by Cor. 3.15 we

may assume that (A; 0) is irreducible. Then we can choose coordinates z0, z00,
polydisks �0; �00 and a primitive element u(z00) = cd+1zd+1+ � � �+ cnzn such

that Th. 4.19 is valid. Since Æ(z0) =
Q
j<k

(�k~u � �j ~u)2, we see that Æ(z0)
is in fact a polynomial in the cj 's with coeÆcients in Od. The same is true

for the coeÆcients of the polynomialsWu(z
0 ;T ) and Bk(z0 ;T ) which can be

expressed in terms of the elementary symmetric functions of the �k~u 's. We

suppose that �0 is chosen small enough in order that all coeÆcients of these

Od[cd+1; : : : ; cn] polynomials are in O(�0). Let Æ� 2 O(�0) be some non zero

coeÆcient appearing in Æm =
P
Æ�c

�. Also, let G1; : : : ; GN 2 O(�0)[z00] be
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the coeÆcients of all monomials c� appearing in the expansion of the func-

tionsWu(z
0 ;u(z00)) or Æ(z0)zk�Bk(z0 ;u(z00)). Clearly, G1; : : : ; GN vanish on

A \�. We contend that

(4:30) IA;x =
�
f 2 OM;x ; Æ�f 2 (G1;x; : : : ; GN;x)

	
:

This implies that the sheaf IA is the projection on the �rst factor of the

sheaf of relations R(Æ�; G1; : : : ; GN ) � ON+1
�

, which is coherent by the Oka

theorem; Theorem 4.29 then follows.

We �rst prove that the inclusion IA;x � f: : :g holds in (4.30). In fact, if

Æ�f 2 (G1;x; : : : ; GN;x), then f vanishes on Ar fÆ� = 0g in some neighbor-

hood of x. Since (A \ �) r fÆ� = 0g is dense in A \ �, we conclude that

f 2 IA;x.
To prove the other inclusion IA;x � f: : :g, we repeat the proof of

Lemma 4.18 with a few modi�cations. Let x 2 � be a �xed point. At x, the

irreducible polynomials Wu(z
0 ;T ) and Wk(z

0 ;T ) of ~u and ~zk in OM;0=IA;0
split into

Wu(z
0 ;T ) = Wu;x

�
z0 ;T � u(x00)�Qu;x�z0 ;T � u(x00)�;

Wk(z
0 ;T ) = Wk;x(z

0 ;T � xk)Qk;x(z0 ;T � xk);
where Wu;x(z

0 ;T ) and Wk;x(z
0 ;T ) are Weierstrass polynomials in T and

Qu;x(x
0; 0) 6= 0, Qk;x(x

0; 0) 6= 0. For all z0 2 �0, the roots of Wu(z
0 ;T ) are

the values u(z00) at all points z 2 A \ ��1(z0). As A is closed, any point

z 2 A \ ��1(z0) with z0 near x0 has to be in a small neighborhood of one

of the points y 2 A \ ��1(x0). Choose cd+1; : : : ; cn such that the linear form

u(z00) separates all points in the �ber A \ ��1(x0). Then, for a root u(z00)
of Wu;x

�
z0 ;T � u(x00)�, the point z must be in a neighborhood of y = x,

otherwise u(z00) would be near u(y00) 6= u(x00) and the Weierstrass polynomial

Wu;x(z
0 ;T ) would have a root away from 0, in contradiction with (4.10).

Conversely, if z 2 A \ ��1(z0) is near x, then Qu;x
�
z0 ;u(z00) � u(x00)� 6= 0

and u(z00) is a root of Wu;x

�
z0 ;T � u(x00)�. From this, we infer that every

polynomial P (z0 ;T ) 2 O�0;x0 [T ] such that P
�
z0 ;u(z00)

�
= 0 on (A; x) is a

multiple of Wu;x

�
z0 ;T � u(x00)�, because the roots of the latter polynomial

are simple for z0 in the dense set (�0rS; x). In particular deg P < deg Wu;x

implies P = 0 and

Æ(z0)qWk;x

�
z0 ;Bk(z

0 ;u(z00))=Æ(z0)� xk
�

is a multiple of Wu;x

�
z0 ;T � u(x00)�. If we replace Wu, Wk by Wu;x, Wk;x

respectively, the proof of Lemma 4.18 shows that for every f 2 OM;x there is
a polynomial R 2 O�0;x0 [T ] of degree deg R < deg Wu;x such that

Æ(z0)mf(z) = R
�
z0 ;u(z00)

�
modulo the ideal�

Wu;x

�
z0 ;u(z00)� u(x00)�; Æ(z0)zk �Bk�z0 ;u(z00)� �;
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and f 2 IA;x implies R = 0. Since Wu;x di�ers fromWu only by an invertible

element in OM;x, we conclude that�X
Æ�c

�

�
IA;x = ÆmIA;x � (G1;x; : : : ; GN;x):

This is true for a dense open set of coeÆcients cd+1; : : : ; cn, therefore

Æ�IA;x � (G1;x; : : : ; GN;x) for all �: �

(4.31) Theorem. Asing is an analytic subset of A.

Proof. The statement is local. Assume �rst that (A; 0) is an irreducible germ

in C n . Let g1; : : : ; gN be generators of the sheaf IA on a neighborhood 
 of

0. Set d = dimA. In a neighborhood of every point x 2 Areg \ 
, A can

be de�ned by holomorphic equations u1(z) = : : : = un�d(z) = 0 such that

du1; : : : ; dun�d are linearly independant. As u1; : : : ; un�d are generated by

g1; : : : ; gN , one can extract a subfamily gj1 ; : : : ; gjn�d that has at least one

non zero Jacobian determinant of rank n � d at x. Therefore Asing \ 
 is

de�ned by the equations

det
� @gj
@zk

�
j2J
k2K

= 0; J � f1; : : : ; Ng; K � f1; : : : ; ng; jJ j = jKj = n� d:

Assume now that (A; 0) =
S
(Al; 0) with (Al; 0) irreducible. The germ of an

analytic set at a regular point is irreducible, thus every point which belongs

simultaneously to at least two components is singular. Hence

(Asing; 0) =
[

(Al;sing; 0) [
[
k 6=l

(Ak \Al; 0);

and Asing is analytic. �

Now, we give a characterization of regular points in terms of a simple

algebraic property of the ring OA;x.

(4.32) Proposition. Let (A; x) be a germ of analytic set of dimension d

and let mA;x � OA;x be the maximal ideal of functions that vanish at x. Then

mA;x cannot have less than d generators and mA;x has d generators if and

only if x is a regular point.

Proof. If A � C n is a d-dimensional submanifold in a neighborhood of x, there

are local coordinates centered at x such that A is given by the equations

zd+1 = : : : = zn near z = 0. Then OA;x ' Od and mA;x is generated by

z1; : : : ; zd. Conversely, assume that mA;x has s generators g1(z); : : : ; gs(z) in

OA;x = OCn ;x=IA;x. Letting x = 0 for simplicity, we can write
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zj =
X

1�k�s
ujk(z)gk(z) + fj(z); ujk 2 On; fj 2 IA;0; 1 � j � n:

Then we �nd dzj =
P
cjk(0)dgk(0) + dfj(0), so that the rank of the system

of di�erentials
�
dfj(0)

�
1�j�n is at least equal to n� s. Assume for example

that df1(0); : : : ; dfn�s(0) are linearly independent. By the implicit function

theorem, the equations f1(z) = : : : = fn�s(z) = 0 de�ne a germ of sub-

manifold of dimension s containing (A; 0), thus s � d and (A; 0) equals this

submanifold if s = d. �

(4.33) Corollary. Let A � M be an analytic set of pure dimension d and

let B � A be an analytic subset of codimension � p in A. Then, as an OA;x-

module, the ideal IB;x cannot be generated by less than p generators at any

point x 2 B, and by less than p+1 generators at any point x 2 Breg \Asing.

Proof. Suppose that IB;x admits s-generators (g1; : : : ; gs) at x. By coherence

of IB these germs also generate IB in a neighborhood of x, so we may assume

that x is a regular point of B. Then there are local coordinates (z1; : : : ; zn)

onM centered at x such that (B; x) is de�ned by zk+1 = : : : = zn = 0, where

k = dim(B; x). Then the maximal ideal mB;x = mA;x=IB;x is generated by

z1; : : : ; zk, so that mA;x is generated by (z1; : : : ; zk; g1; : : : ; gs). By Prop. 4.32,

we get k + s � d, thus s � d � k � p, and we have strict inequalities when

x 2 Asing. �

x5. Complex Spaces

Much in the same way a manifold is constructed by piecing together open

patches isomorphic to open sets in a vector space, a complex space is obtained

by gluing together open patches isomorphic to analytic subsets. The general

concept of analytic morphism (or holomorphic map between analytic sets) is

�rst needed.

x5.1. Morphisms and Comorphisms

Let A � 
 � C n and B � 
0 � C p be analytic sets. A morphism from

A to B is by de�nition a map F : A �! B such that for every x 2 A

there is a neighborhood U of x and a holomorphic map ~F : U �! C p such

that ~F�A\U = F�A\U . Equivalently, such a morphism can be de�ned as a

continuous map F : A �! B such that for all x 2 A and g 2 OB;F (x) we
have g Æ F 2 OA;x. The induced ring morphism

(5:1) F ?
x

: OB;F (x) 3 g 7�! g Æ F 2 OA;x
is called the comorphism of F at point x.
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x5.1. De�nition of Complex Spaces

(5.2) De�nition. A complex space X is a locally compact Hausdor� space,

countable at in�nity, together with a sheaf OX of continuous functions on X,

such that there exists an open covering (U�) of X and for each � a homeo-

morphism F� : U� �! A� onto an analytic set A� � 
� � C n� such that

the comorphism F ?
�
: OA� �! OX �U� is an isomorphism of sheaves of rings.

OX is called the structure sheaf of X.

By de�nition a complex space X is locally isomorphic to an analytic set,

so the concepts of holomorphic function on X, of analytic subset, of analytic

morphism, etc : : : are meaningful. If X is a complex space, Th. 4.31 implies

that Xsing is an analytic subset of X.

(5.3) Theorem and de�nition. For every complex space X, the set Xreg

is a dense open subset of X, and consists of a disjoint union of connected

complex manifolds X 0
�
. Let X� be the closure of X 0

�
in X. Then (X�) is a

locally �nite family of analytic subsets of X, and X =
S
X�. The sets X�

are called the global irreducible components of X.

Observe that the germ at a given point of a global irreducible component

can be reducible, as shows the example of the cubic curve � : y2 = x2(1+x) ;

the germ (�; 0) has two analytic branches y = �xp1 + x, however � r f0g
is easily seen to be a connected smooth Riemann surface (the real points of

 corresponding to �1 � x � 0 form a path connecting the two branches).

This example shows that the notion of global irreducible component is quite

di�erent from the notion of local irreducible component introduced in (4.4).

Fig. 2 The irreducible curve y2 = x
2(1 + x) in C 2 .
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Proof. By de�nition of Xreg, the connected components X 0
�
are (disjoint)

complex manifolds. Let us show that the germ of X� = X
0
�
at any point

x 2 X is analytic. We may assume that (X; x) is a germ of analytic set A in

an open subset of C n . Let (Al; x), 1 � l � N , be the irreducible components

of this germ and U a neighborhood of x such that X \ U =
S
Al \ U .

Let 
l � U be a neighborhood of x such that Al;reg \ 
l is connected and

dense in Al \ 
l (Prop. 4.24). Then A0
l
:= Xreg \ Al \ 
l equals (Al;reg \


l)r
S
k 6=l Al;reg \
l \Ak. However, Al;reg \
l \Ak is an analytic subset of

Al;reg\
l, distinct from Al;reg\
l, otherwise Al;reg\
l would be contained in
Ak, thus (Al; x) � (Ak; x) by density. Remark 4.2 implies that A0

l
is connected

and dense in Al;reg \
l, hence in Al \
l. Set 
 =
T

l and let (X�)�2J be

the family of global components which meet 
 (i.e. such that X 0� \
 6= ; ).
As Xreg \
 =

S
A0
l
\ 
, each X 0

�
, � 2 J , meets at least one set A0

l
, and as

A0
l
� Xreg is connected, we have in fact A0

l
� X 0�. It follows that there exists

a partition (L�)�2J of f1; : : : ; Ng such that X 0
�
\
 =

S
l2L� A

0
l
\
, � 2 J .

Hence J is �nite, card J � N , and

X� \
 = X
0
�
\
 =

[
l2L�

A
0
l
\
 =

[
l2L�

Al \


is analytic for all � 2 J . �

(5.4) Corollary. If A;B are analytic subsets in a complex space X, then

the closure Ar B is an analytic subset, consisting of the union of all global

irreducible components A� of A which are not contained in B.

Proof. Let C =
S
A� be the union of these components. Since (A�) is locally

�nite, C is analytic. Clearly Ar B = C r B =
S
A� r B. The regular part

A0
�
of each A� is a connected manifold and A0

�
\B is a proper analytic subset

(otherwise A0
�
� B would imply A� � B). Thus A0

�
r (A0

�
\ B) is dense in

A0
�
which is dense in A�, so Ar B =

S
A� = C. �

(5.5) Theorem. For any family (A�) of analytic sets in a complex space X,

the intersection A =
T
A� is an analytic subset of X. Moreover, the inter-

section is stationary on every compact subset of X.

Proof. It is suÆcient to prove the last statement, namely that every point

x 2 X has a neighborhood 
 such that A\
 is already obtained as a �nite

intersection. However, since OX;x is Noetherian, the family of germs of �nite

intersections has a minimum element (B; x), B =
T
A�j , 1 � j � N . Let ~B

be the union of the global irreducible components B� of B which contain the

point x ; clearly (B; x) = ( ~B; x). For any set A� in the family, the minimality

of B implies (B; x) � (A�; x). Let B
0
� be the regular part of any global

irreducible component B� of ~B. Then B0
�
\A� is a closed analytic subset of

B0� containing a non empty open subset (the intersection of B0� with some
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neighborhood of x), so we must have B0
�
\ A� = B0

�
. Hence B� = B

0
�
� A�

for all B� � ~B and all A�, thus ~B � A =
T
A�. We infer

(B; x) = ( ~B; x) � (A; x) � (B; x);

and the proof is complete. �

As a consequence of these general results, it is not diÆcult to show that

a complex space always admits a (locally �nite) strati�cation such that the

strata are smooth manifolds.

(5.6) Proposition. Let X be a complex space. Then there is a locally sta-

tionary increasing sequence of analytic subsets Yk � X, k 2 N, such that Y0
is a discrete set and such that Yk r Yk�1 is a smooth k-dimensional complex

manifold for k � 1. Such a sequence is called a strati�cation of X, and the

sets Yk r Yk�1 are called the strata (the strata may of course be empty for

some indices k < dimX).

Proof. Let F be the family of irreducible analytic subsets Z � X which can

be obtained through a �nite sequence of steps of the following types:

a) Z is an irreducible component of X ;

b) Z is an irreducible component of the singular set Z 0sing of some member

Z 0 2 F ;
c) Z is an irreducible component of some �nite intersection of sets Zj 2 F.

Since X has locally �nite dimension and since steps b) or c) decrease the

dimension of our sets Z, it is clear that F is a locally �nite family of analytic

sets in X. Let Yk be the union of all sets Z 2 F of dimension � k. It is easily
seen that

S
Yk = X and that the irreducible components of (Yk)sing are

contained in Yk�1 (these components are either intersections of components

Zj � Yk or parts of the singular set of some component Z � Yk, so there are
in either case obtained by step b) or c) above). Hence Yk r Yk�1 is a smooth

manifold and it is of course k-dimensional, because the components of Yk of

dimension < k are also contained in Yk�1 by de�nition.

(5.7) Theorem. Let X be an irreducible complex space. Then every non

constant holomorphic function f on X de�nes an open map f : X �! C .

Proof. We show that the image f(
) of any neighborhood 
 of x 2 X con-

tains a neighborhood of f(x). Let (Xl; x) be an irreducible component of the

germ (X; x) (embedded in C n ) and � = �0 ��00 � 
 a polydisk such that

the projection � : Xl\� �! �0 is a rami�ed covering. The function f is non

constant on the dense open manifold Xreg, so we may select a complex line

L � �0 through 0, not contained in the rami�cation locus of �, such that f
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is non constant on the one dimensional germ ��1(L). Therefore we can �nd

a germ of curve

(C ; 0) 3 t 7�! (t) 2 (X; x)

such that f Æ  is non constant. This implies that the image of every neigh-

borhood of 0 2 C by f Æ  already contains a neighborhood of f(x). �

(5.8) Corollary. If X is a compact irreducible analytic space, then every

holomorphic function f 2 O(X) is constant.

In fact, if f 2 O(X) was non constant, f(X) would be compact and also

open in C by Th. 5.7, a contradiction. This result implies immediately the

following consequence.

(5.9) Theorem. Let X be a complex space such that the global holomorphic

functions in O(X) separate the points of X. Then every compact analytic

subset A of X is �nite.

Proof. A has a �nite number of irreducible components A� which are also

compact. Every function f 2 O(X) is constant on A�, so A� must be reduced

to a single point. �

x5.2. Coherent Sheaves over Complex Spaces

Let X be a complex space and OX its structure sheaf. Locally, X can be

identi�ed to an analytic set A in an open set 
 � C n , and we have OX =

O
=IA. Thus OX is coherent over the sheaf of rings O
 . It follows immediately

that OX is coherent over itself. Let S be a OX -module. If ~S denotes the

extension of S�A to 
 obtained by setting ~Sx = 0 for x 2 
 r A, then ~S is a

O
-module, and it is easily seen that S�A is coherent over OX�A if and only

if ~S is coherent over O
 . If Y is an analytic subset of X, then Y is locally

given by an analytic subset B of A and the sheaf of ideals of Y in OX is the

quotient IY = IB=IA ; hence IY is coherent. Let us mention the following

important property of supports.

(5.10) Theorem. If S is a coherent OX -module, the support of S, de�ned

as Supp S = fx 2 X ; Sx 6= 0g is an analytic subset of X.

Proof. The result is local, thus after extending S by 0, we may as well assume

that X is an open subset 
 � C n . By (3.12), there is an exact sequence of

sheaves

O
�p
U

G�! O
�q
U

F�! S�U �! 0
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in a neighborhood U of any point. If G : O�p
x
�! O�q

x
is surjective it is

clear that the linear map G(x) : C p �! C q must be surjective; conversely, if

G(x) is surjective, there is a q-dimensional subspace E � C p on which the

restriction of G(x) is a bijection onto C q ; then G�E : OU 
C E �! O
�q
U

is

bijective near x and G is surjective. The support of S�U is thus equal to the

set of points x 2 U such that all minors of G(x) of order q vanish. �

x6. Analytic Cycles and Meromorphic Functions

x6.1. Complete Intersections

Our goal is to study in more details the dimension of a subspace given by a

set of equations. The following proposition is our starting point.

(6.1) Proposition. Let X be a complex space of pure dimension p and A an

analytic subset of X with codimX A � 2. Then every function f 2 O(X rA)

is locally bounded near A.

Proof. The statement is local onX, so we may assume thatX is an irreducible

germ of analytic set in (C n ; 0). Let (Ak; 0) be the irreducible components

of (A; 0). By a reasoning analogous to that of Prop. 4.26, we can choose

coordinates (z1; : : : ; zn) on C
n such that all projections

� : z 7�! (z1; : : : ; zp); p = dimX;

�k : z 7�! (z1; : : : ; zpk); pk = dimAk ;

de�ne rami�ed coverings � : X \ � �! �0, �k : Ak \ � �! �0
k
. By con-

struction �(Ak) � �0 is contained in the set Bk de�ned by some Weierstrass

polynomials in the variables zpk+1; : : : ; zp and codim�0 Bk = p� pk � 2. Let

S be the rami�cation locus of � and B =
S
Bk. We have �(A\�) � B. For

z0 2 �0 r (S [B), we let
�k(z

0) = elementary symmetric function of degree k in f(z0; z00
�
);

where (z0; z00
�
) are the q points of X projecting on z0. Then �k is holomorphic

on �0 r (S [ B) and locally bounded near every point of S r B, thus �k
extends holomorphically to �0 r B by Remark 4.2. Since codimB � 2, �k
extends to �0 by Cor. 1.4.5. Now, f satis�es fq��1fq�1+ : : :+(�1)q�q = 0,

thus f is locally bounded on X \�. �

(6.2) Theorem. Let X be an irreducible complex space and f 2 O(X), f 6� 0.

Then f�1(0) is empty or of pure dimension dimX � 1.

Proof. Let A = f�1(0). By Prop. 4.26, we know that dimA � dimX � 1.

If A had an irreducible branch Aj of dimension � dimX � 2, then in virtue
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of Prop. 6.1 the function 1=f would be bounded in a neighborhood of Aj rS
k 6=j Ak, a contradiction. �

(6.3) Corollary. If f1; : : : ; fp are holomorphic functions on an irreducible

complex space X, then all irreducible components of f�11 (0) \ : : : \ f�1
p

(0)

have codimension � p. �

(6.4) De�nition. Let X be a complex space of pure dimension n and A an

analytic subset of X of pure dimension. Then A is said to be a local (set

theoretic) complete intersection in X if every point of A has a neighborhood


 such that

A \
 = fx 2 
 ; f1(x) = : : : = fp(x) = 0g
with exactly p = codim A functions fj 2 O(
).

(6.5) Remark. As a converse to Th. 6.2, one may ask whether every hy-

persurface A in X is locally de�ned by a single equation f = 0. In gen-

eral the answer is negative. A simple counterexample for dimX = 3 is ob-

tained with the singular quadric X = fz1z2 + z3z4 = 0g � C 4 and the plane

A = fz1 = z3 = 0g � X. Then A cannot be de�ned by a single equation

f = 0 near the origin, otherwise the plane B = fz2 = z4 = 0g would be such

that

f�1(0) \ B = A \ B = f0g;
in contradiction with Th. 6.2 (also, by Exercise 10.11, we would get the

inequality codimX A \ B � 2). However, the answer is positive when X is a

manifold:

(6.6) Theorem. Let M be a complex manifold with dimC M = n, let (A; x)

be an analytic germ of pure dimension n � 1 and let Aj, 1 � j � N , be its

irreducible components.

a) The ideal of (A; x) is a principal ideal IA;x = (g) where g is a product of

irreducible germs gj such that IAj ;x = (gj).

b) For every f 2 OM;x such that f�1(0) � (A; x), there is a unique decompo-

sition f = ugm1

1 : : : gmN

N
where u is an invertible germ and mj is the order

of vanishing of f at any point z 2 Aj;reg r
S
k 6=j Ak.

Proof. a) In a suitable local coordinate system centered at x, the projection

� : C n �! C n�1 realizes all Aj as rami�ed coverings

� : Aj \� �! �0 � C n�1 ; rami�cation locus = Sj � �0:
The function
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gj(z
0; zn) =

Y
w2Aj\��1(z0)

(zn � wn); z0 2 �0 r Sj

extends into a holomorphic function in O�0 [zn] and is irreducible at x. Set

g =
Q
gj 2 IA;x. For any f 2 IA;x, the Weierstrass division theorem yields

f = gQ + R with R 2 On�1[zn] and degR < deg g. As R(z0; zn) vanishes
when zn is equal to wn for each point w 2 A \ ��1(z0), R has exactly deg g

roots when z0 2 �0r �SSj [S�(Aj \Ak)�, so R = 0. Hence IA;x = (g) and

similarly IAj ;x = (gj). Since IAj is coherent, gj is also a generator of IAj ;z
for z near x and we infer that gj has order 1 at any regular point z 2 Aj;reg.
b) As OM;x is factorial, any f 2 OM;x can be written f = u gm1

1 : : : gmN

N

where u is either invertible or a product of irreducible elements distinct from

the gj's. In the latter case the hypersurface u�1(0) cannot be contained in

(A; x), otherwise it would be a union of some of the components Aj and u

would be divisible by some gj. This proves b). �

(6.7) De�nition. Let X be an complex space of pure dimension n.

a) An analytic q-cycle Z on X is a formal linear combination
P
�jAj where

(Aj) is a locally �nite family of irreducible analytic sets of dimension q

in X and �j 2 Z. The support of Z is jZj = S
�j 6=0Aj. The group of all

q-cycles on X is denoted Cyclq(X). E�ective q-cycles are elements of the

subset Cycl
q

+(X) of cycles such that all coeÆcients �j are � 0 ; rational,

real cycles are cycles with coeÆcients �j 2 Q ; R.
b) An analytic (n� 1)-cycle is called a (Weil ) divisor, and we set

Div(X) = Cycln�1(X):

c) Assume that dimXsing � n � 2. If f 2 O(X) does not vanish identically

on any irreducible component of X, we associate to f a divisor

div(f) =
X

mjAj 2 Div+(X)

in the following way: the components Aj are the irreducible components of

f�1(0) and the coeÆcient mj is the vanishing order of f at every regular

point in Xreg \Aj;reg r
S
k 6=j Ak. It is clear that we have

div(fg) = div(f) + div(g):

d) A Cartier divisor is a divisor D =
P
�jAj that is equal locally to a Z-

linear combination of divisors of the form div(f).

It is easy to check that the collection of abelian groups Cyclq(U) over all

open sets U � X, together with the obvious restriction morphisms, satis�es

axioms (1.4) of sheaves; observe however that the restriction of an irreducible

component Aj to a smaller open set may subdivide in several components.
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Hence we obtain sheaves of abelian groups Cyclq and Div = Cycln�1 on X.

The stalk Cyclq
x
is the free abelian group generated by the set of irreducible

germs of q-dimensional analytic sets at the point x. These sheaves carry

a natural partial ordering determined by the subsheaf of positive elements

Cycl
q

+. We de�ne the sup and inf of two analytic cycles Z =
P
�jAj , Z

0 =P
�jAj by

(6:8) supfZ;Z 0g =
X

supf�j ; �jgAj; inffZ;Z 0g =
X

inff�j ; �jgAj ;

it is clear that these operations are compatible with restrictions, i.e. they are

de�ned as sheaf operations.

(6.9) Remark. When X is a manifold, Th. 6.6 shows that every e�ective

Z-divisor is locally the divisor of a holomorphic function; thus, for manifolds,

the concepts of Weil and Cartier divisors coincide. This is not always the

case in general: in Example 6.5, one can show that A is not a Cartier divisor

(exercise 10.?).

x6.2. Divisors and Meromorphic Functions

Let X be a complex space. For x 2 X, let MX;x be the ring of quotients of

OX;x, i.e. the set of formal quotients g=h, g; h 2 OX;x, where h is not a zero

divisor in OX;x, with the identi�cation g=h = g0=h0 if gh0 = g0h. We consider

the disjoint union

(6:10) MX =
a
x2X

MX;x

with the topology in which the open sets open sets are unions of sets of the

type fGx=Hx ; x 2 V g � MX where V is open in X and G;H 2 OX(V ).
Then MX is a sheaf over X, and the sections of MX over an open set U

are called meromorphic functions on U . By de�nition, these sections can be

represented locally as quotients of holomorphic functions, but there need not

exist such a global representation on U .

A point x 2 X is called a pole of a meromorphic function f on X if

fx =2 OX;x. Clearly, the set Pf of poles of f is a closed subset of X with

empty interior: if f = g=h on U , then h 6� 0 on any irreducible component and

Pf\U � h�1(0). For x =2 Pf , one can speak of the value f(x). If the restriction
of f to XregrPf does not vanish identically on any irreducible component of

(X; x), then 1=f is a meromorphic function in a neighborhood of x ; the set

of poles of 1=f will be denoted Zf and called the zero set of f . If f vanishes

on some connected open subset of Xreg r Pf , then f vanishes identically

(outside Pf ) on the global irreducible component X� containing this set; we

agree that these components X� are contained in Zf . For every point x in

the complement of Zf \Pf , we have either fx 2 OX;x or (1=f)x 2 OX;x, thus
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f de�nes a holomorphic map Xr (Zf \Pf ) �! C [f1g = P1 with values in

the projective line. In general, no value (�nite or in�nite) can be assigned to

f at a point x 2 Zf \Pf , as shows the example of the function f(z) = z2=z1
in C 2 . The set Zf \ Pf is called the indeterminacy set of f .

(6.11) Theorem. For every meromorphic function f on X, the sets Pf , Zf
and the indeterminacy set Zf \ Pf are analytic subsets.

Proof. Let Jx be the ideal of germs u 2 OX;x such that ufx 2 OX;x. Let us
write f = g=h on a small open set U . Then J�U appears as the projection on

the �rst factor of the sheaf of relations R(g; h) � OU �OU , so J is a coherent
sheaf of ideals. Now

Pf =
�
x 2 X ; Jx = OX;x

	
= Supp OX=J;

thus Pf is analytic by Th. 5.10. Similarly, the projection of R(g; h) on the

second factor de�nes a sheaf of ideals J0 such that Zf = Supp OX=J
0. �

When X has pure dimension n and dimXsing � n� 2, Def. 6.7 c) can be

extended to meromorphic functions: if f = g=h locally, we set

(6:12) div(f) = div(g)� div(h):

By 6.7 c), we immediately see that this de�nition does not depend on the

choice of the local representant g=h. Furthermore, Cartier divisors are pre-

cisely those divisors which are associated locally to meromorphic functions.

Assume from now on thatM is a connected n-dimensional complex man-

ifold. Then, for every point x 2 M , the ring OM;x ' On is factorial. This

property makes the study of meromorphic functions much easier.

(6.13) Theorem. Let f be a non zero meromorphic function on a manifold

M , dimC M = n. Then the sets Zf , Pf are purely (n� 1)-dimensional, and

the indeterminacy set Zf \ Pf is purely (n� 2)-dimensional.

Proof. For every point a 2 M , the germ fa can be written ga=ha where

ga; ha 2 OM;a are relatively prime holomorphic germs. By Th. 1.12, the

germs gx, hx are still relatively prime for x in a neighborhood U of a. Thus

the ideal J associated to f coincides with (h) on U , and we have

Pf \ U = Supp OU=(h) = h�1(0); Zf \ U = g�1(0):

Th. 6.2 implies our contentions: if g� and h� are the irreducible components

of g; h, then Zf \ Pf =
S
g�1
�
(0) \ h�1

�
(0) is (n � 2)-dimensional. As we

will see in the next section, Th. 6.13 does not hold on an arbitrary complex

space. �
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Let (Aj), resp. (Bj), be the global irreducible components of Zf , resp.

Pf . In a neighborhood Vj of the (n� 1)-dimensional analytic set

A0
j
= Aj r

�
Pf [

[
k 6=j

Ak)

f is holomorphic and V \ f�1(0) = A0
j
. As A0

j;reg is connected, we must have

div(f�Vj ) = mjA
0
j
for some constant multiplicity mj equal to the vanishing

order of f along A0
j;reg. Similarly, 1=f is holomorphic in a neighborhood Wj

of

B0
j
= Bj r

�
Zf [

[
k 6=j

Bk)

and we have div(f�V ) = �pjB0j where pj is the vanishing order of 1=f along

B0
j;reg. At a point x 2M the germs Aj;x and Bj;x may subdivide in irreducible

local components Aj;�;x and Bj;�;x. If gj;� and hj;� are local generators of

the corresponding ideals, we may a priori write

fx = u g=h where g =
Y

g
mj;�

j;�
; h =

Y
h
pj;�

j;�

and where u is invertible. Then necessarily mj;� = mj and pj;� = pj for all

�, and we see that the global divisor of f on M is

(6:14) div(f) =
X

mjAj �
X

pjBj :

Let us denote by M? the multiplicative sheaf of germs of non zero mero-

morphic functions, and by O? the sheaf of germs of invertible holomorphic

functions. Then we have an exact sequence of sheaves

(6:15) 1 �! O? �!M? div�! Div �! 0:

Indeed, the surjectivity of div is a consequence of Th. 6.6. Moreover, any

meromorphic function that has a positive divisor must be holomorphic by the

fact that On is factorial. Hence a meromorphic function f with div(f) = 0 is

an invertible holomorphic function.

x7. Normal Spaces and Normalization

x7.1. Weakly Holomorphic Functions

The goal of this section is to show that the singularities of X can be studied

by enlarging the structure sheaf OX into a sheaf ~OX of so-called weakly

holomorphic functions.



126 Chapter II. Coherent Sheaves and Analytic Spaces

(7.1) De�nition. Let X be a complex space. A weakly holomorphic function

f on X is a holomorphic function on Xreg such that every point of Xsing has

a neighborhood V for which f is bounded on Xreg \ V . We denote by ~OX;x
the ring of germs of weakly holomorphic functions over neighborhoods of x

and ~OX the associated sheaf.

Clearly, ~OX;x is a ring containing OX;x. If (Xj ; x) are the irreducible

components of (X; x), there is a fundamental system of neighborhoods V of

x such that Xreg \ V is a disjoint union of connected open sets

Xj;reg \ V r
[
k 6=j

Xk \Xj;reg \ V

which are dense in Xj;reg \ V . Therefore any bounded holomorphic function

on Xreg \ V extends to each component Xj;reg \ V and we see that

~OX;x =
M

~OXj ;x
:

The �rst important fact is that weakly holomorphic functions are always

meromorphic and possess \universal denominators".

(7.2) Theorem. For every point x 2 X, there is a neighborhood V of x and

h 2 OX(V ) such that h�1(0) is nowhere dense in V and hy ~OX;y � OX;y for

all y 2 V ; such a function h is called a universal denominator on V . In

particular ~OX is contained in the ring MX of meromorphic functions.

Proof. First assume that (X; x) is irreducible and that we have a rami�ed

covering � : X \ � �! �0 with rami�cation locus S. We claim that the

discriminant Æ(z0) of a primitive element u(z00) = cd+1zd+1 + � � � + cnzn is

a universal denominator on X \ �. To see this, we imitate the proof of

Lemma 4.15. Let f 2 ~OX;y , y 2 X \�. Then we solve the equation

f(z) =
X

0�j�q
bj(z

0)u(z00)j

in a neighborhood of y. For z0 2 �0 r S, let us denote by (z0; z00
�
), 1 � � � q,

the points in the �ber X \ ��1(z0). Among these, only q0 are close to y,

where q0 is the sum of the sheet numbers of the irreducible components of

(X; y) by the projection �. The other points (z0; z00�), say q0 < � � q, are

in neighborhoods of the points of ��1(y0)r fyg. We take
�
bj(z

0)
�
to be the

solution of the linear systemX
0�j�q

bj(z
0)u(z00

�
)j =

�
f(z0; z00

�
) for 1 � � � q0,

0 for q0 < � � n.

The solutions bj(z
0) are holomorphic on �0rS near y0. Since the determinant

is Æ(z0)1=2, we see that Æbj is bounded, thus Æbj 2 O�0;y0 and Æyf 2 OX;y .
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Now, assume that (X; x) � (C n ; 0) has irreducible components (Xj; x).

We can �nd for each j a neighborhood 
j of 0 in C n and a function Æj 2
On(
j) which is a universal denominator on Xj \ 
j . After adding to Æj a

function which is identically zero on (Xj; x) and non zero on (Xk; x), k 6= j,

we may assume that Æ�1
j

(0) \ Xk \ 
 is nowhere dense in Xk \ 
 for all j

and k and some small 
 � T
j . Then Æ = Q Æj is a universal denominator

on each component Xj \ 
. For some possibly smaller 
, select a function

vj 2 On(
) such that vj vanishes identically on
S
k 6=j Xk \ 
 and v�1

j
(0)

is nowhere dense in Xj \ 
, and set h = Æ
P
vk. For any germ f 2 OX;y ,

y 2 X \ 
, there is a germ gj 2 O
;y with Æf = gj on (Xj; y). We have

h = Ævj on Xj \
, so h�1(0) is nowhere dense in X \
 and

hf = vjÆf = vjgj =
X

vkgk on each (Xj; y):

Since
P
vkgk 2 O
;y, we get h~OX;y � OX;y. �

(7.3) Theorem. If (X; x) is irreducible, ~OX;x is the integral closure of OX;x
in its quotient �eld MX;x. Moreover, every germ f 2 ~OX;x admits a limit

lim
Xreg3z!x

f(z):

Observe that OX;x is an entire ring, so the ring of quotients MX;x is

actually a �eld. A simple illustration of the theorem is obtained with the

irreducible germ of curve X : z31 = z22 in (C
2 ; 0). Then X can be parametrized

by z1 = t2, z2 = t3, t 2 C , and OX;0 = C fz1 ; z2g=(z31�z22) = C ft2 ; t3g consists
of all convergent series

P
ant

n with a1 = 0. The function z2=z1 = t is weakly

holomorphic on X and satis�es the integral equation t2 � z1 = 0. Here we

have ~OX;0 = C ftg.

Proof. a) Let f = g=h be an element in MX;x satisfying an integral equation

fm + a1f
m�1 + : : :+ am = 0; ak 2 OX;x:

Set A = h�1(0). Then f is holomorphic on X r A near x, and Lemma 4.10

shows that f is bounded on a neighborhood of x. By Remark 4.2, f can be

extended as a holomorphic function on Xreg in a neighborhood of x, thus

f 2 ~OX;x.

b) Let f 2 ~OX;x and let � : X \ � �! �0 be a rami�ed covering in a

neighborhood of x, with rami�cation locus S. As in the proof of Th. 6.1, f

satis�es an equation

fq � �1fq�1 + � � �+ (�1)q�q = 0; �k 2 O(�0) ;
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indeed the elementary symmetric functions �k(z
0) are holomorphic on �0rS

and bounded, so they extend holomorphically to �0. Hence ~OX;x is integral

over OX;x and we already know that ~OX;x �MX;x.

c) Finally, the cluster set
T
V 3x f(Xreg \ V ) is connected, because there is a

fundamental system of neighborhoods V of x such that Xreg\V is connected,

and any intersection of a decreasing sequence of compact connected sets is

connected. However the limit set is contained in the �nite set of roots of

equation b) at point x0 2 �0, so it must be reduced to one element. �

x7.2. Normal Spaces

Normal spaces are spaces for which all weakly holomorphic functions are

actually holomorphic. These spaces will be seen later to have \simpler" sin-

gularities than general analytic spaces.

(7.4) De�nition. A complex space X is said to be normal at a point x if

(X; x) is irreducible and ~OX;x = OX;x, that is, OX;x is integrally closed in its

�eld of quotients. The set of normal (resp. non-normal) points will be denoted

Xnorm (resp. Xn-n). The space X itself is said to be normal if X is normal

at every point.

Observe that any regular point x is normal: in fact OX;x ' On is then

factorial, hence integrally closed. Therefore Xn-n � Xsing.

(7.5) Theorem. The non-normal set Xn-n is an analytic subset of X. In

particular, Xnorm is open in X.

Proof. We give here a beautifully simple proof due to (Grauert and Remmert

1984). Let h be a universal denominator on a neighborhood V of a given point

and let I =
p
hOX be the sheaf of ideals of h�1(0) by Hilbert's Nullstellensatz.

Finally, let F = homO(I; I) be the sheaf of OX -endomorphisms of I. Since I

is coherent, so is F (cf. Exercise 10.?). Clearly, the homotheties of I give an

injection OX � F over V . We claim that there is a natural injection F �
~OX . In fact, any endomorphism of I yields by restriction a homomorphism

hOX �! OX , and by OX -linearity such a homomorphism is obtained by

multiplication by an element in h�1OX . Thus F � h�1OX � MX . Since

each stalk Ix is a �nite OX;x-module containing non-zero divisors, it follows

that that any meromorphic germ f such that fIx � Ix is integral over OX;x

(Lang 1965, Chapter IX, x1), hence Fx � ~OX;x. Thus we have inclusions

OX � F � ~OX . Now, we assert that

Xn-n \ V = fx 2 V ; Fx 6= OX;xg = F=OX:

This will imply the theorem by 5.10. To prove the equality, we �rst observe

that Fx 6= OX;x implies ~OX;x 6= OX;x, thus x 2 Xn-n. Conversely, assume that
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x is non normal, that is, ~OX;x 6= OX;x. Let k be the smallest integer such

that Ik
x
~OX;x � OX;x ; such an integer exists since Il

x
~OX;x � h~OX;x � OX;x

for l large. Then there is an element w 2 Ik�1
x

~OX;x such that w =2 OX;x. We

have wIx � OX;x ; moreover, as w is locally bounded near Xsing, any germ

wg in wIx satis�es limw(z)g(z) = 0 when z 2 Xreg tends to a point of the

zero variety h�1(0) of Ix. Hence wIx � Ix, i.e. w 2 Fx, but w =2 OX;x, so
Fx 6= OX;x. �

(7.6) Theorem. If x 2 X is a normal point, then (Xsing; x) has codimension

at least 2 in (X; x).

Proof. We suppose that � = Xsing has codimension 1 in a neighborhood of

x and try to get a contradiction. By restriction to a smaller neighborhood,

we may assume that X itself is normal and irreducible (since Xnorm is open),

dimX = n, that � has pure dimension n � 1 and that the ideal sheaf I�
has global generators (g1; : : : ; gk). Then � �

S
g�1
j
(0) ; both sets have pure

dimension n� 1 and thus singular sets of dimension � n� 2. Hence there is

a point a 2 � that is regular on � and on
S
g�1
j
(0), in particular there is a

neighborhood V of a such that g�11 (0) \ V = : : : = g�1
k
(0) \ V = � \ V is a

smooth (n�1)-dimensional manifold. Since codimX � = 1 and a is a singular

point of X, I�;a cannot have less than 2 generators in OX;a by Cor. 4.33. Take

(g1; : : : ; gl), l � 2, to be a minimal subset of generators. Then f = g2=g1
cannot belong to OX;a, but f is holomorphic on V r�. We may assume that

there is a sequence a� 2 V r � converging to a such that f(a�) remains

bounded (otherwise reverse g1 and g2 and pass to a subsequence). Since

g�11 (0) \ V = � \ V , Hilbert's Nullstellensatz gives an integer m such that

Im
�;a
� g1OX;a, hence faI

m

�;a
� OX;a. We take m to be the smallest integer

such that the latter inclusion holds. Then there is a product g� = g�11 : : : g�l
l

with j�j = m�1 such that fg� =2 OX;a but fg�gj 2 OX;a for each j. Since the
sequence f(a�) is bounded we conclude that fg

�gj vanishes at a. The zero set

of this function has dimension n�1 and is contained in
S
g�1
k
(0)\V = �\V

so it must contain the germ (�; a). Hence fg�gj 2 I�;a and fg�I�;a � I�;a.
As I�;a is a �nitely generated OX;a-module, this implies fg� 2 ~OX;a = OX;a,

a contradiction. �

(7.7) Corollary. A complex curve is normal if and only if it is regular.

(7.8) Corollary. Let X be a normal complex space and Y an analytic subset

of X such that dim(Y; x) � dim(X; x)�2 for any x 2 X. Then any holomor-

phic function on X r Y can be extended to a holomorphic function on X.

Proof. By Cor. 1.4.5, every holomorphic function f on Xreg r Y extends

to Xreg. Since codimXsing � 2, Th. 6.1 shows that f is locally bounded

near Xsing. Therefore f extends to X by de�nition of a normal space. �
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x7.3. The Oka Normalization Theorem

The important normalization theorem of (Oka 1950) shows that ~OX can be

used to de�ne the structure sheaf of a new analytic space ~X which is normal

and is obtained by \simplifying" the singular set of X. More precisely:

(7.9) De�nition. Let X be a complex space. A normalization (Y; �) of X

is a normal complex space Y together with a holomorphic map � : Y �! X

such that the following conditions are satis�ed.

a) � : Y �! X is proper and has �nite �bers;

b) if � is the set of singular points of X and A = ��1(�), then Y r A is

dense in Y and � : Y rA �! X r� = Xreg is an analytic isomorphism.

It follows from b) that Y r A � Yreg. Thus Y is obtained from X by a

suitable \modi�cation" of its singular points. Observe that Yreg may be larger

than Y rA, as is the case in the following two examples.

(7.10) Examples.

a) Let X = C �f0g[f0g� C be the complex curve z1z2 = 0 in C 2 . Then the

normalization of X is the disjoint union Y = C � f1; 2g of two copies of C ,

with the map �(t1) = (t1; 0), �(t2) = (0; t2). The set A = ��1(0; 0) consists
of exactly two points.

b) The cubic curve X : z31 = z22 is normalized by the map � : C �! X,

t 7�! (t2; t3). Here � is a homeomorphism but ��1 is not analytic at (0; 0).
�

We �rst show that the normalization is essentially unique up to isomor-

phism and postpone the proof of its existence for a while.

(7.11) Lemma. If (Y1; �1) and (Y2; �2) are normalizations of X, there is a

unique analytic isomorphism ' : Y1 �! Y2 such that �1 = �2 Æ '.

Proof. Let � be the set of singular points of X and Aj = ��1
j
(�), j = 1; 2.

Let '0 : Y1 r A1 �! Y2 r A2 be the analytic isomorphism ��12 Æ �1. We

assert that '0 can be extended into a map ' : Y1 �! Y2. In fact, let a 2 A1

and s = �1(a) 2 �. Then ��12 (s) consists of a �nite set of points yj 2 Y2.
Take disjoint neighborhoods Uj of yj such that Uj is an analytic subset in

an open set 
j �� C N . Since �2 is proper, there is a neighborhood V of s

in X such that ��12 (V ) � SUj and by continuity of �1 a neighborhood W

of a such that �1(W ) � V . Then '0 = ��12 Æ �1 maps W rA1 into
S
Uj and

can be seen as a bounded holomorphic map into C N through the embeddings

Uj � 
j �� C N . Since Y1 is normal, '0 extends to W , and the extension

takes values in
S
U j which is contained in Y2 (shrink Uj if necessary). Thus
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'0 extends into a map ' : Y1 �! Y2 and similarly '0�1 extends into a map

 : Y2 �! Y1. By density of Yj rAj , we have  Æ' = IdY1 , ' Æ = IdY2 . �

(7.12) Oka normalization theorem. Let X be any complex space. Then

X has a normalization (Y; �).

Proof. Because of the previous lemma, it suÆces to prove that any point

x 2 X has a neighborhood U such that U admits a normalization; all these

local normalizations will then glue together. Hence we may suppose that X is

an analytic set in an open set of C n . Moreover, if (X; x) splits into irreducible

components (Xj; x) and if (Yj ; �j) is a normalization of Xj \ U , then the

disjoint union Y =
`
Yj with � =

`
�j is easily seen to be a normalization

of X \ U . We may therefore assume that (X; x) is irreducible. Let h be

a universal denominator in a neighborhood of x. Then ~OX;x is isomorphic

to its image h~OX;x � OX;x, so it is a �nitely generated OX;x-module. Let

(f1; : : : ; fm) be a �nite set of generators of OX;x. After shrinking X again,

we may assume the following two points:

� X is an analytic set in an open set 
 � C n , (X; x) is irreducible and Xreg

is connected;

� fj is holomorphic in Xreg, can be written fj = gj=h on X with gj ; h in

On(
) and satis�es an integral equation Pj(z ; fj(z)) = 0 where Pj(z ; T )

is a unitary polynomial with holomorphic coeÆcients on X.

Set X 0 = X r h�1(0). Consider the holomorphic map

F : Xreg �! 
 � Cm ; z 7�! �z; f1(z); : : : ; fm(z)�
and the image Y 0 = F (X 0). We claim that the closure Y of Y 0 in 
 � Cm is

an analytic set. In fact, the set

Z =
�
(z; w) 2 
 � Cm ; z 2 X ; h(z)wj = gj(z)

	
is analytic and Y 0 = Zrfh(z) = 0g, so we may apply Cor. 5.4. Observe that

Y 0 is contained in the set de�ned by Pj(z ;wj) = 0, thus so is its closure Y .

The �rst projection 
 � Cm �! 
 gives a holomorphic map � : Y �! X

such that �ÆF = Id on X 0, hence also on Xreg. If � = Xsing and A = ��1(�),
the restriction � : Y rA �! X r� = Xreg is thus an analytic isomorphism

and F is its inverse. Since (X; x) is irreducible, each fj has a limit `j at x

by Th. 7.3 and the �ber ��1(x) is reduced to the single point y = (x; `). The

other �bers ��1(z) are �nite because they are contained in the �nite set of

roots of the equations Pj(z ; wj) = 0. The same argument easily shows that

� is proper (use Lemma 4.10).

Next, we show that Y is normal at the point y = ��1(x). In fact, for any

bounded holomorphic function u on (Yreg; y) the function u Æ F is bounded

and holomorphic on (Xreg; x). Hence u Æ F 2 ~OX;x = OX;x[f1; : : : ; fm] and

we can write u ÆF (z) = Q(z ; f1(z); : : : ; fm(z)) = Q ÆF (z) where Q(z ; w) =
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a�(z)w

� is a polynomial in w with coeÆcients in OX;x. Thus u coincides

with Q on (Yreg; y), and as Q is holomorphic on (X; x) � Cm � (Y; y), we

conclude that u 2 OY;y. Therefore ~OY;y = OY;y.

Finally, by Th. 7.5, there is a neighborhood V � Y of y such that every

point of V is normal. As � is proper, we can �nd a neighborhood U of x

with ��1(U) � V . Then � : ��1(U) �! U is the required normalization in a

neighborhood of x. �

The proof of Th. 7.12 shows that the �ber ��1(x) has exactly one point

yj for each irreducible component (Xj; x) of (X; x). As a one-to-one proper

map is a homeomorphism, we get in particular:

(7.13) Corollary. If X is a locally irreducible complex space, the normali-

zation � : Y �! X is a homeomorphism. �

(7.14) Remark. In general, for any open set U � X, we have an isomor-

phism

(7:15) �? : ~OX (U)
'�! OY

�
��1(U)

�
;

whose inverse is given by the comorphism of ��1 : Xreg �! Y ; note that
~OY (U) = OY (U) since Y is normal. Taking the direct limit over all neigh-

borhoods U of a given point x 2 X, we get an isomorphism

(7:150) �? : ~OX;x �!
M

yj2��1(x)
OY;yj :

In other words, ~OX is isomorphic to the direct image sheaf �?OY , see (1.12).

We will prove later on the deep fact that the direct image of a coherent sheaf

by a proper holomorphic map is always coherent (Grauert 1960, see 9.?.1).

Hence ~OX = �?OY is a coherent sheaf over OX .

x8. Holomorphic Mappings and Extension Theorems

x8.1. Rank of a Holomorphic Mapping

Our goal here is to introduce the general concept of the rank of a holomorphic

map and to relate the rank to the dimension of the �bers. As in the smooth

case, the rank is shown to satisfy semi-continuity properties.

(8.1) Lemma. Let F : X �! Y be a holomorphic map from a complex space

X to a complex space Y .

a) If F is �nite, i.e. proper with �nite �bers, then dimX � dimY .
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b) If F is �nite and surjective, then dimX = dimY .

Proof. a) Let x 2 X, (Xj; x) an irreducible component and m = dim(Xj; x).

If (Yk; y) are the irreducible components of Y at y = F (x), then (Xj; x) is

contained in
S
F�1(Yk), hence (Xj; x) is contained in one of the sets F

�1(Yk).
If p = dim(Yk; y), there is a rami�ed covering � from some neighborhood of y

in Yk onto a polydisk in �
0 � C p . Replacing X by some neighborhood of x in

Xj and F by the �nite map �ÆF�Xj
: Xj �! �0, we may suppose that Y = �0

and that X is irreducible, dimX = m. Let r = rank dFx0 be the maximum

of the rank of the di�erential of F on Xreg. Then r � minfm; pg and the

rank of dF is constant equal to r on a neighborhood U of x0. The constant

rank theorem implies that the �bers F�1(y) \ U are (m � r)-dimensional

submanifolds, hence m� r = 0 and m = r � p.
b) We only have to show that dimX � dimY . Fix a regular point y 2 Y

of maximal dimension. By taking the restriction F : F�1(U) �! U to a

small neighborhood U of y, we may assume that Y is an open subset of C p .

If dimX < dimY , then X is a union of analytic manifolds of dimension

< dimY and Sard's theorem implies that F (X) has zero Lebesgue measure

in Y , a contradiction. �

(8.2) Proposition. For any holomorphic map F : X �! Y , the �ber di-

mension dim
�
F�1(F (x)); x

�
is an upper semi-continuous function of x.

Proof. Without loss of generality, we may suppose that X is an analytic set

in 
 � C n , that F (X) is contained in a small neighborhood of F (x) in Y

which is embedded in C N , and that x = 0, F (x) = 0. Set A = F�1(0)
and s = dim(A; 0). We can �nd a linear form �1 on C n such that dim(A \
��11 (0); 0) = s � 1 ; in fact we need only select a point xj 6= 0 on each

irreducible component (Aj; 0) of (A; 0) and take �1(xj) 6= 0. By induction,

we can �nd linearly independent forms �1; : : : ; �s on C
n such that

dim
�
A \ ��11 (0) \ : : : \ ��1

j
(0); 0

�
= s� j

for all j = 1; : : : ; s ; in particular 0 is an isolated point in the intersection

when j = s. After a change of coordinates, we may suppose that �j(z) = zj .

Fix r00 so small that the ball B
00 � C n�s of center 0 and radius r00 satis�es

A\ (f0g�B00) = f0g. Then A is disjoint from the compact set f0g�@B00, so
there exists a small ball B0 � C s of center 0 such that A\(B0�@B00) = ;, i.e.
F does not vanish on the compact set K = X\(B0�@B00). Set " = minK jF j.
Then for jyj < " the �ber F�1(y) does not intersect B

0 � @B00. This implies

that the projection map � : F�1(y) \ (B0 � B00) �! B0 is proper. The

�bers of � are then compact analytic subsets of B00, so they are �nite by 5.9.

Lemma 8.1 a) implies

dimF�1(y) \ (B0 � B00) � dimB0 = s = dim(A; 0) = dim(F�1(0); 0): �
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Let X be a pure dimensional complex space and F : X �! Y a holomor-

phic map. For any point x 2 X, we de�ne the rank of F at x by

(8:3) �F (x) = dim(X; x)� dim
�
F�1(F (x)); x

�
:

By the above proposition, �F is a lower semi-continuous function on X. In

particular, if �F is maximum at some point x0, it must be constant in a

neighborhood of x0. The maximum �(F ) = maxX �F is thus attained on

Xreg or on any dense open subset X 0 � Xreg. If X is not pure dimensional,

we de�ne �(F ) = max� �(F�X�
) where (X�) are the irreducible components

of X. For a map F : X �! C N , the constant rank theorem implies that �(F )

is equal to the maximum of the rank of the jacobian matrix dF at points of

Xreg (or of X
0).

(8.4) Proposition. If F : X �! Y is a holomorphic map and Z an analytic

subset of X, then �(F�Z) � �(F ).

Proof. Since each irreducible component of Z is contained in an irreducible

component of X, we may assume X irreducible. Let � : ~X �! X be the

normalization of X and ~Z = ��1(Z). Since � is �nite and surjective, the

�ber of F Æ � at point x has the same dimension than the �ber of F at �(x)

by Lemma 8.1 b). Therefore �(F Æ�) = �(F ) and �(F Æ�� ~Z) = �(F�Z), so we

may assume X normal. By induction on dimX, we may also suppose that Z

has pure codimension 1 in X (every point of Z has a neighborhood V � X

such that Z \ V is contained in a pure one codimensional analytic subset of

V ). But then Zreg \Xreg is dense in Zreg because codimXsing � 2. Thus we

are reduced to the case when X is a manifold and Z a submanifold, and this

case is clear if we consider the rank of the jacobian matrix. �

(8.5) Theorem. Let F : X �! Y be a holomorphic map. If Y is pure

dimensional and �(F ) < dimY , then F (X) has empty interior in Y .

Proof. Taking the restriction of F to F�1(Yreg), we may assume that Y is

a manifold. Since X is a countable union of compact sets, so is F (X), and

Baire's theorem shows that the result is local for X. By Prop. 8.4 and an

induction on dimX, F (Xsing) has empty interior in Y . The set Z � Xreg

of points where the jacobian matrix of F has rank < �(F ) is an analytic

subset hence, by induction again, F (Z) has empty interior. The constant

rank theorem �nally shows that every point x 2 XregrZ has a neighborhood

V such that F (V ) is a submanifold of dimension �(F ) in Y , thus F (V ) has

empty interior and Baire's theorem completes the proof. �

(8.6) Corollary. Let F : X �! Y be a surjective holomorphic map. Then

dimY = �(F ).
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Proof. By the remark before Prop. 8.4, there is a regular point x0 2 X such

that the jacobian matrix of F has rank �(F ). Hence, by the constant rank

theorem dimY � �(F ). Conversely, let Y� be an irreducible component of Y

of dimension equal to dimY , and Z = F�1(Y�) � X. Then F (Z) = Y� and

Th. 8.5 implies �(F ) � �(F�Z) � dimY�. �

x8.2. Remmert and Remmert-Stein Theorems

We are now ready to prove two important results: the extension theorem

for analytic subsets due to (Remmert and Stein 1953) and the theorem of

(Remmert 1956,1957) which asserts that the image of a complex space under

a proper holomorphic map is an analytic set. These will be obtained by a

simultaneous induction on the dimension.

(8.7) Remmert-Stein theorem. Let X be a complex space, A an analytic

subset of X and Z an analytic subset of X r A. Suppose that there is an

integer p � 0 such that dimA � p, while dim(Z; x) > p for all x 2 Z. Then
the closure Z of Z in X is an analytic subset.

(8.8) Remmert's proper mapping theorem. Let F : X �! Y be a

proper holomorphic map. Then F (X) is an analytic subset of Y .

Proof. We let (8:7m) denote statement (8.7) for dimZ � m and (8:8m) denote

statement (8.8) for dimX � m. We proceed by induction on m in two steps:

Step 1. (8:7m) and (8:8m�1) imply (8:8m).

Step 2. (8:8m�1) implies (8:7m).

As (8:8m) is obvious for m = 0, our statements will then be valid for all m,

i.e. for all complex spaces of bounded dimension. However, Th. 8.7 is local

on X and Th. 8.8 is local on Y , so the general case is immediately reduced

to the �nite dimensional case.

Proof of step 1. The analyticity of F (X) is a local question in Y . Since

F : F�1(U) �! U is proper for any open set U � Y and F�1(U) �� X

if U �� Y , we may suppose that Y is embedded in an open set 
 � C n

and that X only has �nitely many irreducible components X�. Then we have

F (X) =
S
F (X�) and we are reduced to the case when X is irreducible,

dimX = m and Y = 
.

First assume that X is a manifold and that the rank of dF is constant.

The constant rank theorem implies that every point in X has a neighborhood

V such that F (V ) is a closed submanifold in a neighborhood W of F (x)

in Y . For any point y 2 Y , the �ber F�1(y) can be covered by �nitely

many neighborhoods Vj of points xj 2 F�1(y) such that F (Vj) is a closed

submanifold in a neighborhood Wj of y. Then there is a neighborhood of y
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W � TWj such that F�1(W ) � SVj , so F (X) \W =
S
F (Vj) \W is a

�nite union of closed submanifolds in W and F (X) is analytic in Y .

Now suppose that X is a manifold, set r = �(F ) and let Z � X be the

analytic subset of points x where the rank of dFx is < r. Since dimZ <

m = dimX, the hypothesis (8:8m�1) shows that F (Z) is analytic. We have

dimF (Z) = �(F�Z) < r. If F (Z) = F (X), then F (X) is analytic. Otherwise

A = F�1
�
F (Z)

�
is a proper analytic subset of X, dF has constant rank on

XrA � XrZ and the morphism F : XrA �! Y rF (Z) is proper. Hence

the image F (X rA) is analytic in Y r F (Z). Since dimF (X r A) = r � m
and dimF (Z) < r, hypothesis (8:7m) implies that F (X) = F (X r A) is

analytic in Y . When X is not a manifold, we apply the same reasoning with

Z = Xsing in order to be reduced to the case of F : X r A �! Y r F (Z)

where X rA is a manifold. �

Proof of step 2. Since Th. 8.7 is local on X, we may suppose that X is an

open set 
 � C n . Then we use induction on p to reduce the situation to the

case when A is a p-dimensional submanifold (if this case is taken for granted,

the closure of Z in 
 r Asing is analytic and we conclude by the induction

hypothesis). By a local analytic change of coordinates, we may assume that

0 2 A and that A = 
 \ L where L is a vector subspace of C n of dimension

p. By writing Z =
S
p<s�m Zs where Zs is an analytic subset of 
 r Y of

pure dimension s, we may suppose that Z has pure dimension s, p < s � m.

We are going to show that Z is analytic in a neighborhood of 0.

Let �1 be a linear form on C n which is not identically zero on L nor on

any irreducible component of Z (just pick a point x� on each component and

take �1(x�) 6= 0 for all �). Then dimL \ ��11 (0) = p � 1 and the analytic

set Z \ ��11 (0) has pure dimension s � 1. By induction, there exist linearly

independent forms �1; : : : ; �s such that

dimL \ ��11 (0) \ : : : \ ��1
j

(0) = p� j; 1 � j � p;
dimZ \ ��11 (0) \ : : : \ ��1

j
(0) = s� j; 1 � j � s:(8:9)

By adding a suitable linear combination of �1; : : : ; �p to each �j , p < j � s,

we may take �j�L = 0 for p < j � s. After a linear change of coordinates, we
may suppose that �j(z) = zj , L = C p � f0g and A = 
 \ (C p � f0g). Let
� = (�1; : : : ; �s) : C

n �! C s be the projection onto the �rst s variables. As

Z is closed in 
 rA, Z [A is closed in 
. Moreover, our construction gives

(Z [A)\ ��1(0) = �Z \ ��1(0)�[ f0g and the case j = s of (8.9) shows that

Z\��1(0) is a locally �nite sequence in 
\(f0g�C n�s)rf0g. Therefore, we
can �nd a small ball B

00
of center 0 in C n�s such that Z \ (f0g � @B00) = ;.

As f0g � @B00 is compact and disjoint from the closed set Z [ A, there is a
small ball B0 of center 0 in C s such that (Z [ A) \ (B0 � @B00) = ;. This
implies that the projection � : (Z [ A) \ (B0 � B00) �! B0 is proper. Set
A0 = B0 \ (C p � f0g). Then the restriction
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Fig. 3 Projection � : Z \ ((B0
rA

0)�B
00) �! B

0
rA

0.

� = � : Z \ (B0 � B00)r (A0 � B00) �! B0 rA0

is proper, and Z \ (B0 � B00) is analytic in (B0 � B00) r A, so � has �nite

�bers by Th. 5.9. By de�nition of the rank we have �(�) = s. Let S1 =

Zsing \ ��1(B0 r A0) and S01 = �(S1) ; further, let S2 be the set of points

x 2 Z\��1�B0r(A0[S01)� � Zreg such that d�x has rank< s and S02 = �(S2).

We have dimSj � s � 1 � m � 1. Hypothesis (8:8)m�1 implies that S01 is

analytic in B0rA0 and that S02 is analytic in B
0r (A0 [S01). By Remark 4.2,

B0r (A0 [S01 [S02) is connected and every bounded holomorphic function on

this set extends to B0. As � is a (non rami�ed) covering over B0r(A0[S01[S02),
the sheet number is a constant q.

Let �(z) =
P
j>s

�jzj be a linear form on C n in the coordinates of index

j > s. For z0 2 B0r (A0[S01[S02), we let �j(z0) be the elementary symmetric

functions in the q complex numbers �(z) corresponding to z 2 ��1(z0). Then
these functions can be extended as bounded holomorphic functions on B0 and
we get a polynomial P�(z

0 ; T ) such that P�
�
z0 ; �(z00)

�
vanishes identically

on Zr��1(A0[S01 [S02). Since � is �nite, Z \��1(A0[S01[S02) is a union of

three (non necessarily closed) analytic subsets of dimension � s�1, thus has
empty interior in Z. It follows that the closure Z \ (B0�B00) is contained in

the analytic set W � B0 � B00 equal to the common zero set of all functions
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P�
�
z0 ; �(z00)

�
. Moreover, by construction,

Z r ��1(A0 [ S01 [ S02) = W r ��1(A0 [ S01 [ S02):
As in the proof of Cor. 5.4, we easily conclude that Z \ (B0 � B00) is equal
to the union of all irreducible components of W that are not contained in

��1(A0 [ S01 [ S02). Hence Z is analytic. �

Finally, we give two interesting applications of the Remmert-Stein theo-

rem. We assume here that the reader knows what is the complex projective

space Pn. For more details, see Sect. 5.15.

(8.10) Chow's theorem (Chow 1949). Let A be an analytic subset of the

complex projective space Pn. Then A is algebraic, i.e. A is the common zero

set of �nitely many homogeneous polynomials Pj(z0; : : : ; zn), 1 � j � N .

Proof. Let � : C n+1 rf0g �! Pn be the natural projection and Z = ��1(A).
Then Z is an analytic subset of C n+1rf0g which is invariant by homotheties

and dimZ = dimA + 1 � 1. The Remmert-Stein theorem implies that Z =

Z[f0g is an analytic subset of C n+1 . Let f1; : : : ; fN be holomorphic functions

on a small polydisk � � C n+1 of center 0 such that Z \ � =
T
f�1
j

(0).

The Taylor series at 0 gives an expansion fj =
P+1
k=0 Pj;k where Pj;k is a

homogeneous polynomial of degree k. We claim that Z coincides with the

common zero W set of the polynomials Pj;k. In fact, we clearly have W \
� � T f�1

j
(0) = Z \ �. Conversely, for z 2 Z \ �, the invariance of Z

by homotheties shows that fj(tz) =
P
Pj;k(z)t

k vanishes for every complex

number t of modulus < 1, so all coeÆcients Pj;k(z) vanish and z 2 W \ �.
By homogeneity Z =W ; since C [z0 ; : : : ; zn] is Noetherian,W can be de�ned

by �nitely many polynomial equations. �

(8.11) E.E. Levi's continuation theorem. Let X be a normal complex

space and A an analytic subset such that dim(A; x) � dim(X; x)� 2 for all

x 2 A. Then every meromorphic function on X r A has a meromorphic

extension to X.

Proof. We may suppose X irreducible, dimX = n. Let f be a meromor-

phic function on X r A. By Th. 6.13, the pole set Pf has pure dimension

(n � 1), so the Remmert-Stein theorem implies that P f is analytic in X.

Fix a point x 2 A. There is a connected neighborhood V of x and a non

zero holomorphic function h 2 OX (V ) such that P f \ V has �nitely many

irreducible components P f;j and P f \ V � h�1(0). Select a point xj in

P f;j r (Xsing [ (P f )sing [ A). As xj is a regular point on X and on P f ,

there is a local coordinate z1;j at xj de�ning an equation of P f;j, such that

z
mj

1;j f 2 OX;xj for some integer mj . Since h vanishes along Pf , we have

hmjf 2 OX;x. Thus, for m = maxfmjg, the pole set Pg of g = hmf in

V r A does not contain xj . As Pg is (n � 1)-dimensional and contained in
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Pf \ V , it is a union of irreducible components P f;j r A. Hence Pg must

be empty and g is holomorphic on V r A. By Cor. 7.8, g has an extension

to a holomorphic function ~g on V . Then ~g=hm is the required meromorphic

extension of f on V . �

x9. Complex Analytic Schemes

Our goal is to introduce a generalization of the notion of complex space given

in Def. 5.2. A complex space is a space locally isomorphic to an analytic

set A in an open subset 
 � C n , together with the sheaf of rings OA =

(O
=IA)�A. Our desire is to enrich the structure sheaf OA by replacing IA
with a possibly smaller ideal J de�ning the same zero variety V (J) = A. In

this way holomorphic functions are described not merely by their values on

A, but also possibly by some \transversal derivatives" along A.

x9.1. Ringed Spaces

We start by an abstract notion of ringed space on an arbitrary topological

space.

(9.1) De�nition. A ringed space is a pair (X;RX) consisting of a topolo-

gical space X and of a sheaf of rings RX on X, called the structure sheaf.

A morphism

F : (X;RX) �! (Y;RY )

of ringed spaces is a pair (f; F ?) where f : X �! Y is a continuous map and

F ? : f�1RY �! RX ; F ?x : (RY )f(x) �! (RX)x

a homomorphism of sheaves of rings on X, called the comorphism of F .

If F : (X;RX) �! (Y;RY ) and G : (Y;RY ) �! (Z;RZ) are morphisms

of ringed spaces, the composite G ÆF is the pair consisting of the map g Æ f :

X �! Z and of the comorphism (G Æ F )? = F ? Æ f�1G? :

(9:2) F ? Æ f�1G? : f�1g�1RZ
f
�1
G
?

���! f�1RY
F
?

��! RX ;

F ?
x
ÆG?

f(x) : (RZ)gÆf(x) ���! (RY )f(x) ��! (RX)x:



140 Chapter II. Coherent Sheaves and Analytic Spaces

x9.2. De�nition of Complex Analytic Schemes

We begin by a description of what will be the local model of an analytic

scheme. Let 
 � C n be an open subset, J � O
 a coherent sheaf of ideals

and A = V (J) the analytic set in 
 de�ned locally as the zero set of a system

of generators of J. By Hilbert's Nullstellensatz 4.22 we have IA =
p
J, but

IA di�ers in general from J. The sheaf of rings O
=J is supported on A, i.e.

(O
=J)x = 0 if x =2 A. Ringed spaces of the type (A;O
=J) will be used as

the local models of analytic schemes.

(9.3) De�nition. A morphism

F = (f; F ?) : (A;O
=J�A) �! (A0;O
0=J
0
�A0)

is said to be analytic if for every point x 2 A there exists a neighborhood Wx

of x in 
 and a holomorphic function � : Wx �! 
0 such that f�A\Wx
=

��A\Wx
and such that the comorphism

F ?
x
: (O
0=J

0)f(x) �! (O
=J)x

is induced by �? : O
0;f(x) 3 u 7�! u Æ � 2 O
;x with �?J0 � J.

(9.4) Example. Take 
 = C n and J = (z2n). Then A is the hyperplane

C n�1 � f0g, and the sheaf OCn =J can be identi�ed with the sheaf of rings

of functions u + znu
0, u; u0 2 OCn�1 , with the relation z2n = 0. In particular,

zn is a nilpotent element of OCn =J. A morphism F of (A;OCn =J) into itself

is induced (at least locally) by a holomorphic map � = (e�; �n) de�ned on

a neighborhood of A in C n with values in C n , such that �(A) � A, i.e.

�n�A = 0. We see that F is completely determined by the data

f(z1; : : : ; zn�1)= e�(z1; : : : ; zn�1; 0); f : C n�1 �! C n�1 ;

f 0(z1; : : : ; zn�1)=
@�

@zn
(z1; : : : ; zn�1; 0); f 0 : C n�1 �! C n ;

which can be chosen arbitrarily.

(9.5) De�nition. A complex analytic scheme is a ringed space (X;OX) over

a separable Hausdor� topological space X, satisfying the following property:

there exist an open covering (U�) of X and isomorphisms of ringed spaces

G� : (U�;OX�U�) �! (A�;O
�=J� �A�)

where A� is the zero set of a coherent sheaf of ideals J� on an open subset


� � C N� , such that every transition morphism G� ÆG�1� is a holomorphic

isomorphism from g�(U� \ U�) � A� onto g�(U� \ U�) � A�, equipped with

the respective structure sheaves O
�=J� �A� , O
�=J� �A� .
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We shall often consider the maps G� as identi�cations and write simply

U� = A�. A morphism F : (X;OX) �! (Y;OY ) of analytic schemes obtained

by gluing patches (A�;O
�=J� �A�) and (A0
�
;O
0

�
=J0
�A0

�

), respectively, is a

morphism F of ringed spaces such that for each pair (�; �), the restriction of

F from A�\f�1(A0�) � X to A0
�
� Y is holomorphic in the sense of Def. 9.3.

x9.3. Nilpotent Elements and Reduced Schemes

Let (X;OX) be an analytic scheme. The set of nilpotent elements is the sheaf

of ideals of OX de�ned by

(9:6) NX = fu 2 OX ; uk = 0 for some k 2 Ng:
Locally, we have OX�A� = (O
�=J�)�A� , thus

NX�A� = (
p
J�=J�)�A� ;(9:7)

(OX=NX)�A� ' (O
�=
p
J�)�A� = (O
�=IA�)�A� = OA� :(9:8)

The scheme (X;OX) is said to be reduced if NX = 0. The associated ringed

space (X;OX=NX) is reduced by construction; it is called the reduced scheme

of (X;OX). We shall often denote the original scheme by the letter X merely,

the associated reduced scheme by Xred, and let OX;red = OX=NX . There is a

canonical morphismXred ! X whose comorphism is the reduction morphism

(9:9) OX (U) �! OX;red(U) = (OX=NX)(U); 8U open set in X:

By (9.8), the notion of reduced scheme is equivalent to the notion of complex

space introduced in Def. 5.2. It is easy to see that a morphism F of reduced

schemes X;Y is completely determined by the set-theoretic map f : X �! Y .

x9.4. Coherent Sheaves on Analytic Schemes

If (X;OX) is an analytic scheme, a sheaf S of OX -modules is said to be

coherent if it satis�es the same properties as those already stated when X is

a manifold:

(9:10) S is locally �nitely generated over OX ;

(9:100) for any open set U � X and any sections G1; : : : ; Gq 2 S(U), the
relation sheaf R(G1; : : : ; Gq) � O�qX�U is locally �nitely generated.

Locally, we have OX�A� = O
�=J�, so if i� : A� ! 
� is the injection, the

direct image S� = (i�)?(S�A�) is a module over O
� such that J�:S� = 0.

It is clear that S�
� is coherent if and only if S� is coherent as a module

over O
� . It follows immediately that the Oka theorem and its consequences

3.16{20 are still valid over analytic schemes.
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x9.5. Subschemes

Let X be an analytic scheme and G a coherent sheaf of ideals in OX . The

image of G in OX;red is a coherent sheaf of ideals, and its zero set Y is clearly

an analytic subset of Xred. We can make Y into a scheme by introducing the

structure sheaf

(9:11) OY = (OX=G)�Y ;

and we have a scheme morphism F : (Y;OY ) �! (X;OX) such that f is

the inclusion and F ? : f�1OX �! OY the obvious map of OX�Y onto its

quotient OY . The scheme (Y;OY ) will be denoted V (G). When the analytic

set Y is given, the structure sheaf of V (G) depends of course on the choice of

the equations of Y in the ideal G ; in general OY has nilpotent elements.

x9.6. Inverse Images of Coherent Sheaves

Let F : (X;OX) �! (Y;OY ) be a morphism of analytic schemes and S a

coherent sheaf over Y . The sheaf theoretic inverse image f�1S, whose stalks
are (f�1S)x = Sf(x), is a sheaf of modules over f�1OY . We de�ne the analytic

inverse image F ?S by

(9:12) F ?S = OX 
f�1OY f�1S; (F ?S)x = OX;x 
OY;f(x) Sf(x):
Here the tensor product is taken with respect to the comorphism F ? :

f�1OY ! OX , which yields a ring morphism OY;f(x) ! OX;x. If S is given

over U � Y by a local presentation

O
�p
Y �U

A�! O
�q
Y �U �! S�U �! 0

where A is a (q � p)-matrix with coeÆcients in OY (U), our de�nition shows

that F ?S is a coherent sheaf over OX , given over f�1(U) by the local presen-

tation

(9:13) O
�p
X�f�1(U)

F
?
A���! O

�q
X�f�1(U) �! F ?S�f�1(U) �! 0:

x9.7. Products of Analytic Schemes

Let (X;OX) and (Y;OY ) be analytic schemes, and let (A�;O
�=J�),

(B�;O
0
�
=J0
�
) be local models of X, Y , respectively. The product scheme

(X � Y;OX�Y ) is obtained by gluing the open patches

(9:14)
�
A� �B� ; O
��
0�

Æ�
pr�11 J� + pr�12 J0�

�
O
��
0�

�
:

In other words, if A�, B� are the subschemes of 
�, 

0
�
de�ned by the

equations g�;j(x) = 0, g0
�;k

(y) = 0, where (g�;j) and (g0
�;k

) are generators of
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J� and J0
�
respectively, then A� � B� is equipped with the structure sheaf

O
��
0�
Æ�
g�;j(x); g

0
�;k

(y)
�
.

Now, let S be a coherent sheaf over OX and let S0 be a coherent sheaf

over OY . The (analytic) external tensor product S�S0 is de�ned to be

(9:15) S�S0 = pr?1S
OX�Y pr?2S
0:

If we go back to the de�nition of the inverse image, we see that the stalks of

S�S0 are given by

(9:150) (S�S0)(x;y) = OX�Y;(x;y) 
OX;x
OY;y (Sx 
C S0y) ;
in particular (S�S0)(x;y) does not coincide with the sheaf theoretic tensor

product Sx 
 S0y which is merely a module over OX;x 
 OY;y. If S and S0 are
given by local presentations

O
�p
X�U

A�! O
�q
X�U �! S�U �! 0; O

p
0

Y �U 0
B�! O

q
0

Y �U 0 �! S0�U 0 �! 0;

then S�S0 is the coherent sheaf given by

O
pq
0�qp0

X�Y �U�U 0
(A(x)
Id;Id
B(y))��������������! O

qq
0

X�Y �U�U 0 �! (S�S0)�U�U 0 �! 0:

x9.8. Zariski Embedding Dimension

If x is a point of an analytic scheme (X;OX), the Zariski embedding dimension

of the germ (X; x) is the smallest integer N such that (X; x) can be embedded

in C N , i.e. such that there exists a patch of X near x isomorphic to (A;O
=J)

where 
 is an open subset of C N . This dimension is denoted

(9:16) embdim(X; x) = smallest such N:

Consider the maximal ideal mX;x � OX;x of functions which vanish at point x.
If (X; x) is embedded in (
; x) = (C N ; 0), then mX;x=m

2
X;x

is generated by

z1; : : : ; zN , so d = dimmX;x=m
2
X;x
� N . Let s1; : : : ; sd be germs in m
;x

which yield a basis of mX;x=m
2
X;x
' m
;x=(m

2

;x

+ Jx). We can write

zj =
X

1�k�d
cjksk + uj + fj ; cjk 2 C ; uj 2 m2


;x; fj 2 Jx; 1 � j � n:

Then we �nd dzj =
P
cjk dsk(x) + dfj(x), so that the rank of the sys-

tem of di�erentials
�
dfj(x)

�
is at least N � d. Assume for example that

df1(x); : : : ; dfN�d(x) are linearly independant . By the implicit function the-

orem, the equations f1 = : : : = fN�d = 0 de�ne a germ of smooth sub-

variety (Z; x) � (
; x) of dimension d which contains (X; x). We have

OZ = O
=(f1; : : : ; fN�d) in a neighborhood of x, thus

OX = O
=J ' OZ=J0 where J0 = J=(f1; : : : ; fN�d):
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This shows that (X; x) can be imbedded in C d , and we get

(9:17) embdim(X; x) = dimmX;x=m
2
X;x

:

(9.18) Remark. For a given dimension n = dim(X; x), the embedding di-

mension d can be arbitrarily large. Consider for example the curve � � C N

parametrized by C 3 t 7�! (tN ; tN+1; : : : ; t2N�1). Then O�;0 is the ring of

convergent series in C ftg which have no terms t; t2; : : : ; tN�1, and m�;0=m2
�;0

admits precisely z1 = tN ; : : : ; zN = t2N�1 as a basis. Therefore n = 1 but

d = N can be as large as we want.

x10. Bimeromorphic maps, Modi�cations and Blow-ups

It is a very frequent situation in analytic or algebraic geometry that two com-

plex spaces have isomorphic dense open subsets but are nevertheless di�erent

along some analytic subset. These ideas are made precise by the notions of

modi�cation and bimeromorphic map. This will also lead us to generalize

the notion of meromorphic function to maps between analytic schemes. If

(X;OX) is an analytic scheme, MX denotes the sheaf of meromorphic func-

tions on X, de�ned at the beginning of x 6.2.

(10.1) De�nition. Let (X;OX), (Y;OY ) be analytic schemes. An analytic

morphism F : X ! Y is said to be a modi�cation if F is proper and if there

exists a nowhere dense closed analytic subset B � Y such that the restriction

F : X r F�1(B)! Y r B is an isomorphism.

(10.2) De�nition. If F : X ! Y is a modi�cation, then the comorphism

F ? : f?OY ! OX induces an isomorphism F ? : f?MY !MX for the sheaves

of meromorphic functions on X and Y .

Proof. Let v = g=h be a section of MY on a small open set 
 where u is

actually given as a quotient of functions g; h 2 OY (
). Then F ?u = (g Æ
F )=(hÆF ) is a section of MX on F�1(
), for h ÆF cannot vanish identically

on any open subset W of F�1(
) (otherwise h would vanish on the open

subset F (W r F�1(B)) of 
 r B). Thus the extension of the comorphism

to sheaves of meromorphic functions is well de�ned. Our claim is that this is

an isomorphism. The injectivity of F ? is clear: F ?u = 0 implies g Æ F = 0,

which implies g = 0 on 
 r B and thus g = 0 on 
 because B is nowhere

dense. In order to prove surjectivity, we need only show that every section

u 2 OX(F�1(
)) is in the image ofMY (
) by F
?. For this, we may shrink 


into a relatively compact subset 
0 �� 
 and thus assume that u is bounded

(here we use the properness of F through the fact that F�1(
0) is relatively
compact in F�1(
)). Then v = u Æ F�1 de�nes a bounded holomorphic
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function on 
 r B. By Th. 7.2, it follows that v is weakly holomorphic for

the reduced structure of Y . Our claim now follows from the following Lemma.

�

(10.3) Lemma. If (X;OX) is an analytic scheme, then every holomorphic

function v in the complement of a nowhere dense analytic subset B � Y

which is weakly holomorphic on Xred is meromorphic on X.

Proof. It is enough to argue with the germ of v at any point x 2 Y , and

thus we may suppose that (Y;OY ) = (A;O
=I) is embedded in C N . Because

v is weakly holomorphic, we can write v = g=h in Yred, for some germs of

holomorphic functions g; h. Let eg and eh be extensions of g, h to O
;x. Then

there is a neighborhood U of x such that eg � veh is a nilpotent section of

cO
(U rB) which is in I on

(10.4) De�nition. A meromorphic map F : X - -! Y is a scheme mor-

phism F : XrA! Y de�ned in the complement of a nowhere dense analytic

subset A � X, such that the closure of the graph of F in X�Y is an analytic

subset (for the reduced complex space structure of X � Y ).

x11. Exercises

11.1. Let A be a sheaf on a topological space X. If the sheaf space eA is Hausdor�,
show that A satis�es the following unique continuation principle: any two sections
s; s

0 2 A(U) on a connected open set U which coincide on some non empty open
subset V � U must coincide identically on U . Show that the converse holds if X is
Hausdor� and locally connected.

11.2. Let A be a sheaf of abelian groups on X and let s 2 A(X). The support
of s, denoted Supp s, is de�ned to be fx 2 X ; s(x) 6= 0g. Show that Supp s is a
closed subset of X. The support of A is de�ned to be Supp A = fx 2 X ; Ax 6= 0g.
Show that Supp A is not necessarily closed: if 
 is an open set in X, consider the
sheaf A such that A(U) is the set of continuous functions f 2 C(U) which vanish
on a neighborhood of U \ (X r
).

11.3. Let A be a sheaf of rings on a topological space X and let F, G be sheaves of
A-modules. We de�ne a presheaf H = HomA(F;G) such that H(U) is the module
of all sheaf-homomorphisms F�U ! G�U which are A-linear.

a) Show that HomA(F;G) is a sheaf and that there is a canonical homomorphism
'x : HomA(F;G)x �! homAx

(Fx;Gx) for every x 2 X.

b) If F is locally �nitely generated, then 'x is injective, and if F has local �nite
presentations as in (3.12), then 'x is bijective.

c) Suppose that A is a coherent sheaf of rings and that F, G are coherent modules
over A. Then HomA(F;G) is a coherent A-module.
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Hint : observe that the result is true if F = A�p and use a local presentation of
F to get the conclusion.

11.4. Let f : X ! Y be a continuous map of topological spaces. Given sheaves of
abelian groups A on X and B on Y , show that there is a natural isomorphism

homX(f
�1
B;A) = homY (B; f?A):

Hint : use the natural morphisms (2.17).

11.5. Show that the sheaf of polynomials over C n is a coherent sheaf of rings (with
either the ordinary topology or the Zariski topology on C n ). Extend this result to
the case of regular algebraic functions on an algebraic variety.
Hint : check that the proof of the Oka theorem still applies.

11.6. Let P be a non zero polynomial on C
n . If P is irreducible in C [z1 ; : : : ; zn],

show that the hypersurface H = P
�1(0) is globally irreducible as an analytic set.

In general, show that the irreducible components of H are in a one-to-one corre-
spondence with the irreducible factors of P .
Hint : for the �rst part, take coordinates such that P (0; : : : ; 0; zn) has degree equal
to P ; if H splits in two components H1, H2, then P can be written as a product
P1P2 where the roots of Pj(z

0
; zn) correspond to points in Hj .

11.7. Prove the following facts:

a) For every algebraic variety A of pure dimension p in C n , there are coordinates
z
0 = (z1; : : : ; zp), z

00 = (zp+1; : : : ; zn) such that � : A ! C
p , z 7! z

00 is proper
with �nite �bers, and such that A is entirely contained in a cone

jz00j � C(jz0j+ 1):

Hint : imitate the proof of Cor. 4.11.

b) Conversely if an analytic set A of pure dimension p in C n is contained in a cone
jz00j � C(jz0j+ 1), then A is algebraic.
Hint : �rst apply (5:9) to conclude that the projection � : A ! C

p is �nite.
Then repeat the arguments used in the �nal part of the proof of Th. 4.19.

c) Deduce from a), b) that an algebraic set in C n is irreducible if and only if it is
irreducible as an analytic set.

11.8. Let � : f(x; y) = 0 be a germ of analytic curve in C 2 through (0; 0) and let
(�j ; 0) be the irreducible components of (�; 0). Suppose that f(0; y) 6� 0. Show that
the roots y of f(x; y) = 0 corresponding to points of � near 0 are given by Puiseux

expansions of the form y = gj(x
1=qj ), where gj 2 OC;0 and where qj is the sheet

number of the projection �j ! C , (x; y) 7! x.
Hint : special case of the parametrization obtained in (4.27).

11.9. The goal of this exercise is to prove the existence and the analyticity of the
tangent cone to an arbitrary analytic germ (A; 0) in C n . Suppose that A is de�ned
by holomorphic equations f1 = : : : = fN = 0 in a ball 
 = B(0; r). Then the (set
theoretic) tangent cone to A at 0 is the set C(A; 0) of all limits of sequences t�1� z�

with z� 2 A and C ? 3 t� converging to 0.

a) Let E be the set of points (z; t) 2 
 � C
? such that z 2 t

�1
A. Show that the

closure E in 
 � C is analytic.
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Hint : observe that E = A r (
 � f0g) where A = ffj(tz) = 0g and apply
Cor. 5.4.

b) Show that C(A; 0) is a conic set and that E \ (
 � f0g) = C(A; 0) � f0g and
conclude. Infer from this that C(A; 0) is an algebraic subset of C n .

11.10. Give a new proof of Theorem 5.5 based on the coherence of ideal sheaves
and on the strong noetherian property.

11.11. Let X be an analytic space and let A, B be analytic subsets of pure di-
mensions. Show that codimX(A \B) � codimX A+ codimX B if A or B is a local
complete intersection, but that the equality does not necessarily hold in general.
Hint : see Remark (6.5).

11.12. Let � be the curve in C 3 parametrized by C 3 t 7�! (x; y; z) = (t3; t4; t5).
Show that the ideal sheaf I� is generated by the polynomials xz � y2, x3 � yz and
x
2
y � z

2, and that the germ (�; 0) is not a (sheaf theoretic) complete intersection.

Hint : � is smooth except at the origin. Let f(x; y; z) =
P
a��x

�
y
�
z
 be a conver-

gent power series near 0. Show that f 2 I�;0 if and only if all weighted homogeneous

components fk =
P

3�+4�+5=k
a��x

�
y
�
z
 are in I�;0. By means of suitable sub-

stitutions, reduce the proof to the case when f = fk is homogeneous with all non
zero monomials satisfying � � 2, � � 1,  � 1; then check that there is at most
one such monomial in each weighted degree � 15 the product of a power of x by a
homogeneous polynomial of weighted degree � 8.





Chapter III

Positive Currents and Lelong Numbers

In 1957, P. Lelong introduced natural positivity concepts for currents of pure bidi-
mension (p; p) on complex manifolds. With every analytic subset is associated a
current of integration over its set of regular points and all such currents are posi-
tive and closed. The important closedness property is proved here via the Skoda-El
Mir extension theorem. Positive currents have become an important tool for the
study of global geometric problems as well as for questions related to local alge-
bra and intersection theory. We develope here a di�erential geometric approach to
intersection theory through a detailed study of wedge products of closed positive
currents (Monge-Amp�ere operators). The Lelong-Poincar�e equation and the Jensen-
Lelong formula are basic in this context, providing a useful tool for studying the
location and multiplicities of zeroes of entire functions on C

n or on a manifold, in
relation with the growth at in�nity. Lelong numbers of closed positive currents are
then introduced; these numbers can be seen as a generalization to currents of the
notion of multiplicity of a germ of analytic set at a singular point. We prove various
properties of Lelong numbers (e.g. comparison theorems, semi-continuity theorem
of Siu, transformation under holomorphic maps). As an application to Number
Theory, we prove a general Schwarz lemma in C

n and derive from it Bombieri's
theorem on algebraic values of meromorphic maps and the famous theorems of
Gelfond-Schneider and Baker on the transcendence of exponentials and logarithms
of algebraic numbers.

1. Basic Concepts of Positivity

1.A. Positive and Strongly Positive Forms

Let V be a complex vector space of dimension n and (z1; : : : ; zn) coordinates

on V . We denote by (@=@z1; : : : ; @=@zn) the corresponding basis of V , by

(dz1; : : : ; dzn) its dual basis in V
? and consider the exterior algebra

�V ?
C
=
M

�p;qV ?; �p;qV ? = �pV ? 
 �qV ?:

We are of course especially interested in the case where V = TxX is the

tangent space to a complex manifold X, but we want to emphasize here that

our considerations only involve linear algebra. Let us �rst observe that V has

a canonical orientation, given by the (n; n)-form

�(z) = idz1 ^ dz1 ^ : : : ^ idzn ^ dzn = 2n dx1 ^ dy1 ^ : : : ^ dxn ^ dyn
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where zj = xj + iyj . In fact, if (w1; : : : ; wn) are other coordinates, we �nd

dw1 ^ : : : ^ dwn = det(@wj=@zk) dz1 ^ : : : ^ dzn;
�(w) =

��det(@wj=@zk)��2 �(z):
In particular, a complex manifold always has a canonical orientation. More

generally, natural positivity concepts for (p; p)-forms can be de�ned.

(1.1) De�nition. A (p; p)-form u 2 �p;pV ? is said to be positive if for all

�j 2 V ?, 1 � j � q = n� p, then
u ^ i�1 ^ �1 ^ : : : ^ i�q ^ �q

is a positive (n; n)-form. A (q; q)-form v 2 �q;qV ? is said to be strongly

positive if v is a convex combination

v =
X

s i�s;1 ^ �s;1 ^ : : : ^ i�s;q ^ �s;q
where �s;j 2 V ? and s � 0.

(1.2) Example. Since ip(�1)p(p�1)=2 = ip
2

, we have the commutation rules

i�1 ^ �1 ^ : : : ^ i�p ^ �p = ip
2

� ^ �; 8� = �1 ^ : : : ^ �p 2 �p;0V ?;
ip

2

� ^ � ^ im2

 ^  = i(p+m)2� ^  ^ � ^ ; 8� 2 �p;0V ?; 8 2 �m;0V ?:
Takem = q to be the complementary degree of p. Then �^ = �dz1^: : :^dzn
for some � 2 C and in

2

�^^� ^  = j�j2�(z). If we set  = �1^ : : :^�q, we
�nd that ip

2

�^� is a positive (p; p)-form for every � 2 �p;0V ? ; in particular,

strongly positive forms are positive. �

The sets of positive and strongly positive forms are closed convex cones,

i.e. closed and stable under convex combinations. By de�nition, the positive

cone is dual to the strongly positive cone via the pairing

(1:3)
�p;pV ?��q;qV ?�! C

(u;v) 7�! u ^ v=�;
that is, u 2 �p;pV ? is positive if and only if u^ v � 0 for all strongly positive

forms v 2 �q;qV ?. Since the bidual of an arbitrary convex cone � is equal

to its closure � , we also obtain that v is strongly positive if and only if

v ^ u = u ^ v is � 0 for all positive forms u. Later on, we will need the

following elementary lemma.

(1.4) Lemma. Let (z1; : : : ; zn) be arbitrary coordinates on V . Then �p;pV ?

admits a basis consisting of strongly positive forms
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�s = i�s;1 ^ �s;1 ^ : : : ^ i�s;p ^ �s;p; 1 � s �
�
n

p

�2

where each �s;l is of the type dzj � dzk or dzj � idzk, 1 � j; k � n.

Proof. Since one can always extract a basis from a set of generators, it is

suÆcient to see that the family of forms of the above type generates �p;pV ?.

This follows from the identities

4dzj ^ dzk = (dzj + dzk) ^(dzj + dzk) � (dzj � dzk) ^(dzj � dzk)
+i(dzj + idzk)^(dzj + idzk)�i(dzj � idzk)^(dzj � idzk);

dzj1 ^ : : : ^ dzjp ^ dzk1 ^ : : : ^ dzkp = �
^

1�s�p
dzjs ^ dzks : �

(1.5) Corollary. All positive forms u are real, i.e. satisfy u = u. In terms of

coordinates, if u = ip
2P

jIj=jJj=p uI;J dzI ^ dzJ , then the coeÆcients satisfy

the hermitian symmetry relation uI;J = uJ; I .

Proof. Clearly, every strongly positive (q; q)-form is real. By Lemma 1.4, these

forms generate over R the real elements of �q;qV ?, so we conclude by duality

that positive (p; p)-forms are also real. �

(1.6) Criterion. A form u 2 �p;pV ? is positive if and only if its restriction

u�S to every p-dimensional subspace S � V is a positive volume form on S.

Proof. If S is an arbitrary p-dimensional subspace of V we can �nd coordi-

nates (z1; : : : ; zn) on V such that S = fzp+1 = : : : = zn = 0g. Then
u�S = �S idz1 ^ dz1 ^ : : : ^ idzp ^ dzp

where �S is given by

u ^ idzp+1 ^ dzp+1 ^ : : : ^ idzn ^ dzn = �S �(z):

If u is positive then �S � 0 so u�S is positive for every S. The converse is

true because the (n � p; n � p)-forms
V
j>p

idzj ^ dzj generate all strongly

positive forms when S runs over all p-dimensional subspaces. �

(1.7) Corollary. A form u = i
P
j;k
ujk dzj ^dzk of bidegree (1; 1) is positive

if and only if � 7!Pujk�j�k is a semi-positive hermitian form on C n .

Proof. If S is the complex line generated by � and t 7! t� the parametrization

of S, then u�S =
�P

ujk�j�k
�
idt ^ dt. �

Observe that there is a canonical one-to-one correspondence between her-

mitian forms and real (1; 1)-forms on V . The correspondence is given by
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(1:8) h =
X

1�j;k�n
hjk(z) dzj 
 dzk 7�! u = i

X
1�j;k�n

hjk(z) dzj ^ dzk

and does not depend on the choice of coordinates: indeed, as hjk = hkj , one

�nds immediately

u(�; �) = i
X

hjk(z)(�j�k � �j�k) = �2 Imh(�; �); 8�; � 2 TX:

Moreover, h is � 0 as a hermitian form if and only if u � 0 as a (1; 1)-form.

A diagonalization of h shows that every positive (1; 1)-form u 2 �1;1V ? can

be written

u =
X

1�j�r
ij ^ j ;  2 V ?; r = rank of u;

in particular, every positive (1; 1)-form is strongly positive. By duality, this

is also true for (n� 1; n� 1)-forms.

(1.9) Corollary. The notions of positive and strongly positive (p; p)-forms

coincide for p = 0; 1; n� 1; n. �

(1.10) Remark. It is not diÆcult to see, however, that positivity and strong

positivity di�er in all bidegrees (p; p) such that 2 � p � n � 2. Indeed, a

positive form ip
2

� ^ � with � 2 �p;0V ? is strongly positive if and only if � is

decomposable as a product �1 ^ : : : ^ �p. To see this, suppose that

ip
2

� ^ � =
X

1�j�N
ip

2

j ^ j

where all j 2 �p;0V ? are decomposable. Take N minimal. The equality

can be also written as an equality of hermitian forms j�j2 = P jjj2 if �; j
are seen as linear forms on �pV . The hermitian form j�j2 has rank one, so

we must have N = 1 and � = �j, as desired. Note that there are many

non decomposable p-forms in all degrees p such that 2 � p � n � 2, e.g.

(dz1 ^ dz2 + dz3 ^ dz4)^ : : :^ dzp+2 : if a p-form is decomposable, the vector

space of its contractions by elements of
V
p�1

V is a p-dimensional subspace

of V ?; in the above example the dimension is p+ 2.

(1.11) Proposition. If u1; : : : ; us are positive forms, all of them strongly

positive (resp. all except perhaps one), then u1 ^ : : : ^ us is strongly positive

(resp. positive).

Proof. Immediate consequence of Def. 1.1. Observe however that the wedge

product of two positive forms is not positive in general (otherwise we would

infer that positivity coincides with strong positivity). �
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(1.12) Proposition. If � :W �! V is a complex linear map and u 2 �p;pV ?
is (strongly) positive, then �?u 2 �p;pW ? is (strongly) positive.

Proof. This is clear for strong positivity, since

�?(i�1 ^ �1 ^ : : : ^ i�p ^ �p) = i�1 ^ �1 ^ : : : ^ i�p ^ �p
with �j = �?�j 2 W ?, for all �j 2 V ?. For u positive, we may ap-

ply Criterion 1.6: if S is a p-dimensional subspace of W , then u��(S) and

(�?u)�S = (��S)
?u��(S) are positive when ��S : S �! �(S) is an isomor-

phism; otherwise we get (�?u)�S = 0. �

1.B. Positive Currents

The duality between the positive and strongly positive cones of forms can be

used to de�ne corresponding positivity notions for currents.

(1.13) De�nition. A current T 2 D0p;p(X) is said to be positive (resp.

strongly positive) if hT; ui � 0 for all test forms u 2 Dp;p(X) that are strongly

positive (resp. positive) at each point. The set of positive (resp. strongly

positive) currents of bidimension (p; p) will be denoted

D0+
p;p

(X); resp. D0�
p;p
(X):

It is clear that (strong) positivity is a local property and that the sets

D0�p;p(X) � D0+p;p(X) are closed convex cones with respect to the weak topol-

ogy. Another way of stating Def. 1.13 is:

T is positive (strongly positive) if and only if T ^ u 2 D00;0(X) is a positive

measure for all strongly positive (positive) forms u 2 C1
p;p

(X).

This is so because a distribution S 2 D0(X) such that S(f) � 0 for every

non-negative function f 2 D(X) is a positive measure.

(1.14) Proposition. Every positive current T = i(n�p)
2P

TI;J dzI ^ dzJ in

D0+
p;p

(X) is real and of order 0, i.e. its coeÆcients TI;J are complex measures

and satisfy TI;J = TJ; I for all multi-indices jIj = jJ j = n�p. Moreover TI;I �
0, and the absolute values jTI;J j of the measures TI;J satisfy the inequality

�I�J jTI;J j � 2p
X
M

�2
M
TM;M ; I \ J �M � I [ J

where �k � 0 are arbitrary coeÆcients and �I =
Q
k2I �k.

Proof. Since positive forms are real, positive currents have to be real by du-

ality. Let us denote by K = {I and L = {J the ordered complementary
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multi-indices of I; J in f1; 2; : : : ; ng. The distribution TI;I is a positive mea-

sure because

TI;I � = T ^ ip2dzK ^ dzK � 0:

On the other hand, the proof of Lemma 1.4 yields

TI;J � = �T ^ ip
2

dzK ^ dzL =
X

a2(Z=4Z)p
"a T ^ a where

a =
^

1�s�p

i

4
(dzks + iasdzls) ^ (dzks + iasdzls); "a = �1;�i:

Now, each T ^ a is a positive measure, hence TI;J is a complex measure and

jTI;J j � �
X
a

T ^ a = T ^
X
a

a

= T ^
^

1�s�p

� X
as2Z=4Z

i

4
(dzks + iasdzls) ^ (dzks + iasdzls)

�
= T ^

^
1�s�p

�
idzks ^ dzks + idzls ^ dzls

�
:

The last wedge product is a sum of at most 2p terms, each of which is of the

type ip
2

dzM ^ dzM with jM j = p and M � K [L. Since T ^ ip2dzM ^ dzM =

T{M;{M � and {M � {K \ {L = I \ J , we �nd

jTI;J j � 2p
X

M�I\J
TM;M :

Now, consider a change of coordinates (z1; : : : ; zn) = �w = (�1w1; : : : ; �nwn)

with �1; : : : ; �n > 0. In the new coordinates, the current T becomes �?T and

its coeÆcients become �I�J TI;J (�w). Hence, the above inequality implies

�I�J jTI;J j � 2p
X

M�I\J
�2M TM;M :

This inequality is still true for �k � 0 by passing to the limit. The inequality

of Prop. 1.14 follows when all coeÆcients �k, k =2 I [ J , are replaced by 0, so

that �M = 0 for M 6� I [ J . �

(1.15) Remark. If T is of order 0, we de�ne the mass measure of T by

kTk =P jTI;J j (of course kTk depends on the choice of coordinates). By the

Radon-Nikodym theorem, we can write TI;J = fI;JkTk with a Borel function

fI;J such that
P jfI;J j = 1. Hence

T = kTk f; where f = i(n�p)
2
X

fI;J dzI ^ dzJ :
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Then T is (strongly) positive if and only if the form f(x) 2 �n�p;n�pT ?
x
X

is (strongly) positive at kTk-almost all points x 2 X. Indeed, this condition

is clearly suÆcient. On the other hand, if T is (strongly) positive and uj
is a sequence of forms with constant coeÆcients in �p;pT ?X which is dense

in the set of strongly positive (positive) forms, then T ^ uj = jjT jj f ^ uj ,
so f(x) ^ uj has to be a positive (n; n)-form except perhaps for x in a set

N(uj) of kTk-measure 0. By a simple density argument, we see that f(x) is

(strongly) positive outside the kTk-negligible set N =
S
N(uj).

As a consequence of this proof, T is positive (strongly positive) if and only

if T ^ u is a positive measure for all strongly positive (positive) forms u of

bidegree (p; p) with constant coeÆcients in the given coordinates (z1; : : : ; zn).

It follows that if T is (strongly) positive in a coordinate patch 
, then the

convolution T ? �" is (strongly) positive in 
" = fx 2 
 ; d(x; @
) > "g. �

(1.16) Corollary. If T 2 D0
p;p
(X) and v 2 C0

s;s
(X) are positive, one of

them (resp. both of them) strongly positive, then the wedge product T ^ v is a

positive (resp. strongly positive) current.

This follows immediately from Remark 1.15 and Prop. 1.11 for forms.

Similarly, Prop. 1.12 on pull-backs of positive forms easily shows that posi-

tivity properties of currents are preserved under direct or inverse images by

holomorphic maps.

(1.17) Proposition. Let � : X �! Y be a holomorphic map between com-

plex analytic manifolds.

a) If T 2 D0+p;p(X) and ��Supp T is proper, then �?T 2 D0+p;p(Y ).
b) If T 2 D0+

p;p
(Y ) and if � is a submersion with m-dimensional �bers, then

�?T 2 D0+
p+m;p+m(X).

Similar properties hold for strongly positive currents. �

1.C. Basic Examples of Positive Currents

We present here two fundamental examples which will be of interest in many

circumstances.

(1.18) Current Associated to a Plurisubharmonic Function Let X be

a complex manifold and u 2 Psh(X)\L1
loc(X) a plurisubharmonic function.

Then

T = id0d00u = i
X

1�j;k�n

@2u

@zj@zk
dzj ^ dzk

is a positive current of bidegree (1; 1). Moreover T is closed (we always mean

here d-closed, that is, dT = 0). Assume conversely that � is a closed real



156 Chapter III Positive Currents and Lelong Numbers

(1; 1)-current on X. Poincar�e's lemma implies that every point x0 2 X has

a neighborhood 
0 such that � = dS with S 2 D01(
0;R). Write S =

S1;0 + S0;1, where S0;1 = S1;0. Then d00S = �0;2 = 0, and the Dolbeault-

Grothendieck lemma shows that S0;1 = d00v on some neighborhood 
 � 
0,

with v 2 D0(
; C ). Thus
S = d00v + d00v = d0v + d00v;

� = dS = d0d00(v � v) = id0d00u;

where u = 2Re v 2 D0(
;R). If � 2 C11;1(X), the hypoellipticity of d00 in
bidegree (p; 0) shows that d0u is of class C1, so u 2 C1(
). When � is

positive, the distribution u is a plurisubharmonic function (Th. I.3.31). We

have thus proved:

(1.19) Proposition. If � 2 D
0+
n�1;n�1(X) is a closed positive current of

bidegree (1; 1), then for every point x0 2 X there exists a neighborhood 
 of

x0 and u 2 Psh(
) such that � = id0d00u. �

(1.20) Current of Integration on a Complex Submanifold Let Z � X
be a closed p-dimensional complex submanifold with its canonical orientation

and T = [Z]. Then T 2 D0�
p;p
(X). Indeed, every (r; s)-form of total degree

r + s = 2p has zero restriction to Z unless (r; s) = (p; p), therefore we have

[Z] 2 D0
p;p
(X). Now, if u 2 Dp;p(X) is a positive test form, then u�Z is a

positive volume form on Z by Criterion 1.6, therefore

h[Z]; ui =
Z
Z

u�Z � 0:

In this example the current [Z] is also closed, because d[Z] = �[@Z] = 0 by

Stokes' theorem. �

1.D. Trace Measure and Wirtinger's Inequality

We discuss now some questions related to the concept of area on complex

submanifolds. Assume that X is equipped with a hermitian metric h, i.e. a

positive de�nite hermitian form h =
P
hjkdzj 
 dzk of class C1 ; we denote

by ! = i
P
hjkdzj ^ dzk 2 C11;1(X) the associated positive (1; 1)-form.

(1.21) De�nition. For every T 2 D0+
p;p

(X), the trace measure of T with

respect to ! is the positive measure

�T =
1

2pp!
T ^ !p:

If (�1; : : : ; �n) is an orthonormal frame of T ?X with respect to h on an

open subset U � X, we may write
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! = i
X

1�j�n
�j ^ �j ; !p = ip

2

p!
X
jKj=p

�K ^ �K ;

T = i(n�p)
2

X
jIj=jJj=n�p

TI;J �I ^ �J ; TI;J 2 D0(U);

where �I = �i1 ^ : : : ^ �in�p . An easy computation yields

(1:22) �T = 2�p
� X
jIj=n�p

TI;I

�
i�1 ^ �1 ^ : : : ^ i�n ^ �n:

For X = C n with the standard hermitian metric h =
P
dzj 
 dzj , we get in

particular

(1:220) �T = 2�p
� X
jIj=n�p

TI;I

�
idz1 ^ dz1 ^ : : : ^ idzn ^ dzn:

Proposition 1.14 shows that the mass measure jjT jj = P jTI;J j of a positive

current T is always dominated by C�T where C > 0 is a constant. It follows

easily that the weak topology of D0p(X) and of D0 0
p (X) coincide on D0+p (X),

which is moreover a metrizable subspace: its weak topology is in fact de�ned

by the collection of semi-norms T 7�! jhT; f�ij where (f�) is an arbitrary

dense sequence in Dp(X). By the Banach-Alaoglu theorem, the unit ball in

the dual of a Banach space is weakly compact, thus:

(1.23) Proposition. Let Æ be a positive continuous function on X. Then the

set of currents T 2 D0+p (X) such that
R
X
Æ T ^ !p � 1 is weakly compact.

Proof. Note that our set is weakly closed, since a weak limit of positive cur-

rents is positive and
R
X
Æ T ^!p = suphT; �Æ!pi when � runs over all elements

of D(X) such that 0 � � � 1. �

Now, let Z be a p-dimensional complex analytic submanifold of X. We

claim that

(1:24) �[Z] =
1

2pp!
[Z] ^ !p = Riemannian volume measure on Z:

This result is in fact a special case of the following important inequality.

(1.25) Wirtinger's inequality. Let Y be an oriented real submanifold of

class C1 and dimension 2p in X, and let dVY be the Riemannian volume

form on Y associated with the metric h�Y . Set

1

2pp!
!
p

�Y = �dVY ; � 2 C0(Y ):
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Then j�j � 1 and the equality holds if and only if Y is a complex analytic

submanifold of X. In that case � = 1 if the orientation of Y is the canonical

one, � = �1 otherwise.

Proof. The restriction !�Y is a real antisymmetric 2-form on TY . At any point

z 2 Y , we can thus �nd an oriented orthonormal R-basis (e1; e2; : : : ; e2p) of

TzY such that

1

2
! =

X
1�k�p

�k e
?

2k�1 ^ e?2k on TzY; where

�k =
1

2
!(e2k�1; e2k) = � Imh(e2k�1; e2k):

We have dVY = e?1 ^ : : : ^ e?2p by de�nition of the Riemannian volume form.

By taking the p-th power of !, we get

1

2pp!
!
p

�TzY
= �1 : : : �p e

?

1 ^ : : : ^ e?2p = �1 : : : �p dVY :

Since (ek) is an orthonormal R-basis, we have Reh(e2k�1; e2k) = 0, thus

h(e2k�1; e2k) = �i�k. As je2k�1j = je2kj = 1, we get

0 � je2k � Je2k�1j2 = 2
�
1� Reh(Je2k�1; e2k)

�
= 2(1� �k):

Therefore

j�kj � 1; j�j = j�1 : : : �pj � 1;

with equality if and only if �k = �1 for all k, i.e. e2k = �Je2k�1. In this

case TzY � TzX is a complex vector subspace at every point z 2 Y , thus
Y is complex analytic by Lemma I.4.23. Conversely, assume that Y is a C -

analytic submanifold and that (e1; e3; : : : ; e2p�1) is an orthonormal complex

basis of TzY . If e2k := Je2k�1, then (e1; : : : ; e2p) is an orthonormal R-basis

corresponding to the canonical orientation and

1

2
!�Y =

X
1�k�p

e?2k�1 ^ e?2k;
1

2pp!
!p�Y = e?1 ^ : : : ^ e?2p = dVY : �

Note that in the case of the standard hermitian metric ! on X = C n ,

the form ! = i
P
dzj ^ dzj = d

�
i
P
zj dzj

�
is globally exact. Under this

hypothesis, we are going to see that C -analytic submanifolds are always

minimal surfaces for the Plateau problem, which consists in �nding a com-

pact subvariety Y of minimal area with prescribed boundary @Y .

(1.26) Theorem. Assume that the (1; 1)-form ! is exact, say ! = d with

 2 C11 (X;R), and let Y; Z � X be (2p)-dimensional oriented compact real
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submanifolds of class C1 with boundary. If @Y = @Z and Z is complex ana-

lytic, then

Vol(Y ) � Vol(Z):

Proof. Write ! = d. Wirtinger's inequality and Stokes' theorem imply

Vol(Y ) � 1

2pp!

��� Z
Y

!p
��� = 1

2pp!

��� Z
Y

d(!p�1 ^ )
��� = 1

2pp!

��� Z
@Y

!p�1 ^ 
���;

Vol(Z) =
1

2pp!

Z
Z

!p =
1

2pp!

Z
@Z

!p�1 ^  = � 1

2pp!

Z
@Y

!p�1 ^ : �

2. Closed Positive Currents

2.A. The Skoda-El Mir Extension Theorem

We �rst prove the Skoda-El Mir extension theorem (Skoda 1982, El Mir

1984), which shows in particular that a closed positive current de�ned in the

complement of an analytic set E can be extended through E if (and only if)

the mass of the current is locally �nite near E. El Mir simpli�ed Skoda's

argument and showed that it is enough to assume E complete pluripolar. We

follow here the exposition of Sibony's survey article (Sibony 1985).

(2.1) De�nition. A subset E � X is said to be complete pluripolar in X

if for every point x0 2 X there exist a neighborhood 
 of x0 and a function

u 2 Psh(
) \ L1
loc(
) such that E \
 = fz 2 
 ; u(z) = �1g.

Note that any closed analytic subset A � X is complete pluripolar: if

g1 = : : : = gN = 0 are holomorphic equations of A on an open set 
 � X,

we can take u = log(jg1j2 + : : :+ jgN j2).

(2.2) Lemma. Let E � X be a closed complete pluripolar set. If x0 2 X

and 
 is a suÆciently small neighborhood of x0, there exists:

a) a function v 2 Psh(
) \ C1(
 rE) such that v = �1 on E \
 ;

b) an increasing sequence vk 2 Psh(
) \ C1(
), 0 � vk � 1, converging

uniformly to 1 on every compact subset of 
 r E, such that vk = 0 on a

neighborhood of E \
.

Proof. Assume that 
0 �� X is a coordinate patch of X containing x0 and

that E \ 
0 = fz 2 
0 ; u(z) = �1g, u 2 Psh(
0). In addition, we can

achieve u � 0 by shrinking 
0 and subtracting a constant to u. Select a
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convex increasing function � 2 C1([0; 1];R) such that �(t) = 0 on [0; 1=2]

and �(1) = 1. We set

uk = �
�
exp(u=k)

�
:

Then 0 � uk � 1, uk is plurisubharmonic on 
0, uk = 0 in a neighborhood

!k of E \
0 and limuk = 1 on 
0 rE. Let 
 �� 
0 be a neighborhood of

x0, let Æ0 = d(
; {
0) and "k 2 ]0; Æ0[ be such that "k < d(E \ 
;
 r !k).

Then

wk := max
j�k
fuj ? �"jg 2 Psh(
) \ C0(
);

0 � wk � 1, wk = 0 on a neighborhood of E \ 
 and wk is an increasing

sequence converging to 1 on 
 r E (note that wk � uk). Hence, the con-

vergence is uniform on every compact subset of 
 rE by Dini's lemma. We

may therefore choose a subsequence wks such that wks(z) � 1 � 2�s on an

increasing sequence of open sets 
0
s
with

S

0
s
= 
 r E. Then

w(z) := jzj2 +
+1X
s=0

(wks(z)� 1)

is a strictly plurisubharmonic function on 
 that is continuous on 
 r E,

and w = �1 on E\
. Richberg's theorem I.3.40 applied on 
rE produces

v 2 Psh(
 r E) \ C1(
 r E) such that w � v � w + 1. If we set v = �1
on E \
, then v is plurisubharmonic on 
 and has the properties required

in a). After subtraction of a constant, we may assume v � 0 on 
. Then the

sequence (vk) of statement b) is obtained by letting vk = �
�
exp(v=k)

�
. �

(2.3) Theorem (El Mir). Let E � X be a closed complete pluripolar set and

T 2 D0+
p;p
(XrE) a closed positive current. Assume that T has �nite mass in

a neighborhood of every point of E. Then the trivial extension ~T 2 D0+
p;p

(X)

obtained by extending the measures TI;J by 0 on E is closed on X.

Proof. The statement is local on X, so we may work on a small open set 


such that there exists a sequence vk 2 Psh(
) \ C1(
) as in 2.2 b). Let

� 2 C1([0; 1]) be a function such that � = 0 on [0; 1=3], � = 1 on [2=3; 1] and

0 � � � 1. Then � Æ vk = 0 near E \ 
 and � Æ vk = 1 for k large on every

�xed compact subset of 
 r E. Therefore ~T = limk!+1(� Æ vk)T and

d0 ~T = lim
k!+1

T ^ d0(� Æ vk)

in the weak topology of currents. It is therefore suÆcient to check that T ^
d0(� Æ vk) converges weakly to 0 in D0

p�1;p(
) (note that d
00 ~T is conjugate to

d0 ~T , thus d00 ~T will also vanish).

Assume �rst that p = 1. Then T ^ d0(� Æ vk) 2 D00;1(
), and we have to

show that
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hT ^ d0(� Æ vk); �i = hT; �0(vk)d0vk ^ �i �! 0; 8� 2 D1;0(
):

As  7�! hT; i^i is a non-negative hermitian form on D1;0(
), the Cauchy-

Schwarz inequality yields��hT; i� ^ i��2 � hT; i� ^ �i hT; i ^ i; 8�;  2 D1;0(
):

Let  2 D(
), 0 �  � 1, be equal to 1 in a neighborhood of Supp�. We

�nd��hT; �0(vk)d0vk ^ �i��2 � hT;  id0vk ^ d00vki hT; �0(vk)2i� ^ �i:
By hypothesis

R

rE

T ^i�^� < +1 and �0(vk) converges everywhere to 0 on


, thus hT; �0(vk)2i�^�i converges to 0 by Lebesgue's dominated convergence

theorem. On the other hand

id0d00v2
k
= 2vk id

0d00vk + 2id0vk ^ d00vk � 2id0vk ^ d00vk;
2hT;  id0vk ^ d00vki � hT;  id0d00v2ki:

As  2 D(
), vk = 0 near E and d0T = d00T = 0 on 
 r E, an integration

by parts yields

hT;  id0d00v2ki = hT; v2kid0d00 i � C
Z

rE

kTk < +1

where C is a bound for the coeÆcients of  . Thus hT;  id0vk ^ d00vki is
bounded, and the proof is complete when p = 1.

In the general case, let �s = i�s;1 ^ �s;1 ^ : : :^ i�s;p�1 ^ �s;p�1 be a basis
of forms of bidegree (p � 1; p � 1) with constant coeÆcients (Lemma 1.4).

Then T ^ �s 2 D0+1;1(
 r E) has �nite mass near E and is closed on 
 r E.

Therefore d( ~T ^ �s) = (d ~T ) ^ �s = 0 on 
 for all s, and we conclude that

d ~T = 0. �

(2.4) Corollary. If T 2 D0+
p;p

(X) is closed, if E � X is a closed complete

pluripolar set and 1lE is its characteristic function, then 1lET and 1lXrET

are closed (and, of course, positive).

Proof. If we set � = T�XrE , then � has �nite mass near E and we have

1lXrET = ~� and 1lET = T � ~�. �

2.B. Current of Integration over an Analytic Set

Let A be a pure p-dimensional analytic subset of a complex manifold X. We

would like to generalize Example 1.20 and to de�ne a current of integration

[A] by letting

(2:5) h[A]; vi =
Z
Areg

v; v 2 Dp;p(X):
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One diÆculty is of course to verify that the integral converges near Asing.

This follows from the following lemma, due to (Lelong 1957).

(2.6) Lemma. The current [Areg] 2 D0+p;p(X r Asing) has �nite mass in a

neighborhood of every point z0 2 Asing.

Proof. Set T = [Areg] and let 
 3 z0 be a coordinate open set. If we write the

monomials dzK ^ dzL in terms of an arbitrary basis of �p;pT ?
 consisting of

decomposable forms �s = i�s;1^�s;1^ : : :^�s;p^�s;p (cf. Lemma 1.4), we see

that the measures TI;J : � are linear combinations of the positive measures

T ^�s. It is thus suÆcient to prove that all T ^�s have �nite mass near Asing.

Without loss of generality, we may assume that (A; z0) is irreducible. Take

new coordinates w = (w1; : : : ; wn) such that wj = �s;j(z � z0), 1 � j � p.

After a slight perturbation of the �s;j , we may assume that each projection

�s : A \ (�0 ��00); w 7�! w0 = (w1; : : : ; wp)

de�nes a rami�ed covering of A (cf. Prop. II.3.8 and Th. II.3.19), and that

(�s) remains a basis of �p;pT ?
. Let S be the rami�cation locus of �s and

AS = A \ �(�0 r S)� �00� � Areg. The restriction of �s: AS �! �0 r S is

then a covering with �nite sheet number qs and we �ndZ
�0��00

[Areg] ^ �s =
Z
Areg\(�0��00)

idw1 ^ dw1 ^ : : : ^ idwp ^ dwp

=

Z
AS

idw1 ^ dw1 : : : ^ dwp = qs

Z
�0rS

idw1 ^ dw1 : : : ^ dwp < +1:

The second equality holds because AS is the complement in Areg \ (�0��00)
of an analytic subset (such a set is of zero Lebesgue measure in Areg). �

(2.7) Theorem (Lelong, 1957). For every pure p-dimensional analytic subset

A � X, the current of integration [A] 2 D0+
p;p

(X) is a closed positive current

on X.

Proof. Indeed, [Areg] has �nite mass near Asing and [A] is the trivial extension

of [Areg] to X through the complete pluripolar set E = Asing. Theorem 2.7

is then a consequence of El Mir's theorem. �

2.C. Support Theorems and Lelong-Poincar�e Equation

Let M � X be a closed C1 real submanifold of X. The holomorphic tangent

space at a point x 2M is

(2:8) hTxM = TxM \ JTxM;

that is, the largest complex subspace of TxX contained in TxM . We de�ne

the Cauchy-Riemann dimension of M at x by CRdimxM = dimC
hTxM and
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say that M is a CR submanifold of X if CRdimxM is a constant. In general,

we set

(2:9) CRdim M = max
x2M

CRdimxM = max
x2M

dimC

hTxM:

A current � is said to be normal if � and d� are currents of order 0. For

instance, every closed positive current is normal. We are going to prove two

important theorems describing the structure of normal currents with support

in CR submanifolds.

(2.10) First theorem of support. Let � 2 D0
p;p
(X) be a normal current.

If Supp� is contained in a real submanifold M of CR dimension < p, then

� = 0.

Proof. Let x0 2 M and let g1; : : : ; gm be real C1 functions in a neighbor-

hood 
 of x0 such that M = fz 2 
 ; g1(z) = : : : = gm(z) = 0g and

dg1 ^ : : : ^ dgm 6= 0 on 
. Then

hTM = TM \ JTM =
\

1�k�m
ker dgk \ ker(dgk Æ J) =

\
1�k�m

ker d0gk

because d0gk = 1
2

�
dgk � i(dgk) Æ J

�
. As dimC

hTM < p, the rank of the

system of (1; 0)-forms (d0gk) must be > n � p at every point of M \ 
.
After a change of the ordering, we may assume for example that �1 = d0g1,
�2 = d0g2, : : :, �n�p+1 = d0gn�p+1 are linearly independent on 
 (shrink 


if necessary). Complete (�1; : : : ; �n�p+1) into a continuous frame (�1; : : : ; �n)

of T ?X�
 and set

� =
X

jIj=jJj=n�p
�I;J �I ^ �J on 
:

As � and d0� have measure coeÆcients supported on M and gk = 0 on M ,

we get gk� = gkd
0� = 0, thus

d0gk ^� = d0(gk�)� gkd0� = 0; 1 � k � m;
in particular �k ^ � = 0 for all 1 � k � n � p + 1. When jIj = n � p, the
multi-index {I contains at least one of the elements 1; : : : ; n � p + 1, hence

� ^ �{I ^ �{J = 0 and �I;J = 0. �

(2.11) Corollary. Let � 2 D0
p;p
(X) be a normal current. If Supp� is con-

tained in an analytic subset A of dimension < p, then � = 0.

Proof. As Areg is a submanifold of CRdim < p in X r Asing, Theorem 2.9

shows that Supp� � Asing and we conclude by induction on dimA. �
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Now, assume that M � X is a CR submanifold of class C1 with

CRdimM = p and that hTM is an integrable subbundle of TM ; this means

that the Lie bracket of two vector �elds in hTM is in hTM . The Frobenius in-

tegrability theorem then shows thatM is locally �bered by complex analytic

p-dimensional submanifolds. More precisely, in a neighborhood of every point

ofM , there is a submersion � :M �! Y onto a real C1 manifold Y such that

the tangent space to each �ber Ft = ��1(t), t 2 Y , is the holomorphic tan-

gent space hTM ; moreover, the �bers Ft are necessarily complex analytic in

view of Lemma 1.7.18. Under these assumptions, with any complex measure

� on Y we associate a current � with support in M by

(2:12) � =

Z
t2Y

[Ft] d�(t); i.e. h�; ui =
Z
t2Y

�Z
Ft

u
�
d�(t)

for all u 2 D0p;p(X). Then clearly � 2 D0p;p(X) is a closed current of order 0,

for all �bers [Ft] have the same properties. When the �bers Ft are connected,

the following converse statement holds:

(2.13) Second theorem of support. Let M � X be a CR submanifold of

CR dimension p such that there is a submersion � : M �! Y of class C1

whose �bers Ft = ��1(t) are connected and are the integral manifolds of the

holomorphic tangent space hTM . Then any closed current � 2 D0p;p(X) of

order 0 with support in M can be written � =
R
Y
[Ft] d�(t) with a unique

complex measure � on Y . Moreover � is (strongly) positive if and only if the

measure � is positive.

Proof. Fix a compact set K � Y and a C1 retraction � from a neighborhood

V of M onto M . By means of a partition of unity, it is easy to construct a

positive form � 2 D0
p;p
(V ) such that

R
Ft
� = 1 for each �ber Ft with t 2 K.

Then the uniqueness and positivity statements for � follow from the obvious

formulaZ
Y

f(t) d�(t) = h�; (f Æ �)�i; 8f 2 C0(Y ); Supp f � K:

Now, let us prove the existence of �. Let x0 2 M . There is a small neigh-

borhood 
 of x0 and real coordinates (x1; y1; : : : ; xp; yp; t1; : : : ; tq; g1; : : : ; gm)

such that

� zj = xj + iyj , 1 � j � p, are holomorphic functions on 
 that de�ne

complex coordinates on all �bers Ft \
.
� t1; : : : ; tq restricted to M \ 
 are pull-backs by � : M ! Y of local coor-

dinates on an open set U � Y such that ��
 : M \ 
 �! U is proper and

surjective.

� g1 = : : : = gm = 0 are equations of M in 
.

Then TFt = fdtj = dgk = 0g equals hTM = fd0gk = 0g and the rank of

(d0g1; : : : ; d0gm) is equal to n � p at every point of M \ 
. After a change
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of the ordering we may suppose that �1 = d0g1, : : :, �n�p = d0gn�p are

linearly independent on 
. As in Prop. 2.10, we get �k ^ � = �
k
^ � = 0

for 1 � k � n� p and infer that � ^ �{I ^ �{J = 0 unless I = J = L where

L = f1; 2; : : : ; n� pg. Hence
� = �L;L �1 ^ : : : ^ �n�p ^ �1 ^ : : : ^ �n�p on 
:

Now �1 ^ : : :^ �n�p is proportional to dt1 ^ : : : dtq ^ dg1 ^ : : :^ dgm because

both induce a volume form on the quotient space TX�M=
hTM . Therefore,

there is a complex measure � supported on M \
 such that

� = � dt1 ^ : : : dtq ^ dg1 ^ : : : ^ dgm on 
:

As � is supposed to be closed, we have @�=@xj = @�=@yj = 0. Hence � is

a measure depending only on (t; g), with support in g = 0. We may write

� = d�U (t) 
 Æ0(g) where �U is a measure on U = �(M \ 
) and Æ0 is the

Dirac measure at 0. If j :M �! X is the injection, this means precisely that

� = j?�
?�U on 
, i.e.

� =

Z
t2U

[Ft] d�U (t) on 
:

The uniqueness statement shows that for two open sets 
1, 
2 as above,

the associated measures �U1 and �U2 coincide on �(M \
1 \
2). Since the

�bers Ft are connected, there is a unique measure � which coincides with all

measures �U . �

(2.14) Corollary. Let A be an analytic subset of X with global irreducible

components Aj of pure dimension p. Then any closed current � 2 D0p;p(X)

of order 0 with support in A is of the form � =
P
�j [Aj] where �j 2 C .

Moreover, � is (strongly) positive if and only if all coeÆcients �j are � 0.

Proof. The regular part M = Areg is a complex submanifold of X r Asing

and its connected components are Aj \ Areg. Thus, we may apply Th. 2.13

in the case where Y is discrete to see that � =
P
�j [Aj] on X rAsing. Now

dimAsing < p and the di�erence ��P�j [Aj ] 2 D0p;p(X) is a closed current

of order 0 with support in Asing, so this current must vanish by Cor. 2.11. �

(2.15) Lelong-Poincar�e equation. Let f 2M(X) be a meromorphic func-

tion which does not vanish identically on any connected component of X and

let
P
mjZj be the divisor of f . Then the function log jf j is locally integrable

on X and satis�es the equation

i

�
d0d00 log jf j =

X
mj [Zj ]

in the space D0n�1;n�1(X) of currents of bidimension (n� 1; n� 1).
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We refer to Sect. 2.6 for the de�nition of divisors, and especially to

(2.6.14). Observe that if f is holomorphic, then log jf j 2 Psh(X), the coeÆ-

cients mj are positive integers and the right hand side is a positive current

in D0+
n�1;n�1(X).

Proof. Let Z =
S
Zj be the support of div(f). Observe that the sum in the

right hand side is locally �nite and that d0d00 log jf j is supported on Z, since

d0 log jf j2 = d0 log(ff) =
f df

ff
=
df

f
on X r Z:

In a neighborhood 
 of a point a 2 Zj \ Zreg, we can �nd local coordinates

(w1; : : : ; wn) such that Zj\
 is given by the equation w1 = 0. Then Th. 2.6.6

shows that f can be written f(w) = u(w)w
mj

1 with an invertible holomorphic

function u on a smaller neighborhood 
0 � 
. Then we have

id0d00 log jf j = id0d00
�
log juj+mj log jw1j

�
= mj id

0d00 log jw1j:
For z 2 C , Cor. I.3.4 implies

id0d00 log jzj2 = �id00
�dz
z

�
= �i�Æ0 dz ^ dz = 2� [0]:

If � : C n �! C is the projection z 7�! z1 and H � C n the hyperplane

fz1 = 0g, formula (1.2.19) shows that

id0d00 log jz1j = id0d00 log j�(z)j = �?(id0d00 log jzj) = ��?([0]) = � [H];

because � is a submersion. We get therefore i
�
d0d00 log jf j = mj [Zj ] in 
0.

This implies that the Lelong-Poincar�e equation is valid at least on XrZsing.

As dimZsing < n � 1, Cor. 2.11 shows that the equation holds everywhere

on X. �

3. De�nition of Monge-Amp�ere Operators

Let X be a n-dimensional complex manifold. We denote by d = d0 + d00 the
usual decomposition of the exterior derivative in terms of its (1; 0) and (0; 1)

parts, and we set

dc =
1

2i�
(d0 � d00):

It follows in particular that dc is a real operator, i.e. dcu = dcu, and that

ddc = i
�
d0d00. Although not quite standard, the 1=2i� normalization is very

convenient for many purposes, since we may then forget the factor 2� almost

everywhere (e.g. in the Lelong-Poincar�e equation (2.15)). In this context, we

have the following integration by part formula.
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(3.1) Formula. Let 
 �� X be a smoothly bounded open set in X

and let f; g be forms of class C2 on 
 of pure bidegrees (p; p) and (q; q)

with p+ q = n� 1. ThenZ



f ^ ddcg � ddcf ^ g =
Z
@


f ^ dcg � dcf ^ g:

Proof. By Stokes' theorem the right hand side is the integral over 
 of

d(f ^ dcg � dcf ^ g) = f ^ ddcg � ddcf ^ g + (df ^ dcg + dcf ^ dg):
As all forms of total degree 2n and bidegree 6= (n; n) are zero, we get

df ^ dcg = 1

2i�
(d00f ^ d0g � d0f ^ d00g) = �dcf ^ dg: �

Let u be a plurisubharmonic function on X and let T be a closed posi-

tive current of bidimension (p; p), i.e. of bidegree (n � p; n � p). Our desire
is to de�ne the wedge product ddcu ^ T even when neither u nor T are

smooth. A priori, this product does not make sense because ddcu and T have

measure coeÆcients and measures cannot be multiplied; see (Kiselman 1983)

for interesting counterexamples. Assume however that u is a locally bounded

plurisubharmonic function. Then the current uT is well de�ned since u is a

locally bounded Borel function and T has measure coeÆcients. According to

(Bedford-Taylor 1982) we de�ne

ddcu ^ T = ddc(uT )

where ddc( ) is taken in the sense of distribution (or current) theory.

(3.2) Proposition. The wedge product ddcu ^ T is again a closed positive

current.

Proof. The result is local. In an open set 
 � C n , we can use convolution

with a family of regularizing kernels to �nd a decreasing sequence of smooth

plurisubharmonic functions uk = u ? �1=k converging pointwise to u. Then

u � uk � u1 and Lebesgue's dominated convergence theorem shows that ukT

converges weakly to uT ; thus ddc(ukT ) converges weakly to ddc(uT ) by the

weak continuity of di�erentiations. However, since uk is smooth, ddc(ukT )

coincides with the product ddcuk ^ T in its usual sense. As T � 0 and as

ddcuk is a positive (1; 1)-form, we have ddcuk ^ T � 0, hence the weak limit

ddcu ^ T is � 0 (and obviously closed). �

Given locally bounded plurisubharmonic functions u1; : : : ; uq, we de�ne

inductively
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ddcu1 ^ ddcu2 ^ : : : ^ ddcuq ^ T = ddc(u1dd
cu2 ^ : : : ^ ddcuq ^ T ):

By (3.2) the product is a closed positive current. In particular, when u is a lo-

cally bounded plurisubharmonic function, the bidegree (n; n) current (ddcu)n

is well de�ned and is a positive measure. If u is of class C2, a computation

in local coordinates gives

(ddcu)n = det
� @2u

@zj@zk

�
� n!
�n

idz1 ^ dz1 ^ : : : ^ idzn ^ dzn:

The expression \Monge-Amp�ere operator" classically refers to the non-linear

partial di�erential operator u 7�! det(@2u=@zj@zk). By extension, all opera-

tors (ddc)q de�ned above are also called Monge-Amp�ere operators.

Now, let � be a current of order 0. When K �� X is an arbitrary compact

subset, we de�ne a mass semi-norm

jj�jjK =
X
j

Z
Kj

X
I;J

j�I;J j

by taking a partition K =
S
Kj where each Kj is contained in a coordinate

patch and where �I;J are the corresponding measure coeÆcients. Up to con-

stants, the semi-norm jj�jjK does not depend on the choice of the coordinate

systems involved. When K itself is contained in a coordinate patch, we set

� = ddcjzj2 over K ; then, if � � 0, there are constants C1; C2 > 0 such that

C1jj�jjK �
Z
K

� ^ �p � C2jj�jjK:

We denote by L1(K), resp. by L1(K), the space of integrable (resp. bounded

measurable) functions on K with respect to any smooth positive density

on X.

(3.3) Chern-Levine-Nirenberg inequalities (1969). For all compact sub-

sets K;L of X with L � KÆ, there exists a constant CK;L � 0 such that

jjddcu1 ^ : : : ^ ddcuq ^ T jjL � CK;L jju1jjL1(K) : : : jjuqjjL1(K) jjT jjK :

Proof. By induction, it is suÆcient to prove the result for q = 1 and u1 = u.

There is a covering of L by a family of balls B0
j
�� Bj � K contained in

coordinate patches of X. Let � 2 D(Bj) be equal to 1 on B
0
j
. Then

jjddcu ^ T jj
L\B0

j

� C
Z
B
0

j

ddcu ^ T ^ �p�1 � C
Z
Bj

�ddcu ^ T ^ �p�1:

As T and � are closed, an integration by parts yields

jjddcu ^ T jj
L\B0

j

� C
Z
Bj

uT ^ ddc� ^ �p�1 � C 0jjujjL1(K)jjT jjK
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where C 0 is equal to C multiplied by a bound for the coeÆcients of the smooth

form ddc� ^ �p�1. �

(3.4) Remark. With the same notations as above, any plurisubharmonic

function V on X satis�es inequalities of the type

a) jjddcV jjL � CK;L jjV jjL1(K).

b) sup
L

V+ � CK;L jjV jjL1(K).

In fact the inequalityZ
L\B0

j

ddcV ^ �n�1 �
Z
Bj

�ddcV ^ �n�1 =
Z
Bj

V ddc� ^ �n�1

implies a), and b) follows from the mean value inequality.

(3.5) Remark. Products of the form � = 1^ : : :^q ^T with mixed (1; 1)-

forms j = ddcuj or j = dvj^dcwj+dwj^dcvj are also well de�ned whenever
uj , vj , wj are locally bounded plurisubharmonic functions. Moreover, for

L � KÆ, we have

jj�jjL � CK;LjjT jjK
Y
jjuj jjL1(K)

Y
jjvj jjL1(K)

Y
jjwj jjL1(K):

To check this, we may suppose vj ; wj � 0 and jjvjjj = jjwj jj = 1 in L1(K).

Then the inequality follows from (3.3) by the polarization identity

2(dvj ^ dcwj + dwj ^ dcvj) = ddc(vj + wj)
2 � ddcv2

j
� ddcw2

j
� vjddcwj � wjddcvj

in which all ddc operators act on plurisubharmonic functions.

(3.6) Corollary. Let u1; : : : ; uq be continuous (�nite) plurisubharmonic func-

tions and let uk1 ; : : : ; u
k

q be sequences of plurisubharmonic functions converg-

ing locally uniformly to u1; : : : ; uq. If Tk is a sequence of closed positive cur-

rents converging weakly to T , then

a) uk1dd
cuk2 ^ : : : ^ ddcukq ^ Tk �! u1dd

cu2 ^ : : : ^ ddcuq ^ T weakly.

b) ddcuk1 ^ : : : ^ ddcukq ^ Tk �! ddcu1 ^ : : : ^ ddcuq ^ T weakly.

Proof. We observe that b) is an immediate consequence of a) by the weak

continuity of ddc. By using induction on q, it is enough to prove result a)

when q = 1. If (uk) converges locally uniformly to a �nite continuous plurisub-

harmonic function u, we introduce local regularizations u" = u?�" and write

ukTk � uT = (uk � u)Tk + (u� u")Tk + u"(Tk � T ):
As the sequence Tk is weakly convergent, it is locally uniformly bounded

in mass, thus jj(uk � u)TkjjK � jjuk � ujjL1(K)jjTkjjK converges to 0 on
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every compact set K. The same argument shows that jj(u� u")TkjjK can be

made arbitrarily small by choosing " small enough. Finally u" is smooth, so

u"(Tk � T ) converges weakly to 0. �

Now, we prove a deeper monotone continuity theorem due to (Bedford-

Taylor 1982) according to which the continuity and uniform convergence

assumptions can be dropped if each sequence (uk
j
) is decreasing and Tk is

a constant sequence.

(3.7) Theorem. Let u1; : : : ; uq be locally bounded plurisubharmonic func-

tions and let uk1 ; : : : ; u
k

q
be decreasing sequences of plurisubharmonic functions

converging pointwise to u1; : : : ; uq. Then

a) uk1dd
cuk2 ^ : : : ^ ddcukq ^ T �! u1dd

cu2 ^ : : : ^ ddcuq ^ T weakly.

b) ddcuk1 ^ : : : ^ ddcukq ^ T �! ddcu1 ^ : : : ^ ddcuq ^ T weakly.

Proof. Again by induction, observing that a) =) b) and that a) is obvious

for q = 1 thanks to Lebesgue's bounded convergence theorem. To proceed

with the induction step, we �rst have to make some slight modi�cations of

our functions uj and u
k

j
.

As the sequence (uk
j
) is decreasing and as uj is locally bounded, the family

(uk
j
)k2N is locally uniformly bounded. The results are local, so we can work

on a Stein open set 
 �� X with strongly pseudoconvex boundary. We use

the following notations:

(3.8) let  be a strongly plurisubharmonic function of class C1 near 
 with

 < 0 on 
 and  = 0, d 6= 0 on @
 ;

(3:80) we set 
Æ = fz 2 
 ;  (z) < �Æg for all Æ > 0.

After addition of a constant we can assume that �M � uk
j
� �1 near 
.

Let us denote by (u
k;"

j
), " 2 ]0; "0], an increasing family of regularizations

converging to uk
j
as " ! 0 and such that �M � u

k;"

j
� �1 on 
. Set

A =M=Æ with Æ > 0 small and replace uk
j
by vk

j
= maxfA ; uk

j
g and uk;"

j
by

v
k;"

j
= max"fA ; uk;"j g where max" = max ? �" is a regularized max function.

Then vk
j
coincides with uk

j
on 
Æ since A < �AÆ = �M on 
Æ, and vk

j

is equal to A on the corona 
 n 
Æ=M . Without loss of generality, we can

therefore assume that all uk
j
(and similarly all u

k;"

j
) coincide with A on a

�xed neighborhood of @
. We need a lemma.

(3.9) Lemma. Let fk be a decreasing sequence of upper semi-continuous

functions converging to f on some separable locally compact space X and �k
a sequence of positive measures converging weakly to � on X. Then every

weak limit � of fk�k satis�es � � f�.

Indeed if (gp) is a decreasing sequence of continuous functions converging

to fk0 for some k0, then fk�k � fk0�k � gp�k for k � k0, thus � � gp�
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Fig. 1 Construction of vkj

as k ! +1. The monotone convergence theorem then gives � � fk0� as

p! +1 and � � f� as k0 ! +1. �

Proof of Theorem 3.7 (end). Assume that a) has been proved for q� 1. Then
Sk = ddcuk2 ^ : : : ^ ddcukq ^ T �! S = ddcu2 ^ : : : ^ ddcuq ^ T:

By 3.3 the sequence (uk1S
k) has locally bounded mass, hence is relatively

compact for the weak topology. In order to prove a), we only have to show that

every weak limit � of uk1S
k is equal to u1S. Let (m;m) be the bidimension

of S and let  be an arbitrary smooth and strongly positive form of bidegree

(m;m). Then the positive measures Sk ^  converge weakly to S ^  and

Lemma 3.9 shows that � ^  � u1S ^ , hence � � u1S. To get the equality,
we set � = ddc > 0 and show that

R


u1S ^ �m �

R


� ^ �m, i.e.Z




u1dd
cu2 ^ : : : ^ ddcuq ^ T ^ �m � lim inf

k!+1

Z



uk1dd
cuk2 ^ : : : ^ ddcukq ^ T ^ �m:

As u1 � uk1 � uk;"11 for every "1 > 0, we getZ



u1dd
cu2 ^ : : : ^ ddcuq ^ T ^ �m

�
Z



uk;"11 ddcu2 ^ : : : ^ ddcuq ^ T ^ �m

=

Z



ddcu
k;"1

1 ^ u2ddcu3 ^ : : : ^ ddcuq ^ T ^ �m

after an integration by parts (there is no boundary term because u
k;"1

1 and

u2 both vanish on @
). Repeating this argument with u2; : : : ; uq, we obtain
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u1dd
cu2 ^ : : : ^ ddcuq ^ T ^ �m

�
Z



ddcu
k;"1

1 ^ : : : ^ ddcuk;"q�1
q�1 ^ uqT ^ �m

�
Z



u
k;"1

1 ddcu
k;"2

2 ^ : : : ^ ddcuk;"q
q
^ T ^ �m:

Now let "q ! 0; : : : ; "1 ! 0 in this order. We have weak convergence at each

step and u
k;"1

1 = 0 on the boundary; therefore the integral in the last line

converges and we get the desired inequalityZ



u1dd
cu2 ^ : : :^ ddcuq ^T ^�m �

Z



uk1dd
cuk2 ^ : : :^ ddcukq ^T ^�m:�

(3.10) Corollary. The product ddcu1 ^ : : : ^ ddcuq ^ T is symmetric with

respect to u1; : : : ; uq.

Proof. Observe that the de�nition was unsymmetric. The result is true when

u1; : : : ; uq are smooth and follows in general from Th. 3.7 applied to the

sequences uk
j
= uj ? �1=k, 1 � j � q. �

(3.11) Proposition. Let K;L be compact subsets of X such that L � KÆ.
For any plurisubharmonic functions V; u1; : : : ; uq on X such that u1; : : : ; uq
are locally bounded, there is an inequality

jjV ddcu1 ^ : : : ^ ddcuqjjL � CK;L jjV jjL1(K)jju1jjL1(K) : : : jjuqjjL1(K):

Proof. We may assume that L is contained in a strongly pseudoconvex open

set 
 = f < 0g � K (otherwise we cover L by small balls contained in K).

A suitable normalization gives �2 � uj � �1 on K ; then we can modify

uj on 
 n L so that uj = A on 
 n 
Æ with a �xed constant A and Æ > 0

such that L � 
Æ. Let � � 0 be a smooth function equal to � on 
Æ with

compact support in 
. If we take jjV jjL1(K) = 1, we see that V+ is uniformly

bounded on 
Æ by 3.4 b); after subtraction of a �xed constant we can assume

V � 0 on 
Æ. First suppose q � n� 1. As uj = A on 
 n
Æ, we �ndZ

Æ

�V ddcu1 ^ : : : ^ ddcuq ^ �n�q

=

Z



V ddcu1 ^ : : : ^ ddcuq ^ �n�q�1 ^ ddc��Aq
Z

n
Æ

V �n�1 ^ ddc�

=

Z



�ddcV ^ ddcu1 ^ : : : ^ ddcuq ^ �n�q�1 �Aq
Z

n
Æ

V �n�1 ^ ddc�:

The �rst integral of the last line is uniformly bounded thanks to 3.3 and

3.4 a), and the second one is bounded by jjV jjL1(
) � constant. Inequality
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3.11 follows for q � n�1. If q = n, we can work instead on X�C and consider

V; u1; : : : ; uq as functions on X � C independent of the extra variable

4. Case of Unbounded Plurisubharmonic Functions

We would like to de�ne ddcu1 ^ : : : ^ ddcuq ^ T also in some cases when

u1; : : : ; uq are not bounded below everywhere, especially when the uj have

logarithmic poles. Consider �rst the case q = 1 and let u be a plurisubhar-

monic function on X. The pole set of u is by de�nition P (u) = u�1(�1).

We de�ne the unbounded locus L(u) to be the set of points x 2 X such

that u is unbounded in every neighborhood of x. Clearly L(u) is closed

and we have L(u) � P (u) but in general these sets are di�erent: in fact,

u(z) =
P
k�2 log(jz� 1=kj+ e�k3) is everywhere �nite in C but L(u) = f0g.

(4.1) Proposition. We make two additional assumptions:

a) T has non zero bidimension (p; p) (i.e. degree of T < 2n).

b) X is covered by a family of Stein open sets 
 �� X whose boundaries

@
 do not intersect L(u) \ Supp T .
Then the current uT has locally �nite mass in X.

For any current T , hypothesis 4.1 b) is clearly satis�ed when u has a

discrete unbounded locus L(u); an interesting example is u = log jF j where
F = (F1; : : : ; FN ) are holomorphic functions having a discrete set of common

zeros. Observe that the current uT need not have locally �nite mass when

T has degree 2n (i.e. T is a measure); example: T = Æ0 and u(z) = log jzj
in C n . The result also fails when the sets 
 are not assumed to be Stein;

example: X = blow-up of C n at 0, T = [E] = current of integration on

the exceptional divisor and u(z) = log jzj (see x 7.12 for the de�nition of

blow-ups).

Proof. By shrinking 
 slightly, we may assume that 
 has a smooth strongly

pseudoconvex boundary. Let  be a de�ning function of 
 as in (3.8). By

subtracting a constant to u, we may assume u � �" on 
. We �x Æ so small

that 
 r
Æ does not intersect L(u)\ Supp T and we select a neighborhood

! of (
 r
Æ) \ Supp T such that ! \ L(u) = ;. Then we de�ne

us(z) =

�
maxfu(z); A (z)g on !,

maxfu(z); sg on 
Æ = f < �Æg.
By construction u � �M on ! for some constant M > 0. We �x A � M=Æ

and take s � �M , so

maxfu(z); A (z)g = maxfu(z); sg = u(z) on ! \
Æ
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and our de�nition of us is coherent. Observe that us is de�ned on ! [ 
Æ,
which is a neighborhood of 
 \ Supp T . Now, us = A on ! \ (
 r 
"=A),

hence Stokes' theorem impliesZ



ddcus ^ T ^ (ddc )p�1 �
Z



Addc ^ T ^ (ddc )p�1

=

Z



ddc
�
(us �A )T ^ (ddc )p�1

�
= 0

because the current [: : :] has a compact support contained in 
"=A. Since us
and  both vanish on @
, an integration by parts givesZ




usT ^ (ddc )p =
Z



 ddcus ^ T ^ (ddc )p�1

� �jj jjL1(
)

Z



T ^ ddcus ^ (ddc )p�1

= �jj jjL1(
)A

Z



T ^ (ddc )p:

Finally, take A = M=Æ, let s tend to �1 and use the inequality u � �M
on !. We obtainZ




uT ^ (ddc )p � �M
Z
!

T ^ (ddc )p + lim
s!�1

Z

Æ

usT ^ (ddc )p

� ��M + jj jjL1(
)M=Æ
� Z




T ^ (ddc )p:

The last integral is �nite. This concludes the proof. �

(4.2) Remark. If 
 is smooth and strongly pseudoconvex, the above proof

shows in fact that

jjuT jj


� C

Æ
jjujj

L1((
r
Æ)\Supp T )jjT jj

when L(u) \ Supp T � 
Æ. In fact, if u is continuous and if ! is cho-

sen suÆciently small, the constant M can be taken arbitrarily close to

jjujj
L1((
r
Æ)\Supp T ). Moreover, the maximum principle implies

jju+jjL1(
\Supp T ) = jju+jjL1(@
\Supp T );

so we can achieve u < �" on a neighborhood of 
 \ Supp T by subtracting

jjujj
L1((
r
Æ)\Supp T ) + 2" [Proof of maximum principle: if u(z0) > 0 at

z0 2 
 \ Supp T and u � 0 near @
 \ Supp T , thenZ



u+T ^ (ddc )p =
Z



 ddcu+ ^ T ^ (ddc )p�1 � 0;
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a contradiction]. �

(4.3) Corollary. Let u1; : : : ; uq be plurisubharmonic functions on X such

that X is covered by Stein open sets 
 with @
 \ L(uj) \ Supp T = ;. We

use again induction to de�ne

ddcu1 ^ ddcu2 ^ : : : ^ ddcuq ^ T = ddc(u1dd
cu2 : : : ^ ddcuq ^ T ):

Then, if uk1 ; : : : ; u
k

q
are decreasing sequences of plurisubharmonic functions

converging pointwise to u1; : : : ; uq, q � p, properties (3:7 a; b) hold.

Fig. 2 Modi�ed construction of vkj

Proof. Same proof as for Th. 3.7, with the following minor modi�cation:

the max procedure vk
j
:= maxfuk

j
; A g is applied only on a neighborhood

! of Supp T \ (
 r 
Æ) with Æ > 0 small, and uk
j
is left unchanged near

Supp T \
Æ. Observe that the integration by part process requires the func-
tions uk

j
and u

k;"

j
to be de�ned only near 
 \ Supp T . �

(4.4) Proposition. Let 
 �� X be a Stein open subset. If V is a plurisub-

harmonic function on X and u1; : : : ; uq, 1 � q � n�1, are plurisubharmonic
functions such that @
 \ L(uj) = ;, then V ddcu1 ^ : : : ^ ddcuq has locally

�nite mass in 
.

Proof. Same proof as for 3.11, when Æ > 0 is taken so small that 
Æ � L(uj)
for all 1 � j � q. �
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Finally, we show that Monge-Amp�ere operators can also be de�ned in the

case of plurisubharmonic functions with non compact pole sets, provided that

the mutual intersections of the pole sets are of suÆciently small Hausdor�

dimension with respect to the dimension p of T .

(4.5) Theorem. Let u1; : : : ; uq be plurisubharmonic functions on X. The

currents u1dd
cu2^ : : :^ddcuq ^T and ddcu1^ : : :^ddcuq ^T are well de�ned

and have locally �nite mass in X as soon as q � p and

H2p�2m+1

�
L(uj1) \ : : : \ L(ujm) \ Supp T

�
= 0

for all choices of indices j1 < : : : < jm in f1; : : : ; qg.

The proof is an easy induction on q, thanks to the following improved

version of the Chern-Levine-Nirenberg inequalities.

(4.6) Proposition. Let A1; : : : ; Aq � X be closed sets such that

H2p�2m+1

�
Aj1 \ : : : \ Ajm \ Supp T

�
= 0

for all choices of j1 < : : : < jm in f1; : : : ; qg. Then for all compact sets K,

L of X with L � KÆ, there exist neighborhoods Vj of K \Aj and a constant

C = C(K;L;Aj) such that the conditions uj � 0 on K and L(uj) � Aj imply
a) jju1ddcu2 ^ : : : ^ ddcuq ^ T jjL � Cjju1jjL1(KrV1) : : : jjuqjjL1(KrVq)jjT jjK
b) jjddcu1 ^ : : : ^ ddcuq ^ T jjL � Cjju1jjL1(KrV1) : : : jjuqjjL1(KrVq)jjT jjK.

Proof. We need only show that every point x0 2 KÆ has a neighborhood L

such that a), b) hold. Hence it is enough to work in a coordinate open set.

We may thus assume that X � C n is open, and after a regularization process

uj = limuj?�" for j = q, q�1; : : : ; 1 in this order, that u1; : : : ; uq are smooth.

We proceed by induction on q in two steps:

Step 1. (bq�1) =) (bq);

Step 2. (aq�1) and (bq) =) (aq);

where (b0) is the trivial statement jjT jjL � jjT jjK and (a0) is void. Observe

that we have (aq) =) (a`) and (bq) =) (b`) for ` � q � p by taking

u`+1(z) = : : : = uq(z) = jzj2. We need the following elementary fact.

(4.7) Lemma. Let F � C n be a closed set such that H2s+1(F ) = 0 for

some integer 0 � s < n. Then for almost all choices of unitary coordinates

(z1; : : : ; zn) = (z0; z00) with z0 = (z1; : : : ; zs), z
00 = (zs+1; : : : ; zn) and almost

all radii of balls B00 = B(0; r00) � C n�s , the set f0g � @B00 does not inter-
sect F .

Proof. The unitary group U(n) has real dimension n2. There is a proper

submersion
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� : U(n)� �C n�s r f0g� �! C n r f0g; (g; z00) 7�! g(0; z00);

whose �bers have real dimension N = n2 � 2s. It follows that the inverse

image ��1(F ) has zero Hausdor� measure HN+2s+1 = Hn2+1. The set of

pairs (g; r00) 2 U(n) � R?+ such that g(f0g � @B00) intersects F is precisely

the image of ��1(F ) in U(n)� R?+ by the Lipschitz map (g; z00) 7! (g; jz00j).
Hence this set has zero Hn2+1-measure. �

Proof of step 1. Take x0 = 0 2 KÆ. Suppose �rst 0 2 A1 \ : : : \ Aq and set

F = A1\ : : :\Aq \Supp T . Since H2p�2q+1(F ) = 0, Lemma 4.7 implies that

there are coordinates z0 = (z1; : : : ; zs), z
00 = (zs+1; : : : ; zn) with s = p�q and

a ball B
00
such that F \�f0g�@B00� = ; and f0g�B00 � KÆ. By compactness

of K, we can �nd neighborhoods Wj of K \Aj and a ball B0 = B(0; r0) � C s

such that B
0 � B00 � KÆ and

(4:8) W 1 \ : : : \W q \ Supp T \
�
B
0 � �B00 r (1� Æ)B00�� = ;

for Æ > 0 small. If 0 =2 Aj for some j, we choose instead Wj to be a small

neighborhood of 0 such that W j � (B
0 � (1� Æ)B00)r Aj ; property (4.8) is

then automatically satis�ed. Let �j � 0 be a function with compact support

in Wj , equal to 1 near K \ Aj if Aj 3 0 (resp. equal to 1 near 0 if Aj 63 0)

and let �(z0) � 0 be a function equal to 1 on 1=2B0 with compact support

in B0. ThenZ
B0�B00

ddc(�1u1) ^ : : : ^ ddc(�quq) ^ T ^ �(z0) (ddcjz0j2)s = 0

because the integrand is ddc exact and has compact support in B0 � B00

thanks to (4.8). If we expand all factors ddc(�juj), we �nd a term

�1 : : : �q�(z
0)ddcu1 ^ : : : ^ ddcuq ^ T � 0

which coincides with ddcu1 ^ : : : ^ ddcuq ^ T on a small neighborhood of 0

where �j = � = 1. The other terms involve

d�j ^ dcuj + duj ^ dc�j + ujdd
c�j

for at least one index j. However d�j and dd
c�j vanish on some neighborhood

V 0
j
of K \ Aj and therefore uj is bounded on B

0 � B00 r V 0
j
. We then apply

the induction hypothesis (bq�1) to the current

� = ddcu1 ^ : : : ^ dddcuj ^ : : : ^ ddcuq ^ T
and the usual Chern-Levine-Nirenberg inequality to the product of � with

the mixed term d�j ^ dcuj + duj ^ dc�j . Remark 3.5 can be applied because

�j is smooth and is therefore a di�erence �
(1)

j
� �

(2)

j
of locally bounded

plurisubharmonic functions in C n . Let K 0 be a compact neighborhood of
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B
0 �B00 withK 0 � KÆ, and let Vj be a neighborhood ofK\Aj with V j � V 0j .

Then with L0 := (B
0 �B00)r V 0

j
� (K 0 r Vj)

Æ we obtain

jj(d�j^dcuj + duj^dc�j) ^ �jjB0�B00 = jj(d�j^dcuj + duj^dc�j) ^�jjL0
� C1jjujjjL1(K0rVj)jj�jjK0rVj ;

jj�jjK0rVj � jj�jjK0 � C2jju1jjL1(KrV1) : : :
djjuj jj : : : jjuqjjL1(KrVq)jjT jjK:

Now, we may slightly move the unitary basis in C n and get coordinate systems

zm = (zm1 ; : : : ; z
m

n
) with the same properties as above, such that the forms

(ddcjzm0j2)s = s!

�s
i dzm1 ^ dzm1 ^ : : : ^ i dzms ^ dzms ; 1 � m � N

de�ne a basis of
V
s;s
(C n )?. It follows that all measures

ddcu1 ^ : : : ^ ddcuq ^ T ^ i dzm1 ^ dzm1 ^ : : : ^ i dzms ^ dzms
satisfy estimate (bq) on a small neighborhood L of 0.

Proof of Step 2. We argue in a similar way with the integralsZ
B0�B00

�1u1dd
c(�2u2) ^ : : : ddc(�quq) ^ T ^ �(z0)(ddcjz0j2)s ^ ddcjzs+1j2

=

Z
B0�B00

jzs+1j2ddc(�1u1) ^ : : : ddc(�quq) ^ T ^ �(z0)(ddcjz0j2)s:

We already know by (bq) and Remark 3.5 that all terms in the right hand

integral admit the desired bound. For q = 1, this shows that (b1) =) (a1).

Except for �1 : : : �q�(z
0)u1ddcu2 ^ : : :^ ddcuq ^ T , all terms in the left hand

integral involve derivatives of �j . By construction, the support of these deriva-

tives is disjoint from Aj , thus we only have to obtain a bound forZ
L

u1dd
cu2 ^ : : : ^ ddcuq ^ T ^ �

when L = B(x0; r) is disjoint from Aj for some j � 2, say L\A2 = ;, and �
is a constant positive form of type (p�q; p�q). Then B(x0; r+") � KÆrV 2

for some " > 0 and some neighborhood V2 ofK\A2. By the max construction

used e.g. in Prop. 4.1, we can replace u2 by a plurisubharmonic function eu2
equal to u2 in L and to A(jz�x0j2�r2)�M in B(x0; r+")rB(x0; r+"=2),

with M = jju2jjL1(KrV2) and A = M="r. Let � � 0 be a smooth function

equal to 1 on B(x0; r + "=2) with support in B(x0; r). ThenZ
B(x0;r+")

u1dd
c(�eu2) ^ ddcu3 ^ : : : ^ ddcuq ^ T ^ �

=

Z
B(x0;r+")

�eu2ddcu1 ^ ddcu3 ^ : : : ^ ddcuq ^ T ^ �
� O(1) jju1jjL1(KrV1) : : : jjuqjjL1(KrVq)jjT jjK
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where the last estimate is obtained by the induction hypothesis (bq�1) applied
to ddcu1 ^ ddcu3 ^ : : : ^ ddcuq ^ T . By construction

ddc(�eu2) = �ddceu2 + (smooth terms involving d�)

coincides with ddcu2 in L, and (aq�1) implies the required estimate for the

other terms in the left hand integral. �

(4.9) Proposition. With the assumptions of Th. 4:5, the analogue of the

monotone convergence Theorem 3.7 (a,b) holds.

Proof. By the arguments already used in the proof of Th. 3.7 (e.g. by

Lemma 3.9), it is enough to show thatZ
B0�B00

�1 : : : �q u1 ^ ddcu2 ^ : : : ^ ddcuq ^ T ^ �

� lim inf
k!+1

Z
B0�B00

�1 : : : �q u
k

1dd
cuk2 ^ : : : ^ ddcukq ^ T ^ �

where � = �(z0)(ddcjz0j2)s is closed. Here the functions �j , � are chosen as

in the proof of Step 1 in 4.7, especially their product has compact support in

B0 � B00 and �j = � = 1 in a neighborhood of the given point x0. We argue

by induction on q and also on the number m of functions (uj)j�1 which are

unbounded near x0. If uj is bounded near x0, we take W 00
j
�� W 0

j
�� Wj

to be small balls of center x0 on which uj is bounded and we modify the

sequence uk
j
on the corona Wj rW

00
j
so as to make it constant and equal to a

smooth function Ajz�x0j2+B on the smaller corona Wj rW
0
j
. In that case,

we take �j equal to 1 near W
0
j and Supp �j � Wj . For every ` = 1; : : : ; q,

we are going to check that

lim inf
k!+1

Z
B0�B00

�1u
k

1dd
c(�2u

k

2) ^ : : :

ddc(�`�1u
k

`�1) ^ ddc(�`u`) ^ ddc(�`+1u`+1) : : : ddc(�quq) ^ T ^ �

� lim inf
k!+1

Z
B0�B00

�1u
k

1dd
c(�2u

k

2) ^ : : :

ddc(�`�1u
k

`�1) ^ ddc(�`uk` ) ^ ddc(�`+1u`+1) : : : ddc(�quq) ^ T ^ �:

In order to do this, we integrate by parts �1u
k

1dd
c(�`u`) into �`u`dd

c(�1u
k

1)

for ` � 2, and we use the inequality u` � uk` . Of course, the derivatives d�j ,
dc�j , dd

c�j produce terms which are no longer positive and we have to take

care of these. However, Supp d�j is disjoint from the unbounded locus of

uj when uj is unbounded, and contained in Wj rW
0
j
when uj is bounded.

The number m of unbounded functions is therefore replaced by m � 1 in

the �rst case, whereas in the second case uk
j
= uj is constant and smooth

on Supp d�j , so q can be replaced by q � 1. By induction on q + m (and
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thanks to the polarization technique 3.5), the limit of the terms involving

derivatives of �j is equal on both sides to the corresponding terms obtained

by suppressing all indices k. Hence these terms do not give any contribution

in the inequalities. �

We �nally quote the following simple consequences of Th. 4.5 when T is

arbitrary and q = 1, resp. when T = 1 has bidegree (0; 0) and q is arbitrary.

(4.10) Corollary. Let T be a closed positive current of bidimension (p; p)

and let u be a plurisubharmonic function on X such that L(u) \ Supp T is

contained in an analytic set of dimension at most p�1. Then uT and ddcu^T
are well de�ned and have locally �nite mass in X. �

(4.11) Corollary. Let u1; : : : ; uq be plurisubharmonic functions on X such

that L(uj) is contained in an analytic set Aj � X for every j. Then ddcu1 ^
: : :^ddcuq is well de�ned as soon as Aj1 \ : : :\Ajm has codimension at least

m for all choices of indices j1 < : : : < jm in f1; : : : ; qg. �

In the particular case when uj = log jfjj for some non zero holomorphic

function fj on X, we see that the intersection product of the associated zero

divisors [Zj ] = ddcuj is well de�ned as soon as the supports jZj j satisfy
codim jZj1 j \ : : : \ jZjm j = m for every m. Similarly, when T = [A] is an

analytic p-cycle, Cor. 4.10 shows that [Z]^[A] is well de�ned for every divisor

Z such that dim jZj\jAj = p�1. These observations easily imply the following

(4.12) Proposition. Suppose that the divisors Zj satisfy the above codimen-

sion condition and let (Ck)k�1 be the irreducible components of the point set

intersection jZ1j \ : : : \ jZqj. Then there exist integers mk > 0 such that

[Z1] ^ : : : ^ [Zq] =
X

mk[Ck]:

The integer mk is called the multiplicity of intersection of Z1; : : : ; Zq along

the component Ck.

Proof. The wedge product has bidegree (q; q) and support in C =
S
Ck where

codimC = q, so it must be a sum as above with mk 2 R+ . We check by

induction on q thatmk is a positive integer. If we denote by A some irreducible

component of jZ1j \ : : : \ jZq�1j, we need only check that [A] ^ [Zq] is an

integral analytic cycle of codimension q with positive coeÆcients on each

component Ck of the intersection. However [A] ^ [Zq] = ddc(log jfqj [A]).
First suppose that no component of A \ f�1q (0) is contained in the singular

part Asing. Then the Lelong-Poincar�e equation applied on Areg shows that

ddc(log jfqj [A]) =
P
mk[Ck] on X r Asing, where mk is the vanishing order

of fq along Ck in Areg. Since C \ Asing has codimension q + 1 at least, the

equality must hold on X. In general, we replace fq by fq�" so that the divisor
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of fq�" has no component contained in Asing. Then dd
c(log jfq�"j [A]) is an

integral codimension q cycle with positive multiplicities on each component

of A \ f�1
q

(") and we conclude by letting " tend to zero. �

5. Generalized Lelong Numbers

The concepts we are going to study mostly concern the behaviour of currents

or plurisubharmonic functions in a neighborhood of a point at which we

have for instance a logarithmic pole. Since the interesting applications are

local, we assume from now on (unless otherwise stated) that X is a Stein

manifold, i.e. that X has a strictly plurisubharmonic exhaustion function.

Let ' : X �! [�1;+1[ be a continuous plurisubharmonic function (in

general ' may have �1 poles, our continuity assumption means that e' is

continuous). The sets

S(r) = fx 2 X ; '(x) = rg;(5:1)

B(r) = fx 2 X ; '(x) < rg;(5:10)

B(r) = fx 2 X ; '(x) � rg(5:100)

will be called pseudo-spheres and pseudo-balls associated with '. Note that

B(r) is not necessarily equal to the closure of B(r), but this is often true in

concrete situations. The most simple example we have in mind is the case of

the function '(z) = log jz � aj on an open subset X � C n ; in this case B(r)

is the euclidean ball of center a and radius er ; moreover, the forms

(5:2)
1

2
ddce2' =

i

2�
d0d00jzj2; ddc' =

i

�
d0d00 log jz � aj

can be interpreted respectively as the at hermitian metric on C n and as the

pull-back over C n of the Fubini-Study metric of Pn�1, translated by a.

(5.3) De�nition. We say that ' is semi-exhaustive if there exists a real

number R such that B(R) �� X. Similarly, ' is said to be semi-exhaustive

on a closed subset A � X if there exists R such that A \ B(R) �� X.

We are interested especially in the set of poles S(�1) = f' = �1g and
in the behaviour of ' near S(�1). Let T be a closed positive current of

bidimension (p; p) on X. Assume that ' is semi-exhaustive on Supp T and

that B(R) \ Supp T �� X. Then P = S(�1) \ SuppT is compact and the

results of x2 show that the measure T ^ (ddc')p is well de�ned. Following

(Demailly 1982b, 1987a), we introduce:

(5.4) De�nition. If ' is semi-exhaustive on Supp T and if R is such that

B(R) \ Supp T �� X, we set for all r 2 ]�1; R[
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�(T; '; r) =

Z
B(r)

T ^ (ddc')p;

�(T; ') =

Z
S(�1)

T ^ (ddc')p = lim
r!�1

�(T; '; r):

The number �(T; ') will be called the (generalized) Lelong number of T with

respect to the weight '.

If we had not required T ^ (ddc')p to be de�ned pointwise on '�1(�1),

the assumption that X is Stein could have been dropped: in fact, the integral

over B(r) always makes sense if we de�ne

�(T; '; r) =

Z
B(r)

T ^ �ddcmaxf'; sg�p with s < r:

Stokes' formula shows that the right hand integral is actually independent

of s. The example given after (4.1) shows however that T ^ (ddc')p need

not exist on '�1(�1) if '�1(�1) contains an exceptional compact analytic

subset. We leave the reader consider by himself this more general situation

and extend our statements by the maxf'; sg technique. Observe that r 7�!
�(T; '; r) is always an increasing function of r. Before giving examples, we

need a formula.

(5.5) Formula. For any convex increasing function � : R �! R we haveZ
B(r)

T ^ (ddc� Æ ')p = �0(r � 0)p �(T; '; r)

where �0(r � 0) denotes the left derivative of � at r.

Proof. Let �" be the convex function equal to � on [r � ";+1[ and to a

linear function of slope �0(r � " � 0) on ]�1; r � "]. We get ddc(�" Æ ') =
�0(r � "� 0)ddc' on B(r � ") and Stokes' theorem impliesZ

B(r)

T ^ (ddc� Æ ')p =
Z
B(r)

T ^ (ddc�" Æ ')p

�
Z
B(r�")

T ^ (ddc�" Æ ')p

= �0(r � "� 0)p�(T; '; r � "):
Similarly, taking e�" equal to � on ] � 1; r � "] and linear on [r � "; r], we
obtainZ

B(r�")
T ^ (ddc� Æ ')p �

Z
B(r)

T ^ (ddce�" Æ ')p = �0(r � "� 0)p�(T; '; r):

The expected formula follows when " tends to 0. �
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We get in particular
R
B(r)

T ^ (ddce2')p = (2e2r)p�(T; '; r), whence the

formula

(5:6) �(T; '; r) = e�2pr
Z
B(r)

T ^
�1
2
ddce2'

�p
:

Now, assume that X is an open subset of C n and that '(z) = log jz � aj
for some a 2 X. Formula (5.6) gives

�(T; '; log r) = r�2p
Z
jz�aj<r

T ^
� i

2�
d0d00jzj2

�p
:

The positive measure �T = 1
p!
T ^ ( i

2
d0d00jzj2)p = 2�p

P
TI;I : i

ndz1^ : : :^dzn
is called the trace measure of T . We get

(5:7) �(T; '; log r) =
�T
�
B(a; r)

�
�pr2p=p!

and �(T; ') is the limit of this ratio as r ! 0. This limit is called the (ordi-

nary) Lelong number of T at point a and is denoted �(T; a). This was precisely

the original de�nition of Lelong, see (Lelong 1968). Let us mention a simple

but important consequence.

(5.8) Consequence. The ratio �T
�
B(a; r)

�
=r2p is an increasing function

of r. Moreover, for every compact subset K � X and every r0 < d(K; @X)

we have

�T
�
B(a; r)

� � Cr2p for a 2 K and r � r0;

where C = �T
�
K +B(0; r0)

�
=r

2p
0 .

All these results are particularly interesting when T = [A] is the current

of integration over an analytic subset A � X of pure dimension p. Then

�T
�
B(a; r)

�
is the euclidean area of A \ B(a; r), while �pr2p=p! is the area

of a ball of radius r in a p-dimensional subspace of C n . Thus �(T; '; log r) is

the ratio of these areas and the Lelong number �(T; a) is the limit ratio.

(5.9) Remark. It is immediate to check that

�([A]; x) =

�
0 for x =2 A,
1 when x 2 A is a regular point.

We will see later that �([A]; x) is always an integer (Thie's theorem 8.7).

(5.10) Remark. When X = C n , '(z) = log jz � aj and A = X (i.e. T = 1),

we obtain in particular
R
B(a;r)

(ddc log jz � aj)n = 1 for all r. This implies

(ddc log jz � aj)n = Æa:
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This fundamental formula can be viewed as a higher dimensional analogue

of the usual formula � log jz � aj = 2�Æa in C . �

We next prove a result which shows in particular that the Lelong numbers

of a closed positive current are zero except on a very small set.

(5.11) Proposition. If T is a closed positive current of bidimension (p; p),

then for each c > 0 the set Ec = fx 2 X ; �(T; x) � c is a closed set of locally

�nite H2p Hausdor� measure in X.

Proof. By (5.7), we infer �(T; a) = limr!0 �T
�
B(a; r)

�
p!=�pr2p. The function

a 7! �T
�
B(a; r)

�
is clearly upper semicontinuous. Hence the decreasing limit

�(T; a) as r decreases to 0 is also upper semicontinuous in a. This implies

that Ec is closed. Now, let K be a compact subset in X and let fajg1�j�N ,
N = N("), be a maximal collection of points in Ec\K such that jaj�akj � 2"

for j 6= k. The balls B(aj; 2") cover Ec \ K, whereas the balls B(aj; ") are

disjoint. If Kc;" is the set of points which are at distance � " of Ec \K, we

get

�T (Kc;") �
X

�T
�
B(aj; ")

� � N(") c�p"2p=p!;

since �(T; aj) � c. By the de�nition of Hausdor� measure, we infer

H2p(Ec \K) � lim inf
"!0

X�
diamB(aj; 2")

�2p
� lim inf

"!0
N(")(4")2p � p!42p

c�p
�T (Ec \K): �

Finally, we conclude this section by proving two simple semi-continuity

results for Lelong numbers.

(5.12) Proposition. Let Tk be a sequence of closed positive currents of

bidimension (p; p) converging weakly to a limit T . Suppose that there is a

closed set A such that Supp Tk � A for all k and such that ' is semi-

exhaustive on A with A \ B(R) �� X. Then for all r < R we haveZ
B(r)

T ^ (ddc')p � lim inf
k!+1

Z
B(r)

Tk ^ (ddc')p

� lim sup
k!+1

Z
B(r)

Tk ^ (ddc')p �
Z
B(r)

T ^ (ddc')p:

When r tends to �1, we �nd in particular

lim sup
k!+1

�(Tk; ') � �(T; '):



5. Generalized Lelong Numbers 185

Proof. Let us prove for instance the third inequality. Let '` be a sequence

of smooth plurisubharmonic approximations of ' with ' � '` < '+ 1=` on

fr � " � ' � r + "g. We set

 ` =

�
' on B(r),

maxf'; (1 + ")('` � 1=`)� r"g on X r B(r).

This de�nition is coherent since  ` = ' near S(r), and we have

 ` = (1 + ")('` � 1=`)� r" near S(r + "=2)

as soon as ` is large enough, i.e. (1+")=` � "2=2. Let �" be a cut-o� function

equal to 1 in B(r + "=2) with support in B(r + "). ThenZ
B(r)

Tk ^ (ddc')p �
Z
B(r+"=2)

Tk ^ (ddc `)p

= (1 + ")p
Z
B(r+"=2)

Tk ^ (ddc'`)p

� (1 + ")p
Z
B(r+")

�"Tk ^ (ddc'`)p:

As �"(dd
c'`)

p is smooth with compact support and as Tk converges weakly

to T , we infer

lim sup
k!+1

Z
B(r)

Tk ^ (ddc')p � (1 + ")p
Z
B(r+")

�"T ^ (ddc'`)p:

We then let ` tend to +1 and " tend to 0 to get the desired inequality. The

�rst inequality is obtained in a similar way, we de�ne  ` so that  ` = ' on

XrB(r) and  ` = maxf(1� ")('`� 1=`)+ r"g on B(r), and we take �" = 1

on B(r � ") with Supp �" � B(r � "=2). Then for ` largeZ
B(r)

Tk ^ (ddc')p �
Z
B(r�"=2)

Tk ^ (ddc `)p

� (1� ")p
Z
B(r�"=2)

�"Tk ^ (ddc'`)p: �

(5.13) Proposition. Let 'k be a (non necessarily monotone) sequence of

continuous plurisubharmonic functions such that e'k converges uniformly to

e' on every compact subset of X. Suppose that f' < Rg \ Supp T �� X.

Then for r < R we have

lim sup
k!+1

Z
f'k�rg\f'<Rg

T ^ (ddc'k)p �
Z
f'�rg

T ^ (ddc')p:

In particular lim supk!+1 �(T; 'k) � �(T; ').



186 Chapter III Positive Currents and Lelong Numbers

When we take 'k(z) = log jz � akj with ak ! a, Prop. 5.13 implies the

upper semicontinuity of a 7! �(T; a) which was already noticed in the proof

of Prop. 5.11.

Proof. Our assumption is equivalent to saying that maxf'k; tg converges

locally uniformly to maxf'; tg for every t. Then Cor. 3.6 shows that T ^
(ddcmaxf'k; tg)p converges weakly to T ^ (ddcmaxf'; tg)p. If �" is a cut-o�
function equal to 1 on f' � r + "=2g with support in f' < r + "g, we get

lim
k!+1

Z
X

�"T ^ (ddcmaxf'k; tg)p =
Z
X

�"T ^ (ddcmaxf'; tg)p:

For k large, we have f'k � rg\f' < Rg � f' < r+"=2g, thus when " tends
to 0 we infer

lim sup
k!+1

Z
f'k�rg\f'<Rg

T ^ (ddcmaxf'k; tg)p �
Z
f'�rg

T ^ (ddcmaxf'; tg)p:

When we choose t < r, this is equivalent to the �rst inequality in statement

(5.13). �

6. The Jensen-Lelong Formula

We assume in this section that X is Stein, that ' is semi-exhaustive on X

and that B(R) �� X. We set for simplicity '�r = maxf'; rg. For every

r 2 ] � 1; R[, the measures ddc('�r)
n are well de�ned. By Cor. 3.6, the

map r 7�! (ddc'�r)
n is continuous on ] � 1; R[ with respect to the weak

topology. As (ddc'�r)
n = (ddc')n onXnB(r) and as '�r � r, (ddc'�r)n = 0

on B(r), the left continuity implies (ddc'�r)
n � 1lXnB(r)(dd

c')n. Here 1lA
denotes the characteristic function of any subset A � X. According to the

de�nition introduced in (Demailly 1985a), the collection of Monge-Amp�ere

measures associated with ' is the family of positive measures �r such that

(6:1) �r = (ddc'�r)
n � 1lXnB(r)(dd

c')n; r 2 ]�1; R[:
The measure �r is supported on S(r) and r 7�! �r is weakly contin-

uous on the left by the bounded convergence theorem. Stokes' formula

shows that
R
B(s)

(ddc'�r)
n � (ddc')n = 0 for s > r, hence the total mass

�r(S(r)) = �r(B(s)) is equal to the di�erence between the masses of (ddc')n

and 1lXnB(r)(dd
c')n over B(s), i.e.

(6:2) �r
�
S(r)

�
=

Z
B(r)

(ddc')n:

(6.3) Example. When (ddc')n = 0 on X n '�1(�1), formula (6.1) can be

simpli�ed into �r = (ddc'�r)
n. This is so for '(z) = log jzj. In this case,
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the invariance of ' under unitary transformations implies that �r is also

invariant. As the total mass of �r is equal to 1 by 5.10 and (6.2), we see that

�r is the invariant measure of mass 1 on the euclidean sphere of radius er.

(6.4) Proposition. Assume that ' is smooth near S(r) and that d' 6= 0 on

S(r), i.e. r is a non critical value. Then S(r) = @B(r) is a smooth oriented

real hypersurface and the measure �r is given by the (2n � 1)-volume form

(ddc')n�1 ^ dc'�S(r).

Proof. Write maxft; rg = limk!+1 �k(t) where � is a decreasing sequence of

smooth convex functions with �k(t) = r for t � r � 1=k, �k(t) = t for t �
r+1=k. Theorem 3.6 shows that (ddc�k Æ')n converges weakly to (ddc'�r)n.
Let h be a smooth function h with compact support near S(r). Let us apply

Stokes' theorem with S(r) considered as the boundary of X nB(r) :Z
X

h(ddc'�r)
n = lim

k!+1

Z
X

h(ddc�k Æ ')n

= lim
k!+1

Z
X

�dh ^ (ddc�k Æ ')n�1 ^ dc(�k Æ ')

= lim
k!+1

Z
X

��0k(t)n dh ^ (ddc')n�1 ^ dc'

=

Z
XnB(r)

�dh ^ (ddc')n�1 ^ dc'

=

Z
S(r)

h (ddc')n�1 ^ dc'+

Z
XnB(r)

h (ddc')n�1 ^ dc':

Near S(r) we thus have an equality of measures

(ddc'�r)
n = (ddc')n�1 ^ dc'�S(r) + 1lXnB(r)(dd

c')n: �

(6.5) Jensen-Lelong formula. Let V be any plurisubharmonic function

on X. Then V is �r-integrable for every r 2 ]�1; R[ and

�r(V )�
Z
B(r)

V (ddc')n =

Z
r

�1
�(ddcV; '; t) dt:

Proof. Proposition 3.11 shows that V is integrable with respect to the mea-

sure (ddc'�r)
n, hence V is �r-integrable. By de�nition

�(ddcV; '; t) =

Z
'(z)<t

ddcV ^ (ddc')n�1

and the Fubini theorem gives
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r

�1
�(ddcV; '; t) dt =

ZZ
'(z)<t<r

ddcV (z) ^ (ddc'(z))n�1 dt

=

Z
B(r)

(r � ')ddcV ^ (ddc')n�1:(6:6)

We �rst show that Formula 6.5 is true when ' and V are smooth. As both

members of the formula are left continuous with respect to r and as almost

all values of ' are non critical by Sard's theorem, we may assume r non

critical. Formula 3.1 applied with f = (r � ')(ddc')n�1 and g = V shows

that integral (6:6) is equal toZ
S(r)

V (ddc')n�1 ^ dc'�
Z
B(r)

V (ddc')n = �r(V )�
Z
B(r)

V (ddc')n:

Formula 6.5 is thus proved when ' and V are smooth. If V is smooth and

' merely continuous and �nite, one can write ' = lim'k where 'k is a de-

creasing sequence of smooth plurisubharmonic functions (because X is Stein).

Then ddcV ^(ddc'k)n�1 converges weakly to ddcV ^(ddc')n�1 and (6.6) con-
verges, since 1lB(r)(r�') is continuous with compact support on X. The left

hand side of Formula 6.5 also converges because the de�nition of �r implies

�k;r(V )�
Z
'k<r

V (ddc'k)
n =

Z
X

V
�
(ddc'k;�r)

n � (ddc'k)
n
�

and we can apply again weak convergence on a neighborhood of B(r). If

' takes �1 values, replace ' by '��k where k ! +1. Then �r(V ) is

unchanged,
R
B(r)

V (ddc'��k)n converges to
R
B(r)

V (ddc')n and the right

hand side of Formula 6.5 is replaced by
R
r

�k �(dd
cV; '; t) dt. Finally, for V

arbitrary, write V = lim # Vk with a sequence of smooth functions Vk. Then

ddcVk ^ (ddc')n�1 converges weakly to ddcV ^ (ddc')n�1 by Prop. 4.4, so

the integral (6.6) converges to the expected limit and the same is true for the

left hand side of 6.5 by the monotone convergence theorem. �

For r < r0 < R, the Jensen-Lelong formula implies

(6:7) �r(V )� �r0(V ) +
Z
B(r0)nB(r)

V (ddc')n =

Z
r

r0

�(ddcV; '; t) dt:

(6.8) Corollary. Assume that (ddc')n = 0 on X nS(�1). Then r 7! �r(V )

is a convex increasing function of r and the lelong number �(ddcV; ') is given

by

�(ddcV; ') = lim
r!�1

�r(V )

r
:

Proof. By (6.7) we have
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�r(V ) = �r0(V ) +

Z
r

r0

�(ddcV; '; t) dt:

As �(ddcV; '; t) is increasing and nonnegative, it follows that r 7�! �r(V ) is

convex and increasing. The formula for �(ddcV; ') = limt!�1 �(ddcV; '; t)

is then obvious. �

(6.9) Example. Let X be an open subset of C n equipped with the semi-

exhaustive function '(z) = log jz � aj, a 2 X. Then (ddc')n = Æa and the

Jensen-Lelong formula becomes

�r(V ) = V (a) +

Z
r

�1
�(ddcV; '; t) dt:

As �r is the mean value measure on the sphere S(a; er), we make the change

of variables r 7! log r, t 7! log t and obtain the more familiar formula

(6:9 a) �(V; S(a; r)) = V (a) +

Z r

0

�(ddcV; a; t)
dt

t

where �(ddcV; a; t) = �(ddcV; '; log t) is given by (5.7):

(6:9 b) �(ddcV; a; t) =
1

�n�1t2n�2=(n� 1)!

Z
B(a;t)

1

2�
�V:

In this setting, Cor. 6.8 implies

(6:9 c) �(ddcV; a) = lim
r!0

�
�
V; S(a; r)

�
log r

= lim
r!0

sup
S(a;r) V

log r
:

To prove the last equality, we may assume V � 0 after subtraction of a

constant. Inequality � follows from the obvious estimate �(V; S(a; r)) �
supS(a;r) V , while inequality � follows from the standard Harnack estimate

(6:9 d) sup
S(a;"r)

V � 1� "
(1 + ")2n�1

�
�
V; S(a; r)

�
when " is small (this estimate follows easily from the Green-Riesz repre-

sentation formula 1.4.6 and 1.4.7). As supS(a;r) V = supB(a;r) V , Formula

(6.9 c) can also be rewritten �(ddcV; a) = lim infz!a V (z)= log jz � aj. Since
supS(a;r) V is a convex (increasing) function of log r, we infer that

(6:9 e) V (z) �  log jz � aj+O(1)

with  = �(ddcV; a), and �(ddcV; a) is the largest constant  which satis�es

this inequality. Thus �(ddcV; a) =  is equivalent to V having a logarithmic

pole of coeÆcient .

(6.10) Special case Take in particular V = log jf j where f is a holomorphic

function on X. The Lelong-Poincar�e formula shows that ddc log jf j is equal to
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the zero divisor [Zf ] =
P
mj [Hj], where Hj are the irreducible components

of f�1(0) and mj is the multiplicity of f on Hj . The trace 1
2�
�f is then

the euclidean area measure of Zf (with corresponding multiplicities mj).

By Formula (6.9 c), we see that the Lelong number �([Zf ]; a) is equal to the

vanishing order orda(f), that is, the smallest integerm such that D�f(a) 6= 0

for some multiindex � with j�j = m. In dimension n = 1, we have 1
2�
�f =P

mjÆaj . Then (6.9 a) is the usual Jensen formula

�
�
log jf j; S(0; r)�� log jf(0)j =

Z
r

0

�(t)
dt

t
=
X

mj log
r

jajj
where �(t) is the number of zeros aj in the disk D(0; t), counted with multi-

plicities mj .

(6.11) Example. Take '(z) = logmax jzj j�j where �j > 0. Then B(r) is

the polydisk of radii (er=�1 ; : : : ; er=�n). If some coordinate zj is non zero, say

z1, we can write '(z) as �1 log jz1j plus some function depending only on the

(n� 1) variables zj=z
�1=�j

1 . Hence (ddc')n = 0 on C n n f0g. It will be shown
later that

(6:11 a) (ddc')n = �1 : : : �n Æ0:

We now determine the measures �r. At any point z where not all terms

jzj j�j are equal, the smallest one can be omitted without changing ' in a

neighborhood of z. Thus ' depends only on (n�1)-variables and (ddc'�r)n =
0, �r = 0 near z. It follows that �r is supported by the distinguished boundary

jzj j = er=�j of the polydisk B(r). As ' is invariant by all rotations zj 7�!
ei�j zj , the measure �r is also invariant and we see that �r is a constant

multiple of d�1 : : : d�n. By formula (6.2) and (6.11 a) we get

(6:11 b) �r = �1 : : : �n (2�)
�nd�1 : : : d�n:

In particular, the Lelong number �(ddcV; ') is given by

�(ddcV; ') = lim
r!�1

�1 : : : �n

r

Z
�j2[0;2�]

V (er=�1+i�1 ; : : : ; er=�n+i�n)
d�1 : : : d�n

(2�)n
:

These numbers have been introduced and studied by (Kiselman 1986). We

call them directional Lelong numbers with coeÆcients (�1; : : : ; �n). For an

arbitrary current T , we de�ne

(6:11 c) �(T; x; �) = �
�
T; logmax jzj � xj j�j

�
:

The above formula for �(ddcV; ') combined with the analogue of Harnack's

inequality (6.9 d) for polydisks gives
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�(ddcV; x; �) = lim
r!0

�1 : : : �n

log r

Z
V (r1=�1ei�1 ; : : : ; r1=�nei�n)

d�1 : : : d�n

(2�)n

= lim
r!0

�1 : : : �n

log r
sup

�1;:::;�n

V (r1=�1ei�1 ; : : : ; r1=�nei�n):(6:11 d)

7. Comparison Theorems for Lelong Numbers

Let T be a closed positive current of bidimension (p; p) on a Stein manifold X

equipped with a semi-exhaustive plurisubharmonic weight '. We �rst show

that the Lelong numbers �(T; ') only depend on the asymptotic behaviour

of ' near the polar set S(�1). In a precise way:

(7.1) First comparison theorem. Let ';  : X �! [�1;+1[ be contin-

uous plurisubharmonic functions. We assume that ';  are semi-exhaustive

on Supp T and that

` := lim sup
 (x)

'(x)
< +1 as x 2 Supp T and '(x)! �1:

Then �(T;  ) � `p�(T; '), and the equality holds if ` = lim ='.

Proof. De�nition 6.4 shows immediately that �(T; �') = �p�(T; ') for every

scalar � > 0. It is thus suÆcient to verify the inequality �(T;  ) � �(T; ')

under the hypothesis lim sup =' < 1. For all c > 0, consider the plurisub-

harmonic function

uc = max( � c; '):
Let R' and R be such that B'(R') \ Supp T and B (R ) \ Supp T be

relatively compact in X. Let r < R' and a < r be �xed. For c > 0 large

enough, we have uc = ' on '�1([a; r]) and Stokes' formula gives

�(T; '; r) = �(T; uc; r) � �(T; uc):
The hypothesis lim sup =' < 1 implies on the other hand that there exists

t0 < 0 such that uc =  � c on fuc < t0g \ Supp T . We infer

�(T; uc) = �(T;  � c) = �(T;  );

hence �(T;  ) � �(T; '). The equality case is obtained by reversing the roles

of ' and  and observing that lim'= = 1=l. �

Assume in particular that zk = (zk1 ; : : : ; z
k

n), k = 1; 2, are coordinate

systems centered at a point x 2 X and let

'k(z) = log jzkj = log
�jzk1 j2 + : : :+ jzk

n
j2�1=2:
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We have limz!x '2(z)='1(z) = 1, hence �(T; '1) = �(T; '2) by Th. 7.1.

(7.2) Corollary. The usual Lelong numbers �(T; x) are independent of the

choice of local coordinates. �

This result had been originally proved by (Siu 1974) with a much more

delicate proof. Another interesting consequence is:

(7.3) Corollary. On an open subset of C n , the Lelong numbers and Kiselman

numbers are related by

�(T; x) = �
�
T; x; (1; : : : ; 1)

�
:

Proof. By de�nition, the Lelong number �(T; x) is associated with the weight

'(z) = log jz � xj and the Kiselman number �
�
T; x; (1; : : : ; 1)

�
to the weight

 (z) = logmax jzj � xj j. It is clear that limz!x  (z)='(z) = 1, whence the

conclusion. �

Another consequence of Th. 7.1 is that �(T; x; �) is an increasing function

of each variable �j . Moreover, if �1 � : : : � �n, we get the inequalities
�
p

1�(T; x) � �(T; x; �) � �pn�(T; x):
These inequalities will be improved in section 7 (see Cor. 9.16). For the

moment, we just prove the following special case.

(7.4) Corollary. For all �1; : : : ; �n > 0 we have�
ddc log max

1�j�n
jzj j�j

�n
=
�
ddc log

X
1�j�n

jzj j�j
�n

= �1 : : : �n Æ0:

Proof. In fact, our measures vanish on C n r f0g by the arguments explained

in example 6.11. Hence they are equal to c Æ0 for some constant c � 0 which

is simply the Lelong number of the bidimension (n; n)-current T = [X] = 1

with the corresponding weight. The comparison theorem shows that the �rst

equality holds and that�
ddc log

X
1�j�n

jzj j�j
�n

= `�n
�
ddc log

X
1�j�n

jzj j`�j
�n

for all ` > 0. By taking ` large and approximating `�j with 2[`�j=2], we may

assume that �j = 2sj is an even integer. Then formula (5.6) gives
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jzj j2sj<r2

�
ddc log

X
jzj j2sj

�n
= r�2n

ZP
jzj j2sj<r2

�
ddc
X
jzj j2sj

�n
= s1 : : : sn r

�2n
ZP

jwjj2<r2
2n
� i

2�
d0d00jwj2

�n
= �1 : : : �n

by using the s1 : : : sn-sheeted change of variables wj = z
sj

j
. �

Now, we assume that T = [A] is the current of integration over an analytic

set A � X of pure dimension p. The above comparison theorem will enable

us to give a simple proof of P. Thie's main result (Thie 1967): the Lelong

number �([A]; x) can be interpreted as the multiplicity of the analytic set

A at point x. Our starting point is the following consequence of Th. II.3.19

applied simultaneously to all irreducible components of (A; x).

(7.5) Lemma. For a generic choice of local coordinates z0 = (z1; : : : ; zp)

and z00 = (zp+1; : : : ; zn) on (X; x), the germ (A; x) is contained in a cone

jz00j � Cjz0j. If B0 � C p is a ball of center 0 and radius r0 small, and

B00 � C n�p is the ball of center 0 and radius r00 = Cr0, then the projection

pr : A \ (B0 �B00) �! B0

is a rami�ed covering with �nite sheet number m. �

We use these properties to compute the Lelong number of [A] at point x.

When z 2 A tends to x, the functions

'(z) = log jzj = log(jz0j2 + jz00j2)1=2;  (z) = log jz0j:
are equivalent. As ';  are semi-exhaustive on A, Th. 7.1 implies

�([A]; x) = �([A]; ') = �([A];  ):

Let us apply formula (5.6) to  : for every t < r0 we get

�([A];  ; log t) = t�2p
Z
f <log tg

[A] ^
�1
2
ddce2 

�p
= t�2p

Z
A\fjz0j<tg

�1
2
pr?ddcjz0j2

�p
= mt�2p

Z
Cp\fjz0j<tg

�1
2
ddcjz0j2

�p
= m;

hence �([A];  ) = m. Here, we have used the fact that pr is an �etale covering

with m sheets over the complement of the rami�cation locus S � B0, and
the fact that S is of zero Lebesgue measure in B0. We have thus obtained

simultaneously the following two results:
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(7.6) Theorem and De�nition. Let A be an analytic set of dimension

p in a complex manifold X of dimension n. For a generic choice of local

coordinates z0 = (z1; : : : ; zp), z
00 = (zp+1; : : : ; zn) near a point x 2 A such

that the germ (A; x) is contained in a cone jz00j � Cjz0j, the sheet number m
of the projection (A; x)! (C p ; 0) onto the �rst p coordinates is independent

of the choice of z0, z00. This number m is called the multiplicity of A at x.

(7.7) Theorem (Thie 1967). One has �([A]; x) = m. �

There is another interesting version of the comparison theorem which

compares the Lelong numbers of two currents obtained as intersection pro-

ducts (in that case, we take the same weight for both).

(7.8) Second comparison theorem. Let u1; : : : ; uq and v1; : : : ; vq be

plurisubharmonic functions such that each q-tuple satis�es the hypotheses of

Th. 4.5 with respect to T . Suppose moreover that uj = �1 on Supp T \
'�1(�1) and that

`j := lim sup
vj(z)

uj(z)
< +1 when z 2 Supp T r u�1

j
(�1); '(z)! �1:

Then

�(ddcv1 ^ : : : ^ ddcvq ^ T; ') � `1 : : : `q �(ddcu1 ^ : : : ^ ddcuq ^ T; '):

Proof. By homogeneity in each factor vj , it is enough to prove the inequality

with constants `j = 1 under the hypothesis lim sup vj=uj < 1. We set

wj;c = maxfvj � c; ujg:
Our assumption implies that wj;c coincides with vj � c on a neighborhood

Supp T \ f' < r0g of Supp T \ f' < �1g, thus
�(ddcv1 ^ : : : ^ ddcvq ^ T; ') = �(ddcw1;c ^ : : : ^ ddcwq;c ^ T; ')

for every c. Now, �x r < R'. Proposition 4.9 shows that the current

ddcw1;c ^ : : :^ ddcwq;c ^ T converges weakly to ddcu1 ^ : : :^ ddcuq ^ T when

c tends to +1. By Prop. 5.12 we get

lim sup
c!+1

�(ddcw1;c ^ : : :^ ddcwq;c ^T; ') � �(ddcu1 ^ : : :^ ddcuq ^T; '):�

(7.9) Corollary. If ddcu1^ : : :^ddcuq^T is well de�ned, then at every point

x 2 X we have

�
�
ddcu1 ^ : : : ^ ddcuq ^ T; x

� � �(ddcu1; x) : : : �(ddcuq; x) �(T; x):
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Proof. Apply (7.8) with '(z) = v1(z) = : : : = vq(z) = log jz � xj and ob-

serve that `j := lim sup vj=uj = 1=�(ddcuj ; x) (there is nothing to prove if

�(ddcuj ; x) = 0). �

Finally, we present an interesting stability property of Lelong numbers

due to (Siu 1974): almost all slices of a closed positive current T along linear

subspaces passing through a given point have the same Lelong number as T .

Before giving a proof of this, we need a useful formula known as Crofton's

formula.

(7.10) Lemma. Let � be a closed positive (p; p)-form on C n r f0g which is

invariant under the unitary group U(n). Then � has the form

� =
�
ddc�(log jzj)�p

where � is a convex increasing function. Moreover � is invariant by homoth-

eties if and only if � is an aÆne function, i.e. � = � (ddc log jzj)p.

Proof. A radial convolution �"(z) =
R
R
�(t=")�(etz) dt produces a smooth

form with the same properties as � and lim"!0 �" = �. Hence we can suppose

that � is smooth on C n r f0g. At a point z = (0; : : : ; 0; zn), the (p; p)-

form �(z) 2 Vp;p(C n)? must be invariant by U(n � 1) acting on the �rst

(n � 1) coordinates. We claim that the subspace of U(n � 1)-invariants inVp;p
(C n )? is generated by (ddcjzj2)p and (ddcjzj2)p�1 ^ idzn ^ dzn. In fact, a

form � =
P
�I;JdzI ^ dzJ is invariant by U(1)n�1 � U(n� 1) if and only if

�I;J = 0 for I 6= J , and invariant by the permutation group Sn�1 � U(n�1)
if and only if all coeÆcients �I;I (resp. �Jn;Jn) with I; J � f1; : : : ; n� 1g are
equal. Hence

� = �
X
jIj=p

dzI ^ dzI + �
� X
jJj=p�1

dzJ ^ dzJ
�
^ dzn ^ dzn:

This proves our claim. As djzj2 ^ dcjzj2 = i
�
jznj2dzn ^ dzn at (0; : : : ; 0; zn),

we conclude that

�(z) = f(z)(ddcjzj2)p + g(z)(ddcjzj2)p�1 ^ djzj2 ^ dcjzj2

for some smooth functions f; g on C n r f0g. The U(n)-invariance of � shows

that f and g are radial functions. We may rewrite the last formula as

�(z) = u(log jzj)(ddc log jzj)p + v(log jzj)(ddc log jzj)p�1 ^ d log jzj ^ dc log jzj:
Here (ddc log jzj)p is a positive (p; p)-form coming from Pn�1, hence it has

zero contraction in the radial direction, while the contraction of the form

(ddc log jzj)p�1^d log jzj^dc log jzj by the radial vector �eld is (ddc log jzj)p�1.
This shows easily that �(z) � 0 if and only if u; v � 0. Next, the closedness
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condition d� = 0 gives u0�v = 0. Thus u is increasing and we de�ne a convex

increasing function � by �0 = u1=p. Then v = u0 = p�0p�1�00 and

�(z) =
�
ddc�(log jzj)�p:

If � is invariant by homotheties, the functions u and v must be constant,

thus v = 0 and � = �(ddc log jzj)p. �

(7.11) Corollary (Crofton's formula). Let dv be the unique U(n)-invariant

measure of mass 1 on the Grassmannian G(p; n) of p-dimensional subspaces

in C n . ThenZ
S2G(p;n)

[S] dv(S) = (ddc log jzj)n�p:

Proof. The left hand integral is a closed positive bidegree (n�p; n�p) current
which is invariant by U(n) and by homotheties. By Lemma 7.10, this current

must coincide with the form �(ddc log jzj)n�p for some � � 0. The coeÆcient

� is the Lelong number at 0. As �([S]; 0) = 1 for every S, we get � =R
G(p;n)

dv(S) = 1. �

We now recall a few basic facts of slicing theory; see (Federer 1969) for

details. Let � :M !M 0 be a submersion of smooth di�erentiable manifolds

and let � be a locally at current onM , that is a current which can be written

locally as � = U + dV where U , V have locally integrable coeÆcients. It can

be shown that every current � such that both � and d� have measure

coeÆcients is locally at; in particular, closed positive currents are locally

ats. Then, for almost every x0 2M 0, there is a well de�ned slice �x0 , which

is the current on the �ber ��1(x0) de�ned by

�x0 = U���1(x0) + dV���1(x0):

The restrictions of U , V to the �bers exist for almost all x0 by the Fubini

theorem. It is easy to show by a regularization �" = � ? �" that the slices of

a closed positive current are again closed and positive: in fact U";x0 and V";x0

converge to Ux0 and Vx0 in L
1
loc, thus �";x0 converges weakly to �x0 for almost

every x0. This kind of slicing can be referred to as parallel slicing (if we think

of � as being a projection map). The kind of slicing we need (where the slices

are taken over linear subspaces passing through a given point) is of a slightly

di�erent nature and is called concurrent slicing.

The possibility of concurrent slicing is proved as follows. Let T be a closed

positive current of bidimension (p; p) in the ball B(0; R) � C n . Let

Y =
�
(x; S) 2 C n �G(q; n) ; x 2 S	

be the total space of the tautological rank q vector bundle over the Grass-

mannian G(q; n), equipped with the obvious projections



7. Comparison Theorems for Lelong Numbers 197

� : Y �! G(q; n); � : Y �! C n :

We set YR = ��1(B(0; R)) and Y ?
R
= ��1(B(0; R)r f0g). The restriction �0

of � to Y ?
R
is a submersion onto B(0; R)rf0g, so we have a well de�ned pull-

back �?0T over Y ?
R
. We would like to extend it as a pull-back �?T over YR,

so as to de�ne slices T�S = (�?T )���1(S) ; of course, these slices can be non

zero only if the dimension of S is at least equal to the degree of T , i.e. if

q � n � p. We �rst claim that �?0T has locally �nite mass near the zero

section ��1(0) of �. In fact let !G be a unitary invariant K�ahler metric over

G(q; n) and let � = ddcjzj2 in C n . Then we get a K�ahler metric on Y de�ned

by !Y = �?!G + �?�. If N = (q � 1)(n � q) is the dimension of the �bers

of �, the projection formula �?(u ^ �?v) = (�?u) ^ v gives

�?!
N+p
Y

=
X

1�k�p

�
N + p

k

�
�k ^ �?(�?!N+p�k

G
):

Here �?(�
?!

N+p�k
G

) is a unitary and homothety invariant (p � k; p � k)

closed positive form on C n r f0g, so �?(�
?!

N+p�k
G

) is proportional to

(ddc log jzj)n�k. With some constants �k > 0, we thus getZ
Y ?
r

�?0T ^ !N+p
Y

=
X

0�k�p
�k

Z
B(0;r)rf0g

T ^ �k ^ (ddc log jzj)k�p

=
X

0�k�p
�k2
�(p�k)r�2(p�k)

Z
B(0;r)rf0g

T ^ �p < +1:

The Skoda-El Mir theorem 2.3 shows that the trivial extension e�?0T of �?0T

is a closed positive current on YR. Of course, the zero section ��1(0) might

also carry some extra mass of the desired current �?T . Since ��1(0) has

codimension q, this extra mass cannot exist when q > n � p = codim�?T

and we simply set �?T = e�?0T . On the other hand, if q = n� p, we set
(7:12) �?T := e�?0T + �(T; 0) [��1(0)]:

We can now apply parallel slicing with respect to � : YR ! G(q; n), which

is a submersion: for almost all S 2 G(q; n), there is a well de�ned slice

T�S = (�?T )���1(S). These slices coincide with the usual restrictions of T to

S if T is smooth.

(7.13) Theorem (Siu 1974). For almost all S 2 G(q; n) with q � n� p, the
slice T�S satis�es �(T�S ; 0) = �(T; 0).

Proof. If q = n � p, the slice T�S consists of some positive measure with

support in S r f0g plus a Dirac measure �(T; 0) Æ0 coming from the slice

of �(T; 0) [��1(0)]. The equality �(T�S ; 0) = �(T; 0) thus follows directly

from (7.12).
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In the general case q > n� p, it is clearly suÆcient to prove the following

two properties:

a) �(T; 0; r) =

Z
S2G(q;n)

�(T�S ; 0; r) dv(S) for all r 2 ]0; R[ ;

b) �(T�S ; 0) � �(T; 0) for almost all S.

In fact, a) implies that �(T; 0) is the average of all Lelong numbers �(T�S ; 0)

and the conjunction with b) implies that these numbers must be equal to

�(T; 0) for almost all S. In order to prove a) and b), we can suppose without

loss of generality that T is smooth on B(0; R)r f0g. Otherwise, we perform
a small convolution with respect to the action of Gln(C ) on C

n :

T" =

Z
g2Gln(C)

�"(g) g
?T dv(g)

where (�") is a regularizing family with support in an "-neighborhood of

the unit element of Gln(C ). Then T" is smooth in B(0; (1� ")R)r f0g and
converges weakly to T . Moreover, we have �(T"; 0) = �(T; 0) by (7.2) and

�(T�S ; 0) � lim sup
"!0 �(T";�S ; 0) by (5.12), thus a), b) are preserved in the

limit. If T is smooth on B(0; R)r f0g, the slice T�S is de�ned for all S and

is simply the restriction of T to S r f0g (carrying no mass at the origin).

a) Here we may even assume that T is smooth at 0 by performing an ordinary

convolution. As T�S has bidegree (n� p; n� p), we have

�(T�S ; 0; r) =

Z
S\B(0;r)

T ^ �q�(n�p)
S

=

Z
B(0;r)

T ^ [S] ^ �p+q�n
S

where �S = ddc log jwj and w = (w1; : : : ; wq) are orthonormal coordinates

on S. We simply have to check thatZ
S2G(q;n)

[S] ^ �p+q�n
S

dv(S) = (ddc log jzj)p:

However, both sides are unitary and homothety invariant (p; p)-forms with

Lelong number 1 at the origin, so they must coincide by Lemma 7.11.

b) We prove the inequality when S = C q � f0g. By the comparison theo-

rem 7.1, for every r > 0 and " > 0 we haveZ
B(0;r)

T ^ p
"
� �(T; 0) where(7:14)

" =
1

2
ddc log("jz1j2 + : : :+ "jzqj2 + jzq+1j2 + : : :+ jznj2):

We claim that the current p" converges weakly to

[S] ^ �p+q�n
S

= [S] ^
�1
2
ddc log(jz1j2 + : : :+ jzqj2)

�p+q�n
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as " tends to 0. In fact, the Lelong number of p
"
at 0 is 1, hence by homo-

geneityZ
B(0;r)

p
"
^ (ddcjzj2)n�p = (2r2)p

for all "; r > 0. Therefore the family (p
"
) is relatively compact in the weak

topology. Since 0 = lim" is smooth on C n r S and depends only on n� q
variables (n� q � p), we have limp

"
= 

p

0 = 0 on C n r S. This shows that

every weak limit of (p" ) has support in S. Each of these is the direct image

by inclusion of a unitary and homothety invariant (p+ q�n; p+ q�n)-form
on S with Lelong number equal to 1 at 0. Therefore we must have

lim
"!0

p
"
= (iS)?(�

p+q�n
S

) = [S] ^ �p+q�n
S

;

and our claim is proved (of course, this can also be checked by direct elemen-

tary calculations). By taking the limsup in (7.14) we obtain

�(T�S ; 0; r+ 0) =

Z
B(0;r)

T ^ [S] ^ �p+q�n
S

� �(T; 0)

(the singularity of T at 0 does not create any diÆculty because we can modify

T by a ddc-exact form near 0 to make it smooth everywhere). Property b)

follows when r tends to 0. �

8. Siu's Semicontinuity Theorem

Let X, Y be complex manifolds of dimension n, m such that X is Stein. Let

' : X � Y �! [�1;+1[ be a continuous plurisubharmonic function. We

assume that ' is semi-exhaustive with respect to Supp T , i.e. that for every

compact subset L � Y there exists R = R(L) < 0 such that

(8:1) f(x; y) 2 Supp T � L ; '(x; y) � Rg �� X � Y:
Let T be a closed positive current of bidimension (p; p) on X. For every

point y 2 Y , the function 'y(x) := '(x; y) is semi-exhaustive on Supp T ;

one can therefore associate with y a generalized Lelong number �(T; 'y).

Proposition 5.13 implies that the map y 7! �(T; 'y) is upper semi-continuous,

hence the upperlevel sets

(8:2) Ec = Ec(T; ') = fy 2 Y ; �(T; 'y) � cg ; c > 0

are closed. Under mild additional hypotheses, we are going to show that the

sets Ec are in fact analytic subsets of Y (Demailly 1987a).
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(8.3) De�nition.We say that a function f(x; y) is locally H�older continuous

with respect to y on X � Y if every point of X � Y has a neighborhood 
 on

which

jf(x; y1)� f(x; y2)j �M jy1 � y2j

for all (x; y1) 2 
, (x; y2) 2 
, with some constants M > 0,  2 ]0; 1], and

suitable coordinates on Y .

(8.4) Theorem (Demailly 1987a). Let T be a closed positive current on X

and let

' : X � Y �! [�1;+1[

be a continuous plurisubharmonic function. Assume that ' is semi-exhaustive

on Supp T and that e'(x;y) is locally H�older continuous with respect to y

on X � Y . Then the upperlevel sets

Ec(T; ') = fy 2 Y ; �(T; 'y) � cg
are analytic subsets of Y .

This theorem can be rephrased by saying that y 7�! �(T; 'y) is upper

semi-continuous with respect to the analytic Zariski topology. As a special

case, we get the following important result of (Siu 1974):

(8.5) Corollary. If T is a closed positive current of bidimension (p; p) on a

complex manifold X, the upperlevel sets Ec(T ) = fx 2 X ; �(T; x) � cg of
the usual Lelong numbers are analytic subsets of dimension � p.

Proof. The result is local, so we may assume that X � C n is an open subset.

Theorem 8.4 with Y = X and '(x; y) = log jx � yj shows that Ec(T ) is

analytic. Moreover, Prop. 5.11 implies dimEc(T ) � p. �

(8.6) Generalization. Theorem 8.4 can be applied more generally to weight

functions of the type

'(x; y) = max
j

log
�X

k

jFj;k(x; y)j�j;k
�

where Fj;k are holomorphic functions onX�Y and where j;k are positive real

constants; in this case e' is H�older continuous of exponent  = minf�j;k; 1g
and ' is semi-exhaustive with respect to the whole space X as soon as the

projection pr2 :
T
F�1
j;k

(0) �! Y is proper and �nite.

For example, when '(x; y) = logmax jxj � yj j�j on an open subset X of

C n , we see that the upperlevel sets for Kiselman's numbers �(T; x; �) are

analytic in X (a result �rst proved in (Kiselman 1986). More generally, set
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 �(z) = logmax jzj j�j and '(x; y; g) =  �
�
g(x � y)� where x; y 2 C n and

g 2 Gl(C n ). Then �(T; 'y;g) is the Kiselman number of T at y when the

coordinates have been rotated by g. It is clear that ' is plurisubharmonic in

(x; y; g) and semi-exhaustive with respect to x, and that e' is locally H�older

continuous with respect to (y; g). Thus the upperlevel sets

Ec = f(y; g) 2 X �Gl(C n) ; �(T; 'y;g) � cg
are analytic in X�Gl(C n). However this result is not meaningful on a mani-

fold, because it is not invariant under coordinate changes. One can obtain an

invariant version as follows. Let X be a manifold and let JkOX be the bundle

of k-jets of holomorphic functions on X. We consider the bundle Sk over X

whose �ber Sk;y is the set of n-tuples of k-jets u = (u1; : : : ; un) 2 (JkOX;y)
n

such that uj(y) = 0 and du1 ^ : : :^ dun(y) 6= 0. Let (zj) be local coordinates

on an open set 
 � X. Modulo O(jz � yjk+1), we can write

uj(z) =
X

1�j�j�k
aj;�(z � y)�

with det(aj;(0;:::;1k;:::;0)) 6= 0. The numbers ((yj); (aj;�)) de�ne a coordinate

system on the total space of Sk �
 . For (x; (y; u)) 2 X�Sk, we introduce the
function

'(x; y; u) = logmax juj(x)j�j = logmax
��� X
1�j�j�k

aj;�(x� y)�
����j

which has all properties required by Th. 8.4 on a neighborhood of the diagonal

x = y, i.e. a neighborhood of X �X Sk in X � Sk. For k large, we claim that

Kiselman's directional Lelong numbers

�(T; y; u; �) := �(T; 'y;u)

with respect to the coordinate system (uj) at y do not depend on the selection

of the jet representives and are therefore canonically de�ned on Sk. In fact, a

change of uj by O(jz�yjk+1) adds O(jz�yj(k+1)�j ) to e', and we have e' �
O(jz� yjmax�j ). Hence by (7.1) it is enough to take k+ 1 � max�j=min�j .

Theorem 8.4 then shows that the upperlevel sets Ec(T; ') are analytic in Sk.

�

Proof of the Semicontinuity Theorem 8.4 As the result is local on Y , we

may assume without loss of generality that Y is a ball in Cm . After addition

of a constant to ', we may also assume that there exists a compact subset

K � X such that

f(x; y) 2 X � Y ;'(x; y) � 0g � K � Y:
By Th. 7.1, the Lelong numbers depend only on the asymptotic behaviour of

' near the (compact) polar set '�1(�1)\(SuppT�Y ). We can add a smooth
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strictly plurisubharmonic function on X � Y to make ' strictly plurisuhar-

monic. Then Richberg's approximation theorem for continuous plurisubhar-

monic functions shows that there exists a smooth plurisubharmonic functione' such that ' � e' � ' + 1. We may therefore assume that ' is smooth on

(X � Y ) n '�1(�1).

� First step: construction of a local plurisubharmonic potential.

Our goal is to generalize the usual construction of plurisubharmonic po-

tentials associated with a closed positive current (Lelong 1967, Skoda 1972a).

We replace here the usual kernel jz � �j�2p arising from the hermitian met-

ric of C n by a kernel depending on the weight '. Let � 2 C1(R;R) be an

increasing function such that �(t) = t for t � �1 and �(t) = 0 for t � 0. We

consider the half-plane H = fz 2 C ; Rez < �1g and associate with T the

potential function V on Y �H de�ned by

(8:7) V (y; z) = �
Z 0

Rez

�(T; 'y; t)�
0(t) dt:

For every t > Re z, Stokes' formula gives

�(T; 'y ; t) =

Z
'(x;y)<t

T (x) ^ (ddc
x
e'(x; y; z))p

with e'(x; y; z) := maxf'(x; y);Rezg. The Fubini theorem applied to (8.7)

gives

V (y; z) = �
Z
x2X;'(x;y)<t

Re z<t<0

T (x) ^ (ddcx e'(x; y; z))p �0(t)dt
=

Z
x2X

T (x) ^ �(e'(x; y; z)) (ddc
x
e'(x; y; z))p:

For all (n� 1; n� 1)-form h of class C1 with compact support in Y �H, we

get

hddcV; hi = hV; ddchi

=

Z
X�Y�H

T (x) ^ �(e'(x; y; z))(ddce'(x; y; z))p ^ ddch(y; z):
Observe that the replacement of ddc

x
by the total di�erentiation ddc = ddc

x;y;z

does not modify the integrand, because the terms in dx, dx must have total

bidegree (n; n). The current T (x) ^ �(e'(x; y; z))h(y; z) has compact support

in X � Y �H. An integration by parts can thus be performed to obtain

hddcV; hi =
Z
X�Y�H

T (x) ^ ddc(� Æ e'(x; y; z)) ^ (ddc e'(x; y; z))p:h(y; z):
On the corona f�1 � '(x; y) � 0g we have e'(x; y; z) = '(x; y), whereas for

'(x; y) < �1 we get e' < �1 and � Æ e' = e'. As e' is plurisubharmonic, we

see that ddcV (y; z) is the sum of the positive (1; 1)-form
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(y; z) 7�!
Z
fx2X;'(x;y)<�1g

T (x) ^ (ddc
x;y;z

e'(x; y; z))p+1
and of the (1; 1)-form independent of z

y 7�!
Z
fx2X;�1�'(x;y)�0g

T ^ ddc
x;y

(� Æ ') ^ (ddc
x;y
')p:

As ' is smooth outside '�1(�1), this last form has locally bounded coeÆ-

cients. Hence ddcV (y; z) is � 0 except perhaps for locally bounded terms. In

addition, V is continuous on Y � H because T ^ (ddc e'y;z)p is weakly con-

tinuous in the variables (y; z) by Th. 3.5. We therefore obtain the following

result.

(8.8) Proposition. There exists a positive plurisubharmonic function � in

C1(Y ) such that �(y) + V (y; z) is plurisubharmonic on Y �H.

If we let Re z tend to �1, we see that the function

U0(y) = �(y) + V (y;�1) = �(y)�
Z 0

�1
�(T; 'y; t)�

0(t)dt

is locally plurisubharmonic or � �1 on Y . Furthermore, it is clear that

U0(y) = �1 at every point y such that �(T; 'y) > 0. If Y is connected and

U0 6� �1, we already conclude that the density set
S
c>0Ec is pluripolar

in Y .

� Second step: application of Kiselman's minimum principle.

Let a � 0 be arbitrary. The function

Y �H 3 (y; z) 7�! �(y) + V (y; z)� aRez
is plurisubharmonic and independent of Im z. By Kiselman's theorem 1.7.8,

the Legendre transform

Ua(y) = inf
r<�1

�
�(y) + V (y; r)� ar	

is locally plurisubharmonic or � �1 on Y .

(8.9) Lemma. Let y0 2 Y be a given point.

a) If a > �(T; 'y0), then Ua is bounded below on a neighborhood of y0.

b) If a < �(T; 'y0), then Ua(y0) = �1.

Proof. By de�nition of V (cf. (8:7)) we have

(8:10) V (y; r) � ��(T; 'y ; r)
Z 0

r

�0(t)dt = r�(T; 'y; r) � r�(T; 'y):
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Then clearly Ua(y0) = �1 if a < �(T; 'y0). On the other hand, if �(T; 'y0) <

a, there exists t0 < 0 such that �(T; 'y0 ; t0) < a. Fix r0 < t0. The semi-

continuity property (5.13) shows that there exists a neighborhood ! of y0
such that sup

y2! �(T; 'y; r0) < a. For all y 2 !, we get

V (y; r) � �C � a
Z r0

r

�0(t)dt = �C + a(r � r0);

and this implies Ua(y) � �C � ar0. �

(8.11) Theorem. If Y is connected and if Ec 6= Y , then Ec is a closed com-

plete pluripolar subset of Y , i.e. there exists a continuous plurisubharmonic

function w : Y �! [�1;+1[ such that Ec = w�1(�1).

Proof. We �rst observe that the family (Ua) is increasing in a, that Ua = �1
on Ec for all a < c and that supa<c Ua(y) > �1 if y 2 Y n Ec (apply

Lemma 8.9). For any integer k � 1, let wk 2 C1(Y ) be a plurisubharmonic

regularization of Uc�1=k such that wk � Uc�1=k on Y and wk � �2k on

Ec \ Yk where Yk = fy 2 Y ; d(y; @Y ) � 1=kg. Then Lemma 8.9 a) shows

that the family (wk) is uniformly bounded below on every compact subset of

Y n Ec. We can also choose wk uniformly bounded above on every compact

subset of Y because Uc�1=k � Uc. The function

w =

+1X
k=1

2�kwk

sati�es our requirements. �

� Third step: estimation of the singularities of the potentials Ua.

(8.12) Lemma. Let y0 2 Y be a given point, L a compact neighborhood of

y0, K � X a compact subset and r0 a real number < �1 such that

f(x; y) 2 X � L;'(x; y) � r0g � K � L:
Assume that e'(x;y) is locally H�older continuous in y and that

jf(x; y1)� f(x; y2)j �M jy1 � y2j

for all (x; y1; y2) 2 K � L � L. Then, for all " 2 ]0; 1[, there exists a real

number �(") > 0 such that all y 2 Y with jy � y0j < �(") satisfy

Ua(y) � �(y) +
�
(1� ")p�(T; 'y0)� a

��
 log jy � y0j+ log

2eM

"

�
:

Proof. First, we try to estimate �(T; 'y; r) when y 2 L is near y0. Set
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 (x) = (1� ")'y0(x) + "r � "=2
 (x) = max

�
'y(x); (1� ")'y0(x) + "r � "=2�

 (x) = 'y(x)

if

if

if

'y0(x) � r � 1

r � 1 �'y0(x) � r
r �'y0(x) � r0

and verify that this de�nition is coherent when jy � y0j is small enough. By

hypothesis

je'y(x) � e'y0 (x)j �M jy � y0j :
This inequality implies

'y(x) � 'y0(x) + log
�
1 +M jy � y0je�'y0 (x)

�
'y(x) � 'y0(x) + log

�
1�M jy � y0je�'y0 (x)

�
:

In particular, for 'y0(x) = r, we have (1�")'y0(x)+"r�"=2 = r�"=2, thus
'y(x) � r + log(1�M jy � y0je�r):

Similarly, for 'y0(x) = r� 1, we have (1� ")'y0(x) + "r� "=2 = r� 1+ "=2,

thus

'y(x) � r � 1 + log(1 +M jy � y0je1�r):
The de�nition of  is thus coherent as soon as M jy � y0je1�r � "=2 , i.e.

 log jy � y0j+ log
2eM

"
� r:

In this case  coincides with 'y on a neighborhood of f = rg , and with

(1� ")'y0(x) + "r � "=2
on a neighborhood of the polar set  �1(�1). By Stokes' formula applied to

�(T;  ; r), we infer

�(T; 'y ; r) = �(T;  ; r) � �(T;  ) = (1� ")p�(T; 'y0):
From (8.10) we get V (y; r) � r�(T; 'y; r), hence

Ua(y) � �(y) + V (y; r)� ar � �(y) + r
�
�(T; 'y; r)� a

�
;

Ua(y) � �(y) + r
�
(1� ")p�(T; 'y0)� a

�
:(8:13)

Suppose  log jy � y0j + log(2eM=") � r0 , i.e. jy � y0j � ("=2eM)1=er0= ;

one can then choose r =  log jy� y0j+log(2eM="), and by (8:13) this yields

the inequality asserted in Th. 8.12. �

� Fourth step: application of the H�ormander-Bombieri-Skoda theorem.
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The end of the proof relies on the following crucial result, which is

a consequence of the H�ormander-Bombieri-Skoda theorem (Bombieri 1970,

Skoda 1972a, Skoda 1976); it will be proved in Chapter 8, see Cor. 8.?.?.

(8.14) Proposition. Let u be a plurisubharmonic function on a complex

manifold Y . The set of points in a neighborhood of which e�u is not integrable
is an analytic subset of Y . �

Proof of Theorem 8.4 (end). The main idea in what follows is due to (Kisel-

man 1979). For a; b > 0, we let Za;b be the set of points in a neighborhood of

which exp(�Ua=b) is not integrable. Then Za;b is analytic, and as the family

(Ua) is increasing in a, we have Za0;b0 � Za00;b00 if a0 � a00, b0 � b00.
Let y0 2 Y be a given point. If y0 =2 Ec, then �(T; 'y0) < c by de�nition

of Ec. Choose a such that �(T; 'y0) < a < c. Lemma 8.9 a) implies that Ua
is bounded below in a neighborhood of y0, thus exp(�Ua=b) is integrable and
y0 =2 Za;b for all b > 0.

On the other hand, if y0 2 Ec and if a < c, then Lemma 8.12 implies for

all " > 0 that

Ua(y) � (1� ")(c� a) log jy � y0j+ C(")

on a neighborhood of y0. Hence exp(�Ua=b) is non integrable at y0 as soon

as b < (c� a)=2m, where m = dimY . We obtain therefore

Ec =
\
a<c

b<(c�a)=2m

Za;b:

This proves that Ec is an analytic subset of Y . �

Finally, we use Cor. 8.5 to derive an important decomposition formula

for currents, which is again due to (Siu 1974). We �rst begin by two simple

observations.

(8.15) Lemma. If T is a closed positive current of bidimension (p; p) and

A is an irreducible analytic set in X, we set

mA = inff�(T; x) ; x 2 Ag:
Then �(T; x) = mA for all x 2 ArSA0

j
, where (A0

j
) is a countable family of

proper analytic subsets of A. We say that mA is the generic Lelong number

of T along A.

Proof. By de�nition of mA and Ec(T ), we have �(T; x) � mA for every x 2 A
and

�(T; x) = mA on Ar
[

c2Q; c>mA

A \Ec(T ):
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However, for c > mA, the intersection A \ Ec(T ) is a proper analytic subset

of A. �

(8.16) Proposition. Let T be a closed positive current of bidimension

(p; p) and let A be an irreducible p-dimensional analytic subset of X. Then

1lAT = mA[A], in particular T �mA[A] is positive.

Proof. As the question is local and as a closed positive current of bidimension

(p; p) cannot carry any mass on a (p � 1)-dimensional analytic subset, it is

enough to work in a neighborhood of a regular point x0 2 A. Hence, by

choosing suitable coordinates, we can suppose that X is an open set in C n

and that A is the intersection of X with a p-dimensional linear subspace.

Then, for every point a 2 A, the inequality �(T; a) � mA implies

�T
�
B(a; r)

� � mA �
pr2p=p! = mA�[A]

�
B(a; r)

�
for all r such that B(a; r) � X. Now, set � = T �mA[A] and � = ddcjzj2.
Our inequality says that

R
1lB(a;r)�^�p � 0. If we integrate this with respect

to some positive continuous function f with compact support in A, we getR
X
gr� ^ �p � 0 where

gr(z) =

Z
A

1lB(a;r)(z) f(a) d�(a) =

Z
a2A\B(z;r)

f(a) d�(a):

Here gr is continuous on C
n , and as r tends to 0 the function gr(z)=(�

pr2p=p!)

converges to f on A and to 0 on X rA, with a global uniform bound. Hence

we obtain
R
1lAf � ^ �p � 0. Since this inequality is true for all continuous

functions f � 0 with compact support in A, we conclude that the measure

1lA� ^ �p is positive. By a linear change of coordinates, we see that

1lA� ^
�
ddc

X
1�j�n

�j jujj2
�n
� 0

for every basis (u1; : : : ; un) of linear forms and for all coeÆcients �j > 0.

Take �1 = : : : = �p = 1 and let the other �j tend to 0. Then we get

1lA� ^ idu1 ^ du1 ^ : : : ^ dup ^ dup � 0. This implies 1lA� � 0, or equiva-

lently 1lAT � mA[A]. By Cor. 2.4 we know that 1lAT is a closed positive

current, thus 1lAT = �[A] with � � 0. We have just seen that � � mA. On

the other hand, T � 1lAT = �[A] clearly implies mA � �. �

(8.16) Siu's decomposition formula. If T is a closed positive current of

bidimension (p; p), there is a unique decomposition of T as a (possibly �nite)

weakly convergent series

T =
X
j�1

�j [Aj] + R; �j > 0;
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where [Aj] is the current of integration over an irreducible p-dimensional ana-

lytic set Aj � X and where R is a closed positive current with the property

that dimEc(R) < p for every c > 0.

Proof of uniqueness. If T has such a decomposition, the p-dimensional com-

ponents of Ec(T ) are (Aj)�j�c, for �(T; x) =
P
�j�([Aj ]; x) + �(R; x) is non

zero only on
S
Aj [

S
Ec(R), and is equal to �j generically on Aj

�
more

precisely, �(T; x) = �j at every regular point of Aj which does not belong to

any intersection Aj [ Ak, k 6= j or to
S
Ec(R)

�
. In particular Aj and �j are

unique.

Proof of existence. Let (Aj)j�1 be the countable collection of p-dimensional

components occurring in one of the sets Ec(T ), c 2 Q?+ , and let �j > 0 be the

generic Lelong number of T along Aj. Then Prop. 8.16 shows by induction on

N that RN = T�P1�j�N �j [Aj] is positive. As RN is a decreasing sequence,

there must be a limit R = limN!+1 RN in the weak topology. Thus we

have the asserted decomposition. By construction, R has zero generic Lelong

number along Aj , so dimEc(R) < p for every c > 0. �

It is very important to note that some components of lower dimension

can actually occur in Ec(R), but they cannot be subtracted because R has

bidimension (p; p). A typical case is the case of a bidimension (n� 1; n� 1)

current T = ddcu with u = log(jFj j1+: : : jFN jN ) and Fj 2 O(X). In generalS
Ec(T ) =

T
F�1
j

(0) has dimension < n � 1. In that case, an important

formula due to King plays the role of (8.17). We state it in a somewhat more

general form than its original version (King 1970).

(8.18) King's formula. Let F1; : : : ; FN be holomorphic functions on a com-

plex manifold X, such that the zero variety Z =
T
F�1
j

(0) has codimen-

sion � p, and set u = log
P jFjjj with arbitrary coeÆcients j > 0. Let

(Zk)k�1 be the irreducible components of Z of codimension p exactly. Then

there exist multiplicities �k > 0 such that

(ddcu)p =
X
k�1

�k[Zk] + R;

where R is a closed positive current such that 1lZR = 0 and codimEc(R) > p

for every c > 0. Moreover the multiplicities �k are integers if 1; : : : ; N are

integers, and �k = 1 : : : p if 1 � : : : � N and some partial Jacobian

determinant of (F1; : : : ; Fp) of order p does not vanish identically along Zk.

Proof. Observe that (ddcu)p is well de�ned thanks to Cor. 4.11. The com-

parison theorem 7.8 applied with '(z) = log jz � xj, v1 = : : : = vp = u,

u1 = : : : = up = ' and T = 1 shows that the Lelong number of (ddcu)p

is equal to 0 at every point of X r Z. Hence Ec((dd
cu)p) is contained in
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Z and its (n � p)-dimensional components are members of the family (Zk).

The asserted decomposition follows from Siu's formula 8.16. We must have

1lZkR = 0 for all irreducible components of Z: when codimZk > p this is

automatically true, and when codimZk = p this follows from (8.16) and

the fact that codimEc(R) > p. If det(@Fj=@zk)1�j;k�p 6= 0 at some point

x0 2 Zk, then (Z; x0) = (Zk; x0) is a smooth germ de�ned by the equations

F1 = : : : = Fp = 0. If we denote v = log
P

j�p jFjjj with 1 � : : : � N ,

then u � v near Zk and Th. 7.8 implies �((ddcu)p; x) = �((ddcv)p; x) for all

x 2 Zk near x0. On the other hand, if G := (F1; : : : ; Fp) : X ! C p , Cor. 7.4

gives

(ddcv)p = G?
�
ddc log

X
1�j�p

jzj jj
�p

= 1 : : : pG
?Æ0 = 1 : : : p [Zk]

near x0. This implies that the generic Lelong number of (ddcu)p along Zk
is �k = 1 : : : p. The integrality of �k when 1; : : : ; N are integers will be

proved in the next section. �

9. Transformation of Lelong Numbers by Direct

Images

Let F : X ! Y be a holomorphic map between complex manifolds of re-

spective dimensions dimX = n, dimY = m, and let T be a closed positive

current of bidimension (p; p) on X. If F�Supp T is proper, the direct image

F?T is de�ned by

(9:1) hF?T; �i = hT; F ?�i
for every test form � of bidegree (p; p) on Y . This makes sense because

Supp T \ F�1(Supp �) is compact. It is easily seen that F?T is a closed

positive current of bidimension (p; p) on Y .

(9.2) Example. Let T = [A] where A is a p-dimensional irreducible analytic

set in X such that F�A is proper. We know by Remmert's theorem 2.7.8 that

F (A) is an analytic set in Y . Two cases may occur. Either F�A is generically

�nite and F induces an �etale covering A r F�1(Z) �! F (A) r Z for some

nowhere dense analytic subset Z � F (A), or F�A has generic �bers of positive

dimension and dimF (A) < dimA. In the �rst case, let s < +1 be the

covering degree. Then for every test form � of bidegree (p; p) on Y we get

hF?[A]; �i =
Z
A

F ?� =

Z
ArF�1(Z)

F ?� = s

Z
F (A)rZ

� = s h[F (A)]; �i

because Z and F�1(Z) are negligible sets. Hence F?[A] = s[F (A)]. On the

other hand, if dimF (A) < dimA = p, the restriction of � to F (A)reg is zero,

and therefore so is this the restriction of F ?� to Areg. Hence F?[A] = 0. �
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Now, let  be a continuous plurisubharmonic function on Y which is

semi-exhaustive on F (Supp T ) (this set certainly contains SuppF?T ). Since

F�Supp T is proper, it follows that  Æ F is semi-exhaustive on Supp T , for

Supp T \ f Æ F < Rg = F�1
�
F (Supp T ) \ f < Rg�:

(9.3) Proposition. If F (Supp T ) \ f < Rg �� Y , we have
�(F?T;  ; r) = �(T;  Æ F; r) for all r < R;

in particular �(F?T;  ) = �(T;  Æ F ).

Here, we do not necessarily assume that X or Y are Stein; we thus replace

 with  �s = maxf ; sg, s < r, in the de�nition of �(F?T;  ; r) and �(T;  Æ
F; r).

Proof. The �rst equality can be writtenZ
Y

F?T ^ 1lf <rg(ddc �s)p =
Z
X

T ^ (1lf <rg Æ F )(ddc �s Æ F )p:

This follows almost immediately from the adjunction formula (9.1) when  is

smooth and when we write 1lf <Rg = lim " gk for some sequence of smooth

functions gk. In general, we write  �s as a decreasing limit of smooth plurisub-

harmonic functions and we apply our monotone continuity theorems (if Y is

not Stein, Richberg's theorem shows that we can obtain a decreasing sequence

of almost plurisubharmonic approximations such that the negative part of ddc

converges uniformly to 0 ; this is good enough to apply the monotone conti-

nuity theorem; note that the integration is made on compact subsets, thanks

to the semi-exhaustivity assumption on  ). �

It follows from this that understanding the transformation of Lelong num-

bers under direct images is equivalent to understanding the e�ect of F on

the weight. We are mostly interested in computing the ordinary Lelong num-

bers �(F?T; y) associated with the weight  (w) = log jw � yj in some local

coordinates (w1; : : : ; wm) on Y near y. Then Prop. 9.3 gives

�(F?T; y) = �(T; log jF � yj) with(9:4)

log jF (z)� yj = 1

2
log
X
jFj(z)� yj j2; Fj = wj Æ F:

We are going to show that �(T; log jF � yj) is bounded below by a linear

combination of the Lelong numbers of T at points x in the �ber F�1(y), with
suitable multiplicities attached to F at these points. These multiplicities can

be seen as generalizations of the notion of multiplicity of an analytic map

introduced by (Stoll 1966).
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(9.5) De�nition. Let x 2 X and y = F (x). Suppose that the codimension

of the �ber F�1(y) at x is � p. Then we set

�p(F; x) = �
�
(ddc log jF � yj)p; x�:

Observe that (ddc log jF � yj)p is well de�ned thanks to Cor. 4.10. The

second comparison theorem 7.8 immediately shows that �p(F; x) is indepen-

dent of the choice of local coordinates on Y (and also on X, since Lelong

nombers do not depend on coordinates). By de�nition, �p(F; x) is the mass

carried by fxg of the measure

(ddc log jF (z)� yj)p ^ (ddc log jz � xj)n�p:
We are going to give a more geometric interpretation of this multiplicity, from

which it will follow that �p(F; x) is always a positive integer (in particular,

the proof of (8.18) will be complete).

(9.6) Example. For p = n = dimX, the assumption codimx F
�1(y) � p

means that the germ of map F : (X; x) �! (Y; y) is �nite. Let Ux be a

neighborhood of x such that Ux \ F�1(y) = fxg, let Wy be a neighborhood

of y disjoint from F (@Ux) and let Vx = Ux \ F�1(Wy). Then F : Vx ! Wy

is proper and �nite, and we have F?[Vx] = s [F (Vx)] where s is the local

covering degree of F : Vx ! F (Vx) at x. Therefore

�n(F; x) =

Z
fxg

�
ddc log jF � yj�n = �

�
[Vx]; log jF � yj

�
= �
�
F?[Vx]; y

�
= s �

�
F (Vx); y

�
:

In the particular case when dimY = dimX, we have (F (Vx); y) = (Y; y), so

�n(F; x) = s. In general, it is a well known fact that the ideal generated by

(F1 � y1; : : : ; Fm � ym) in OX;x has the same integral closure as the ideal

generated by n generic linear combinations of the generators, that is, for

a generic choice of coordinates w0 = (w1; : : : ; wn), w
00 = (wn+1; : : : ; wm)

on (Y; y), we have jF (z) � yj � Cjw0 Æ F (z)j (this is a simple consequence

of Lemma 7.5 applied to A = F (Vx)). Hence for p = n, the comparison

theorem 7.1 gives

�n(F; x) = �n(w
0 Æ F; x) = local covering degree of w0 Æ F at x;

for a generic choice of coordinates (w0; w00) on (Y; y). �

(9.7) Geometric interpretation of �p(F; x). An application of Crofton's

formula 7.11 shows, after a translation, that there is a small ball B(x; r0) on

which
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(ddc log jF (z)� yj)p ^ (ddc log jz � xj)n�p =Z
S2G(p;n)

(ddc log jF (z)� yj)p ^ [x+ S] dv(S):(9:7 a)

For a rigorous proof of (9.7 a), we replace log jF (z)�yj by the smooth function
1
2
log(jF (z)� yj2 + "2) and let " tend to 0 on both sides. By (4.3) (resp. by

(4.10)), the wedge product (ddc log jF (z) � yj)p ^ [x + S] is well de�ned on

a small ball B(x; r0) as soon as x+ S does not intersect F�1(y) \ @B(x; r0)
(resp. intersects F�1(y) \ B(x; r0) at �nitely many points); thanks to the

assumption codim(F�1(y); x) � p, Sard's theorem shows that this is the case

for all S outside a negligible closed subset E in G(p; n) (resp. by Bertini, an

analytic subset A in G(p; n) with A � E). Fatou's lemma then implies that

the inequality � holds in (9.7 a). To get equality, we observe that we have

bounded convergence on all complements G(p; n) r V (E) of neighborhoods

V (E) of E. However the mass of
R
V (E)

[x+S] dv(S) in B(x; r0) is proportional

to v(V (E)) and therefore tends to 0 when V (E) is small; this is suÆcient to

complete the proof, since Prop. 4.6 b) givesZ
z2B(x;r0)

�
ddc log(jF (z)� yj2 + "2)

�p ^ Z
S2V (E)

[x+ S] dv(S) � C v(V (E))

with a constant C independent of ". By evaluating (9.7 a) on fxg, we get

(9:7 b) �p(F; x) =

Z
S2G(p;n)rA

�
�
(ddc log jF�x+S � zj)p; x

�
dv(S):

Let us choose a linear parametrization gS : C p ! S depending analytically

on local coordinates of S in G(p; n). Then Theorem 8.4 with T = [C p ] and

'(z; S) = log jF Æ gS(z)� yj shows that
�
�
(ddc log jF�x+S � zj)p; x

�
= �
�
[C p ]; log jF Æ gS(z)� yj

�
is Zariski upper semicontinuous in S on G(p; n) r A. However, (9.6) shows

that these numbers are integers, so S 7! �
�
(ddc log jF�x+S � zj)p; x

�
must be

constant on a Zariski open subset in G(p; n). By (9.7 b), we obtain

(9:7 c) �p(F; x) = �p(F�x+S ; x) = local degree of w0 Æ F�x+S at x

for generic subspaces S 2 G(p; n) and generic coordinates w0 = (w1; : : : ; wp),

w00 = (wp+1; : : : ; wm) on (Y; y). �

(9.8) Example. Let F : C n �! C n be de�ned by

F (z1; : : : ; zn) = (zs11 ; : : : ; z
sn
n ); s1 � : : : � sn:

We claim that �p(F; 0) = s1 : : : sp. In fact, for a generic p-dimensional sub-

space S � C n such that z1; : : : ; zp are coordinates on S and zp+1; : : : ; zn
are linear forms in z1; : : : ; zp, and for generic coordinates w0 = (w1; : : : ; wp),
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w00 = (wp+1; : : : ; wn) on C n , we can rearrange w0 by linear combinations so

that wj ÆF�S is a linear combination of (z
sj

j
; : : : ; zsn

n
) and has non zero coeÆ-

cient in z
sj

j
as a polynomial in (zj ; : : : ; zp). It is then an exercise to show that

w0 ÆF�S has covering degree s1 : : : sp at 0 [ compute inductively the roots zn,

zn�1; : : : ; zj of wj Æ F�S(z) = aj and use Lemma II.3.10 to show that the sj
values of zj lie near 0 when (a1; : : : ; ap) are small ]. �

We are now ready to prove the main result of this section, which describes

the behaviour of Lelong numbers under proper morphisms. A similar weaker

result was already proved in (Demailly 1982b) with some other non optimal

multiplicities �p(F; x).

(9.9) Theorem. Let T be a closed positive current of bidimension (p; p) on X

and let F : X �! Y be an analytic map such that the restriction F�Supp T is

proper. Let I(y) be the set of points x 2 Supp T \F�1(y) such that x is equal

to its connected component in Supp T \ F�1(y) and codim(F�1(y); x) � p.

Then we have

�(F?T; y) �
X
x2I(y)

�p(F; x) �(T; x):

In particular, we have �(F?T; y) �
P
x2I(y) �(T; x). This inequality no

longer holds if the summation is extended to all points x 2 Supp T \F�1(Y )
and if this set contains positive dimensional connected components: for ex-

ample, if F : X �! Y contracts some exceptional subspace E in X to a

point y0 (e.g. if F is a blow-up map, see x 7.12), then T = [E] has direct

image F?[E] = 0 thanks to (9.2).

Proof. We proceed in three steps.

Step 1. Reduction to the case of a single point x in the �ber. It is suÆcient

to prove the inequality when the summation is taken over an arbitrary �nite

subset fx1; : : : ; xNg of I(y). As xj is equal to its connected component in

Supp T \F�1(y), it has a fondamental system of relative open-closed neigh-

borhoods, hence there are disjoint neighborhoods Uj of xj such that @Uj does

not intersect Supp T \F�1(y). Then the image F (@Uj \ Supp T ) is a closed
set which does not contain y. Let W be a neighborhood of y disjoint from

all sets F (@Uj \ Supp T ), and let Vj = Uj \ F�1(W ). It is clear that Vj is

a neighborhood of xj and that F�Vj : Vj ! W has a proper restriction to

Supp T \Vj . Moreover, we obviously have F?T �
P
j
(F�Vj )?T on W . There-

fore, it is enough to check the inequality �(F?T; y) � �p(F; x) �(T; x) for a

single point x 2 I(y), in the case when X � C n , Y � Cm are open subsets

and x = y = 0.

Step 2. Reduction to the case when F is �nite. By (9.4), we have
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�(F?T; 0) = inf
V 30

Z
V

T ^ (ddc log jF j)p

= inf
V 30

lim
"!0

Z
V

T ^ �ddc log(jF j+ "jzjN )�p;
and the integrals are well de�ned as soon as @V does not intersect the set

Supp T \ F�1(0) (may be after replacing log jF j by maxflog jF j; sg with

s � 0). For every V and ", the last integral is larger than �(G?T; 0) where

G is the �nite morphism de�ned by

G : X �! Y � C n ; (z1; : : : ; zn) 7�! (F1(z); : : : ; Fm(z); z
N

1 ; : : : ; z
N

n
):

We claim that for N large enough we have �p(F; 0) = �p(G; 0). In fact,

x 2 I(y) implies by de�nition codim(F�1(0); 0) � p. Hence, if S =

fu1 = : : : = un�p = 0g is a generic p-dimensional subspace of C n , the

germ of variety F�1(0) \ S de�ned by (F1; : : : ; Fm; u1; : : : ; un�p) is f0g.
Hilbert's Nullstellensatz implies that some powers of z1; : : : ; zn are in the

ideal (Fj ; uk). Therefore jF (z)j + ju(z)j � Cjzja near 0 for some inte-

ger a independent of S (to see this, take coeÆcients of the uk's as ad-

ditional variables); in particular jF (z)j � Cjzja for z 2 S near 0. The

comparison theorem 7.1 then shows that �p(F; 0) = �p(G; 0) for N � a.

If we are able to prove that �(G?T; 0) � �p(G; 0)�(T; 0) in case G is �nite,

the obvious inequality �(F?T; 0) � �(G?T; 0) concludes the proof.
Step 3. Proof of the inequality �(F?T; y) � �p(F; x) �(T; x) when F is �nite

and F�1(y) = x. Then '(z) = log jF (z) � yj has a single isolated pole at x

and we have �p(F; x) = �((ddc')p; x). It is therefore suÆcient to apply to

following Proposition.

(9.10) Proposition. Let ' be a semi-exhaustive continuous plurisubhar-

monic function on X with a single isolated pole at x. Then

�(T; ') � �(T; x) �((ddc')p; x):

Proof. Since the question is local, we can suppose that X is the ball B(0; r0)

in C n and x = 0. Set X 0 = B(0; r1) with r1 < r0 and �(z; g) = ' Æ g(z)
for g 2 Gln(C ). Then there is a small neighborhood 
 of the unitary group

U(n) � Gln(C ) such that � is plurisubharmonic on X 0 � 
 and semi-

exhaustive with respect to X 0. Theorem 8.4 implies that the map g 7!
�(T; ' Æ g) is Zariski upper semi-continuous on 
. In particular, we must

have �(T; ' Æ g) � �(T; ') for all g 2 
 rA in the complement of a complex

analytic set A. Since Gln(C ) is the complexi�cation of U(n), the intersection

U(n) \ A must be a nowhere dense real analytic subset of U(n). Therefore,

if dv is the Haar measure of mass 1 on U(n), we have
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�(T; ') �
Z
g2U(n)

�(T; ' Æ g) dv(g)

= lim
r!0

Z
g2U(n)

dv(g)

Z
B(0;r)

T ^ (ddc' Æ g)p:(9:11)

Since
R
g2U(n)(dd

c'Æg)pdv(g) is a unitary invariant (p; p)-form on B, Lemma

7.10 impliesZ
g2U(n)

(ddc' Æ g)pdv(g) = �ddc�(log jzj)�p
where � is a convex increasing function. The Lelong number at 0 of the

left hand side is equal to �((ddc')p; 0), and must be equal to the Lelong

number of the right hand side, which is limt!�1 �0(t)p (to see this, use

either Formula (5.5) or Th. 7.8). Thanks to the last equality, Formulas (9.11)

and (5.5) imply

�(T; ') � lim
r!0

Z
B(0;r)

T ^ �ddc�(log jzj)�p
= lim
r!0

�0(log r � 0)p�(T; 0; r) � �((ddc')p; 0) �(T; 0): �

Another interesting question is to know whether it is possible to get in-

equalities in the opposite direction, i.e. to �nd upper bounds for �(F?T; y) in

terms of the Lelong numbers �(T; x). The example T = [� ] with the curve

� : t 7! (ta; ta+1; t) in C 3 and F : C 3 ! C 2 , (z1; z2; z3) 7! (z1; z2), for which

�(T; 0) = 1 and �(F?T; 0) = a, shows that this may be possible only when F

is �nite. In this case, we have:

(9.12) Theorem. Let F : X ! Y be a proper and �nite analytic map and

let T be a closed positive current of bidimension (p; p) on X. Then

(a) �(F?T; y) �
X

x2Supp T\F�1(y)
�
p
(F; x) �(T; x)

where �p(F; x) is the multiplicity de�ned as follows: if H : (X; x)! (C n ; 0)

is a germ of �nite map, we set

�(H; x) = inf
�
� > 0 ; 9C > 0; jH(z)j � Cjz � xj� near x

	
;(b)

�p(F; x) = inf
G

�(G Æ F; x)p
�p(G; 0)

;(c)

where G runs over all germs of maps (Y; y) �! (C n ; 0) such that G Æ F is

�nite.

Proof. If F�1(y) = fx1; : : : ; xNg, there is a neighborhoodW of y and disjoint

neighborhoods Vj of xj such that F�1(W ) =
S
Vj . Then F?T =

P
(F�Vj )?T
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on W , so it is enough to consider the case when F�1(y) consists of a sin-

gle point x. Therefore, we assume that F : V ! W is proper and �-

nite, where V , W are neighborhoods of 0 in C n , Cm and F�1(0) = f0g.
Let G : (Cm ; 0) �! (C n ; 0) be a germ of map such that G Æ F is �nite.

Hilbert's Nullstellensatz shows that there exists � > 0 and C > 0 such

that jG Æ F (z)j � Cjzj� near 0. Then the comparison theorem 7.1 implies

�(G?F?T; 0) = �(T; log jG Æ F j) � �p�(T; log jzj) = �p�(T; 0):

On the other hand, Th. 9.9 applied to � = F?T on W gives

�(G?F?T; 0) � �p(G; 0) �(F?T; 0):
Therefore

�(F?T; 0) � �p

�p(G; 0)
�(T; 0):

The in�mum of all possible values of � is by de�nition �(G Æ F; 0), thus by
taking the in�mum over G we obtain

�(F?T; 0) � �p(F; 0) �(T; 0): �

(9.13) Example. Let F (z1; : : : ; zn) = (zs11 ; : : : ; z
sn
n ), s1 � : : : � sn as in 9.8.

Then we have

�p(F; 0) = s1 : : : sp; �
p
(F; 0) = sn�p+1 : : : sn:

To see this, let s be the lowest common multiple of s1; : : : ; sn and let

G(z1; : : : ; zn) = (z
s=s1

1 ; : : : ; z
s=sn
n ). Clearly �p(G; 0) = (s=sn�p+1) : : : (s=sn)

and �(G Æ F; 0) = s, so we get by de�nition �
p
(F; 0) � sn�p+1 : : : sn. Fi-

nally, if T = [A] is the current of integration over the p-dimensional subspace

A = fz1 = : : : = zn�p = 0g, then F?[A] = sn�p+1 : : : sn [A] because F�A

has covering degree sn�p+1 : : : sn. Theorem 9.12 shows that we must have

sn�p+1 : : : sn � �p(F; 0), QED. If �1 � : : : � �n are positive real numbers

and sj is taken to be the integer part of k�j as k tends to +1, Theorems 9.9

and 9.12 imply in the limit the following:

(9.14) Corollary. For 0 < �1 � : : : � �n, Kiselman's directional Lelong

numbers satisfy the inequalities

�1 : : : �p �(T; x) � �(T; x; �) � �n�p+1 : : : �n �(T; x): �

(9.15) Remark. It would be interesting to have a direct geometric interpre-

tation of �p(F; x). In fact, we do not even know whether �p(F; x) is always

an integer.
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10. A Schwarz Lemma. Application to Number Theory

In this section, we show how Jensen's formula and Lelong numbers can be

used to prove a fairly general Schwarz lemma relating growth and zeros of

entire functions in C n . In order to simplify notations, we denote by jF jr the
supremum of the modulus of a function F on the ball of center 0 and radius r.

Then, following (Demailly 1982a), we present some applications with a more

arithmetical avour.

(10.1) Schwarz lemma. Let P1; : : : ; PN 2 C [z1 ; : : : ; zn] be polynomials of

degree Æ, such that their homogeneous parts of degree Æ do not vanish simul-

taneously except at 0. Then there is a constant C � 2 such that for all entire

functions F 2 O(C n) and all R � r � 1 we have

log jF jr � log jF jR � Æ1�n�([ZF ]; log jP j) log R

Cr

where ZF is the zero divisor of F and P = (P1; : : : ; PN ) : C n �! C N .

Moreover

�([ZF ]; log jP j) �
X

w2P�1(0)
ord(F;w)�n�1(P;w)

where ord(F;w) denotes the vanishing order of F at w and �n�1(P;w) is the
(n� 1)-multiplicity of P at w, as de�ned in (9:5) and (9:7).

Proof. Our assumptions imply that P is a proper and �nite map. The last

inequality is then just a formal consequence of formula (9.4) and Th. 9.9

applied to T = [ZF ]. Let Qj be the homogeneous part of degree Æ in Pj .

For z0 2 B(0; r), we introduce the weight functions
'(z) = log jP (z)j;  (z) = log jQ(z � z0)j:

Since Q�1(0) = f0g by hypothesis, the homogeneity of Q shows that there

are constants C1; C2 > 0 such that

(10:2) C1jzjÆ � jQ(z)j � C2jzjÆ on C n :

The homogeneity also implies (ddc )n = Æn Æz0 . We apply the Lelong Jensen

formula 6.5 to the measures � ;s associated with  and to V = log jF j. This
gives

(10:3) � ;s(log jF j)� Æn log jF (z0)j =
Z
s

�1
dt

Z
f <tg

[ZF ] ^ (ddc )n�1:

By (6.2), � ;s has total mass Æn and has support in

f (z) = sg = fQ(z � z0) = esg � B�0; r + (es=C1)
1=Æ
�
:
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Note that the inequality in the Schwarz lemma is obvious if R � Cr, so we

can assume R � Cr � 2r. We take s = Æ log(R=2) + logC1 ; then

f (z) = sg � B(0; r+ R=2) � B(0; R):
In particular, we get � ;s(log jF j) � Æn log jF jR and formula (10.3) gives

(10:4) log jF jR � log jF (z0)j � Æ�n
Z
s

s0

dt

Z
f <tg

[ZF ] ^ (ddc )n�1

for any real number s0 < s. The proof will be complete if we are able to

compare the integral in (10.4) to the corresponding integral with ' in place

of  . The argument for this is quite similar to the proof of the comparison

theorem, if we observe that  � ' at in�nity. We introduce the auxiliary

function

w =

�
maxf ; (1� ")'+ "t� "g on f � t� 2g,
(1� ")'+ "t� " on f � t� 2g,

with a constant " to be determined later, such that (1�")'+"t�" >  near

f = t � 2g and (1� ")' + "t � " <  near f = tg. Then Stokes' theorem

implies Z
f <tg

[ZF ] ^ (ddc )n�1 =
Z
f <tg

[ZF ] ^ (ddcw)n�1

� (1� ")n�1
Z
f <t�2g

[ZF ] ^ (ddc')n�1 � (1� ")n�1�([ZF ]; log jP j):(10:5)

By (10.2) and our hypothesis jz0j < r, the condition  (z) = t implies

jQ(z � z0)j = et =) et=Æ=C
1=Æ
1 � jz � z0j � et=Æ=C1=Æ

2 ;

jP (z)�Q(z � z0)j � C3(1 + jz0j)(1 + jzj+ jz0j)Æ�1 � C4r(r + et=Æ)Æ�1;��� P (z)

Q(z � z0)
� 1
��� � C4re

�t=Æ(re�t=Æ + 1)Æ�1 � 2Æ�1C4re
�t=Æ;

provided that t � Æ log r. Hence for  (z) = t � s0 � Æ log(2ÆC4r), we get

j'(z)�  (z)j =
��� log jP (z)j

jQ(z � z0)j
��� � C5re

�t=Æ:

Now, we have�
(1� ")'+ "t� "��  = (1� ")('�  ) + "(t� 1�  );

so this di�erence is < C5re
�t=Æ � " on f = tg and > �C5re

(2�t)=Æ + " on

f = t� 2g. Hence it is suÆcient to take " = C5re
(2�t)=Æ. This number has

to be < 1, so we take t � s0 � 2+Æ log(C5r). Moreover, (10.5) actually holds

only if P�1(0) � f < t � 2g, so by (10.2) it is enough to take t � s0 �
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2 + log(C2(r + C6)
Æ) where C6 is such that P�1(0) � B(0; C6). Finally, we

see that we can choose

s = Æ logR� C7; s0 = Æ log r + C8;

and inequalities (10.4), (10.5) together imply

log jF jR � log jF (z0)j � Æ�n
�Z s

s0

(1� C5re
(2�t)=Æ)n�1 dt

�
�([ZF ]; log jP j):

The integral is bounded below byZ Æ log(R=r)�C7

C8

(1� C9e
�t=Æ) dt � Æ log(R=Cr):

This concludes the proof, by taking the in�mum when z0 runs over B(0; r).

�

(10.6) Corollary. Let S be a �nite subset of C n and let Æ be the minimal

degree of algebraic hypersurfaces containing S. Then there is a constant C � 2

such that for all F 2 O(C n) and all R � r � 1 we have

log jF jr � log jF jR � ord(F; S)
Æ + n(n� 1)=2

n!
log

R

Cr

where ord(F; S) = minw2S ord(F;w).

Proof. In view of Th. 10.1, we only have to select suitable polynomials

P1; : : : ; PN . The vector space C [z1 ; : : : ; zn]<Æ of polynomials of degree < Æ

in C n has dimension

m(Æ) =

�
Æ + n� 1

n

�
=
Æ(Æ + 1) : : : (Æ + n� 1)

n!
:

By de�nition of Æ, the linear forms

C [z1 ; : : : ; zn]<Æ �! C ; P 7�! P (w); w 2 S
vanish simultaneously only when P = 0. Hence we can �nd m = m(Æ)

points w1; : : : ; wm 2 S such that the linear forms P 7! P (wj) de�ne

a basis of C [z1 ; : : : ; zn]
?

<Æ
. This means that there is a unique polynomial

P 2 C [z1 ; : : : ; zn]<Æ which takes given values P (wj) for 1 � j � m.

In particular, for every multiindex �, j�j = Æ, there is a unique polyno-

mial R� 2 C [z1 ; : : : ; zn]<Æ such that R�(wj) = w�
j
. Then the polynomials

P�(z) = z� � R�(z) have degree Æ, vanish at all points wj and their homo-

geneous parts of maximum degree Q�(z) = z� do not vanish simultaneously

except at 0. We simply use the fact that �n�1(P;wj) � 1 to get

�([ZF ]; log jP j) �
X

w2P�1(0)
ord(F;w) � m(Æ) ord(F; S):
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Theorem 10.1 then gives the desired inequality, because m(Æ) is a polynomial

with positive coeÆcients and with leading terms

1

n!

�
Æn + n(n� 1)=2 Æn�1 + : : :

�
: �

Let S be a �nite subset of C n . According to (Waldschmidt 1976), we

introduce for every integer t > 0 a number !t(S) equal to the minimal degree

of polynomials P 2 C [z1 ; : : : ; zn] which vanish at order � t at every point

of S. The obvious subadditivity property

!t1+t2(S) � !t1(S) + !t2(S)

easily shows that


(S) := inf
t>0

!t(S)

t
= lim
t!+1

!t(S)

t
:

We call !1(S) the degree of S (minimal degree of algebraic hypersurfaces

containing S) and 
(S) the singular degree of S. If we apply Cor. 10.6 to a

polynomial F vanishing at order t on S and �x r = 1, we get

log jF jR � tÆ + n(n� 1)=2

n!
log

R

C
+ log jF j1

with Æ = !1(S), in particular

degF � t!1(S) + n(n� 1)=2

n!
:

The minimum of degF over all such F is by de�nition !t(S). If we divide by

t and take the in�mum over t, we get the interesting inequality

(10:7)
!t(S)

t
� 
(S) � !1(S) + n(n� 1)=2

n!
:

(10.8) Remark. The constant
!1(S)+n(n�1)=2

n!
in (10.6) and (10.7) is optimal

for n = 1; 2 but not for n � 3. It can be shown by means of H�ormander's

L2 estimates (Waldschmidt 1978) that for every " > 0 the Schwarz lemma

(10.6) holds with coeÆcient 
(S)� " :

log jF jr � log jF jR � ord(F; S)(
(S)� ") log R

C"r
;

and that 
(S) � (!u(S)+1)=(u+n� 1) for every u � 1 ; this last inequality

is due to (Esnault-Viehweg 1983), who used deep tools of algebraic geometry;

(Azhari 1990) reproved it recently by means of H�ormander's L2 estimates.

Rather simple examples (Demailly 1982a) lead to the conjecture
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(S) � !u(S) + n� 1

u+ n� 1
for every u � 1:

The special case u = 1 of the conjecture was �rst stated by (Chudnovsky

1979).

Finally, let us mention that Cor. 10.6 contains Bombieri's theorem on

algebraic values of meromorphic maps satisfying algebraic di�erential equa-

tions (Bombieri 1970). Recall that an entire function F 2 O(C n) is said

to be of order � � if for every " > 0 there is a constant C" such that

jF (z)j � C" exp(jzj�+"). A meromorphic function is said to be of order � �

if it can be written G=H where G, H are entire functions of order � �.

(10.9) Theorem (Bombieri 1970). Let F1; : : : ; FN be meromorphic func-

tions on C n , such that F1; : : : ; Fd, n < d � N , are algebraically indepen-

dent over Q and have �nite orders �1; : : : ; �d. Let K be a number �eld of

degree [K : Q ]. Suppose that the ring K[f1; : : : ; fN ] is stable under all deriva-

tions d=dz1; : : : ; d=dzn. Then the set S of points z 2 C n , distinct from the

poles of the Fj's, such that (F1(z); : : : ; FN (z)) 2 KN is contained in an al-

gebraic hypersurface whose degree Æ satis�es

Æ + n(n� 1)=2

n!
� �1 + : : :+ �d

d� n [K : Q ]:

Proof. If the set S is not contained in any algebraic hypersurface of degree

< Æ, the linear algebra argument used in the proof of Cor. 10.6 shows that

we can �nd m = m(Æ) points w1; : : : ; wm 2 S which are not located on any

algebraic hypersurface of degree < Æ. Let H1; : : : ; Hd be the denominators

of F1; : : : ; Fd. The standard arithmetical methods of transcendental number

theory allow us to construct a sequence of entire functions in the following

way: we set

G = P (F1; : : : ; Fd)(H1 : : :Hd)
s

where P is a polynomial of degree � s in each variable with integer coeÆ-

cients. The polynomials P are chosen so that G vanishes at a very high order

at each point wj . This amounts to solving a linear system whose unknowns

are the coeÆcients of P and whose coeÆcients are polynomials in the deriva-

tives of the Fj 's (hence lying in the number �eld K). Careful estimates of

size and denominators and a use of the Dirichlet-Siegel box principle lead to

the following lemma, see e.g. (Waldschmidt 1978).

(10.10) Lemma. For every " > 0, there exist constants C1; C2 > 0, r � 1

and an in�nite sequence Gt of entire functions, t 2 T � N (depending on m

and on the choice of the points wj), such that

a) Gt vanishes at order � t at all points w1; : : : ; wm ;
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b) jGtjr � (C1t)
�t [K:Q] ;

c) jGtjR(t) � Ct2 where R(t) = (td�n= log t)1=(�1+:::+�d+").

An application of Cor. 10.6 to F = Gt and R = R(t) gives the desired

bound for the degree Æ as t tends to +1 and " tends to 0. If Æ0 is the largest

integer which satis�es the inequality of Th. 10.9, we get a contradiction if

we take Æ = Æ0 + 1. This shows that S must be contained in an algebraic

hypersurface of degree Æ � Æ0. �



Chapter IV

Sheaf Cohomology and Spectral Sequences

One of the main topics of this book is the computation of various cohomology
groups arising in algebraic geometry. The theory of sheaves provides a general
framework in which many cohomology theories can be treated in a uni�ed way.
The cohomology theory of sheaves will be constructed here by means of Gode-
ment's simplicial abby resolution. However, we have emphasized the analogy with
Alexander-Spanier cochains in order to give a simple de�nition of the cup product.
In this way, all the basic properties of cohomology groups (long exact sequences,
Mayer Vietoris exact sequence, Leray's theorem, relations with Cech cohomology,
De Rham-Weil isomorphism theorem) can be derived in a very elementary way
from the de�nitions. Spectral sequences and hypercohomology groups are then in-
troduced, with two principal examples in view: the Leray spectral sequence and the
Hodge-Fr�olicher spectral sequence. The basic results concerning cohomology groups
with constant or locally constant coeÆcients (invariance by homotopy, Poincar�e du-
ality, Leray-Hirsch theorem) are also included, in order to present a self-contained
approach of algebraic topology.

1. Basic Results of Homological Algebra

Let us �rst recall briey some standard notations and results of homological

algebra that will be used systematically in the sequel. Let R be a commutative

ring with unit. A di�erential module (K; d) is a R-module K together with

an endomorphism d : K ! K, called the di�erential, such that dÆd = 0. The

modules of cycles and of boundaries of K are de�ned respectively by

(1:1) Z(K) = ker d; B(K) = Im d:

Our hypothesis d Æ d = 0 implies B(K) � Z(K). The homology group of K is

by de�nition the quotient module

(1:2) H(K) = Z(K)=B(K):

A morphism of di�erential modules ' : K �! L is a R-homomorphism

' : K �! L such that d Æ ' = ' Æ d ; here we denote by the same symbol

d the di�erentials of K and L. It is then clear that '
�
Z(K)

� � Z(L) and

'
�
B(K)

� � B(L). Therefore, we get an induced morphism on homology

groups, denoted
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(1:3) H(') : H(K) �! H(L):

It is easily seen that H is a functor, i.e. H( Æ ') = H( ) Æ H('). We say

that two morphisms ';  : K �! L are homotopic if there exists a R-linear

map h : K �! L such that

(1:4) d Æ h+ h Æ d =  � ':
Then h is said to be a homotopy between ' and  . For every cocycle z 2
Z(K), we infer  (z)�'(z) = dh(z), hence the mapsH(') and H( ) coincide.

The module K itself is said to be homotopic to 0 if IdK is homotopic to 0 ;

then H(K) = 0.

(1.5) Snake lemma. Let

0 �! K
'�! L

 �!M �! 0

be a short exact sequence of morphisms of di�erential modules. Then there

exists a homomorphism @ : H(M) �! H(K), called the connecting homo-

morphism, and a homology exact sequence

H(K)
H(')���! H(L)

H( )���! H(M)

- @ .
Moreover, to any commutative diagram of short exact sequences

0 �!K �!L �!M �! 0?y ?y ?y
0 �! eK �!eL �!fM �! 0

is associated a commutative diagram of homology exact sequences

H(K) �!H(L) �!H(M)
@�!H(K) �! � � �?y ?y ?y ?y

H( eK) �!H(eL) �!H(fM)
@�!H( eK) �! � � � :

Proof. We �rst de�ne the connecting homomorphism @ : let m 2 Z(M) rep-

resent a given cohomology class fmg in H(M). Then

@fmg = fkg 2 H(K)

is the class of any element k 2 '�1d �1(m), as obtained through the follow-

ing construction:

l 2 L  7���! m 2M??y d
??y d

k 2 K '7���! dl 2 L  7���! 0 2M:
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The element l is chosen to be a preimage of m by the surjective map  ; as

 (dl) = d(m) = 0, there exists a unique element k 2 K such that '(k) = dl.

The element k is actually a cocycle in Z(K) because ' is injective and

'(dk) = d'(k) = d(dl) = 0 =) dk = 0:

The map @ will be well de�ned if we show that the cohomology class fkg
depends only on fmg and not on the choices made for the representatives m

and l. Consider another representative m0 = m+ dm1. Let l1 2 L such that

 (l1) = m1. Then l has to be replaced by an element l0 2 L such that

 (l0) = m+ dm1 =  (l+ dl1):

It follows that l0 = l + dl1 + '(k1) for some k1 2 K, hence

dl0 = dl+ d'(k1) = '(k) + '(dk1) = '(k0);

therefore k0 = k + dk1 and k
0 has the same cohomology class as k.

Now, let us show that ker @ = ImH( ). If fmg is in the image of H( ),

we can take m =  (l) with dl = 0, thus @fmg = 0. Conversely, if @fmg =
fkg = 0, we have k = dk1 for some k1 2 K, hence dl = '(k) = d'(k1),

z := l � '(k1) 2 Z(L) and m =  (l) =  (z) is in ImH( ). We leave the

veri�cation of the other equalities ImH(') = kerH( ), Im @ = kerH(') and

of the commutation statement to the reader. �

In most applications, the di�erential modules come with a natural Z-

grading. A homological complex is a graded di�erential module K� =L
q2ZKq together with a di�erential d of degree �1, i.e. d =

L
dq with

dq : Kq �! Kq�1 and dq�1 Æ dq = 0. Similarly, a cohomological com-

plex is a graded di�erential module K� =
L

q2ZK
q with di�erentials

dq : Kq �! Kq+1 such that dq+1 Æ dq = 0 (superscripts are always used in-

stead of subscripts in that case). The corresponding (co)cycle, (co)boundary

and (co)homology modules inherit a natural Z-grading. In the case of coho-

mology, say, these modules will be denoted

Z�(K�) =
M

Zq(K�); B�(K�) =
M

Bq(K�); H�(K�) =
M

Hq(K�):

Unless otherwise stated, morphisms of complexes are assumed to be of degree

0, i.e. of the form '� =
L
'q with 'q : Kq �! Lq. Any short exact sequence

0 �! K�
'
�

�! L�
 
�

�!M� �! 0

gives rise to a corresponding long exact sequence of cohomology groups

(1:6) Hq(K�)
H
q('�)���! Hq(L�)

H
q( �)���! Hq(M�)

@
q

�! Hq+1(K�)
H
q+1('�)���! � � �

and there is a similar homology long exact sequence with a connecting ho-

momorphism @q of degree �1. When dealing with commutative diagrams of
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such sequences, the following simple lemma is often useful; the proof consists

in a straightforward diagram chasing.

(1.7) Five lemma. Consider a commutative diagram of R-modules

A1 �!A2 �!A3 �!A4 �!A5?y'1 ?y'2 ?y'3 ?y'4 ?y'5
B1 �!B2 �!B3 �!B4 �!B5

where the rows are exact sequences. If '2 and '4 are injective and '1 surjec-

tive, then '3 is injective. If '2 and '4 is surjective and '5 injective, then '3
is surjective. In particular, '3 is an isomorphism as soon as '1; '2; '4; '5
are isomorphisms.

2. The Simplicial Flabby Resolution of a Sheaf

Let X be a topological space and let A be a sheaf of abelian groups on X (see

x II-2 for the de�nition). All the sheaves appearing in the sequel are assumed

implicitly to be sheaves of abelian groups, unless otherwise stated. The �rst

useful notion is that of resolution.

(2.1) De�nition. A (cohomological) resolution of A is a di�erential complex

of sheaves (L�; d) with Lq = 0, dq = 0 for q < 0, such that there is an exact

sequence

0 �! A
j�! L0 d

0

�! L1 �! � � � �! Lq
d
q

�! Lq+1 �! � � � :
If ' : A �! B is a morphism of sheaves and (M�; d) a resolution of B, a

morphism of resolutions '� : L� �!M� is a commutative diagram

0 �!A j�!L0 d
0

�!L1 �! � � � �!Lq d
q

�!Lq+1 �!� � �?y' ?y'0 ?y'1 ?y'q ?y'q+1
0 �!B j�!M0 d

0

�!M1 �! � � � �!Mq d
q

�!Mq+1 �!� � � :

(2.2) Example. Let X be a di�erentiable manifold and Eq the sheaf of germs

of C1 di�erential forms of degree q with real values. The exterior derivative

d de�nes a resolution (E�; d) of the sheaf R of locally constant functions with

real values. In fact Poincar�e's lemma asserts that d is locally exact in degree

q � 1, and it is clear that the sections of ker d0 on connected open sets are

constants. �

In the sequel, we will be interested by special resolutions in which the

sheaves Lq have no local \rigidity". For that purpose, we introduce abby
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sheaves, which have become a standard tool in sheaf theory since the publi-

cation of Godement's book (Godement 1957).

(2.3) De�nition. A sheaf F is called abby if for every open subset U of X,

the restriction map F(X) �! F(U) is onto, i.e. if every section of F on U

can be extended to X.

Let � : A �! X be a sheaf on X. We denote by A[0] the sheaf of germs

of sections X �! A which are not necessarily continuous. In other words,

A[0](U) is the set of all maps f : U �! A such that f(x) 2 Ax for all x 2 U ,
or equivalently A[0](U) =

Q
x2U Ax. It is clear that A

[0] is abby and there

is a canonical injection

j : A �! A[0]

de�ned as follows: to any s 2 Ax we associate the germ es 2 A[0]
x equal to

the continuous section y 7�! es(y) near x such that es(x) = s. In the sequel

we merely denote es : y 7�! s(y) for simplicity. The sheaf A[0] is called the

canonical abby sheaf associated to A. We de�ne inductively

A[q] = (A[q�1])[0]:

The stalk A
[q]
x can be considered as the set of equivalence classes of maps

f : Xq+1 �! A such that f(x0; : : : ; xq) 2 Axq , with two such maps identi�ed

if they coincide on a set of the form

(2:4) x0 2 V; x1 2 V (x0); : : : ; xq 2 V (x0; : : : ; xq�1);
where V is an open neighborhood of x and V (x0; : : : ; xj) an open neighbor-

hood of xj , depending on x0; : : : ; xj . This is easily seen by induction on q, if

we identify a map f : Xq+1 ! A to the map X ! A[q�1], x0 7! fx0 such that

fx0(x1; : : : ; xq) = f(x0; x1; : : : ; xq). Similarly,A[q](U) is the set of equivalence

classes of functions Xq+1 3 (x0; : : : ; xq) 7�! f(x0; : : : ; xq) 2 Axq , with two

such functions identi�ed if they coincide on a set of the form

(2:40) x0 2 U; x1 2 V (x0); : : : ; xq 2 V (x0; : : : ; xq�1):
Here, we may of course suppose V (x0; : : : ; xq�1) � : : : � V (x0; x1) �
V (x0) � U . We de�ne a di�erential dq : A[q] �! A[q+1] by

(dqf)(x0; : : : ; xq+1) =(2:5) X
0�j�q

(�1)jf(x0; : : : ; bxj ; : : : ; xq+1) + (�1)q+1f(x0; : : : ; xq)(xq+1):

The meaning of the last term is to be understood as follows: the element

s = f(x0; : : : ; xq) is a germ in Axq , therefore s de�nes a continuous section

xq+1 7! s(xq+1) of A in a neighborhood V (x0; : : : ; xq) of xq. In low degrees,

we have the formulas



228 Chapter IV Sheaf Cohomology and Spectral Sequences

(js)(x0) = s(x0); s 2 Ax;
(d0f)(x0; x1) = f(x1)� f(x0)(x1); f 2 A[0]

x
;(2:6)

(d1f)(x0; x1; x2) = f(x1; x2)� f(x0; x2) + f(x0; x1)(x2); f 2 A[1]
x
:

(2.7) Theorem (Godement 1957). The complex (A[�]; d) is a resolution of

the sheaf A, called the simplicial abby resolution of A.

Proof. For s 2 Ax, the associated continuous germ obviously satis�es

s(x0)(x1) = s(x1) for x0 2 V , x1 2 V (x0) small enough. The reader will

easily infer from this that d0 Æ j = 0 and dq+1 Ædq = 0. In order to verify that

(A[�]; d) is a resolution of A, we show that the complex

� � � �! 0 �! Ax
j�! A[0]

x

d
0

�! � � � �! A[q]
x

d
q

�! A[q+1]
x

�! � � �
is homotopic to zero for every point x 2 X. Set A[�1] = A, d�1 = j and

h0 : A
[0]
x �! Ax; h0(f) = f(x) 2 Ax;

hq : A
[q]
x �! A

[q�1]
x ; hq(f)(x0; : : : ; xq�1) = f(x; x0; : : : ; xq�1):

A straightforward computation shows that (hq+1 Æ dq + dq�1 Æhq)(f) = f for

all q 2 Z and f 2 A[q]
x . �

If ' : A �! B is a sheaf morphism, it is clear that ' induces a morphism

of resolutions

(2:8) '[�] : A[�] �! B[�]:

For every short exact sequence A! B! C of sheaves, we get a corresponding

short exact sequence of sheaf complexes

(2:9) A[�] �! B[�] �! C[�]:

3. Cohomology Groups with Values in a Sheaf

3.A. De�nition and Functorial Properties

If � : A ! X is a sheaf of abelian groups, the cohomology groups of A

on X are (in a vague sense) algebraic invariants which describe the rigidity

properties of the global sections of A.

(3.1) De�nition. For every q 2 Z, the q-th cohomology group of X with

values in A is

Hq(X;A) = Hq
�
A[�](X)

�
=

= ker
�
dq : A[q](X)! A[q+1](X)

�
= Im(dq�1 : A[q�1](X)! A[q](X)

�
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with the convention A[q] = 0, dq = 0, Hq(X;A) = 0 when q < 0.

For any subset S � X, we denote by A�S the restriction of A to S, i.e. the

sheaf A�S = ��1(S) equipped with the projection ��S onto S. Then we write

Hq(S;A�S) = Hq(S;A) for simplicity. When U is open, we see that (A[q])�U
coincides with (A�U )

[q], thus we have Hq(U;A) = Hq
�
A[�](U)

�
. It is easy to

show that every exact sequence of sheaves 0 ! A ! L0 ! L1 induces an

exact sequence

(3:2) 0 �! A(X) �! L0(X) �! L1(X):

If we apply this to Lq = A[q], q = 0; 1, we conclude that

(3:3) H0(X;A) = A(X):

Let ' : A �! B be a sheaf morphism; (2.8) shows that there is an induced

morphism

(3:4) Hq(') : Hq(X;A) �! Hq(X;B)

on cohomology groups. Let 0 ! A ! B ! C ! 0 be an exact sequence of

sheaves. Then we have an exact sequence of groups

0 �! A[0](X) �! B[0](X) �! C[0](X) �! 0

because A[0](X) =
Q
x2X Ax. Similarly, (2.9) yields for every q an exact

sequence of groups

0 �! A[q](X) �! B[q](X) �! C[q](X) �! 0:

If we take (3.3) into account, the snake lemma implies:

(3.5) Theorem. To any exact sequence of sheaves 0! A! B! C! 0 is

associated a long exact sequence of cohomology groups

0�! A(X) �! B(X) �! C(X) �! H1(X;A) �! � � �
� � ��! Hq(X;A)�! Hq(X;B)�! Hq(X;C)�! Hq+1(X;A)�! � � � :

(3.6) Corollary. Let B! C be a surjective sheaf morphism and let A be its

kernel. If H1(X;A) = 0, then B(X) �! C(X) is surjective. �
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3.B. Exact Sequence Associated to a Closed Subset

Let S be a closed subset of X and U = X r S. For any sheaf A on X, the

presheaf


 7�! A(S \
); 
 � X open

with the obvious restriction maps satis�es axioms (II-2:40) and (II-2:400), so
it de�nes a sheaf on X which we denote by AS . This sheaf should not be

confused with the restriction sheaf A�S , which is a sheaf on S. We easily �nd

(3:7) (AS)x = Ax if x 2 S; (AS)x = 0 if x 2 U:
Observe that these relations would completely fail if S were not closed. The

restriction morphism f 7! f�S induces a surjective sheaf morphism A! AS .

We let AU be its kernel, so that we have the relations

(3:8) (AU )x = 0 if x 2 S; (AU )x = Ax if x 2 U:
From the de�nition, we obtain in particular

(3:9) A
S(X) = A(S); AU (X) = fsections of A(X) vanishing on Sg:

Theorem 3.5 applied to the exact sequence 0 ! AU ! A ! AS ! 0 on X

gives a long exact sequence

(3:9)
0�! AU (X) �! A(X) �! A(S) �! H1(X;AU) � � �
�! Hq(X;AU)�! Hq(X;A)�! Hq(X;AS)�! Hq+1(X;AU)� � �

3.C. Mayer-Vietoris Exact Sequence

Let U1, U2 be open subsets of X and U = U1 [ U2, V = U1 \ U2. For any

sheaf A on X and any q we have an exact sequence

0 �! A[q](U) �! A[q](U1)�A[q](U2) �! A[q](V ) �! 0

where the injection is given by f 7�! (f�U1 ; f�U2) and the surjection by

(g1; g2) 7�! g2�V � g1�V ; the surjectivity of this map follows immediately

from the fact that A[q] is abby. An application of the snake lemma yields:

(3.11) Theorem. For any sheaf A on X and any open sets U1; U2 � X, set

U = U1 [ U2, V = U1 \ U2. Then there is an exact sequence

Hq(U;A) �! Hq(U1;A)�Hq(U2;A) �! Hq(V;A) �! Hq+1(U;A) � � ��
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4. Acyclic Sheaves

Given a sheaf A on X, it is usually very important to decide whether the

cohomology groupsHq(U;A) vanish for q � 1, and if this is the case, for which

type of open sets U . Note that one cannot expect to have H0(U;A) = 0 in

general, since a sheaf always has local sections.

(4.1) De�nition. A sheaf A is said to be acyclic on an open subset U if

Hq(U;A) = 0 for q � 1.

4.A. Case of Flabby Sheaves

We are going to show that abby sheaves are acyclic. First we need the

following simple result.

(4.2) Proposition. Let A be a sheaf with the following property: for every

section f of A on an open subset U � X and every point x 2 X, there exists

a neighborhood 
 of x and a section h 2 A(
) such that h = f on U \ 
.
Then A is abby.

A consequence of this proposition is that abbiness is a local property: a

sheaf A is abby on X if and only if it is abby on a neighborhood of every

point of X.

Proof. Let f 2 A(U) be given. Consider the set of pairs (v; V ) where v in

B(V ) is an extension of f on an open subset V � U . This set is inductively

ordered, so there exists a maximal extension (v; V ) by Zorn's lemma. The

assumption shows that V must be equal to X. �

(4.3) Proposition. Let 0 �! A
j�! B

p�! C �! 0 be an exact sequence

of sheaves. If A is abby, the sequence of groups

0 �! A(U)
j�! B(U)

p�! C(U) �! 0

is exact for every open set U . If A and B are abby, then C is abby.

Proof. Let g 2 C(U) be given. Consider the set E of pairs (v; V ) where V is

an open subset of U and v 2 B(V ) is such that p(v) = g on V . It is clear that

E is inductively ordered, so E has a maximal element (v; V ), and we will

prove that V = U . Otherwise, let x 2 U r V and let h be a section of B in a

neighborhood of x such that p(hx) = gx. Then p(h) = g on a neighborhood


 of x, thus p(v � h) = 0 on V \ 
 and v � h = j(u) with u 2 A(V \ 
).
If A is abby, u has an extension eu 2 A(X) and we can de�ne a section

w 2 B(V [
) such that p(w) = g by
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w = v on V; w = h+ j(eu) on 
;

contradicting the maximality of (v; V ). Therefore V = U , v 2 B(U) and

p(v) = g on U . The �rst statement is proved. If B is also abby, v has an

extension ev 2 B(X) and eg = p(ev) 2 C(X) is an extension of g. Hence C is

abby. �

(4.4) Theorem. A abby sheaf A is acyclic on all open sets U � X.

Proof. Let Zq = ker
�
dq : A[q] ! A[q+1]

�
. Then Z0 = A and we have an exact

sequence of sheaves

0 �! Zq �! A[q] d
q

�! Zq+1 �! 0

because Imdq = ker dq+1 = Zq+1. Proposition 4.3 implies by induction on q

that all sheaves Zq are abby, and yields exact sequences

0 �! Zq(U) �! A[q](U)
d
q

�! Zq+1(U) �! 0:

For q � 1, we �nd therefore

ker
�
dq : A[q](U)! A[q+1](U)

�
= Zq(U)

= Im
�
dq�1 : A[q�1](U)! A[q](U)

�
;

that is, Hq(U;A) = Hq
�
A[�](U)

�
= 0. �

4.B. Soft Sheaves over Paracompact Spaces

We now discuss another general situation which produces acyclic sheaves.

Recall that a topological space X is said to be paracompact if X is Hausdor�

and if every open covering of X has a locally �nite re�nement. For instance, it

is well known that every metric space is paracompact. A paracompact space

X is always normal ; in particular, for any locally �nite open covering (U�) of

X there exists an open covering (V�) such that V � � U�. We will also need

another closely related concept.

(4.5) De�nition. We say that a subspace S is strongly paracompact in X

if S is Hausdor� and if the following property is satis�ed: for every covering

(U�) of S by open sets in X, there exists another such covering (V�) and a

neighborhood W of S such that each set W \ V � is contained in some U�,

and such that every point of S has a neighborhood intersecting only �nitely

many sets V�.

It is clear that a strongly paracompact subspace S is itself paracompact.

Conversely, the following result is easy to check:
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(4.6) Lemma. A subspace S is strongly paracompact in X as soon as one

of the following situations occurs:

a) X is paracompact and S is closed;

b) S has a fundamental family of paracompact neighborhoods in X ;

c) S is paracompact and has a neighborhood homeomorphic to some product

S � T , in which S is embedded as a slice S � ft0g. �

(4.7) Theorem. Let A be a sheaf on X and S a strongly paracompact sub-

space of X. Then every section f of A on S can be extended to a section of

A on some open neighborhood 
 of A.

Proof. Let f 2 A(S). For every point z 2 S there exists an open neighborhood

Uz and a section efz 2 A(Uz) such that efz(z) = f(z). After shrinking Uz,

we may assume that efz and f coincide on S \ Uz. Let (V�) be an open

covering of S that is locally �nite near S and W a neighborhood of S such

that W \ V � � Uz(�) (Def. 4.5). We let


 =
�
x 2W \

[
V� ; efz(�)(x) = efz(�)(x); 8�; � with x 2 V � \ V �

	
:

Then (
\V�) is an open covering of 
 and all pairs of sections efz(�) coincide
in pairwise intersections. Thus there exists a section F of A on 
 which is

equal to efz(�) on 
\V�. It remains only to show that 
 is a neighborhood of

S. Let z0 2 S. There exists a neighborhood U 0 of z0 which meets only �nitely

many sets V�1 ; : : : ; V�p . After shrinking U
0, we may keep only those V�l such

that z0 2 V �l . The sections efz(�l) coincide at z0, so they coincide on some

neighborhood U 00 of this point. Hence W \ U 00 � 
, so 
 is a neighborhood

of S. �

(4.8) Corollary. If X is paracompact, every section f 2 A(S) de�ned on a

closed set S extends to a neighborhood 
 of S. �

(4.9) De�nition. A sheaf A on X is said to be soft if every section f of A on

a closed set S can be extended to X, i.e. if the restriction map A(X) �! A(S)

is onto for every closed set S.

(4.10) Example. On a paracompact space, every abby sheaf A is soft: this

is a consequence of Cor. 4.8.

(4.11) Example. On a paracompact space, the Tietze-Urysohn extension

theorem shows that the sheaf CX of germs of continuous functions on X is

a soft sheaf of rings. However, observe that CX is not abby as soon as X is

not discrete.

(4.12) Example. If X is a paracompact di�erentiable manifold, the sheaf

EX of germs of C1 functions on X is a soft sheaf of rings. �
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Until the end of this section, we assume that X is a paracompact topolo-

gical space. We �rst show that softness is a local property.

(4.13) Proposition. A sheaf A is soft on X if and only if it is soft in a

neighborhood of every point x 2 X.

Proof. If A is soft on X, it is soft on any closed neighborhood of a given

point. Conversely, let (U�)�2I be a locally �nite open covering of X which

re�ne some covering by neighborhoods on which A is soft. Let (V�) be a

�ner covering such that V � � U�, and f 2 A(S) be a section of A on a

closed subset S of X. We consider the set E of pairs (g; J), where J � I and
where g is a section over FJ := S [S

�2J V �, such that g = f on S. As the

family (V �) is locally �nite, a section of A over FJ is continuous as soon it

is continuous on S and on each V �. Then (f; ;) 2 E and E is inductively

ordered by the relation

(g0; J 0) �! (g00; J 00) if J 0 � J 00 and g0 = g00 on FJ 0

No element (g; J), J 6= I, can be maximal: the assumption shows that

g�FJ\V �

has an extension to V �, thus such a g has an extension to FJ[f�g
for any � =2 J . Hence E has a maximal element (g; I) de�ned on FI = X. �

(4.14) Proposition. Let 0 ! A ! B ! C ! 0 be an exact sequence of

sheaves. If A is soft, the map B(S) ! C(S) is onto for any closed subset S

of X. If A and B are soft, then C is soft.

By the above inductive method, this result can be proved in a way similar

to its analogue for abby sheaves. We therefore obtain:

(4.15) Theorem. On a paracompact space, a soft sheaf is acyclic on all

closed subsets. �

(4.16) De�nition. The support of a section f 2 A(X) is de�ned by

Supp f =
�
x 2 X ; f(x) 6= 0

	
:

Supp f is always a closed set: as A ! X is a local homeomorphism, the

equality f(x) = 0 implies f = 0 in a neighborhood of x.

(4.17) Theorem. Let (U�)�2I be an open covering of X. If A is soft and

f 2 A(X), there exists a partition of f subordinate to (U�), i.e. a family of

sections f� 2 A(X) such that (Supp f�) is locally �nite, Supp f� � U� andP
f� = f on X.

Proof. Assume �rst that (U�) is locally �nite. There exists an open covering

(V�) such that V � � U�. Let (f�)�2J , J � I, be a maximal family of sections
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f� 2 A(X) such that Supp f� � U� and
P
�2J f� = f on S =

S
�2J V �. If

J 6= I and � 2 I r J , there exists a section f� 2 A(X) such that

f� = 0 on X r U� and f� = f �
X
�2J

f� on S [ V �

because (XrU�)[S [V � is closed and f �P f� = 0 on (XrU�)\S. This
is a contradiction unless J = I.

In general, let (Vj) be a locally �nite re�nement of (U�), such that

Vj � U�(j), and let (f 0
j
) be a partition of f subordinate to (Vj). Then

f� =
P

j2��1(�) f
0
j
is the required partition of f . �

Finally, we discuss a special situation which occurs very often in practice.

Let R be a sheaf of commutative rings on X ; the rings Rx are supposed to

have a unit element. Assume that A is a sheaf of modules over R. It is clear

that A[0] is a R[0]-module, and thus also a R-module. Therefore all sheaves

A[q] are R-modules and the cohomology groups Hq(U;A) have a natural

structure of R(U)-module.

(4.18) Lemma. If R is soft, every sheaf A of R-modules is soft.

Proof. Every section f 2 A(S) de�ned on a closed set S has an extension

to some open neighborhood 
. Let  2 R(X) be such that  = 1 on S and

 = 0 on X r 
. Then  f , de�ned as 0 on X r 
, is an extension of f

to X. �

(4.19) Corollary. Let A be a sheaf of EX -modules on a paracompact di�er-

entiable manifold X. Then Hq(X;A) = 0 for all q � 1.

5. �Cech Cohomology

5.A. De�nitions

In many important circumstances, cohomology groups with values in a sheaf

A can be computed by means of the complex of �Cech cochains, which is

directly related to the spaces of sections of A on suÆciently �ne coverings of

X. This more concrete approach was historically the �rst one used to de�ne

sheaf cohomology (Leray 1950, Cartan 1950); however �Cech cohomology does

not always coincide with the \good" cohomology on non paracompact spaces.

Let U = (U�)�2I be an open covering of X. For the sake of simplicity, we

denote

U�0�1:::�q = U�0 \ U�1 \ : : : \ U�q :
The group Cq(U;A) of �Cech q-cochains is the set of families
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c = (c�0�1:::�q) 2
Y

(�0;:::;�q)2Iq+1
A(U�0�1:::�q):

The group structure on Cq(U;A) is the obvious one deduced from the addition

law on sections of A. The �Cech di�erential Æq : Cq(U;A) �! Cq+1(U;A) is

de�ned by the formula

(5:1) (Æqc)�0:::�q+1 =
X

0�j�q+1
(�1)j c

�0:::b�j :::�q+1 �U�0:::�q+1
;

and we set Cq(U;A) = 0, Æq = 0 for q < 0. In degrees 0 and 1, we get for

example

q = 0; c = (c�); (Æ0c)�� = c� � c� �U�� ;(5:2)

q = 1; c = (c��); (Æ1c)�� = c� � c� + c�� �U�� :(5:20)

Easy veri�cations left to the reader show that Æq+1 Æ Æq = 0. We get therefore

a cochain complex
�
C�(U;A); Æ

�
, called the complex of �Cech cochains relative

to the covering U.

(5.3) De�nition. The �Cech cohomology group of A relative to U is

�Hq(U;A) = Hq
�
C�(U;A)

�
:

Formula (5.2) shows that the set of �Cech 0-cocycles is the set of families

(c�) 2
Q
A(U�) such that c� = c� on U� \ U� . Such a family de�nes in a

unique way a global section f 2 A(X) with f�U� = c�. Hence

(5:4) �H0(U;A) = A(X):

Now, let V = (V�)�2J be another open covering of X that is �ner than U ;

this means that there exists a map � : J ! I such that V� � U�(�) for every
� 2 J . Then we can de�ne a morphism �� : C�(U;A) �! C�(V;A) by

(5:5) (�qc)�0:::�q = c�(�0):::�(�q) �V�0:::�q ;

the commutation property Æ�� = ��Æ is immediate. If �0 : J ! I is another

re�nement map such that V� � U�0(�) for all �, the morphisms ��, �0� are
homotopic. To see this, we de�ne a map hq : Cq(U;A) �! Cq�1(V;A) by

(hqc)�0:::�q�1 =
X

0�j�q�1
(�1)jc�(�0):::�(�j)�0(�j):::�0(�q�1) �V�0:::�q�1 :

The homotopy identity Æq�1 Æhq+hq+1 ÆÆq = �0q��q is easy to verify. Hence
�� and �0� induce a map depending only on U, V :

(5:6) Hq(��) = Hq(�0�) : �Hq(U;A) �! �Hq(V;A):
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Now, we want to de�ne a direct limit �Hq(X;A) of the groups �Hq(U;A)

by means of the re�nement mappings (5:6). In order to avoid set theoretic

diÆculties, the coverings used in this de�nition will be considered as subsets

of the power set P(X), so that the collection of all coverings becomes actually

a set.

(5.7) De�nition. The �Cech cohomology group �Hq(X;A) is the direct limit

�Hq(X;A) = lim�!
U

�Hq(U;A)

when U runs over the collection of all open coverings of X. Explicitly, this

means that the elements of �Hq(X;A) are the equivalence classes in the dis-

joint union of the groups �Hq(U;A), with an element in �Hq(U;A) and another

in �Hq(V;A) identi�ed if their images in �Hq(W;A) coincide for some re�ne-

ment W of the coverings U and V.

If ' : A! B is a sheaf morphism, we have an obvious induced morphism

'� : C�(U;A) �! C�(U;B), and therefore we �nd a morphism

Hq('�) : �Hq(U;A) �! �Hq(U;B):

Let 0! A! B! C! 0 be an exact sequence of sheaves. We have an exact

sequence of groups

(5:8) 0 �! Cq(U;A) �! Cq(U;B) �! Cq(U;C);

but in general the last map is not surjective, because every section in

C(U�0;:::;�q) need not have a lifting in B(U�0;:::;�q). The image of C�(U;B) in
C�(U;C) will be denoted C�

B
(U;C) and called the complex of liftable cochains

of C in B. By construction, the sequence

(5:9) 0 �! Cq(U;A) �! Cq(U;B) �! C
q

B
(U;C) �! 0

is exact, thus we get a corresponding long exact sequence of cohomology

(5:10) �Hq(U;A) �! �Hq(U;B) �! �H
q

B
(U;C) �! �Hq+1(U;A) �! � � � :

If A is abby, Prop. 4.3 shows that we have C
q

B
(U;C) = Cq(U;C), hence

�H
q

B
(U;C) = �Hq(U;C).

(5.11) Proposition. Let A be a sheaf on X. Assume that either

a) A is abby, or :

b) X is paracompact and A is a sheaf of modules over a soft sheaf of rings

R on X.

Then �Hq(U;A) = 0 for every q � 1 and every open covering U = (U�)�2I
of X.
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Proof. b) Let ( �)�2I be a partition of unity in R subordinate to U (Prop.

4.17). We de�ne a map hq : Cq(U;A) �! Cq�1(U;A) by

(5:12) (hqc)�0:::�q�1 =
X
�2I

 � c��0:::�q�1

where  � c��0:::�q�1 is extended by 0 on U�0:::�q�1 \ {U� . It is clear that

(Æq�1hqc)�0:::�q =
X
�2I

 �
�
c�0:::�q � (Æqc)��0:::�q

�
;

i.e. Æq�1hq + hq+1Æq = Id. Hence Æqc = 0 implies Æq�1hqc = c if q � 1.

a) First we show that the result is true for the sheaf A[0]. One can �nd a family

of sets L� � U� such that (L�) is a partition of X. If  � is the characteristic

function of L� , Formula (5.12) makes sense for any cochain c 2 Cq(U;A[0])

because A[0] is a module over the ring Z[0] of germs of arbitrary functions

X ! Z. Hence �Hq(U;A[0]) = 0 for q � 1. We shall prove this property for all

abby sheaves by induction on q. Consider the exact sequence

0 �! A �! A[0] �! C �! 0

where C = A[0]=A. By the remark after (5.10), we have exact sequences

A[0](X) �! C(X) �! �H1(U;A) �! �H1(U;A[0]) = 0;

�Hq(U;C) �! �Hq+1(U;A) �! �Hq+1(U;A[0]) = 0:

Then A[0](X) �! C(X) is surjective by Prop. 4.3, thus �H1(U;A) = 0. By

4.3 again, C is abby; the induction hypothesis �Hq(U;C) = 0 implies that
�Hq+1(U;A) = 0. �

5.B. Leray's Theorem for Acyclic Coverings

We �rst show the existence of a natural morphism from �Cech cohomology

to ordinary cohomology. Let U = (U�)�2I be a covering of X. Select a map

� : X ! I such that x 2 U�(x) for every x 2 X. To every cochain c 2 Cq(U;A)
we associate the section �qc = f 2 A[q](X) such that

(5:13) f(x0; : : : ; xq) = c�(x0):::�(xq)(xq) 2 Axq ;
note that the right hand side is well de�ned as soon as

x0 2 X; x1 2 U�(x0); : : : ; xq 2 U�(x0):::�(xq�1):
A comparison of (2.5) and (5.13) immediately shows that the section of

A[q+1](X) associated to Æqc isX
0�j�q+1

(�1)j c
�(x0):::d�(xj):::�(xq+1)(xq+1) = (dqf)(x0; : : : ; xq+1):
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In this way we get a morphism of complexes �� : C�(U;A) �! A[�](X).

There is a corresponding morphism

(5:14) Hq(��) : �Hq(U;A) �! Hq(X;A):

If V = (V�)�2J is a re�nement of U such that V� � U�(�) and x 2 V�(x) for
all x; �, we get a commutative diagram

�Hq(U;A)
H
q(��)����! �Hq(V;A)

H
q(��)& . H

q(��)

Hq(X;A)

with � = � Æ �. In particular, (5.6) shows that the map Hq(��) in (5.14)

does not depend on the choice of � : if �0 is another choice, then Hq(��)
and Hq(�0�) can be both factorized through the group �Hq(V;A) with Vx =

U�(x) \U�0(x) and � = IdX . By the universal property of direct limits, we get

an induced morphism

(5:15) �Hq(X;A) �! Hq(X;A):

Let 0 ! A ! B ! C ! 0 be an exact sequence of sheaves. There is a

commutative diagram

0�! C�(U;A)�! C�(U;B)�! C�
B
(U;C)�! 0?y ?y ?y

0�! A[�](X) �! B[�](X) �! C[�](X) �! 0

where the vertical arrows are given by the morphisms ��. We obtain therefore

a commutative diagram

(5:16)

�Hq(U;A)�! �Hq(U;B)�! �H
q

B
(U;C)�! �Hq+1(U;A)�! �Hq+1(U;B)?y ?y ?y ?y ?y

Hq(X;A)�! Hq(X;B)�! Hq(X;C)�! Hq+1(X;A)�! Hq+1(X;B):

(5.17) Theorem (Leray). Assume that

Hs(U�0:::�t ;A) = 0

for all indices �0; : : : ; �t and s � 1. Then (5.14) gives an isomorphism
�Hq(U;A) ' Hq(X;A).

We say that the covering U is acyclic (with respect to A) if the hypothesis

of Th. 5.17 is satis�ed. Leray's theorem asserts that the cohomology groups

of A on X can be computed by means of an arbitrary acyclic covering (if

such a covering exists), without using the direct limit procedure.

Proof. By induction on q, the result being obvious for q = 0. Consider the

exact sequence 0 ! A ! B ! C ! 0 with B = A[0] and C = A[0]=A. As B
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is acyclic, the hypothesis on A and the long exact sequence of cohomology

imply Hs(U�0:::�t ;C) = 0 for s � 1, t � 0. Moreover C�
B
(U;C) = C�(U;C)

thanks to Cor. 3.6. The induction hypothesis in degree q and diagram (5.16)

give

�Hq(U;B)�! �Hq(U;C)�! �Hq+1(U;A)�! 0?y ' ?y ' ?y
Hq(X;B)�! Hq(X;C)�! Hq+1(X;A)�! 0;

hence �Hq+1(U;A) �! Hq+1(X;A) is also an isomorphism. �

(5.18) Remark. The morphism H1(��) : �H1(U;A) �! H1(X;A) is always

injective. Indeed, we have a commutative diagram

�H0(U;B)�! �H0
B(U;C)�! �H1(U;A)�! 0?y =
?y\

?y
H0(X;B)�! H0(X;C)�! H1(X;A)�! 0;

where �H0
B
(U;C) is the subspace of C(X) = H0(X;C) consisting of sections

which can be lifted in B over each U�. As a consequence, the re�nement

mappings

H1(��) : �H1(U;A) �! �H1(V;A)

are also injective. �

5.C. �Cech Cohomology on Paracompact Spaces

We will prove here that �Cech cohomology theory coincides with the ordinary

one on paracompact spaces.

(5.19) Proposition. Assume that X is paracompact. If

0 �! A �! B �! C �! 0

is an exact sequence of sheaves, there is an exact sequence

�Hq(X;A) �! �Hq(X;B) �! �Hq(X;C) �! �Hq+1(X;A) �! � � �
which is the direct limit of the exact sequences (5.10) over all coverings U.

Proof. We have to show that the natural map

lim�!
�H
q

B
(U;C) �! lim�!

�Hq(U;C)

is an isomorphism. This follows easily from the following lemma, which says

essentially that every cochain in C becomes liftable in B after a re�nement

of the covering.
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(5.20) Lifting lemma. Let U = (U�)�2I be an open covering of X and

c 2 Cq(U;C). If X is paracompact, there exists a �ner covering V = (V�)�2J
and a re�nement map � : J ! I such that �qc 2 Cq

B
(V;C).

Proof. Since U admits a locally �nite re�nement, we may assume that U itself

is locally �nite. There exists an open covering W = (W�)�2I of X such that

W� � U�. For every point x 2 X, we can select an open neighborhood Vx of

x with the following properties:

a) if x 2W�, then Vx � W� ;

b) if x 2 U� or if Vx \W� 6= ;, then Vx � U� ;

c) if x 2 U�0:::�q , then c�0:::�q 2 Cq(U�0:::�q ;C) admits a lifting in B(Vx).

Indeed, a) (resp. c)) can be achieved because x belongs to only �nitely many

sets W� (resp. U�), and so only �nitely many sections of C have to be lifted

in B. b) can be achieved because x has a neighborhood V 0x that meets only

�nitely many sets U� ; then we take

Vx � V 0x \
\
U�3x

U� \
\
U� 63x

(V 0x rW�):

Choose � : X ! I such that x 2 W�(x) for every x. Then a) implies Vx �
W�(x), so V = (Vx)x2X is �ner than U, and � de�nes a re�nement map. If

Vx0:::xq 6= ;, we have
Vx0 \W�(xj) � Vx0 \ Vxj 6= ; for 0 � j � q;

thus Vx0 � U�(x0):::�(xq) by b). Now, c) implies that the section c�(x0):::�(xq)
admits a lifting in B(Vx0), and in particular in B(Vx0:::xq). Therefore �

qc is

liftable in B. �

(5.21) Theorem. If X is a paracompact space, the canonical morphism
�Hq(X;A) ' Hq(X;A) is an isomorphism.

Proof. Argue by induction on q as in Leray's theorem, with the �Cech coho-

mology exact sequence over U replaced by its direct limit in (5.16). �

In the next chapters, we will be concerned only by paracompact spaces,

and most often in fact by manifolds that are either compact or countable at

in�nity. In these cases, we will not distinguish Hq(X;A) and �Hq(X;A).

5.D. Alternate �Cech Cochains

For explicit calculations, it is sometimes useful to consider a slightly modi�ed
�Cech complex which has the advantage of producing much smaller cochain

groups. If A is a sheaf and U = (U�)�2I an open covering of X, we let
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ACq(U;A) � Cq(U;A) be the subgroup of alternate �Cech cochains, consisting

of �Cech cochains c = (c�0:::�q ) such that

(5:22)

(
c�0:::�q = 0 if �i = �j ; i 6= j;

c��(0):::��(q) = "(�) c�0:::�q

for any permutation � of f1; : : : ; qg of signature "(�). Then the �Cech dif-

ferential (5.1) of an alternate cochain is still alternate, so AC�(U;A) is a

subcomplex of C�(U;A). We are going to show that the inclusion induces an

isomorphism in cohomology:

(5:23) Hq
�
AC�(U;A)

� ' Hq
�
C�(U;A)

�
= �Hq(U;A):

Select a total ordering on the index set I. For each such ordering, we can

de�ne a projection �q : Cq(U;A) �! ACq(U;A) � Cq(U;A) by
c 7�! alternate ec such that ec�0:::�q = c�0:::�q whenever �0 < : : : < �q:

As �� is a morphism of complexes, it is enough to verify that �� is homotopic

to the identity on C�(U;A). For a given multi-index � = (�0; : : : ; �q), which

may contain repeated indices, there is a unique permutation
�
m(0); : : : ;m(q)

�
of (0; : : : ; q) such that

�m(0) � : : : � �m(q) and m(l) < m(l + 1) whenever �m(l) = �m(l+1):

For p � q, we let "(�; p) be the sign of the permutation

(0; : : : ; q) 7�! �m(0); : : : ;m(p� 1); 0; 1; : : : ; dm(0); : : : ; dm(p� 1); : : : ; q
�

if the elements �m(0); : : : ; �m(p) are all distinct, and "(�; p) = 0 otherwise.

Finally, we set hq = 0 for q � 0 and

(hqc)�0:::�q�1 =
X

0�p�q�1
(�1)p"(�; p) c

�m(0):::�m(p)�0�1:::d�m(0)::: d�m(p�1):::�q�1

for q � 1 ; observe that the index �m(p) is repeated twice in the right hand

side. A rather tedious calculation left to the reader shows that

(Æq�1hqc+ hq+1Æqc)�0:::�q = c�0:::�q � "(�; q) c�m(0):::�m(q)
= (c� �qc)�0:::�q :

An interesting consequence of the isomorphism (5.23) is the following:

(5.24) Proposition. Let A be a sheaf on a paracompact space X. If X has

arbitrarily �ne open coverings or at least one acyclic open covering U = (U�)

such that more than n+1 distinct sets U�0 ; : : : ; U�n have empty intersection,

then Hq(X;A) = 0 for q > n.

Proof. In fact, we have ACq(U;A) = 0 for q > n. �
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6. The De Rham-Weil Isomorphism Theorem

In x 3 we de�ned cohomology groups by means of the simplicial abby reso-

lution. We show here that any resolution by acyclic sheaves could have been

used instead. Let (L�; d) be a resolution of a sheaf A. We assume in addition

that all Lq are acyclic on X, i.e. Hs(X;Lq) = 0 for all q � 0 and s � 1. Set

Zq = ker dq. Then Z0 = A and for every q � 1 we get a short exact sequence

0 �! Zq�1 �! Lq�1
d
q�1

�! Zq �! 0:

Theorem 3.5 yields an exact sequence

(6:1) Hs(X;Lq�1)
d
q�1

�!Hs(X;Zq)
@
s;q

�!Hs+1(X;Zq�1)!Hs+1(X;Lq�1)=0:

If s � 1, the �rst group is also zero and we get an isomorphism

@s;q : Hs(X;Zq)
'�! Hs+1(X;Zq�1):

For s = 0 we have H0(X;Lq�1) = Lq�1(X) and H0(X;Zq) = Zq(X) is the

q-cocycle group of L�(X), so the connecting map @0;q gives an isomorphism

Hq
�
L�(X)

�
= Zq(X)=dq�1Lq�1(x)

e@0;q�! H1(X;Zq�1):

The composite map @q�1;1Æ� � �Æ@1;q�1Æe@0;q therefore de�nes an isomorphism

Hq
�
L
�(X)

� e@0;q�!H1(X;Zq�1)
@
1;q�1

�! � � �@
q�1;1

�! Hq(X;Z0)=Hq(X;A):(6:2)

This isomorphism behaves functorially with respect to morphisms of reso-

lutions. Our assertion means that for every sheaf morphism ' : A ! B

and every morphism of resolutions '� : L� �! M�, there is a commutative

diagram

(6:3)

Hs
�
L�(X)

� �! Hs(X;A)?yHs('�)
?yHs(')

Hs
�
M�(X)

� �! Hs(X;B):

If Wq = ker
�
dq : Mq ! Mq+1

�
, the functoriality comes from the fact that

we have commutative diagrams

0!Zq�1 !Lq�1 !Zq ! 0 ; Hs( X;Zq)
@
s;q

�! Hs+1(X;Zq�1)?y'q�1 ?y'q�1 ?y'q ?yHs('q)
?yHs+1('q�1)

0!Wq�1 !Mq�1 !Wq ! 0 ; Hs(X;Wq)
@
s;q

�! Hs+1(X;Wq�1):

(6.4) De Rham-Weil isomorphism theorem. If (L�; d) is a resolution of

A by sheaves Lq which are acyclic on X, there is a functorial isomorphism

Hq
�
L�(X)

� �! Hq(X;A): �
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(6.5) Example: De Rham cohomology. Let X be a n-dimensional para-

compact di�erential manifold. Consider the resolution

0! R ! E0
d! E1 ! � � � ! Eq

d! Eq+1 ! � � � ! En ! 0

given by the exterior derivative d acting on germs of C1 di�erential q-forms

(c.f. Example 2.2). The De Rham cohomology groups of X are precisely

(6:6) H
q

DR(X;R) = Hq
�
E�(X)

�
:

All sheaves Eq are EX -modules, so Eq is acyclic by Cor. 4.19. Therefore, we

get an isomorphism

(6:7) H
q

DR(X;R)
'�! Hq(X;R)

from the De Rham cohomology onto the cohomology with values in the con-

stant sheaf R. Instead of using C1 di�erential forms, one can consider the

resolution of R given by the exterior derivative d acting on currents:

0! R ! D0
n

d! D0
n�1 ! � � � ! D0

n�q
d! D0

n�q�1 ! � � � ! D00 ! 0:

The sheaves D0
q
are also EX -modules, hence acyclic. Thanks to (6.3), the

inclusion Eq � D0n�q induces an isomorphism

(6:8) Hq
�
E
�(X)

� ' Hq
�
D
0
n��(X)

�
;

both groups being isomorphic to Hq(X;R). The isomorphism between co-

homology of di�erential forms and singular cohomology (another topological

invariant) was �rst established by (De Rham 1931). The above proof follows

essentially the method given by (Weil 1952), in a more abstract setting. As

we will see, the isomorphism (6:7) can be put under a very explicit form in

terms of �Cech cohomology. We need a simple lemma.

(6.9) Lemma. Let X be a paracompact di�erentiable manifold. There are

arbitrarily �ne open coverings U = (U�) such that all intersections U�0:::�q
are di�eomorphic to convex sets.

Proof. Select locally �nite coverings 
0
j
�� 
j of X by open sets di�eomor-

phic to concentric euclidean balls in Rn . Let us denote by �jk the transition

di�eomorphism from the coordinates in 
k to those in 
j . For any point

a 2 
0
j
, the function x 7! jx�aj2 computed in terms of the coordinates of 
j

becomes j�jk(x)��jk(a)j2 on any patch 
k 3 a. It is clear that these functions
are strictly convex at a, thus there is a euclidean ball B(a; ") � 
0

j
such that

all functions are strictly convex on B(a; ")\
0
k
� 
k (only a �nite number of

indices k is involved). Now, choose U to be a (locally �nite) covering of X by

such balls U� = B(a�; "�) with U� � 
0�(�). Then the intersection U�0:::�q is

de�ned in 
k, k = �(�0), by the equations
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j�jk(x)� �jk(a�m)j2 < "2
�m

where j = �(�m), 0 � m � q. Hence the intersection is convex in the open

coordinate chart 
�(�0). �

Let 
 be an open subset of Rn which is starshaped with respect to the

origin. Then the De Rham complex R �! E�(
) is acyclic: indeed, Poincar�e's
lemma yields a homotopy operator kq : Eq(
) �! Eq�1(
) such that

kqfx(�1; : : : ; �q�1) =

Z 1

0

tq�1 ftx(x; �1; : : : ; �q�1) dt; x 2 
; �j 2 Rn ;

k0f = f(0) 2 R for f 2 E0(
):
Hence H

q

DR(
;R) = 0 for q � 1. Now, consider the resolution E� of the

constant sheaf R on X, and apply the proof of the De Rham-Weil isomor-

phism theorem to �Cech cohomology groups over a covering U chosen as in

Lemma 6.9. Since the intersections U�0:::�s are convex, all
�Cech cochains in

Cs(U;Zq) are liftable in Eq�1 by means of kq. Hence for all s = 1; : : : ; q we

have isomorphisms @s;q�s : �Hs(U;Zq�s) �! �Hs+1(U;Zq�s�1) for s � 1 and

we get a resulting isomorphism

@q�1;1 Æ � � � Æ @1;q�1 Æ e@0;q : Hq

DR(X;R)
'�! �Hq(U;R)

We are going to compute the connecting homomorphisms @s;q�s and their

inverses explicitly.

Let c in Cs(U;Zq�s) such that Æsc = 0. As c�0:::�s is d-closed, we can

write c = d(kq�sc) where the cochain kq�sc 2 Cs(U;Eq�s�1) is de�ned as

the family of sections kq�sc�0:::�s 2 Eq�s�1(U�0:::�s). Then d(Æskq�sc) =

Æs(dkq�sc) = Æsc = 0 and

@s;q�sfcg = fÆskq�scg 2 �Hs+1(U;Zq�s�1):

The isomorphism Hq

DR(X;R)
'�! �Hq(U;R) is thus de�ned as follows: to the

cohomology class ffg of a closed q-form f 2 Eq(X), we associate the cocycle

(c0�) = (f�U�) 2 C0(U;Zq), then the cocycle

c1�� = kqc0� � kqc0� 2 C1(U;Zq�1);

and by induction cocycles (cs
�0:::�s

) 2 Cs(U;Zq�s) given by

(6:10) cs+1
�0:::�s+1

=
X

0�j�s+1
(�1)j kq�scs

�0:::b�j :::�s+1 on U�0:::�s+1 :

The image of ffg in �Hq(U;R) is the class of the q-cocycle (cq
�0:::�q

) in

Cq(U;R).

Conversely, let ( �) be a C1 partition of unity subordinate to U.

Any �Cech cocycle c 2 Cs+1(U;Zq�s�1) can be written c = Æs with

 2 Cs(U;Eq�s�1) given by



246 Chapter IV Sheaf Cohomology and Spectral Sequences

�0:::�s =
X
�2I

 � c��0:::�s ;

(c.f. Prop. 5.11 b)), thus fc0g = (@s;q�s)�1fcg can be represented by the

cochain c0 = d 2 Cs(U;Zq�s) such that

c0
�0:::�s

=
X
�2I

d � ^ c��0:::�s = (�1)q�s�1
X
�2I

c��0:::�s ^ d � :

For a reason that will become apparent later, we shall in fact modify the sign

of our isomorphism @s;q�s by the factor (�1)q�s�1. Starting from a class

fcg 2 �Hq(U;R), we obtain inductively fbg 2 �H0(U;Zq) such that

(6:11) b�0 =
X

�0;:::;�q�1

c�0:::�q�1�0 d �0 ^ : : : ^ d �q�1 on U�0 ;

corresponding to ffg 2 Hq

DR(X;R) given by the explicit formula

(6:12) f =
X
�q

 �qb�q =
X

�0;:::;�q

c�0:::�q  �qd �0 ^ : : : ^ d �q�1 :

The choice of sign corresponds to (6.2) multiplied by (�1)q(q�1)=2.

(6.13) Example: Dolbeault cohomology groups. Let X be a C -analytic

manifold of dimension n, and let Ep;q be the sheaf of germs of C1 di�eren-

tial forms of type (p; q) with complex values. For every p = 0; 1; : : : ; n, the

Dolbeault-Grothendieck Lemma I-2.9 shows that (Ep;�; d00) is a resolution of

the sheaf 

p

X
of germs of holomorphic forms of degree p on X. The Dolbeault

cohomology groups of X already considered in chapter 1 can be de�ned by

(6:14) Hp;q(X; C ) = Hq
�
E
p;�(X)

�
:

The sheaves Ep;q are acyclic, so we get the Dolbeault isomorphism theorem,

originally proved in (Dolbeault 1953), which relates d00-cohomology and sheaf

cohomology:

(6:15) Hp;q(X; C )
'�! Hq(X;


p

X
):

The case p = 0 is especially interesting:

(6:16) H0;q(X; C ) ' Hq(X;OX):

As in the case of De Rham cohomology, there is an inclusion Ep;q � D0
n�p;n�q

and the complex of currents (D0
n�p;n��; d

00) de�nes also a resolution of 
p
X
.

Hence there is an isomorphism:

(6:17) Hp;q(X; C ) = Hq
�
Ep;�(X)

� ' Hq
�
D0
n�p;n��(X)

�
:
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7. Cohomology with Supports

As its name indicates, cohomology with supports deals with sections of

sheaves having supports in prescribed closed sets. We �rst introduce what

is an admissible family of supports.

(7.1) De�nition. A family of supports on a topological space X is a collec-

tion � of closed subsets of X with the following two properties:

a) If F ; F 0 2 �, then F [ F 0 2 � ;

b) If F 2 � and F 0 � F is closed, then F 0 2 �:

(7.2) Example. Let S be an arbitrary subset of X. Then the family of all

closed subsets of X contained in S is a family of supports.

(7.3) Example. The collection of all compact (non necessarily Hausdor�)

subsets of X is a family of supports, which will be denoted simply c in the

sequel. �

(7.4) De�nition. For any sheaf A and any family of supports � on X,

A�(X) will denote the set of all sections f 2 A(X) such that Supp f 2 �.

It is clear that A�(X) is a subgroup of A(X). We can now introduce

cohomology groups with arbitrary supports.

(7.5) De�nition. The cohomology groups of A with supports in � are

H
q

�
(X;A) = Hq

�
A
[�]
�
(X)

�
:

The cohomology groups with compact supports will be denoted Hq
c (X;A) and

the cohomology groups with supports in a subset S will be denoted H
q

S
(X;A).

In particular H0
�
(X;A) = A�(X). If 0 ! A ! B ! C ! 0 is an exact

sequence, there are corresponding exact sequences

(7:6)
0 �! A

[q]

�
(X) �! B

[q]

�
(X) �! C

[q]

�
(X) �! � � �

H
q

�
(X;A)�! H

q

�
(X;B)�! H

q

�
(X;C)�! H

q+1
�

(X;A) �! � � � :
When A is abby, there is an exact sequence

(7:7) 0 �! A�(X) �! B�(X) �! C�(X) �! 0

and every g 2 C�(X) can be lifted to v 2 B�(X) without enlarging the

support: apply the proof of Prop. 4.3 to a maximal lifting which extends

w = 0 on W = {(Supp g). It follows that a abby sheaf A is �-acyclic, i.e.

H
q

�
(X;A) = 0 for all q � 1. Similarly, assume that X is paracompact and
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that A is soft, and suppose that � has the following additional property:

every set F 2 � has a neighborhood G 2 �. An adaptation of the proofs of

Prop. 4.3 and 4.13 shows that (7.7) is again exact. Therefore every soft sheaf

is also �-acyclic in that case.

As a consequence of (7.6), any resolution L� of A by �-acyclic sheaves

provides a canonical De Rham-Weil isomorphism

(7:8) Hq
�
L�
�
(X)

� �! H
q

�
(X;A):

(7.9) Example: De Rham cohomology with compact support. In the

special case of the De Rham resolution R �! E� on a paracompact manifold,

we get an isomorphism

(7:10) H
q

DR;c(X;R) := Hq
�
(D�(X)

� '�! Hq

c
(X;R);

whereDq(X) is the space of smooth di�erential q-forms with compact support

in X. These groups are called the De Rham cohomology groups of X with

compact support. When X is oriented, dimX = n, we can also consider the

complex of compactly supported currents:

0 �! E
0
n(X)

d�! E
0
n�1(X) �! � � � �! E

0
n�q(X)

d�! E
0
n�q�1(X) �! � � � :

Note that D�(X) and E0
n��(X) are respectively the subgroups of compactly

supported sections in E� and D0n��, both of which are acyclic resolutions of R.
Therefore the inclusion D�(X) � E0

n��(X) induces an isomorphism

(7:11) Hq
�
D
�(X)

� ' Hq
�
E
0
n��(X)

�
;

both groups being isomorphic to Hq

c
(X;R). �

Now, we concentrate our attention on cohomology groups with compact

support. We assume until the end of this section that X is a locally compact

space.

(7.12) Proposition. There is an isomorphism

Hq

c
(X;A) = lim�!

U��X
Hq(U;AU )

where AU is the sheaf of sections of A vanishing on X r U (c.f. x3).

Proof. By de�nition

Hq

c
(X;A) = Hq

�
A[�]
c
(X)

�
= lim�!

U��X
Hq
�
(A[�])U (U)

�
since sections of (A[�])U (U) can be extended by 0 on XrU . However, (A[�])U
is a resolution of AU and (A[q])U is a Z[q]-module, so it is acyclic on U . The

De Rham-Weil isomorphism theorem implies
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Hq
�
(A[�])U (U)

�
= Hq(U;AU )

and the proposition follows. The reader should take care of the fact that

(A[q])U does not coincide in general with (AU )
[q]. �

The cohomology groups with compact support can also be de�ned by

means of �Cech cohomology.

(7.13) De�nition. Assume that X is a separable locally compact space. If

U = (U�) is a locally �nite covering of X by relatively compact open subsets,

we let Cqc (U;A) be the subgroups of cochains such that only �nitely many

coeÆcients c�0:::�q are non zero. The �Cech cohomology groups with compact

support are de�ned by

�Hq

c
(U;A) = Hq

�
C�
c
(U;A)

�
�Hq

c
(X;A) = lim�!

U

Hq
�
C�
c
(U;A)

�

For such coverings U, Formula (5.13) yields canonical morphisms

(7:14) Hq(��) : �Hq

c
(U;A) �! Hq

c
(X;A):

Now, the lifting Lemma 5.20 is valid for cochains with compact supports, and

the same proof as the one given in x5 gives an isomorphism

(7:15) �Hq

c
(X;A) ' Hq

c
(X;A):

8. Cup Product

Let R be a sheaf of commutative rings and A, B sheaves of R-modules on a

space X. We denote by A
R B the sheaf on X de�ned by

(8:1) (A
R B)x = Ax 
Rx Bx;
with the weakest topology such that the range of any section given by

A(U)
R(U)B(U) is open in A
RB for any open set U � X. Given f 2 A[p]
x

and g 2 B[q]
x , the cup product f ` g 2 (A
R B)[p+q]x is de�ned by

(8:2) f ` g(x0; : : : ; xp+q) = f(x0; : : : ; xp)(xp+q)
 g(xp; : : : ; xp+q):
A simple computation shows that

(8:3) dp+q(f ` g) = (dpf) ` g + (�1)p f ` (dqg):

In particular, f ` g is a cocycle if f; g are cocycles, and we have
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(f + dp�1f 0) ` (g + dq�1g0) = f ` g + dp+q�1
�
f 0 ` g + (�1)pf ` g0 + f 0 ` dg0

�
:

Consequently, there is a well de�ned R(X)-bilinear morphism

(8:4) Hp(X;A)�Hq(X;B) �! Hp+q(X;A
R B)
which maps a pair (ffg; fgg) to ff ` gg.

Let 0 ! B ! B0 ! B00 ! 0 be an exact sequence of sheaves. Assume

that the sequence obtained after taking the tensor product by A is also exact:

0 �! A
R B �! A
R B0 �! A
R B00 �! 0:

Then we obtain connecting homomorphisms

@q : Hq(X;B00) �! Hq+1(X;B);

@q : Hq(X;A
R B00) �! Hq+1(X;A
R B):
For every � 2 Hp(X;A), �00 2 Hq(X;B00) we have

@p+q(� ` �00) = (�1)p � ` (@q�00);(8:5)

@p+q(�00 ` �) = (@q�00) ` �;(8:50)

where the second line corresponds to the tensor product of the exact sequence

by A on the right side. These formulas are deduced from (8.3) applied to a

representant f 2 A[p](X) of � and to a lifting g0 2 B0[q](X) of a representative

g00 of �00 (note that dpf = 0).

(8.6) Associativity and anticommutativity. Let i : A
RB �! B
RA be

the canonical isomorphism s
t 7! t
s. For all � 2 Hp(X;A), � 2 Hq(X;B)

we have

� ` � = (�1)pq i(� ` �):

If C is another sheaf of R-modules and  2 Hr(X;C), then

(� ` �) `  = � ` (� ` ):

Proof. The associativity property is easily seen to hold already for all cochains

(f ` g) ` h = f ` (g ` h); f 2 A[p]
x
; g 2 B[q]

x
; h 2 C[r]

x
:

The commutation property is obvious for p = q = 0, and can be proved in

general by induction on p+ q. Assume for example q � 1. Consider the exact

sequence

0 �! B �! B0 �! B00 �! 0

where B0 = B[0] and B00 = B[0]=B. This exact sequence splits on each stalk

(but not globally, nor even locally): a left inverse B
[0]
x ! Bx of the inclusion
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is given by g 7! g(x). Hence the sequence remains exact after taking the

tensor product with A. Now, as B0 is acyclic, the connecting homomorphism

Hq�1(X;B00) �! Hq(X;B) is onto, so there is �00 2 Hq�1(X;B00) such that

� = @q�1�00. Using (8.50), (8.5) and the induction hypothesis, we �nd

� ` � = @p+q�1(�00 ` �) = @p+q�1
�
(�1)p(q�1) i(� ` �00)

�
= (�1)p(q�1) i@p+q�1(� ` �00) = (�1)p(q�1)(�1)p i(� ` �): �

Theorem 8.6 shows in particular that H�(X;R) is a graded associative

and supercommutative algebra, i.e. � ` � = (�1)pq � ` � for all classes

� 2 Hp(X;R), � 2 Hq(X;R). If A is a R-module, then H�(X;A) is a graded
H�(X;R)-module.

(8.7) Remark. The cup product can also be de�ned for �Cech cochains. Given

c 2 Cp(U;A) and c0 2 Cq(U;B), the cochain c ` c0 2 Cp+q(U;A 
R B) is
de�ned by

(c ` c0)�0:::�p+q = c�0:::�p 
 c0�p:::�p+q on U�0:::�p+q :

Straightforward calculations show that

Æp+q(c ` c0) = (Æpc) ` c0 + (�1)p c ` (Æqc0)

and that there is a commutative diagram

�Hp(U;A)� �Hq(U;B)�! �Hp+q(U ;A
R B)?y ?y
Hp(X;A)�Hq(X;B)�! Hp+q(X;A
R B);

where the vertical arrows are the canonical morphismsHs(��) of (5.14). Note
that the commutativity already holds in fact on cochains.

(8.8) Remark. Let � and 	 be families of supports on X. Then � \ 	 is

again a family of supports, and Formula (8.2) de�nes a bilinear map

(8:9) H
p

�
(X;A)�Hq

	
(X;B) �! H

p+q
�\	 (X;A
R B)

on cohomology groups with supports. This follows immediately from the fact

that Supp(f ` g) � Supp f \ Supp g.

(8.10) Remark. Assume that X is a di�erentiable manifold. Then the co-

homology complex H�DR(X;R) has a natural structure of supercommutative

algebra given by the wedge product of di�erential forms. We shall prove the

following compatibility statement:

Let Hq(X;R) �! H
q

DR(X;R) be the De Rham-Weil isomorphism given by

Formula (6.12). Then the cup product c0 ` c00 is mapped on the wedge product

f 0 ^ f 00 of the corresponding De Rham cohomology classes.
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By remark 8.7, we may suppose that c0; c00 are �Cech cohomology classes of

respective degrees p; q. Formulas (6.11) and (6.12) give

f 0�U�p =
X

�0;:::;�p�1

c0
�0:::�p�1�p

d �0 ^ : : : ^ d �p�1 ;

f 00 =
X

�p;:::;�p+q

c00
�p:::�p+q

 �p+qd �p ^ : : : ^ d �p+q�1 :

We get therefore

f 0 ^ f 00 =
X

�0;:::;�p+q

c0�0:::�p c
00
�p:::�p+q

 �p+qd �0 ^ : : : ^  �p+q�1 ;

which is precisely the image of c ` c0 in the De Rham cohomology. �

9. Inverse Images and Cartesian Products

9.A. Inverse Image of a Sheaf

Let F : X ! Y be a continuous map between topological spaces X;Y , and

let � : A! Y be a sheaf of abelian groups. Recall that inverse image F�1A
is de�ned as the sheaf-space

F�1A = A�Y X =
�
(s; x) ; �(s) = F (x)

	
with projection �0 = pr2 : F

�1A! X. The stalks of F�1A are given by

(9:1) (F�1A)x = AF (x);

and the sections � 2 F�1A(U) can be considered as continuous mappings

� : U ! A such that � Æ � = F . In particular, any section s 2 A(U) has a
pull-back

(9:2) F ?s = s Æ F 2 F�1A�F�1(U)�:
For any v 2 A[q]

y , we de�ne F ?v 2 (F�1A)[q]x by

(9:3) F ?v(x0; : : : ; xq) = v
�
F (x0); : : : ; F (xq)

� 2 (F�1A)xq = AF (xq)

for x0 2 V (x), x1 2 V (x0); : : : ; xq 2 V (x0; : : : ; xq�1). We get in this way

a morphism of complexes F ? : A[�](Y ) �! (F�1A)[�](X). On cohomology

groups, we thus have an induced morphism

(9:4) F ? : Hq(Y;A) �! Hq(X;F�1A):

Let 0! A! B! C! 0 be an exact sequence of sheaves on X. Thanks to

property (9.1), there is an exact sequence
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0 �! F�1A �! F�1B �! F�1C �! 0:

It is clear on the de�nitions that the morphism F ? in (9.4) commutes with the

associated cohomology exact sequences. Also, F ? preserves the cup product,

i.e. F ?(� ` �) = F ?� ` F ?� whenever �; � are cohomology classes with

values in sheaves A, B on X. Furthermore, if G : Y ! Z is a continuous

map, we have

(9:5) (G Æ F )? = F ? ÆG?:

(9.6) Remark. Similar de�nitions can be given for �Cech cohomology. If

U = (U�)�2I is an open covering of Y , then F�1U =
�
F�1(U�)

�
�2I is an

open covering of X. For c 2 Cq(U;A), we set
(F ?c)�0:::�q = c�0:::�q Æ F 2 Cq(F�1U; F�1A):

This de�nition is obviously compatible with the morphism from �Cech coho-

mology to ordinary cohomology.

(9.7) Remark. Let � be a family of supports on Y . We de�ne F�1	 to be

the family of closed sets K � X such that F (K) is contained in some set

L 2 	 . Then (9.4) can be generalized in the form

(9:8) F ? : H
q

	
(Y;A) �! H

q

F�1	
(X;F�1A):

(9.9) Remark. Assume that X and Y are paracompact di�erentiable man-

ifolds and that F : X ! Y is a C1 map. If ( �)�2I is a partition of unity

subordinate to U, then ( � Æ F )�2I is a partition of unity on X subordinate

to F�1U. Let c 2 Cq(U;R). The di�erential form associated to F ?c in the

De Rham cohomology is

g =
X

�0;:::;�q

c�0:::�q( �q Æ F )d( �0 Æ F ) ^ : : : ^ d( �q�1 Æ F )

= F ?
� X
�0;:::;�q

c�0:::�q  �qd �0 ^ : : : ^ d �q�1
�
:

Hence we have a commutative diagram

Hq

DR(Y;R)
'�! �Hq(Y;R)

'�!Hq(Y;R)?yF ? ?yF ? ?yF ?
H
q

DR(X;R)
'�! �Hq(X;R)

'�!Hq(X;R):
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9.B. Cohomology Groups of a Subspace

Let A be a sheaf on a topological space X, let S be a subspace of X and

iS : S ,�! X the inclusion. Then i�1
S
A is the restriction of A to S, so that

Hq(S;A) = Hq(S; i�1
S
A) by de�nition. For any two subspaces S0 � S, the

inclusion of S0 in S induces a restriction morphism

Hq(S;A) �! Hq(S0;A):

(9.10) Theorem. Let A be a sheaf on X and S a strongly paracompact

subspace in X. When 
 ranges over open neighborhoods of S, we have

Hq(S;A) = lim�!

�S

Hq(
;A):

Proof. When q = 0, the property is equivalent to Prop. 4.7. The general case

follows by induction on q if we use the long cohomology exact sequences

associated to the short exact sequence

0 �! A �! A[0] �! A[0]=A �! 0

on S and on its neighborhoods 
 (note that the restriction of a abby sheaf

to S is soft by Prop. 4.7 and the fact that every closed subspace of a strongly

paracompact subspace is strongly paracompact). �

9.C. Cartesian Product

We use here the formalism of inverse images to deduce the cartesian product

from the cup product. Let R be a �xed commutative ring and A! X, B! Y

sheaves of R-modules. We de�ne the external tensor product by

(9:11) A �RB = pr�11 A
R pr�12 B

where pr1, pr2 are the projections of X�Y onto X, Y respectively. The sheaf

A �R B is thus the sheaf on X � Y whose stalks are

(9:12) (A �RB)(x;y) = Ax 
R By:
For all cohomology classes � 2 Hp(X;A), � 2 Hq(Y;B) the cartesian product

�� � 2 Hp+q(X � Y;A �RB) is de�ned by

(9:13) �� � = (pr?1�) ` (pr?2�):

More generally, let � and 	 be families of supports in X and Y respectively. If

��	 denotes the family of all closed subsets of X�Y contained in products

K � L of elements K 2 �, L 2 	 , the cartesian product de�nes a R-bilinear

map
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(9:14) H
p

�
(X;A)�Hq

	
(Y;B) �! H

p+q
��	 (X � Y;A �RB):

If A0 ! X, B0 ! Y are sheaves of abelian groups and if �0, �0 are cohomology

classes of degree p0, q0 with values in A0, B0, one gets easily

(9:15) (�� �) ` (�0 � �0) = (�1)qp0(� ` �0)� (� ` �0):

Furthermore, if F : X 0 ! X and G : Y 0 ! Y are continuous maps, then

(9:16) (F �G)?(�� �) = (F ?�)� (G?�):

10. Spectral Sequence of a Filtered Complex

10.A. Construction of the Spectral Sequence

The theory of spectral sequences consists essentially in computing the homo-

logy groups of a di�erential module (K; d) by \successive approximations",

once a �ltration Fp(K) is given inK and the cohomology groups of the graded

modules Gp(K) are known. Let us �rst recall some standard de�nitions and

notations concerning �ltrations.

(10.1) De�nition. Let R be a commutative ring. A �ltration of a R-module

M is a sequence of submodules Mp � M , p 2 Z, also denoted Mp = Fp(M),

such that Mp+1 � Mp for all p 2 Z,
S
Mp = M and

T
Mp = f0g. The

associated graded module is

G(M) =
M
p2Z

Gp(M); Gp(M) =Mp=Mp+1:

Let (K; d) be a di�erential module equipped with a �ltration (Kp)

by di�erential submodules (i.e. dKp � Kp for every p). For any number

r 2 N [ f1g, we de�ne Zp
r
; Bp

r
� Gp(K) = Kp=Kp+1 by

Zp
r
= Kp \ d�1Kp+r mod Kp+1; Zp1 = Kp \ d�1f0g mod Kp+1;(10:2)

Bp
r
= Kp \ dKp�r+1 mod Kp+1; Bp1 = Kp \ dK mod Kp+1:(10:20)

(10.3) Lemma. For every p and r, there are inclusions

: : : � Bp
r
� Bp

r+1 � : : : � Bp1 � Zp1 � : : : � Zpr+1 � Zpr � : : :
and the di�erential d induces an isomorphismed : Zp

r
=Z

p

r+1 �! B
p+r
r+1=B

p+r
r

:
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Proof. It is clear that (Zp
r
) decreases with r, that (Bp

r
) increases with r, and

that Bp1 � Zp1. By de�nition

Zp
r
= (Kp \ d�1Kp+r)=(Kp+1 \ d�1Kp+r);

Bp
r
= (Kp \ dKp�r+1)=(Kp+1 \ dKp�r+1):

The di�erential d induces a morphism

Zp
r
�! (dKp \Kp+r)=(dKp+1 \Kp+r)

whose kernel is (Kp\d�1f0g)=(Kp+1\d�1f0g) = Zp1, whence isomorphisms

bd : Zp
r
=Zp1 �! (Kp+r \ dKp)=(Kp+r \ dKp+1);ed : Zp
r
=Z

p

r+1 �! (Kp+r \ dKp)=(Kp+r \ dKp+1 +Kp+r+1 \ dKp):

The right hand side of the last arrow can be identi�ed to B
p+r
r+1=B

p+r
r

, for

Bp+rr = (Kp+r \ dKp+1)=(Kp+r+1 \ dKp+1);

B
p+r
r+1 = (Kp+r \ dKp)=(Kp+r+1 \ dKp): �

Now, for each r 2 N , we de�ne a complex E�
r
=
L

p2ZE
p

r
with a dif-

ferential dr : E
p

r
�! Ep+r

r
of degree r as follows: we set Ep

r
= Zp

r
=Bp

r
and

take

(10:4) dr : Zpr =B
p

r �!�! Zpr =Z
p

r+1

ed�! B
p+r
r+1=B

p+r
r ,�! Zp+rr =Bp+rr

where the �rst arrow is the obvious projection and the third arrow the obvious

inclusion. Since dr is induced by d, we actually have dr Æ dr = 0 ; this can

also be seen directly by the fact that Bp+r
r+1 � Zp+rr+1 .

(10.5) Theorem and de�nition.There is a canonical isomorphism E�r+1 '
H�(E�

r
). The sequence of di�erential complexes (E�

r
; d�
r
) is called the spectral

sequence of the �ltered di�erential module (K; d).

Proof. Since ed is an isomorphism in (10.4), we have

ker dr = Z
p

r+1=B
p

r
; Im dr = B

p+r
r+1=B

p+r
r

:

Hence the image of dr : E
p�r
r
�! Ep

r
is B

p

r+1=B
p

r
and

Hp(E�r ) = (Z
p

r+1=B
p

r )=(B
p

r+1=B
p

r ) ' Zpr+1=Bpr+1 = E
p

r+1: �

(10.6) Theorem. Consider the �ltration of the homology module H(K) de-

�ned by

Fp
�
H(K)

�
= Im

�
H(Kp) �! H(K)

�
:



10. Spectral Sequence of a Filtered Complex 257

Then there is a canonical isomorphism

Ep1 = Gp
�
H(K)

�
:

Proof. Clearly Fp
�
H(K)

�
= (Kp \ d�1f0g)=(Kp \ dK), whereas

Zp1 = (Kp \ d�1f0g)=(Kp+1 \ d�1f0g); Bp1 = (Kp \ dK)=(Kp+1 \ dK);

Ep1 = Zp1=B
p

1 = (Kp \ d�1f0g)=(Kp+1 \ d�1f0g+Kp \ dK):

It follows that Ep1 ' Fp
�
H(K)

�
=Fp+1

�
H(K)

�
. �

In most applications, the di�erential module K has a natural grading

compatible with the �ltration. Let us consider for example the case of a co-

homology complex K� =
L

l2ZK
l. The �ltration K�

p
= Fp(K

�) is said to be

compatible with the di�erential complex structure if each K�
p
is a subcomplex

of K�, i.e.

K�
p
=
M
l2Z

Kl

p

where (Kl

p) is a �ltration of Kl. Then we de�ne Zp;qr , Bp;qr , Ep;qr to be the

sets of elements of Zp
r
, Bp

r
, Ep

r
of total degree p+ q. Therefore

(10:7) Zp;q
r

= Kp+q
p
\ d�1Kp+q+1

p+r mod K
p+q
p+1 ; Zp

r
=
L
Zp;q
r
;

(10:70) Bp;q
r

= Kp+q
p
\ dKp+q�1

p�r+1 mod K
p+q
p+1 ; Bp

r
=
L
Bp;q
r
;

(10:700)Ep;qr = Zp;qr =Bp;qr ; Epr =
L
Ep;qr ;

and the di�erential dr has bidegree (r;�r + 1), i.e.

(10:8) dr : Ep;qr �! Ep+r ; q�r+1r :

For an element of pure bidegree (p; q), p is called the �ltering degree, q the

complementary degree and p+ q the total degree.

(10.9) De�nition. A �ltration (K�p ) of a complex K� is said to be regular if

for each degree l there are indices �(l) � N(l) such that Kl

p = Kl for p < �(l)

and Kl

p
= 0 for p > N(l).

If the �ltration is regular, then (10.7) and (10:70) show that

Zp;q
r

= Z
p;q

r+1 = : : : = Zp;q1 for r > N(p+ q + 1)� p;
Bp;q
r

= Bp;q
r+1 = : : : = Bp;q1 for r > p+ 1� �(p+ q � 1);

therefore Ep;q
r

= Ep;q1 for r � r0(p; q). We say that the spectral sequence

converges to its limit term, and we write symbolically

(10:10) Ep;q
r

=) Hp+q(K�)
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to express the following facts: there is a spectral sequence whose terms of

the r-th generation are Ep;q
r

, the sequence converges to a limit term Ep;q1 ,

and Ep;l�p1 is the term Gp
�
H l(K�)

�
in the graded module associated to some

�ltration of H l(K�).

(10.11) De�nition. The spectral sequence is said to collapse in E�
r
if all

terms Z
p;q

k
, B

p;q

k
, E

p;q

k
are constant for k � r, or equivalently if dk = 0 in all

bidegrees for k � r.

(10.12) Special case. Assume that there exists an integer r � 2 and an

index q0 such that Ep;q
r

= 0 for q 6= q0. Then this property remains true

for larger values of r, and we must have dr = 0. It follows that the spectral

sequence collapses in E�
r
and that

H l(K�) = El�q0;q0r :

Similarly, if Ep;q
r

= 0 for p 6= p0 and some r � 1 then

H l(K�) = Ep0;l�p0
r

: �

10.B. Computation of the First Terms

Consider an arbitrary spectral sequence. For r = 0, we have Z
p

0 = Kp=Kp+1,

B
p

0 = f0g, thus
(10:13) E

p

0 = Kp=Kp+1 = Gp(K):

The di�erential d0 is induced by d on the quotients, and

(10:14) Ep1 = H
�
Gp(K)

�
:

Now, there is a short exact sequence of di�erential modules

0 �! Gp+1(K) �! Kp=Kp+2 �! Gp(K) �! 0:

We get therefore a connecting homomorphism

(10:15) Ep1 = H
�
Gp(K)

� @�! H
�
Gp+1(K)

�
= Ep+11 :

We claim that @ coincides with the di�erential d1 : indeed, both are induced

by d. When K� is a �ltered cohomology complex, d1 is the connecting homo-

morphism

(10:16) E
p;q

1 = Hp+q
�
Gp(K

�)
� @�! Hp+q+1

�
Gp+1(K

�)
�
= E

p+1;q
1 :
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11. Spectral Sequence of a Double Complex

A double complex is a bigraded module K�;� =
L
Kp;q together with a

di�erential d = d0 + d00 such that

(11:1) d0 : Kp;q �! Kp+1;q; d00 : Kp;q+1 �! Kp;q+1;

and d Æ d = 0. In particular, d0 and d00 satisfy the relations

(11:2) d02 = d002 = 0; d0d00 + d00d0 = 0:

The simple complex associated to K�;� is de�ned by

Kl =
M
p+q=l

Kp;q

together with the di�erential d. We will suppose here that both graduations

of K�;� are positive, i.e. Kp;q = 0 for p < 0 or q < 0. The �rst �ltration of

K� is de�ned by

(11:3) Kl

p
=

M
i+j=l; i�p

Ki;j =
M
p�i�l

Ki;l�i:

The graded module associated to this �ltration is of course Gp(K
l) = Kp;l�p,

and the di�erential induced by d on the quotient coincides with d00 because
d0 takes Kl

p
to Kl+1

p+1. Thus we have a spectral sequence beginning by

(11:4) E
p;q

0 = Kp;q; d0 = d00; E
p;q

1 = H
q

d00
(Kp;�):

By (10.16), d1 is the connecting homomorphism associated to the short exact

sequence

0 �! Kp+1;� �! Kp;� �Kp+1;� �! Kp;� �! 0

where the di�erential is given by (d mod Kp+2;�) for the central term and

by d00 for the two others. The de�nition of the connecting homomorphism in

the proof of Th. 1.5 shows that

d1 = @ : H
q

d00
(Kp;�) �! H

q

d00
(Kp+1;�)

is induced by d0. Consequently, we �nd

(11:5) E
p;q

2 = H
p

d0
(E
�;q
1 ) = H

p

d0

�
H
q

d00
(K�;�)

�
:

For such a spectral sequence, several interesting additional features can

be pointed out. For all r and l, there is an injective homomorphism

E
0;l
r+1 ,�! E0;l

r
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whose image can be identi�ed with the set of dr-cocycles inE
0;l
r

; the cobound-

ary group is zero because Ep;q
r

= 0 for q < 0. Similarly, El;0
r

is equal to its

cocycle submodule, and there is a surjective homomorphism

El;0
r
�!�! E

l;0
r+1 ' El;0r =drE

l�r;r�1
r

:

Furthermore, the �ltration on H l(K�) begins at p = 0 and stops at p = l, i.e.

(11:6) F0
�
H l(K�)

�
= H l(K�); Fp

�
H l(K�)

�
= 0 for p > l:

Therefore, there are canonical maps

(11:7)
H l(K�) �!�! G0

�
H l(K�)

�
= E0;l

1 ,�! E0;l
r
;

El;0
r
�!�! El;01 = Gl

�
H l(K�)

�
,�! H l(K�):

These maps are called the edge homomorphisms of the spectral sequence.

(11.8) Theorem. There is an exact sequence

0 �! E
1;0
2 �! H1(K�) �! E

0;1
2

d2�! E
2;0
2 �! H2(K�)

where the non indicated arrows are edge homomorphisms.

Proof. By 11.6, the graded module associated to H1(K�) has only two com-

ponents, and we have an exact sequence

0 �! E1;0
1 �! H1(K�) �! E0;1

1 �! 0:

However E1;0
1 = E

1;0
2 because all di�erentials dr starting from E1;0

r
or abuting

to E1;0
r

must be zero for r � 2. Similarly, E0;1
1 = E

0;1
3 and E2;0

1 = E
2;0
3 , thus

there is an exact sequence

0 �! E0;1
1 �! E

0;1
2

d2�! E
2;0
2 �! E2;0

1 �! 0:

A combination of the two above exact sequences yields

0 �! E
1;0
2 �! H1(K�) �! E

0;1
2

d2�! E
2;0
2 �! E2;0

1 �! 0:

Taking into account the injection E2;0
1 ,�! H2(K�) in (11.7), we get the

required exact sequence. �

(11.9) Example. Let X be a complex manifold of dimension n. Consider

the double complex Kp;q = C1
p;q
(X; C ) together with the exterior derivative

d = d0+d00. Then there is a spectral sequence which starts from the Dolbeault

cohomology groups

E
p;q

1 = Hp;q(X; C )
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and which converges to the graded module associated to a �ltration of the

De Rham cohomology groups:

Ep;q
r

=) H
p+q
DR (X; C ):

This spectral sequence is called the Hodge-Fr�olicher spectral sequence (Fr�o-

licher 1955). We will study it in much more detail in chapter 6 when X is

compact. �

Frequently, the spectral sequence under consideration can be obtained

from two distinct double complexes and one needs to compare the �nal co-

homology groups. The following lemma can often be applied.

(11.10) Lemma. Let Kp;q �! Lp;q be a morphism of double complexes (i.e.

a double sequence of maps commuting with d0 and d00). Then there are induced

morphisms

KE
�;�
r
�! LE

�;�
r
; r � 0

of the associated spectral sequences. If one of these morphisms is an isomor-

phism for some r, then H l(K�) �! H l(L�) is an isomorphism.

Proof. If the r-terms are isomorphic, they have the same cohomology groups,

thus KE
�;�
r+1 ' LE

�;�
r+1 and KE

�;�
1 ' LE

�;�
1 in the limit. The lemma follows

from the fact that if a morphism of graded modules ' : M �! M 0 induces
an isomorphism G�(M) �! G�(M 0), then ' is an isomorphism. �

12. Hypercohomology Groups

Let (L�; Æ) be a complex of sheaves

0 �! L0 Æ
0

�! L1 �! � � � �! Lq
Æ
q

�! � � �
on a topological space X. We denote by Hq = Hq(L�) the q-th sheaf of

cohomology of this complex; thus Hq is a sheaf of abelian groups over X.

Our goal is to de�ne \generalized cohomology groups" attached to L� on X,

in such a way that these groups only depend on the cohomology sheaves Hq.

For this, we associate to L� the double complex of groups

(12:1) K
p;q

L
= (Lq)[p](X)

with di�erential d0 = dp given by (2.5), and with d00 = (�1)p(Æq)[p]. As (Æq)[�] :
(Lq)[�] �! (Lq+1)[�] is a morphism of complexes, we get the expected relation

d0d00 + d00d0 = 0.
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(12.2) De�nition. The groups Hq(K�L) are called the hypercohomology

groups of L� and are denoted H q (X;L�).

Clearly H 0(X;L�) = H0(X) where H0 = ker Æ0 is the �rst cohomology

sheaf of L�. If '� : L� �! M� is a morphism of sheaf complexes, there is

an associated morphism of double complexes '�;� : K�;�
L
�! K

�;�
M

, hence a

natural morphism

(12:3) H q ('�) : H q (X;L�) �! H q (X;M�):

We �rst list a few immediate properties of hypercohomology groups, whose

proofs are left to the reader.

(12.4) Proposition. The following properties hold:

a) If Lq = 0 for q 6= 0, then H q (X;L�) = Hq(X;L0).

b) If L�[s] denotes the complex L� shifted of s indices to the right, i.e.

L�[s]q = Lq�s, then H q (X;L�[s]) = H q�s(X;L�).

c) If 0 �! L� �!M� �! N� �! 0 is an exact sequence of sheaf complexes,

there is a long exact sequence

� � �H q (X;L�) �! H q (X;M�) �! H q (X;N�)
@�! H q+1(X;L�) � � � : �

If L� is a sheaf complex, the spectral sequence associated to the �rst

�ltration of K�L is given by

E
p;q

1 = H
q

d00
(K

p;�
L

) = Hq
�
(L�)[p](X)

�
:

However by (2.9) the functorA 7�! A[p](X) preserves exact sequences. There-

fore, we get

E
p;q

1 =
�
H
q(L�)

�[p]
(X);(12:5)

E
p;q

2 = Hp
�
X;Hq(L�)

�
;(12:50)

since E
p;q

2 = H
p

d0
(E
�;q
1 ). If '� : L� �! M� is a morphism, an application

of Lemma 11.10 to the E2-term of the associated �rst spectral sequences of

K
�;�
L

and K
�;�
M

yields:

(12.6) Corollary. If '� : L� �! M� is a quasi-isomorphism
�
this means

that '� induces an isomorphism H�(L�) �! H�(M�)
�
, then

H l ('�) : H l (X;L�) �! H l (X;M�)

is an isomorphism.
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Now, we may reverse the roles of the indices p; q and of the di�erentials

d0; d00. The second �ltration Fp(Kl

L
) =

L
j�pK

l�j;j
L

is associated to a spectral

sequence such that eEp;q1 = H
q

d0
(K
�;p
L

) = H
q

d0

�
(Lp)[�](X)

�
, hence

eEp;q1 = Hq(X;Lp);(12:7) eEp;q2 = H
p

Æ

�
Hq(X;L�)

�
:(12:70)

These two spectral sequences converge to limit terms which are the graded

modules associated to �ltrations of H �(X;L�) ; these �ltrations are in general
di�erent. Let us mention two interesting special cases.

� Assume �rst that the complex L� is a resolution of a sheaf A, so that

H0 = A and Hq = 0 for q � 1. Then we �nd

Ep;02 = Hp(X;A); Ep;q2 = 0 for q � 1:

It follows that the �rst spectral sequence collapses in E�2 , and 10.12 implies

(12:8) H l(X;L�) ' H l(X;A):

� Now, assume that the sheaves Lq are acyclic. The second spectral sequence

gives

eEp;02 = Hp
�
L�(X)

�
; eEp;q2 = 0 for q � 1;

H l(X;L�) ' H l
�
L
�(X)

�
:(12:9)

If both conditions hold, i.e. if L� is a resolution of a sheaf A by acyclic

sheaves, then (12.8) and (12.9) can be combined to obtain a new proof of the

De Rham-Weil isomorphism H l(X;A) ' H l
�
L�(X)

�
.

13. Direct Images and the Leray Spectral Sequence

13.A. Direct Images of a Sheaf

Let X;Y be topological spaces, F : X ! Y a continuous map and A a sheaf

of abelian groups on X. Recall that the direct image F?A is the presheaf on

Y de�ned for any open set U � Y by

(13:1) (F?A)(U) = A
�
F�1(U)

�
:

Axioms (II-2:40 and (II-2:400) are clearly satis�ed, thus F?A is in fact a sheaf.

The following result is obvious:

(13:2) A is abby =) F?A is abby.

Every sheaf morphism ' : A! B induces a corresponding morphism



264 Chapter IV Sheaf Cohomology and Spectral Sequences

F?' : F?A �! F?B;

so F? is a functor on the category of sheaves on X to the category of sheaves

on Y . This functor is exact on the left: indeed, to every exact sequence

0! A! B! C is associated an exact sequence

0 �! F?A �! F?B �! F?C;

but F?B ! F?C need not be onto if B ! C is. All this follows immediately

from the considerations of x3. In particular, the simplicial abby resolution

(A[�]; d) yields a complex of sheaves

(13:3) 0 �! F?A
[0] �! F?A

[1] �! � � � �! F?A
[q] F?d

q

�! F?A
[q+1] �! � � � :

(13.4) De�nition. The q-th direct image of A by F is the q-th cohomology

sheaf of the sheaf complex (13:3). It is denoted

RqF?A = Hq(F?A
[�]):

As F? is exact on the left, the sequence 0 ! F?A ! F?A
[0] ! F?A

[1] is

exact, thus

(13:5) R0F?A = F?A:

We now compute the stalks of RqF?A. As the kernel or cokernel of a sheaf

morphism is obtained stalk by stalk, we have

(RqF?A)y = Hq
�
(F?A

[�])y
�
= lim�!

U3y
Hq
�
F?A

[�](U)
�
:

The very de�nition of F? and of sheaf cohomology groups implies

Hq
�
F?A

[�](U)
�
= Hq

�
A[�](F�1(U))

�
= Hq

�
F�1(U);A

�
;

hence we �nd

(13:6) (RqF?A)y = lim�!
U3y

Hq
�
F�1(U);A

�
;

i.e. RqF?A is the sheaf associated to the presheaf U 7! Hq
�
F�1(U);A

�
.

We must stress here that the stronger relation RqF?A(U) = Hq
�
F�1(U);A

�
need not be true in general. If the �ber F�1(y) is strongly paracompact in

X and if the family of open sets F�1(U) is a fundamental family of neigh-

borhoods of F�1(y) (this situation occurs for example if X and Y are locally

compact spaces and F a proper map, or if F = pr1 : X = Y �S �! Y where

S is compact), Th. 9.10 implies the more natural relation

(13:60) (RqF?A)y = Hq
�
F�1(y);A

�
:
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Let 0 ! A ! B ! C ! 0 be an exact sequence of sheaves on X. Apply

the long exact sequence of cohomology on every open set F�1(U) and take

the direct limit over U . We get an exact sequence of sheaves:

(13:7)
0�! F?A �! F?B �! F?C �! R1F?A �! � � �
� � � �! RqF?A�! RqF?B�! RqF?C�! Rq+1F?A�! � � � :

13.B. Leray Spectral Sequence

For any continuous map F : X ! Y , the Leray spectral sequence relates

the cohomology groups of a sheaf A on X and those of its direct images

RqF?A on Y . Consider the two spectral sequences E�
r
, eE�

r
associated with

the complex of sheaves L� = F?A
[�] on Y , as in x 12. By de�nition we have

Hq(L�) = RqF?A. By (12:50) the second term of the �rst spectral sequence

is

E
p;q

2 = Hp(Y;RqF?A);

and this spectral sequence converges to the graded module associated to a

�ltration of H l(Y; F?A
[�]). On the other hand, (13.2) implies that F?A

[q] is

abby. Hence, the second special case (12.9) can be applied:

H l (Y; F?A
[�]) ' H l

�
F?A

[�](Y )
�
= H l

�
A
[�](X)

�
= H l(X;A):

We may conclude this discussion by the following

(13.8) Theorem. For any continuous map F : X ! Y and any sheaf A of

abelian groups on X, there exists a spectral sequence whose E�2 term is

E
p;q

2 = Hp(Y;RqF?A);

which converges to a limit term Ep;l�p1 equal to the graded module associated

with a �ltration of H l(X;A). The edge homomorphism

H l(Y; F?A) �!�! El;01 ,�! H l(X;A)

coincides with the composite morphism

F# : H l(Y; F?A)
F
?

�! H l(X;F�1F?A)
H
l(�F )���! H l(X;A)

where �F : F�1F?A �! A is the canonical sheaf morphism.

Proof. Only the last statement remains to be proved. The morphism �F is

de�ned as follows: every element s 2 (F�1F?A)x = (F?A)F (x) is the germ

of a section es 2 F?A(V ) = A
�
F�1(V )

�
on a neighborhood V of F (x). Then

F�1(V ) is a neighborhood of x and we let �F s be the germ of es at x.
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Now, we observe that to any commutative diagram of topological spaces

and continuous maps is associated a commutative diagram involving the di-

rect image sheaves and their cohomology groups:

X
F�!Y H l(X;A)

F
#

 �H l(Y; F?A)

G

?y ?y
H G

#
x? x?

H
#

X 0
F
0

�!Y 0 H l(X 0; G?A)
F
0#

 �H l(Y 0; F 0
?
G?A):

There is a similar commutative diagram in which F# and F 0# are replaced

by the edge homomorphisms of the spectral sequences of F and F 0 : indeed
there is a natural morphism H�1F 0

?
B �! F?G

�1B for any sheaf B on X 0,
so we get a morphism of sheaf complexes

H�1F 0
?
(G?A)

[�] �! F?G
�1(G?A)

[�] �! F?(G
�1G?A)

[�] �! F?A
[�];

hence also a morphism of the spectral sequences associated to both ends.

The special caseX 0 = Y 0 = Y , G = F , F 0 = H = IdY then shows that our

statement is true for F if it is true for F 0. Hence we may assume that F is the

identity map; in this case, we need only show that the edge homomorphism

of the spectral sequence of F?A
[�] = A[�] is the identity map. This is an

immediate consequence of the fact that we have a quasi-isomorphism

(� � � ! 0! A! 0! � � �) �! A[�]: �

(13.9) Corollary. If RqF?A = 0 for q � 1, there is an isomorphism

H l(Y; F?A) ' H l(X;A) induced by F#.

Proof. We are in the special case 10.12 with E
p;q

2 = 0 for q 6= 0, so

H l(Y; F?A) = E
l;0
2 ' H l(X;A): �

(13.10) Corollary. Let F : X �! Y be a proper �nite-to-one map. For any

sheaf A on X, we have RqF?A = 0 for q � 1 and there is an isomorphism

H l(Y; F?A) ' H l(X;A).

Proof. By de�nition of higher direct images, we have

(RqF?A)y = lim�!
U3y

Hq
�
A[�]�F�1(U)��:

If F�1(y) = fx1; : : : ; xmg, the assumptions imply that
�
F�1(U)

�
is a funda-

mental system of neighborhoods of fx1; : : : ; xmg. Therefore

(RqF?A)y =
M

1�j�m
Hq
�
A[�]
xj

�
=

�L
Axj for q = 0,

0 for q � 1,
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and we conclude by Cor. 13.9. �

Corollary 13.10 can be applied in particular to the inclusion j : S ! X

of a closed subspace S. Then j?A coincides with the sheaf AS de�ned in x3
and we get Hq(S;A) = Hq(X;AS). It is very important to observe that the

property Rqj?A = 0 for q � 1 need not be true if S is not closed.

13.C. Topological Dimension

As a �rst application of the Leray spectral sequence, we are going to derive

some properties related to the concept of topological dimension.

(13.11) De�nition. A non empty space X is said to be of topological di-

mension � n if Hq(X;A) = 0 for any q > n and any sheaf A on X. We let

topdimX be the smallest such integer n if it exists, and +1 otherwise.

(13.12) Criterion. For a paracompact space X, the following conditions are

equivalent:

a) topdimX � n ;

b) the sheaf Zn = ker(A[n] �! A[n+1]) is soft for every sheaf A ;

c) every sheaf A admits a resolution 0 ! L0 ! � � � ! Ln ! 0 of length n

by soft sheaves.

Proof. b) =) c). Take Lq = A[q] for q < n and Ln = Zn.

c) =) a). For every sheaf A, the De Rham-Weil isomorphism implies

Hq(X;A) = Hq
�
L�(X)

�
= 0 when q > n.

a) =) b). Let S be a closed set and U = X r S. As in Prop. 7.12, (A[�])U
is an acyclic resolution of AU . Clearly ker

�
(A[n])U ! (A[n+1])U

�
= Zn

U
, so

the isomorphisms (6.2) obtained in the proof of the De Rham-Weil theorem

imply

H1(X;Zn
U
) ' Hn+1(X;AU) = 0:

By (3.10), the restriction map Zn(X) �! Zn(S) is onto, so Zn is soft. �

(13.13) Theorem. The following properties hold:

a) If X is paracompact and if every point of X has a neighborhood of topo-

logical dimension � n, then topdimX � n.
b) If S � X, then topdimS � topdimX provided that S is closed or X

metrizable.

c) If X;Y are metrizable spaces, one of them locally compact, then
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topdim(X � Y ) � topdimX + topdimY:

d) If X is metrizable and locally homeomorphic to a subspace of Rn , then

topdimX � n.

Proof. a) Apply criterion 13.12 b) and the fact that softness is a local property

(Prop. 4.12).

b) When S is closed in X, the property follows from Cor. 13.10. When X is

metrizable, any subset S is strongly paracompact. Let j : S �! X be the

injection and A a sheaf on S. As A = (j?A)�S , we have

Hq(S;A) = Hq(S; j?A) = lim�!

�S

Hq(
; j?A)

by Th. 9.10. We may therefore assume that S is open in X. Then every point

of S has a neighborhood which is closed in X, so we conclude by a) and the

�rst case of b).

c) Thanks to a) and b), we may assume for example that X is compact. Let

A be a sheaf on X � Y and � : X � Y �! Y the second projection. Set

nX = topdimX, nY = topdimY . In virtue of (13:60), we have Rq�?A = 0

for q > nX . In the Leray spectral sequence, we obtain therefore

E
p;q

2 = Hp(Y;Rq�?A) = 0 for p > nY or q > nX ;

thus Ep;l�p1 = 0 when l > nX + nY and we infer H l(X � Y;A) = 0.

d) The unit interval [0; 1] � R is of topological dimension � 1, because [0; 1]

admits arbitrarily �ne coverings

(13:14) Uk =
�
[0; 1] \ ](�� 1)=k; (�+ 1)=k[

�
0���k

for which only consecutive open sets U�, U�+1 intersect; we may therefore

apply Prop. 5.24. Hence Rn ' ]0; 1[n� [0; 1]n is of topological dimension � n
by b) and c). Property d) follows

14. Alexander-Spanier Cohomology

14.A. Invariance by Homotopy

Alexander-Spanier's theory can be viewed as the special case of sheaf coho-

mology theory with constant coeÆcients, i.e. with values in constant sheaves.

(14.1) De�nition. Let X be a topological space, R a commutative ring and

M a R-module. The constant sheaf X � M is denoted M for simplicity.
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The Alexander-Spanier q-th cohomology group with values in M is the sheaf

cohomology group Hq(X;M).

In particular H0(X;M) is the set of locally constant functions X ! M ,

so H0(X;M) ' ME , where E is the set of connected components of X. We

will not repeat here the properties of Alexander-Spanier cohomology groups

that are formal consequences of those of general sheaf theory, but we focus

our attention instead on new features, such as invariance by homotopy.

(14.2) Lemma. Let I denote the interval [0; 1] of real numbers. Then

H0(I;M) =M and Hq(I;M) = 0 for q 6= 0.

Proof. Let us employ alternate �Cech cochains for the coverings Un de�ned in

(13.14). As I is paracompact, we have

Hq(I;M) = lim�!
�Hq(Un;M):

However, the alternate �Cech complex has only two non zero components and

one non zero di�erential:

AC0(Un;M) =
�
(c�)0���n

	
=Mn+1;

AC1(Un;M) =
�
(c��+1)0���n�1

	
=Mn;

d0 : (c�) 7�! (c0
��+1) = (c�+1 � c�):

We see that d0 is surjective, and that ker d0 =
�
(m;m; : : : ;m)

	
=M . �

For any continuous map f : X �! Y , the inverse image of the constant

sheaf M on Y is f�1M =M . We get therefore a morphism

(14:3) f? : Hq(Y;M) �! Hq(X;M);

which, as already mentioned in x9, is compatible with cup product.

(14.4) Proposition. For any space X, the projection � : X � I �! X and

the injections it : X �! X � I, x 7�! (x; t) induce inverse isomorphisms

Hq(X;M)

�
?

��! ��
i
?

t

Hq(X � I;M):

In particular, i?
t
does not depend on t.

Proof. As � Æ it = Id, we have i?
t
Æ �? = Id, so it is suÆcient to check that

�? is an isomorphism. However (Rq�?M)x = Hq(I;M) in virtue of (13:60),
so we get

R0�?M =M; Rq�?M = 0 for q 6= 0
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and conclude by Cor. 13.9. �

(14.4) Theorem. If f; g : X �! Y are homotopic maps, then

f? = g? : Hq(Y;M) �! Hq(X;M):

Proof. Let H : X�I �! Y be a homotopy between f and g, with f = H Æ i0
and g = H Æ i1. Proposition 14.3 implies

f? = i?0 ÆH? = i?1 ÆH? = g?: �

We denote f � g the homotopy equivalence relation. Two spaces X;Y

are said to be homotopically equivalent (X � Y ) if there exist continuous

maps u : X �! Y , v : Y �! X such that v Æu � IdX and u Æ v � IdY . Then

Hq(X;M) ' Hq(Y;M) and u?; v? are inverse isomorphisms.

(14.5) Example. A subspace S � X is said to be a (strong) deformation

retract of X if there exists a retraction of X onto S, i.e. a map r : X �! S

such that r Æ j = IdS (j = inclusion of S in X), which is a deformation of

IdX , i.e. there exists a homotopy H : X� I �! X relative to S between IdX
and j Æ r :

H(x; 0) = x; H(x; 1) = r(x) on X; H(x; t) = x on S � I:
Then X and S are homotopically equivalent. In particular X is said to be

contractible if X has a deformation retraction onto a point x0. In this case

Hq(X;M) = Hq(fx0g;M) =

�
M for q = 0

0 for q 6= 0.

(14.6) Corollary. If X is a compact di�erentiable manifold, the cohomology

groups Hq(X;R) are �nitely generated over R.

Proof. Lemma 6.9 shows that X has a �nite covering U such that the intersec-

tions U�0:::�q are contractible. Hence U is acyclic, Hq(X;R) = Hq
�
C�(U; R)

�
and each �Cech cochain space is a �nitely generated (free) module. �

(14.7) Example: Cohomology Groups of Spheres. Set

Sn =
�
x 2 Rn+1 ; x20 + x21 + : : :+ x2n = 1

	
; n � 1:

We will prove by induction on n that

(14:8) Hq(Sn;M) =
n
M for q = 0 or q = n

0 otherwise.
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As Sn is connected, we have H0(Sn;M) =M . In order to compute the higher

cohomology groups, we apply the Mayer-Vietoris exact sequence 3.11 to the

covering (U1; U2) with

U1 = Sn r f(�1; 0; : : : ; 0)g; U2 = Sn r f(1; 0; : : : ; 0)g:
Then U1; U2 � Rn are contractible, and U1 \ U2 can be retracted by defor-

mation on the equator Sn \ fx0 = 0g � Sn�1. Omitting M in the notations

of cohomology groups, we get exact sequences

H0(U1)�H0(U2) �! H0(U1 \ U2) �! H1(Sn) �! 0;(14:90)

0 �! Hq�1(U1 \ U2) �! Hq(Sn) �! 0; q � 2:(14:900)

For n = 1, U1 \ U2 consists of two open arcs, so we have

H0(U1)�H0(U2) = H0(U1 \ U2) =M �M;

and the �rst arrow in (14:90) is (m1;m2) 7�! (m2 �m1;m2 �m1). We infer

easily that H1(S1) =M and that

Hq(S1) = Hq�1(U1 \ U2) = 0 for q � 2:

For n � 2, U1 \ U2 is connected, so the �rst arrow in (14:90) is onto and

H1(Sn) = 0. The second sequence (14:900) yields Hq(Sn) ' Hq�1(Sn�1). An
induction concludes the proof. �

14.B. Relative Cohomology Groups and Excision Theorem

Let X be a topological space and S a subspace. We denote byM [q](X;S) the

subgroup of sections u 2M [q](X) such that u(x0; : : : ; xq) = 0 when

(x0; : : : ; xq) 2 Sq; x1 2 V (x0); : : : ; xq 2 V (x0; : : : ; xq�1):
Then M [�](X;S) is a subcomplex of M [�](X) and we de�ne the relative co-

homology group of the pair (X;S) with values in M as

(14:10) Hq(X;S ; M) = Hq
�
M [�](X;S)

�
:

By de�nition of M [q](X;S), there is an exact sequence

(14:11) 0 �!M [q](X;S) �!M [q](X) �! (M�S)
[q](S) �! 0:

The reader should take care of the fact that (M�S)
[q](S) does not coincide

with the module of sections M [q](S) of the sheaf M [q] on X, except if S is

open. The snake lemma shows that there is an \exact sequence of the pair":

(14:12) Hq(X;S ; M)! Hq(X;M)! Hq(S;M)! Hq+1(X;S ; M) � � � :
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We have in particular H0(X;S ; M) =ME , where E is the set of connected

components of X which do not meet S. More generally, for a triple (X;S; T )

with X � S � T , there is an \exact sequence of the triple":

0 �!M [q](X;S) �!M [q](X;T ) �!M [q](S; T ) �! 0;(14:120)

Hq(X;S ;M) �! Hq(X;T ; M) �! Hq(S; T ; M) �! Hq+1(X;S ; M):

The de�nition of the cup product in (8.2) shows that � ` � vanishes on S[S0
if �; � vanish on S, S0 respectively. Therefore, we obtain a bilinear map

(14:13) Hp(X;S ; M)�Hq(X;S0 ; M 0) �! Hp+q(X;S [ S0 ; M 
M 0):
If f : (X;S) �! (Y; T ) is a morphism of pairs, i.e. a continuous map X ! Y

such that f(S) � T , there is an induced pull-back morphism

(14:14) f? : Hq(Y; T ; M) �! Hq(X;S ; M)

which is compatible with the cup product. Two morphisms of pairs f; g are

said to be homotopic when there is a pair homotopy H : (X � I; S � I) �!
(Y; T ). An application of the exact sequence of the pair shows that

�? : Hq(X;S ; M) �! Hq(X � I; S � I ; M)

is an isomorphism. It follows as above that f? = g? as soon as f; g are

homotopic.

(14.15) Excision theorem. For subspaces T � SÆ of X, the restriction

morphism Hq(X;S ; M) �! Hq(X r T; S r T ; M) is an isomorphism.

Proof. Under our assumption, it is not diÆcult to check that the surjective

restriction map M [q](X;S) �!M [q](X r T; S r T ) is also injective, because

the kernel consists of sections u 2 M [q](X) such that u(x0; : : : ; xq) = 0 on

(X r T )q+1 [ Sq+1, and this set is a neighborhood of the diagonal of Xq+1.

�

(14.16) Proposition. If S is open or strongly paracompact in X, the relative

cohomology groups can be written in terms of cohomology groups with supports

in X r S :

Hq(X;S ; M) ' Hq

XrS
(X;M):

In particular, if X r S is relatively compact in X, we have

Hq(X;S ; M) ' Hq

c (X r S;M):

Proof. We have an exact sequence

(14:17) 0 �!M
[�]
XrS

(X) �!M [�](X) �!M [�](S) �! 0
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where M
[�]
XrS

(X) denotes sections with support in X r S. If S is open, then

M [�](S) = (M�S)
[�](S), henceM [�]

XrS
(X) =M [�](X;S) and the result follows.

If S is strongly paracompact, Prop. 4.7 and Th. 9.10 show that

Hq
�
M [�](S)

�
= Hq

�
lim�!

�S

M [�](
)
�
= lim�!


�S
Hq(
;M) = Hq(S;M�S):

If we consider the diagram

0�!M [�]
XrS

(X)�!M [�](X)�!M [�](S) �! 0?y ?y Id ?y � S
0�!M [�](X;S)�!M [�](X)�!(M�S)

[�](S)�! 0

we see that the last two vertical arrows induce isomorphisms in cohomology.

Therefore, the �rst one also does. �

(14.18) Corollary. Let X;Y be locally compact spaces and f; g : X ! Y

proper maps. We say that f; g are properly homotopic if they are homotopic

through a proper homotopy H : X � I �! Y . Then

f? = g? : Hq

c (Y;M) �! Hq

c (X;M):

Proof. Let bX = X[f1g, bY = Y [f1g be the Alexandrov compacti�cations

of X, Y . Then f; g;H can be extended as continuous mapsbf; bg : bX �! bY ; bH : bX � I �! bY
with bf(1) = bg(1) = H(1; t) = 1, so that bf; bg are homotopic as maps

( bX;1) �! (bY ;1). Proposition 14.16 implies Hq

c
(X;M) = Hq( eX;1 ; M)

and the result follows. �

15. K�unneth Formula

15.A. Flat Modules and Tor Functors

The goal of this section is to investigate homological properties related to

tensor products. We work in the category of modules over a commutative

ring R with unit. All tensor products appearing here are tensor products

over R. The starting point is the observation that tensor product with a

given module is a right exact functor: if 0 ! A ! B ! C ! 0 is an exact

sequence and M a R-module, then

A
M �! B 
M �! C 
M �! 0
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is exact, but the map A
M �! B
M need not be injective. A counterex-

ample is given by the sequence

0 �! Z
2��! Z �! Z=2Z�! 0 over R = Z

tensorized by M = Z=2Z. However, the injectivity holds if M is a free

R-module. More generally, one says that M is a at R-module if the ten-

sor product by M preserves injectivity, or equivalently, if 
M is a left exact

functor.

A at resolution C� of a R-module A is a homology exact sequence

� � � �! Cq �! Cq�1 �! � � � �! C1 �! C0 �! A �! 0

where Cq are at R-modules and Cq = 0 for q < 0. Such a resolution always

exists because every module A is a quotient of a free module C0. Inductively,

we take Cq+1 to be a free module such that ker(Cq ! Cq�1) is a quotient of

Cq+1. In terms of homology groups, we have H0(C�) = A and Hq(C�) = 0

for q 6= 0. Given R-modules A;B and free resolutions d0 : C� �! A, d00 :
D� �! B, we consider the double homology complex

Kp;q = Cp 
Dq; d = d0 
 Id+(�1)p Id
d00

and the associated �rst and second spectral sequences. Since Cp is free, we

have

E1
p;q = Hq(Cp 
D�) =

�
Cp 
B for q = 0,

0 for q 6= 0.

Similarly, the second spectral sequence also collapses and we have

Hl(K�) = Hl(C� 
B) = Hl(A
D�):
This implies in particular that the homology groups Hl(K�) do not depend

on the choice of the resolutions C� or D�.

(15.1) De�nition. The q-th torsion module of A and B is

Torq(A;B) = Hq(K�) = Hq(C� 
 B) = Hq(A
D�):

Since the de�nition of K� is symmetric with respect to A and B, we have

Torq(A;B) ' Torq(B;A). By the right-exactness of 
B, we �nd in particular

Tor0(A;B) = A 
 B. Moreover, if B is at, 
B is also left exact, thus

Torq(A;B) = 0 for all q � 1 and all modules A. If 0 ! A ! A0 ! A00 ! 0

is an exact sequence, there is a corresponding exact sequence of homology

complexes

0 �! A
D� �! A0 
D� �! A00 
D� �! 0;
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thus a long exact sequence

(15:2)
�! Torq(A;B)�! Torq(A

0; B)�! Torq(A
00; B)�! Torq�1(A;B)

� � ��! A
B �! A0 
 B �! A00 
 B �! 0:

It follows that B is at if and only if Tor1(A;B) = 0 for every R-module A.

Suppose now that R is a principal ring. Then every module A has a free

resolution 0! C1 ! C0 ! A! 0 because the kernel of any surjective map

C0 ! A is free (every submodule of a free module is free). It follows that one

always has Torq(A;B) = 0 for q � 2. In this case, we denote Tor1(A;B) =

A ? B and call it the torsion product of A and B. The above exact sequence

(15.2) reduces to

(15:3) 0! A ? B ! A0 ? B ! A00 ? B ! A
B ! A0 
B ! A00 
B ! 0:

In order to compute A ? B, we may restrict ourselves to �nitely generated

modules, because every module is a direct limit of such modules and the ?

product commutes with direct limits. Over a principal ring R, every �nitely

generated module is a direct sum of a free module and of cyclic modules

R=aR. It is thus suÆcient to compute R=aR ? R=bR. The obvious free reso-

lution R
a��! R of R=aR shows that R=aR ? R=bR is the kernel of the map

R=bR
a��! R=bR. Hence

(15:4) R=aR ? R=bR ' R=(a ^ b)R
where a^ b denotes the greatest common divisor of a and b. It follows that a

module B is at if and only if it is torsion free. If R is a �eld, every R-module

is free, thus A ? B = 0 for all A and B.

15.B. K�unneth and Universal CoeÆcient Formulas

The algebraic K�unneth formula describes the cohomology groups of the tensor

product of two di�erential complexes.

(15.5) Algebraic K�unneth formula. Let (K�; d0), (L�; d00) be complexes of
R-modules and (K
L)� the simple complex associated to the double complex

(K 
 L)p;q = Kp 
 Lq. If K� or L� is torsion free, there is a split exact

sequence

0!
M
p+q=l

Hp(K�)
Hq(L�)
�! H l

�
(K 
 L)��! M

p+q=l+1

Hp(K�)? Hq(L�)

! 0

where the map � is de�ned by �(fkpg � flqg) = fkp 
 lqg for all cocycles

fkpg 2 Hp(K�), flqg 2 Hq(L�).

(15.6) Corollary. If R is a �eld, or if one of the graded modules H�(K�),
H�(L�) is torsion free, then
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H l
�
(K 
 L)�� ' M

p+q=l

Hp(K�)
Hq(L�):

Proof. Assume for example that K� is torsion free. There is a short exact

sequence of complexes

0 �! Z� �! K�
d
0

�! B�+1 �! 0

where Z�; B� � K� are respectively the graded modules of cocycles and

coboundaries in K�, considered as subcomplexes with zero di�erential. As

B�+1 is torsion free, the tensor product of the above sequence with L� is

still exact. The corresponding long exact sequence for the associated simple

complexes yields:

H l
�
(B 
 L)�� �! H l

�
(Z 
 L)�� �! H l

�
(K 
 L)�� d

0

�! H l+1
�
(B 
 L)��

�! H l+1
�
(Z 
 L)�� � � � :(15:7)

The �rst and last arrows are connecting homomorphisms; in this situation,

they are easily seen to be induced by the inclusion B� � Z�. Since the

di�erential of Z� is zero, the simple complex (Z 
 L)� is isomorphic to the

direct sum
L

p
Zp 
 L��p, where Zp is torsion free. Similar properties hold

for (B 
 L)�, hence

H l
�
(Z 
 L)�� = M

p+q=l

Zp 
Hq(L�); H l
�
(B 
 L)�� = M

p+q=l

Bp 
Hq(L�):

The exact sequence

0 �! Bp �! Zp �! Hp(K�) �! 0

tensorized by Hq(L�) yields an exact sequence of the type (15.3):

0! Hp(K�) ? Hq(L�)! Bp
Hq(L�)! Zp 
Hq(L�)

! Hp(K�)
Hq(L�)! 0:

By the above equalities, we get

0 �!
M
p+q=l

Hp(K�) ? Hq(L�) �! H l
�
(B 
 L)�� �! H l

�
(Z 
 L)��

�!
M
p+q=l

Hp(K�)
Hq(L�) �! 0:

In our initial long exact sequence (15.7), the cokernel of the �rst arrow is thusL
p+q=lH

p(K�)
Hq(L�) and the kernel of the last arrow is the torsion sumL
p+q=l+1H

p(K�) ? Hq(L�). This gives the exact sequence of the lemma.

We leave the computation of the map � as an exercise for the reader. The

splitting assertion can be obtained by observing that there always exists a
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torsion free complex eK� that splits (i.e. eZ� � eK� splits), and a morphismeK� �! K� inducing an isomorphism in cohomology; then the projectioneK� �! eZ� yields a projection

H l
�
( eK 
 L)�� �! H l

�
( eZ 
 L)�� ' M

p+q=l

eZp 
Hq(L�)

�!
M
p+q=l

Hp( eK�)
Hq(L�):

To construct eK�, let eZ� �! Z� be a surjective map with eZ� free, eB� the
inverse image of B� in eZ� and eK� = eZ�� eB�+1, where the di�erential eK� �!eK�+1 is given by eZ� �! 0 and eB�+1 � eZ�+1 � 0 ; as eB� is free, the mapeB�+1 �! B�+1 can be lifted to a map eB�+1 �! K�, and this lifting combined
with the composite eZ� ! Z� � K� yields the required complex morphismeK� = eZ� � eB�+1 �! K�. �

(15.8) Universal coeÆcient formula. Let K� be a complex of R-modules

and M a R-module such that either K� or M is torsion free. Then there is

a split exact sequence

0 �! Hp(K�)
M �! Hp(K� 
M) �! Hp+1(K�) ?M �! 0:

Indeed, this is a special case of Formula 15.5 when the complex L� is

reduced to one term L0 =M . In general, it is interesting to observe that the

spectral sequence ofK�
L� collapses inE2 ifK
� is torsion free:Hk

�
(K
L)��

is in fact the direct sum of the terms E
p;q

2 = Hp
�
K� 
 Hq(L�)

�
thanks to

(15.8).

15.C. K�unneth Formula for Sheaf Cohomology H

ere we apply the general algebraic machinery to compute cohomology groups

over a product space X�Y . The main argument is a combination of the Leray

spectral sequence with the universal coeÆcient formula for sheaf cohomology.

(15.9) Theorem. Let A be a sheaf of R-modules over a topological space

X and M a R-module. Assume that either A or M is torsion free and that

either X is compact or M is �nitely generated. Then there is a split exact

sequence

0 �! Hp(X;A)
M �! Hp(X;A
M) �! Hp+1(X;A) ?M �! 0:

Proof. IfM is �nitely generated, we get (A
M)[�](X) = A[�](X)
M easily,

so the above exact sequence is a consequence of Formula 15.8. IfX is compact,
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we may consider �Cech cochains Cq(U;A
M) over �nite coverings. There is

an obvious morphism

Cq(U;A)
M �! Cq(U;A
M)

but this morphism need not be surjective nor injective. However, since

(A
M)x = Ax 
M = lim�!
V 3x

A(V )
M;

the following properties are easy to verify:

a) If c 2 Cq(U;A
M), there is a re�nement V of U and � : V �! U such

that �?c 2 Cq(V;A
M) is in the image of Cq(V;A)
M .

b) If a tensor t 2 Cq(U;A)
M is mapped to 0 in Cq(U;A
M), there is a

re�nement V of U such that �?t 2 Cq(V;A)
M equals 0.

From a) and b) it follows that

�Hq(X;A
M) = lim�!
U

Hq
�
C�(U;A
M)

�
= lim�!

U

Hq
�
C�(U;A)
M�

and the desired exact sequence is the direct limit of the exact sequences of

Formula 15.8 obtained for K� = C�(U;A). �

(15.10) Theorem (K�unneth). Let A and B be sheaves of R-modules over

topological spaces X and Y . Assume that A is torsion free, that Y is compact

and that either X is compact or the cohomology groups Hq(Y;B) are �nitely

generated R-modules. There is a split exact sequence

0 �!
M
p+q=l

Hp(X;A)
Hq(Y;B)
��! H l(X � Y;A �B)

�!
M

p+q=l+1

Hp(X;A) ? Hq(Y;B) �! 0

where � is the map given by the cartesian product
L
�p
 �q 7�!

P
�p� �q:

Proof. We compute H l(X;A �B) by means of the Leray spectral sequence

of the projection � : X � Y �! X. This means that we are considering the

di�erential sheaf Lq = �?(A �B)[q] and the double complex

Kp;q = (Lq)[p](X):

By (12:50) we have KE
p;q

2 = Hp
�
X;Hq(L�)

�
. As Y is compact, the cohomol-

ogy sheaves Hq(L�) = Rq�?(A �B) are given by

Rq�?(A �B)x=Hq(fxg � Y;A �B�fxg�Y )=H
q(Y;Ax 
 B)=Ax 
Hq(Y;B)

thanks to the compact case of Th. 15.9 where M = Ax is torsion free. We

obtain therefore
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Rq�?(A �B) = A
Hq(Y;B);

KE
p;q

2 = Hp
�
X;A
Hq(Y;B)

�
:

Theorem 15.9 shows that the E2-term is actually given by the desired exact

sequence, but it is not a priori clear that the spectral sequence collapses in

E2. In order to check this, we consider the double complex

Cp;q = A[p](X)
 B[q](Y )

and construct a natural morphism C�;� �! K�;�. We may consider Kp;q =�
�?(A �B)[q]

�[p]
(X) as the set of equivalence classes of functions

h
�
�0; : : : ; �p) 2 �?(A �B)[q]�p = lim�! (A �B)[q]���1�V (�p)��

or more precisely

h
�
�0; : : : ; �p ; (x0; y0); : : : ; (xq; yq)

� 2 Axq 
 Byq with

�0 2 X; �j 2 V (�0; : : : ; �j�1); 1 � j � p;
(x0; y0) 2 V (�0; : : : ; �p)� Y;
(xj ; yj) 2 V

�
�0; : : : ; �p ; (x0; y0); : : : ; (xj�1; yj�1)

�
; 1 � j � q:

Then f 
 g 2 Cp;q is mapped to h 2 Kp;q by the formula

h
�
�0; : : : ; �p ; (x0; y0); : : : ; (xq; yq)

�
= f(�0; : : : ; �p)(xq)
 g(y0; : : : ; yq):

As A[p](X) is torsion free, we �nd

CE
p;q

1 = A[p](X)
Hq(Y;B):

Since either X is compact or Hq(Y;B) �nitely generated, Th. 15.9 yields

CE
p;q

2 = Hp
�
X;A
Hq(Y;B)

� ' KE
p;q

2

hence H l(K�) ' H l(C�) and the algebraic K�unneth formula 15.5 concludes

the proof. �

(15.11) Remark. The exact sequences of Th. 15.9 and of K�unneth's theorem

also hold for cohomology groups with compact support, provided that X and

Y are locally compact and A (or B) is torsion free. This is an immediate

consequence of Prop. 7.12 on direct limits of cohomology groups over compact

subsets.

(15.12) Corollary. When A and B are torsion free constant sheaves, e.g.

A = B = Z or R, the K�unneth formula holds as soon as X or Y has the

same homotopy type as a �nite cell complex.

Proof. If Y satis�es the assumption, we may suppose in fact that Y is a �nite

cell complex by the homotopy invariance. Then Y is compact and H�(Y;B)
is �nitely generated, so Th. 15.10 can be applied. �
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16. Poincar�e duality

16.A. Injective Modules and Ext Functors

The study of duality requires some algebraic preliminaries on the Hom func-

tor and its derived functors Extq. Let R be a commutative ring with unit,M

a R-module and

0 �! A �! B �! C �! 0

an exact sequence of R-modules. Then we have exact sequences

0 �!HomR(M;A) �! HomR(M;B) �! HomR(M;C);

HomR(A;M) � HomR(B;M) � HomR(C;M) � 0;

i.e. Hom(M; �) is a covariant left exact functor and Hom(�;M) a contravari-

ant right exact functor. The module M is said to be projective if Hom(M; �)
is also right exact, and injective if Hom(�;M) is also left exact. Every free

R-module is projective. Conversely, if M is projective, any surjective mor-

phism F �!M from a free module F ontoM must split
�
IdM has a preimage

in Hom(M;F )
�
; if R is a principal ring, \projective" is therefore equivalent

to \free".

(16.1) Proposition. Over a principal ring R, a module M is injective if and

only if it is divisible, i.e. if for every x 2 M and � 2 R r f0g, there exists

y 2M such that �y = x.

Proof. If M is injective, the exact sequence 0 �! R
���! R �! R=�R �! 0

shows that

M = Hom(R;M)
���! Hom(R;M) =M

must be surjective, thus M is divisible.

Conversely, assume that R is divisible. Let f : A �! M be a morphism

and B � A. Zorn's lemma implies that there is a maximal extension ef : eA �!
M of f where A � eA � B. If eA 6= B, select x 2 Br eA and consider the ideal

I of elements � 2 R such that �x 2 eA. As R is principal we have I = �0R for

some �0. If �0 6= 0, select y 2 M such that �0y = ef(�0x) and if �0 = 0 take

y arbitrary. Then ef can be extended to eA+ Rx by letting ef(x) = y. This is

a contradiction, so we must have eA = B. �

(16.2) Proposition. Every module M can be embedded in an injective

module fM .

Proof. Assume �rst R = Z. Then set
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M 0 = HomZ(M;Q=Z); M 00 = HomZ(M
0;Q=Z) � Q=ZM

0

:

Since Q=Z is divisible, Q=Z and Q=ZM
0

are injective. It is therefore suÆcient

to show that the canonical morphism M �! M 00 is injective. In fact, for

any x 2 M r f0g, the subgroup Zx is cyclic (�nite or in�nite), so there is

a non trivial morphism Zx �! Q=Z, and we can extend this morphism into

a morphism u : M �! Q=Z. Then u 2 M 0 and u(x) 6= 0, so M �! M 00 is
injective.

Now, for an arbitrary ring R, we set fM = HomZ

�
R;Q=ZM

0 �
. There are

R-linear embeddings

M = HomR(R;M) ,�! HomZ(R;M) ,�! HomZ

�
R;Q=ZM

0 �
= fM

and since HomR(�;fM) ' HomZ

��;Q=ZM 0 �
, it is clear that fM is injective

over the ring R. �

As a consequence, any module has a (cohomological) resolution by injec-

tive modules. Let A;B be given R-modules, let d0 : B ! D� be an injective

resolution of B and let d00 : C� ! A be a free (or projective) resolution of A.

We consider the cohomology double complex

Kp;q = Hom(Cq; D
p); d = d0 + (�1)p(d00)y

(y means transposition) and the associated �rst and second spectral se-

quences. Since Hom(�; Dp) and Hom(Cq; �) are exact, we get

E
p;0
1 = Hom(A;Dp); eEp;01 = Hom(Cp; B);

E
p;q

1 = eEp;q1 = 0 for q 6= 0:

Therefore, both spectral sequences collapse in E1 and we get

H l(K�) = H l
�
Hom(A;D�)

�
= H l

�
Hom(C�; B)

�
;

in particular, the cohomology groups H l(K�) do not depend on the choice of

the resolutions C� or D�.

(16.3) De�nition. The q-th extension module of A, B is

Ext
q

R
(A;B) = Hq(K�) = Hq

�
Hom(A;D�)

�
= Hq

�
Hom(C�; B)

�
:

By the left exactness of Hom(A; �), we get in particular Ext0(A;B) =

Hom(A;B). If A is projective or B injective, then clearly Extq(A;B) = 0 for

all q � 1. Any exact sequence 0 ! A ! A0 ! A00 ! 0 is converted into an

exact sequence by Hom(�; D�), thus we get a long exact sequence

0 �! Hom(A00; B) �! Hom(A0; B) �! Hom(A;B) �! Ext1(A00; B) � � �
�! Extq(A00; B) �! Extq(A0; B) �! Extq(A;B) �! Extq+1(A00; B) � � �
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Similarly, any exact sequence 0! B ! B0 ! B00 ! 0 yields

0 �! Hom(A;B) �! Hom(A;B0) �! Hom(A;B00) �! Ext1(A;B) � � �
�! Extq(A;B) �! Extq(A;B0) �! Extq(A;B00) �! Extq+1(A;B) � � �

Suppose now that R is a principal ring. Then the resolutions C� or D� can
be taken of length 1 (any quotient of a divisible module is divisible), thus

Extq(A;B) is always 0 for q � 2. In this case, we simply denote Ext1(A;B) =

Ext(A;B).When A is �nitely generated, the computation of Ext(A;B) can be

reduced to the cyclic case, since Ext(A;B) = 0 when A is free. For A = R=aR,

the obvious free resolution R
a��!R gives

(16:4) ExtR(R=aR;B) = B=aB:

(16.5) Lemma. Let K� be a homology complex and let M ! M� be an

injective resolution of a R-moduleM . Let L� be the simple complex associated
to Lp;q = HomR(Kq;M

p). There is a split exact sequence

0 �! Ext
�
Hq�1(K�);M

� �! Hq(L�) �! Hom
�
Hq(K�);M

� �! 0:

Proof. As the functor HomR(�;Mp) is exact, we get

LE
p;q

1 = Hom
�
Hq(K�);M

p
�
;

LE
p;q

2 =

8<:Hom
�
Hq(K�);M

�
for p = 0,

Ext
�
Hq(K�);M

�
for p = 1,

0 for p � 2.

The spectral sequence collapses in E2, therefore we get

G0

�
Hq(L�)

�
= Hom

�
Hq(K�);M

�
;

G1

�
Hq(L�)

�
= Ext

�
Hq�1(K�);M

�
and the expected exact sequence follows. By the same arguments as at the

end of the proof of Formula 15.5, we may assume that K� is split, so that

there is a projection Kq �! Zq. Then the composite morphism

Hom
�
Hq(K�);M

�
= Hom(Zq=Bq;M) �! Hom(Kq=Bq;M)

� Zq(L�) �! Hq(L�)

de�nes a splitting of the exact sequence. �
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16.B. Poincar�e Duality for Sheaves

Let A be a sheaf of abelian groups on a locally compact topological space X

of �nite topological dimension n = topdimX. By 13.12 c), A admits a soft

resolution L� of length n. IfM !M0 !M1 ! 0 is an injective resolution of

a R-moduleM , we introduce the double complex of presheaves F
p;q

A;M
de�ned

by

(16:6) F
p;q

A;M
(U) = HomR

�
L
n�q
c (U);Mp

�
;

where the restriction map F
p;q

A;M
(U) �! F

p;q

A;M
(V ) is the adjoint of the inclu-

sion Ln�q
c

(V ) �! Ln�q
c

(U) when V � U . As Ln�q is soft, any f 2 Ln�q
c

(U)

can be written as f =
P
f� with (f�) subordinate to any open covering (U�)

of U ; it follows easily that F
p;q

A;M
satisfy axioms (II-2.4) of sheaves. The in-

jectivity of Mp implies that F
p;q

A;M
is a abby sheaf. By Lemma 16.5, we get

a split exact sequence

0 �! Ext
�
Hn�q+1
c

(X;A);M
� �! Hq

�
F�A;M(X)

�
�! Hom

�
Hn�q
c

(X;A);M
� �! 0:(16:7)

This can be seen as an abstract Poincar�e duality formula, relating the co-

homology groups of a di�erential sheaf F�
A;M

\dual" of A to the dual of

the cohomology with compact support of A. In concrete applications, it still

remains to compute Hq
�
F�
A;M

(X)
�
. This can be done easily when X is a

manifold and A is a constant or locally constant sheaf.

16.C. Poincar�e Duality on Topological Manifolds

Here, X denotes a paracompact topological manifold of dimension n.

(16.8) De�nition. Let L be a R-module. A locally constant sheaf of stalk L

on X is a sheaf A such that every point has a neighborhood 
 on which A�


is R-isomorphic to the constant sheaf L.

Thus, a locally constant sheaf A can be seen as a discrete �ber bundle

over X whose �bers are R-modules and whose transition automorphisms are

R-linear. If X is locally contractible, a locally constant sheaf of stalk L is

given, up to isomorphism, by a representation � : �1(X) �! AutR(L) of

the fundamental group of X, up to conjugation; denoting by eX the universal

covering of X, the sheaf A associated to � can be viewed as the quotient ofeX � L by the diagonal action of �1(X). We leave the reader check himself

the details of these assertions: in fact similar arguments will be explained in

full details in xV-6 when properties of at vector bundles are discussed.

Let A be a locally constant sheaf of stalk L, let L� be a soft resolution of

A and F
p;q

A;M
the associated abby sheaves. For an arbitrary open set U � X,

Formula (16.7) gives a (non canonical) isomorphism
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Hq
�
F
�
A;M(U)

� ' Hom
�
Hn�q
c

(U;A);M
�� Ext

�
Hn�q+1
c

(U;A);M
�

and in the special case q = 0 a canonical isomorphism

(16:9) H0
�
F�A;M(U)

�
= Hom

�
Hn

c
(U;A);M

�
:

For an open subset 
 homeomorphic to Rn , we have A�
 ' L. Proposition

14.16 and the exact sequence of the pair yield

Hq

c (
;L) ' Hq(Sn; f1g ; L) =
�
L for q = n,

0 for q 6= n.

If 
 ' Rn , we �nd

H0
�
F�A;M(
)

� ' Hom(L;M); H1
�
F�A;M(
)

� ' Ext(L;M)

and Hq
�
F�
A;M

(
)
�
= 0 for q 6= 0; 1. Consider open sets V � 
 where V

is a deformation retract of 
. Then the restriction map Hq
�
F�
A;M

(
)
� �!

Hq
�
F�
A;M

(V )
�
is an isomorphism. Taking the direct limit over all such neigh-

borhoods V of a given point x 2 
, we see that H0(F�A;M) and H1(F�A;M)

are locally constant sheaves of stalks Hom(L;M) and Ext(L;M), and that

Hq(F�A;M) = 0 for q 6= 0; 1. When Ext(L;M) = 0, the complex F�A;M is thus

a abby resolution of H0 = H0(F�
A;M

) and we get isomorphisms

Hq
�
F�A;M(X)

�
= Hq(X;H0);(16:10)

H
0(U) = H0(F�A;M(U)

�
= Hom

�
Hn

c
(U;A);M

�
:(16:11)

(16.12) De�nition. The locally constant sheaf �X = H0(F�
Z;Z

) of stalk Z

de�ned by

�X(U) = HomZ

�
Hn

c (U;Z);Z
�

is called the orientation sheaf (or dualizing sheaf) of X.

This sheaf is given by a homomorphism �1(X) �! f1;�1g ; it is not

diÆcult to check that �X coincides with the trivial sheaf Z if and only if X is

orientable (cf. exercice 18.?). In general, Hn

c (U;A) = Hn

c (U;Z)
ZA(U) for
any small open set U on which A is trivial, thus

H0(F�A;M) = �X 
ZHom(A;M):

A combination of (16.7) and (16:10) then gives:

(16.13) Poincar�e duality theorem. Let X be a topological manifold, let A

be a locally constant sheaf over X of stalk L and let M be a R-module such

that Ext(L;M) = 0. There is a split exact sequence
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0 �! Ext
�
Hn�q+1
c

(X;A);M
� �! Hq

�
X; �X 
 Hom(A;M)

�
�! Hom

�
Hn�q
c

(X;A);M
� �! 0:

In particular, if either X is orientable or R has characteristic 2, then

0 �! Ext
�
Hn�q+1
c

(X;R); R
� �! Hq(X;R) �! Hom

�
Hn�q
c

(X;R); R
�

�! 0: �

(16.14) Corollary. Let X be a connected topological manifold, n = dimX.

Then for any R-module L

a) Hn

c
(X; �X 
 L) ' L ;

b) Hn

c (X;L) ' L=2L if X is not orientable.

Proof. First assume that L is free. For q = 0 and A = �X 
 L, the Poincar�e
duality formula gives an isomorphism

Hom
�
Hn

c
(X; �X 
 L);M

� ' Hom(L;M)

and the isomorphism is functorial with respect to morphisms M �! M 0.
Taking M = L or M = Hn

c
(X; �X 
 L), we easily obtain the existence of

inverse morphisms Hn

c
(X; �X 
 L) �! L and L �! Hn

c
(X; �X 
 L), hence

equality a). Similarly, for A = L we get

Hom
�
Hn

c (X;L);M
� ' H0

�
X; �X 
Hom(L;M)

�
:

If X is non orientable, then �X is non trivial and the global sections of the

sheaf �X 
Hom(L;M) consist of 2-torsion elements of Hom(L;M), that is

Hom
�
Hn

c (X;L);M
� ' Hom(L=2L;M):

Formula b) follows. If L is not free, the result can be extended by using a free

resolution 0! L1 ! L0 ! L! 0 and the associated long exact sequence.

�

(16.15) Remark. If X is a connected non compact n-dimensional manifold,

it can be proved (exercise 18.?) that Hn(X;A) = 0 for every locally constant

sheaf A on X. �

Assume from now on that X is oriented. Replacing M by L 
M and

using the obvious morphism M �! Hom(L;L 
M), the Poincar�e duality

theorem yields a morphism

(16:16) Hq(X;M) �! Hom
�
Hn�q
c

(X;L); L
M�;
in other words, a bilinear pairing
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(16:160) Hn�q
c

(X;L)�Hq(X;M) �! L
M:

(16.17) Proposition. Up to the sign, the above pairing is given by the cup

product, modulo the identi�cation Hn

c
(X;L
M) ' L
M .

Proof. By functoriality in L, we may assume L = R. Then we make the

following special choices of resolutions:

Lq = R[q] for q < n; Ln = ker(R[q] �! R[q+1]);

M0 = an injective module containing M [n]
c
(X)=dn�1M [n�1]

c
(X):

We embed M in M0 by � 7! u 
Z� where u 2 Z[n](X) is a representative

of a generator of Hn

c (X;Z), and we set M1 = M0=M . The projection map

M0 �!M1 can be seen as an extension ofedn : M [n]
c
(X)=dn�1M [n�1]

c
(X) �! dnM [n]

c
(X);

since Ker edn ' Hn

c
(X;M) = M . The inclusion dnM

[n]
c (X) � M1 can be

extended into a map � :M
[n+1]
c (X) �!M1. The cup product bilinear map

M [q](U)�R[n�q]
c

(U) �!M [n]
c
(X) �!M0

gives rise to a morphism M [q](U) �! F
q

R;M
(U) de�ned by

(16:18)
M [q](U)�! Hom

�
Ln�qc (U);M0

��Hom
�
Ln�q+1c (U);M1

�
f 7�! (g 7�! f ` g) � �

h 7�! �(f ` h)
�
:

This morphism is easily seen to give a morphism of di�erential sheaves

M [�] �! F�
R;M

, when M [�] is truncated in degree n, i.e. when M [n] is re-

placed by Ker dn. The induced morphism

M = H0(M [�]) �! H0(F�R;M)

is then the identity map, hence the cup product morphism (16.18) actually

induces the Poincar�e duality map (16.16). �

(16.19) Remark. If X is an oriented di�erentiable manifold, the natural

isomorphism Hn
c (X;R) ' R given by 16.14 a) corresponds in De Rham co-

homology to the integration morphism f 7�! R
X
f , f 2 Dn(X). Indeed, by a

partition of unity, we may assume that Supp f � 
 ' Rn . The proof is thus

reduced to the case X = Rn , which itself reduces to X = R since the cup

product is compatible with the wedge product of forms. Let us consider the

covering U = (]k� 1; k+ 1[)k2Z and a partition of unity ( k) subordinate to

U. The �Cech di�erential

AC0(U;Z) �! AC1(U;Z)

(ck) 7�! (ck k+1) = (ck+1 � ck)
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shows immediately that the generators of H1
c
(R;Z) are the 1-cocycles c such

that c01 = �1 and ck k+1 = 0 for k 6= 0. By Formula (6.12), the associated

closed di�erential form is

f = c01 1d 0 + c10 0d 1;

hence f = �1[0;1]d 0 and f does satisfy
R
R
f = �1.

(16.20) Corollary. If X is an oriented C1 manifold, the bilinear map

Hn�q
c (X;R) �Hq(X;R) �! R; (ffg; fgg) 7�!

Z
X

f ^ g

is well de�ned and identi�es Hq(X;R) to the dual of Hn�q
c

(X;R).





Chapter V

Hermitian Vector Bundles

This chapter introduces the basic de�nitions concerning vector bundles and connec-
tions. In the �rst sections, the concepts of connection, curvature form, �rst Chern
class are considered in the framework of di�erentiable manifolds. Although we are
mainly interested in complex manifolds, the ideas which will be developed in the
next chapters also involve real analysis and real geometry as essential tools. In the
second part, the special features of connections over complex manifolds are investi-
gated in detail: Chern connections, �rst Chern class of type (1; 1), induced curvature
forms on sub- and quotient bundles, : : : . These general concepts are then illustrated
by the example of universal vector bundles over Pn and over Grassmannians.

1. De�nition of Vector Bundles

Let M be a C1 di�erentiable manifold of dimension m and let K = R or

K = C be the scalar �eld. A (real, complex) vector bundle of rank r over M

is a C1 manifold E together with

i) a C1 map � : E �!M called the projection,

ii) a K -vector space structure of dimension r on each �ber Ex = ��1(x)

such that the vector space structure is locally trivial. This means that

there exists an open covering (V�)�2I of M and C1 di�eomorphisms called

trivializations

�� : E�V� �! V� � K r ; where E�V� = ��1(V�);

such that for every x 2 V� the map

Ex
���! fxg � K r �! K r

is a linear isomorphism. For each �; � 2 I, the map

��� = �� Æ ��1� : (V� \ V�)� K r �! (V� \ V�)� K r

acts as a linear automorphism on each �ber fxg� K r . It can thus be written

���(x; �) = (x; g��(x) � �); (x; �) 2 (V� \ V�)� K r



290 Chapter V Hermitian Vector Bundles

where (g��)(�;�)2I�I is a collection of invertible matrices with coeÆcients in

C1(V� \ V� ; K ), satisfying the cocycle relation

(1:1) g�� g� = g� on V� \ V� \ V :
The collection (g��) is called a system of transition matrices. Conversely,

any collection of invertible matrices satisfying (1.1) de�nes a vector bundle

E, obtained by gluing the charts V� � K r via the identi�cations ���.

(1.2) Example. The product manifold E =M � K r is a vector bundle over
M , and is called the trivial vector bundle of rank r over M . We shall often

simply denote it K r for brevity.

(1.3) Example. A much more interesting example of real vector bundle is

the tangent bundle TM ; if �� : V� �! Rn is a collection of coordinate

charts on M , then �� = � � d�� : TM�V� �! V� � Rm de�ne trivializations

of TM and the transition matrices are given by g��(x) = d���(x
�) where

��� = �� Æ ��1� and x� = ��(x). The dual T
?M of TM is called the cotangent

bundle and the p-th exterior power �pT ?M is called the bundle of di�erential

forms of degree p on M .

(1.4) De�nition. If 
 � M is an open subset and k a positive integer or

+1, we let Ck(
;E) denote the space of Ck sections of E�
, i.e. the space of

Ck maps s : 
 �! E such that s(x) 2 Ex for all x 2 
 (that is � Æ s = Id
).

Let � : E�V �! V � K r be a trivialization of E. To �, we associate the

C1 frame (e1; : : : ; er) of E�V de�ned by

e�(x) = ��1(x; "�); x 2 V;
where ("�) is the standard basis of K r . A section s 2 Ck(V;E) can then be

represented in terms of its components �(s) = � = (�1; : : : ; �r) by

s =
X

1���r
��e� on V; �� 2 Ck(V; K ):

Let (��) be a family of trivializations relative to a covering (V�) of M . Given

a global section s 2 Ck(M;E), the components ��(s) = �� = (��1 ; : : : ; �
�

r
)

satisfy the transition relations

(1:5) �� = g�� �
� on V� \ V� :

Conversely, any collection of vector valued functions �� : V� �! K r satisfy-

ing the transition relations de�nes a global section s of E.

More generally, we shall also consider di�erential forms onM with values

in E. Such forms are nothing else than sections of the tensor product bundle

�pT ?M 
R E. We shall write
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Ck
p
(
;E) = Ck(
;�pT ?M 
R E)(1:6)

Ck� (
;E) =
M

0�p�m
Ck
p
(
;E):(1:7)

2. Linear Connections

A (linear) connection D on the bundle E is a linear di�erential operator of

order 1 acting on C1� (M;E) and satisfying the following properties:

D : C1
q
(M;E) �! C1

q+1(M;E);(2:1)

D(f ^ s) = df ^ s+ (�1)pf ^Ds(2:10)

for any f 2 C1
p
(M; K ) and s 2 C1

q
(M;E), where df stands for the usual

exterior derivative of f .

Assume that � : E�
 ! 
 � K r is a trivialization of E�
 , and let

(e1; : : : ; er) be the corresponding frame of E�
. Then any s 2 C1q (
;E)

can be written in a unique way

s =
X

1���r
�� 
 e�; �� 2 C1q (
; K ):

By axiom (2:10) we get

Ds =
X

1���r

�
d�� 
 e� + (�1)p�� ^De�

�
:

If we write De� =
P

1���r a�� 
 e� where a�� 2 C11 (
; K ), we thus have

Ds =
X
�

�
d�� +

X
�

a�� ^ ��
�
 e�:

Identify E�
 with 
 � K r via � and denote by d the trivial connection d� =

(d��) on 
 � K r . Then the operator D can be written

(2:2) Ds '� d� + A ^ �
where A = (a��) 2 C11 (
;Hom(K r ; K r )). Conversely, it is clear that any

operator D de�ned in such a way is a connection on E�
. The matrix 1-form

A will be called the connection form of D associated to the trivialization �.

If e� : E�
 ! 
 � K r is another trivialization and if we set

g = e� Æ ��1 2 C1(
;Gl(K r ))
then the new components e� = (e��) are related to the old ones by e� = g�.

Let eA be the connection form of D with respect to e�. Then
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Ds 'e� de� + eA ^ e�
Ds '� g�1(de� + eA ^ e�) = g�1(d(g�) + eA ^ g�)

= d� + (g�1 eAg + g�1dg) ^ �:
Therefore we obtain the gauge transformation law :

(2:3) A = g�1 eAg + g�1dg:

3. Curvature Tensor

Let us compute D2 : C1
q
(M;E) ! C1

q+2(M;E) with respect to the trivial-

ization � : E�
 ! 
 � K r . We obtain

D2s '� d(d� + A ^ �) +A ^ (d� + A ^ �)
= d2� + (dA ^ � � A ^ d�) + (A ^ d� + A ^ A ^ �)
= (dA+ A ^A) ^ �:

It follows that there exists a global 2-form �(D) 2 C12 (M;Hom(E;E)) called

the curvature tensor of D, such that

D2s = �(D) ^ s;
given with respect to any trivialization � by

(3:1) �(D) '� dA+A ^ A:

(3.2) Remark. If E is of rank r = 1, then A 2 C11 (M; K ) and Hom(E;E)

is canonically isomorphic to the trivial bundle M � K , because the en-

domorphisms of each �ber Ex are homotheties. With the identi�cation

Hom(E;E) = K , the curvature tensor �(D) can be considered as a closed

2-form with values in K :

(3:3) �(D) = dA:

In this case, the gauge transformation law can be written

(3:4) A = eA+ g�1dg; g = e� Æ ��1 2 C1(
; K ?):
It is then immediately clear that dA = d eA, and this equality shows again

that dA does not depend on �. �

Now, we show that the curvature tensor is closely related to commutation

properties of covariant derivatives.
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(3.5) De�nition. If � is a C1 vector �eld with values in TM , the covari-

ant derivative of a section s 2 C1(M;E) in the direction � is the section

�D � s 2 C1(M;E) de�ned by �D � s = Ds � �.

(3.6) Proposition. For all sections s 2 C1(M;E) and all vector �elds

�; � 2 C1(M;TM), we have

�D � (�D � s)� �D � (�D � s) = [�; �]D � s+ �(D)(�; �) � s
where [�; �] 2 C1(M;TM) is the Lie bracket of �; �.

Proof. Let (x1; : : : ; xm) be local coordinates on an open set 
 � M . Let

� : E�
 �! 
 � K r be a trivialization of E and let A be the corresponding

connection form. If � =
P
�j @=@xj and A =

P
Aj dxj , we �nd

(3:7) �Ds '� (d� + A�) � � =
X
j

�j

� @�
@xj

+Aj � �
�
:

Now, we compute the above commutator [�D; �D] at a given point z0 2 
.
Without loss of generality, we may assume A(z0) = 0 ; in fact, one can always

�nd a gauge transformation g near z0 such that g(z0) = Id and dg(z0) =

A(z0) ; then (2.3) yields eA(z0) = 0. If � =
P
�k @=@xk, we �nd �D � s '�P

�k @�=@xk at z0, hence

�D � (�D � s) '�
X
k

�k
@

@xk

X
j

�j

� @�
@xj

+ Aj � �
�
;

�D � (�D � s)� �D � (�D � s) '�
'�
X
j;k

�
�k
@�j

@xk
� �k

@�j

@xk

� @�
@xj

+
X
j;k

@Aj

@xk
(�j�k � �j�k) � �

= d�([�; �]) + dA(�; �) � �;
whereas �(D) '� dA and [�; �]Ds '� d�([�; �]) at point z0. �

4. Operations on Vector Bundles

Let E;F be vector bundles of rank r1; r2 over M . Given any functorial oper-

ation on vector spaces, a corresponding operation can be de�ned on bundles

by applying the operation on each �ber. For example E?, E�F , Hom(E;F )

are de�ned by

(E?)x = (Ex)
?; (E � F )x = Ex � Fx; Hom(E;F )x = Hom(Ex; Fx):

The bundles E and F can be trivialized over the same covering V� of M

(otherwise take a common re�nement). If (g��) and (��) are the transition
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matrices of E and F , then for example E 
 F , �kE, E? are the bundles

de�ned by the transition matrices g��
��, �kg��, (gy��)�1 where y denotes
transposition.

Suppose now that E;F are equipped with connections DE ; DF . Then

natural connections can be associated to all derived bundles. Let us mention

a few cases. First, we let

(4:1) DE�F = DE �DF :
It follows immediately that

(4:10) �(DE�F ) = �(DE)� �(DF ):
DE
F will be de�ned in such a way that the usual formula for the di�erentia-

tion of a product remains valid. For every s 2 C1� (M;E), t 2 C1� (M;F ), the

wedge product s^ t can be combined with the bilinear map E�F �! E
F
in order to obtain a section s ^ t 2 C1(M;E 
 F ) of degree deg s + deg t.

Then there exists a unique connection DE
F such that

(4:2) DE
F (s ^ t) = DEs ^ t+ (�1)deg ss ^DF t:
As the products s ^ t generate C1� (M;E 
 F ), the uniqueness is clear. If

E, F are trivial on an open set 
 � M and if AE , AF , are their connec-

tion 1-forms, the induced connection DE
F is given by the connection form

AE
IdF + IdE 
AF . The existence follows. An easy computation shows that

D2
E
F (s ^ t) = D2

E
s ^ t+ s ^D2

F
t, thus

(4:20) �(DE
F ) = �(DE)
 IdF + IdE 
 �(DF ):
Similarly, there are unique connections DE? and DHom(E;F ) such that

(DE?u) � s = d(u � s)� (�1)deg uu �DEs;(4:3)

(DHom(E;F )v) � s = DF (v � s)� (�1)deg vv �DEs(4:4)

whenever s 2 C1� (M;E); u 2 C1� (M;E?); v 2 C1�
�
Hom(E;F )

�
. It follows

that

0 = d2(u � s) = ��(DE?) � u� � s+ u � ��(DE) � s�:
If y denotes the transposition operator Hom(E;E)! Hom(E?; E?), we thus

get

(4:30) �(DE?) = ��(DE)y:
With the identi�cation Hom(E;F ) = E? 
 F , Formula (4:20) implies

(4:40) �(DHom(E;F )) = IdE? 
�(DF )��(DE)y 
 IdF :

Finally, �kE carries a natural connection D�kE . For every s1; : : : ; sk in

C1� (M;E) of respective degrees p1; : : : ; pk, this connection satis�es
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D�kE(s1 ^ : : : ^ sk) =
X

1�j�k
(�1)p1+:::+pj�1s1 ^ : : :DEsj : : : ^ sk;(4:5)

�(D�kE) � (s1 ^ : : : ^ sk) =
X

1�j�k
s1 ^ : : : ^ �(DE) � sj ^ : : : ^ sk:(4:50)

In particular, the determinant bundle, de�ned by detE = �rE where r is the

rank of E, has a curvature form given by

(4:6) �(DdetE) = TE
�
�(DE)

�
where TE : Hom(E;E) �! K is the trace operator. As a conclusion of this

paragraph, we mention the following simple identity.

(4.7) Bianchi identity. DHom(E;E)

�
�(DE)

�
= 0.

Proof. By de�nition of DHom(E;E), we �nd for any s 2 C1(M;E)

DHom(E;E)

�
�(DE)

� � s = DE
�
�(DE) � s

�� �(DE) � (DEs)
= D3

E
s�D3

E
s = 0: �

5. Pull-Back of a Vector Bundle

Let fM ,M be C1 manifolds and  : fM !M a smooth map. If E is a vector

bundle onM , one can de�ne in a natural way a C1 vector bundle e� : eE ! fM
and a C1 linear morphism 	 : eE ! E such that the diagram

eE 	�! E?ye� ?y�fM  �! M

commutes and such that 	 : eEx �! E (x) is an isomorphism for every

x 2M . The bundle eE can be de�ned by

(5:1) eE = f(ex; �) 2 fM �E ;  (ex) = �(�)g

and the maps e� and 	 are then the restrictions to eE of the projections offM �E on fM and E respectively.

If �� : E�V� �! V� � K r are trivializations of E, the maps

e�� = �� Æ 	 : eE� �1(V�) �!  �1(V�)� K r

de�ne trivializations of eE with respect to the covering eV� =  �1(V�) of fM .

The corresponding system of transition matrices is given by
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(5:2) eg�� = g�� Æ  on eV� \ eV� :
(5.3) De�nition. eE is termed the pull-back of E under the map  and is

denoted eE =  ?E.

Let D be a connection on E. If (A�) is the collection of connection forms

of D with respect to the ��'s, one can de�ne a connection eD on eE by the

collection of connection forms eA� =  ?A� 2 C11
�eV�;Hom(K r ; K r )�, i.e. for

every es 2 C1
p
(eV�; eE)

eDes 'e�� de� +  ?A� ^ e�:
Given any section s 2 C1p (M;E), one de�nes a pull back  ?s which is a

section in C1p (fM; eE) : for s = f 
 u, f 2 C1p (M; K ), u 2 C1(M;E), set

 ?s =  ?f 
 (u Æ  ). Then we have the formula

(5:4) eD( ?s) =  ?(Ds):

Using (5.4), a simple computation yields

(5:5) �( eD) =  ?(�(D)):

6. Parallel Translation and Flat Vector Bundles

Let  : [0; 1] �!M be a smooth curve and s : [0; 1]! E a C1 section of E

along , i.e. a C1 map s such that s(t) 2 E(t) for all t 2 [0; 1]. Then s can

be viewed as a section of eE = ?E over [0; 1]. The covariant derivative of s

is the section of E along  de�ned by

(6:1)
Ds

dt
= eDs(t) � d

dt
2 E(t);

where eD is the induced connection on eE. If A is a connection form of D with

respect to a trivialization � : E�
 �! 
 � K r , we have eDs '� d� + ?A � �,
i.e.

(6:2)
Ds

dt
'� d�

dt
+
�
A((t)) � 0(t)� � �(t) for (t) 2 
:

For v 2 E(0) given, the Cauchy uniqueness and existence theorem for ordi-

nary linear di�erential equations implies that there exists a unique section s

of eE such that s(0) = v and Ds=dt = 0.

(6.3) De�nition. The linear map

T : E(0) �! E(1); v = s(0) 7�! s(1)



6. Parallel Translation and Flat Vector Bundles 297

is called parallel translation along .

If  = 21 is the composite of two paths 1, 2 such that 2(0) = 1(1),

it is clear that T = T2 Æ T1 , and the inverse path �1 : t 7! (1 � t)

is such that T�1 = T�1


. It follows that T is a linear isomorphism from

E(0) onto E(1).

More generally, if h : W �! M is a C1 map from a domain W � Rp

into M and if s is a section of h?E, we de�ne covariant derivatives Ds=@tj,

1 � j � p, by eD = h?D and

(6:4)
Ds

@tj
= eDs � @

@tj
:

Since @=@tj, @=@tk commute and since �( eD) = h?�(D), Prop. 3.6 implies

(6:5)
D

@tj

Ds

@tk
� D

@tk

Ds

@tj
= �( eD)� @

@tj
;
@

@tk

�
� s = �(D)h(t)

� @h
@tj

;
@h

@tk

�
� s(t):

(6.6) De�nition. The connection D is said to be at if �(D) = 0.

Assume from now on that D is at. We then show that T only depends

on the homotopy class of . Let h : [0; 1]� [0; 1] �! M be a smooth homo-

topy h(t; u) = u(t) from 0 to 1 with �xed end points a = u(0), b = u(1).

Let v 2 Ea be given and let s(t; u) be such that s(0; u) = v and Ds=@t = 0

for all u 2 [0; 1]. Then s is C1 in both variables (t; u) by standard theorems

on the dependence of parameters. Moreover (6.5) implies that the covariant

derivatives D=@t, D=@u commute. Therefore, if we set s0 = Ds=@u, we �nd

Ds0=@t = 0 with initial condition s0(0; u) = 0 (recall that s(0; u) is a con-

stant). The uniqueness of solutions of di�erential equations implies that s0

is identically zero on [0; 1] � [0; 1], in particular Tu(v) = s(1; u) must be

constant, as desired.

(6.7) Proposition. Assume that D is at. If 
 is a simply connected open

subset of M , then E�
 admits a C1 parallel frame (e1; : : : ; er), in the sense

that De� = 0 on 
, 1 � � � r. For any two simply connected open subsets


;
0 the transition automorphism between the corresponding parallel frames

(e�) and (e0
�
) is locally constant.

The converse statement \E has parallel frames near every point implies

that �(D) = 0 " can be immediately veri�ed from the equality �(D) = D2.

Proof. Choose a base point a 2 
 and de�ne a linear isomorphism � : 
 �
Ea �! E�
 by sending (x; v) on T(v) 2 Ex, where  is any path from a

to x in 
 (two such paths are always homotopic by hypothesis). Now, for

any path  from a to x, we have by construction (D=dt)�((t); v) = 0. Set

ev(x) = �(x; v). As  may reach any point x 2 
 with an arbitrary tangent
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vector � = 0(1) 2 TxM , we get Dev(x) �� = (D=dt)�((t); v)�t=1 = 0. Hence

Dev is parallel for any �xed vector v 2 Ea ; Prop. 6.7 follows. �

Assume that M is connected. Let a be a base point and fM �! M the

universal covering of M . The manifold fM can be considered as the set of

pairs (x; []), where [] is a homotopy class of paths from a to x. Let �1(M)

be the fundamental group of M with base point a, acting on fM on the

left by [�] � (x; []) = (x; [��1]). If D is at, �1(M) acts also on Ea by

([�]; v) 7! T�(v), [�] 2 �1(M), v 2 Ea, and we have a well de�ned map

	 : fM � Ea �! E; 	(x; []) = T(v):

Then 	 is invariant under the left action of �1(M) on fM � Ea de�ned by

[�] � �(x; []); v�= �(x; [��1]); T�(v)�;
therefore we have an isomorphism E ' (fM � Ea)=�1(M).

Conversely, let S be a K -vector space of dimension r together with a left

action of �1(M). The quotient E = (fM � S)=�1(M) is a vector bundle over

M with locally constant transition automorphisms (g��) relatively to any

covering (V�) of M by simply connected open sets. The relation �� = g�� �
�

implies d�� = g�� d�
� on V� \ V�. We may therefore de�ne a connection D

on E by letting Ds '�� d�� on each V�. Then clearly �(D) = 0.

7. Hermitian Vector Bundles and Connections

A complex vector bundle E is said to be hermitian if a positive de�nite

hermitian form j j2 is given on each �ber Ex in such a way that the map

E ! R+ ; � 7! j�j2 is smooth. The notion of a euclidean (real) vector bundle

is similar, so we leave the reader adapt our notations to that case.

Let � : E�
 �! 
 � C r be a trivialization and let (e1; : : : ; er) be the

corresponding frame of E�
 . The associated inner product of E is given by

a positive de�nite hermitian matrix (h��) with C
1 coeÆcients on 
, such

that

he�(x); e�(x)i = h��(x); 8x 2 
:
When E is hermitian, one can de�ne a natural sesquilinear map

C1p (M;E)� C1q (M;E) �! C1p+q(M; C )

(s; t) 7�! fs; tg(7:1)

combining the wedge product of forms with the hermitian metric on E ;

if s =
P
�� 
 e�, t =

P
�� 
 e�, we let
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fs; tg =
X

1��;��r
�� ^ �� he�; e�i:

A connection D is said to be compatible with the hermitian structure of E,

or briey hermitian, if for every s 2 C1
p
(M;E); t 2 C1

q
(M;E) we have

(7:2) dfs; tg = fDs; tg+ (�1)pfs;Dtg:
Let (e1; : : : ; er) be an orthonormal frame of E�
 . Denote �(s) = � = (��)

and �(t) = � = (��). Then

fs; tg = f�; �g =
X

1���r
�� ^ ��;

dfs; tg = fd�; �g+ (�1)pf�; d�g:
Therefore D�
 is hermitian if and only if its connection form A satis�es

fA�; �g+ (�1)pf�;A�g = f(A+ A?) ^ �; �g = 0

for all �; � , i.e.

(7:3) A? = �A or (a��) = �(a��):
This means that iA is a 1-form with values in the space Herm(C r ; C r ) of

hermitian matrices. The identity d2fs; tg = 0 implies fD2s; tg+fs;D2tg = 0,

i.e. f�(D) ^ s; tg + fs;�(D) ^ tg = 0. Therefore �(D)? = ��(D) and the

curvature tensor �(D) is such that

i�(D) 2 C12 (M;Herm(E;E)):

(7.4) Special case. If E is a hermitian line bundle (r = 1), D�
 is a hermi-

tian connection if and only if its connection form A associated to any given

orthonormal frame of E�
 is a 1-form with purely imaginary values.

If �; e� : E�
 ! 
 are two such trivializations on a simply connected

open subset 
 � M , then g = e� Æ ��1 = ei' for some real phase function

' 2 C1(
;R). The gauge transformation law can be written

A = eA+ i d':

In this case, we see that i�(D) 2 C12 (M;R):

(7.5) Remark. If s; s0 2 C1(M;E) are two sections of E along a smooth

curve  : [0; 1] �!M , one can easily verify the formula

d

dt
hs(t); s0(t)i = hDs

dt
; s0i+ hs; Ds

0

dt
i:
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In particular, if (e1; : : : ; er) is a parallel frame of E along  such that�
e1(0); : : : ; er(0)

�
is orthonormal, then

�
e1(t); : : : ; er(t)

�
is orthonormal for

all t. All parallel translation operators T de�ned in x6 are thus isometries of

the �bers. It follows that E has a at hermitian connection D if and only if E

can be de�ned by means of locally constant unitary transition automorphisms

g��, or equivalently if E is isomorphic to the hermitian bundle (fM�S)=�1(M)

de�ned by a unitary representation of �1(M) in a hermitian vector space S.

Such a bundle E is said to be hermitian at.

8. Vector Bundles and Locally Free Sheaves

We denote here by E the sheaf of germs of C1 complex functions on M . Let

F �! M be a C1 complex vector bundle of rank r. We let F be the sheaf

of germs of C1 sections of F , i.e. the sheaf whose space of sections on an

open subset U �M is F(U) = C1(U; F ). It is clear that F is a E-module.

Furthermore, if F�
 ' 
 � C r is trivial, the sheaf F�
 is isomorphic to Er�

as a E�
-module.

(8.1) De�nition. A sheaf S of modules over a sheaf of rings R is said to

be locally free of rank k if every point in the base has a neighborhood 
 such

that S�
 is R-isomorphic to Rk�
.

Suppose that S is a locally free E-module of rank r. There exists a covering

(V�)�2I of M and sheaf isomorphisms

�� : S�V� �! Er�V� :

Then we have transition isomorphisms g�� = �� Æ ��1� : Er ! Er de�ned

on V� \ V�, and such an isomorphism is the multiplication by an invertible

matrix with C1 coeÆcients on V� \ V� . The concepts of vector bundle and
of locally free E-module are thus completely equivalent.

Assume now that F �!M is a line bundle (r = 1). Then every collection

of transition automorphisms g = (g��) de�nes a �Cech 1-cocycle with values

in the multiplicative sheaf E? of invertible C1 functions on M . In fact the

de�nition of the �Cech di�erential (cf. (IV-5.1)) gives (Æg)�� = g�g
�1
�
g��,

and we have Æg = 1 in view of (1.1). Let �0
�
be another family of trivializations

and (g0
��
) the associated cocycle (it is no loss of generality to assume that both

are de�ned on the same covering since we may otherwise take a re�nement).

Then we have

�0
�
Æ ��1

�
: V� � C �! V� � C ; (x; �) 7�! (x; u�(x)�); u� 2 E?(V�):

It follows that g�� = g0
��
u�1� u� , i.e. that the �Cech 1-cocycles g; g0 di�er

only by the �Cech 1-coboundary Æu. Therefore, there is a well de�ned map
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which associates to every line bundle F over M the �Cech cohomology class

fgg 2 H1(M; E?) of its cocycle of transition automorphisms. It is easy to

verify that the cohomology classes associated to two line bundles F; F 0 are
equal if and only if these bundles are isomorphic: if g = g0 � Æu, then the

collection of maps

F�V�
���! V� � C �! V� � C �

0�1
��! F 0�V�

(x; �) 7�! (x; u�(x)�)

de�nes a global isomorphism F ! F 0. It is clear that the multiplicative group
structure on H1(M; E?) corresponds to the tensor product of line bundles

(the inverse of a line bundle being given by its dual). We may summarize this

discussion by the following:

(8.2) Theorem. The group of isomorphism classes of complex C1 line

bundles is in one-to-one correspondence with the �Cech cohomology group

H1(M; E?).

9. First Chern Class

Throughout this section, we assume that E is a complex line bundle (that

is, rkE = r = 1). Let D be a connection on E. By (3.3), �(D) is a closed

2-form on M . Moreover, if D0 is another connection on E, then (2.2) shows

that D0 = D + � ^ � where � 2 C11 (M; C ). By (3.3), we get

(9:1) �(D0) = �(D) + d�:

This formula shows that the De Rham class f�(D)g 2 H2
DR

(M; C ) does not

depend on the particular choice of D. If D is chosen to be hermitian with

respect to a given hermitian metric on E (such a connection can always be

constructed by means of a partition of unity) then i�(D) is a real 2-form,

thus fi�(D)g 2 H2
DR

(M;R). Consider now the one-to-one correspondence

given by Th. 8.2:

fisomorphism classes of line bundlesg �! H1(M; E?)
class fEg de�ned by the cocycle (g��) 7�! class of (g��):

Using the exponential exact sequence of sheaves

0 �! Z �! E �! E? �! 1

f 7�! e2�if

and the fact that H1(M; E) = H2(M; E) = 0, we obtain:

(9.2) Theorem and De�nition. The coboundary morphism
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H1(M; E?) @�! H2(M;Z)

is an isomorphism. The �rst Chern class of a line bundle E is the image c1(E)

in H2(M;Z) of the �Cech cohomology class of the 1-cocycle (g��) associated

to E :

(9:3) c1(E) = @f(g��)g:

Consider the natural morphism

(9:4) H2(M;Z) �! H2(M;R) ' H2
DR

(M;R)

where the isomorphism ' is that given by the De Rham-Weil isomorphism

theorem and the sign convention of Formula (IV-6.11).

(9.5) Theorem. The image of c1(E) in H2
DR

(M;R) under (9.4) coincides

with the De Rham cohomology class f i
2�
�(D)g associated to any (hermitian)

connection D on E.

Proof. Choose an open covering (V�)�2I of M such that E is trivial on each

V�, and such that all intersections V�\V� are simply connected (as in xIV-6,
choose the V� to be small balls relative to a given locally �nite covering of

M by coordinate patches). Denote by A� the connection forms of D with

respect to a family of isometric trivializations

�� : E�V� �! V� � C r :
Let g�� 2 E?(V�\V�) be the corresponding transition automorphisms. Then

jg��j = 1, and as V� \ V� is simply connected, we may choose real functions

u�� 2 E(V� \ V�) such that

g�� = exp(2�iu��):

By de�nition, the �rst Chern class c1(E) is the �Cech 2-cocycle

c1(E) =@f(g��)g = f(Æu)��)g 2 H2(M;Z) where

(Æu)�� :=u� � u� + u��:

Now, if Eq (resp. Zq) denotes the sheaf of real (resp. real d-closed) q-forms

on M , the short exact sequences

0�! Z1�! E1 d�!Z2�! 0

0�! R �! E0 d�!Z1�! 0

yield isomorphisms (with the sign convention of (IV-6.11))

H2
DR

(M;R) := H0(M;Z2)=dH0(M; E1) �@�! H1(M;Z1);(9:6)

H1(M;Z1)
@�! H2(M;R):(9:7)
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Formula 3.4 gives A� = A� + g�1
��
dg��. Since �(D) = dA� on V�, the image

of f i
2�
�(D)g under (9.6) is the �Cech 1-cocycle with values in Z1

n
� i

2�
(A� � A�)

o
=
n 1

2�i
g�1
��
dg��

o
= fdu��g

and the image of this cocycle under (9.7) is the �Cech 2-cocycle fÆug in

H2(M;R). But fÆug is precisely the image of c1(E) 2 H2(M;Z) inH2(M;R).

�

Let us assume now that M is oriented and that s 2 C1(M;E) is trans-

verse to the zero section of E, i.e. that Ds 2 Hom(TM;E) is surjective

at every point of the zero set Z := s�1(0). Then Z is an oriented 2-codi-

mensional submanifold of M (the orientation of Z is uniquely de�ned by

those of M and E). We denote by [Z] the current of integration over Z and

by f[Z]g 2 H2
DR

(M;R) its cohomology class.

(9.8) Theorem. We have f[Z]g = c1(E)R.

Proof. Consider the di�erential 1-form

u = s�1 
Ds 2 C11 (M r Z; C ):

Relatively to any trivialization � of E�
 , one has D�
 '� d+ A ^ �, thus

u�
 =
d�

�
+A where � = �(s):

It follows that u has locally integrable coeÆcients onM . If d�=� is considered

as a current on 
, then

d
�d�
�

�
= d
�
�?
dz

z

�
= �?d

�dz
z

�
= �?(2�iÆ0) = 2�i[Z]

because of the Cauchy residue formula (cf. Lemma I-2.10) and because � is a

submersion in a neighborhood of Z (cf. (I-1.19)). Now, we have dA = �(D)

and Th. 9.8 follows from the resulting equality:

(9.9) du = 2�i [Z] + �(E). �

10. Connections of Type (1,0) and (0,1) over Complex

Manifolds

Let X be a complex manifold, dimC X = n and E a C1 vector bundle of

rank r over X ; here, E is not assumed to be holomorphic. We denote by

C1
p;q
(X;E) the space of C1 sections of the bundle �p;qT ?X 
 E. We have

therefore a direct sum decomposition



304 Chapter V Hermitian Vector Bundles

C1
l
(X;E) =

M
p+q=l

C1
p;q
(X;E):

Connections of type (1; 0) or (0; 1) are operators acting on vector valued

forms, which imitate the usual operators d0; d00 acting on C1
p;q
(X; C ). More

precisely, a connection of type (1,0) on E is a di�erential operator D0 of order
1 acting on C1�;�(X;E) and satisfying the following two properties:

D0 : C1
p;q
(X;E) �! C1

p+1;q(X;E);(10:1)

D0(f ^ s) = d0f ^ s+ (�1)deg ff ^D0s(10:10)

for any f 2 C1p1;q1(X; C ); s 2 C1p2;q2(X;E). The de�nition of a connection

D00 of type (0,1) is similar. If � : E�
 ! 
� C r is a C1 trivialization of E�


and if � = (��) = �(s), then all such connections D0 and D00 can be written

D0s '� d0� + A0 ^ �;(10:20)

D00s '� d00� + A00 ^ �(10:200)

where A0 2 C11;0
�

;Hom(C r ; C r )

�
; A00 2 C10;1

�

;Hom(C r ; C r )

�
are arbitrary

forms with matrix coeÆcients.

It is clear that D = D0 + D00 is then a connection in the sense of x2 ;

conversely any connection D admits a unique decomposition D = D0 + D00

in terms of a (1,0)-connection and a (0,1)-connection.

Assume now that E has a hermitian structure and that � is an isometry.

The connection D is hermitian if and only if the connection form A = A0+A00

satis�es A? = �A, and this condition is equivalent to A0 = �(A00)?. From
this observation, we get immediately:

(10.3) Proposition. Let D000 be a given (0; 1)-connection on a hermitian

bundle � : E ! X. Then there exists a unique hermitian connection

D = D0 +D00 such that D00 = D000 .

11. Holomorphic Vector Bundles

From now on, the vector bundles E in which we are interested are supposed

to have a holomorphic structure:

(11.1) De�nition. A vector bundle � : E ! X is said to be holomorphic if

E is a complex manifold, if the projection map � is holomorphic and if there

exists a covering (V�)�2I of X and a family of holomorphic trivializations

�� : E�V� ! V� � C r .

It follows that the transition matrices g�� are holomorphic on V� \ V� .
In complete analogy with the discussion of x8, we see that the concept of
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holomorphic vector bundle is equivalent to the concept of locally free sheaf

of modules over the ring O of germs of holomorphic functions on X. We

shall denote by O(E) the associated sheaf of germs of holomorphic sections

of E. In the case r = 1, there is a one-to-one correspondence between the

isomorphism classes of holomorphic line bundles and the �Cech cohomology

group H1(X;O?).

(11.2) De�nition. The group H1(X;O?) of isomorphism classes of holo-

morphic line bundles is called the Picard group of X.

If s 2 C1
p;q
(X;E), the components �� = (��

�
)1���r = ��(s) of s under ��

are related by

�� = g�� � �� on V� \ V� :
Since d00g�� = 0, it follows that

d00�� = g�� � d00�� on V� \ V� :
The collection of forms (d00��) therefore corresponds to a unique global

(p; q+1)-form d00s such that ��(d
00s) = d00��, and the operator d00 de�ned in

this way is a (0; 1)-connection on E.

(11.3) De�nition. The operator d00 is called the canonical (0; 1)-connection

of the holomorphic bundle E.

It is clear that d002 = 0. Therefore, for any integer p = 0; 1; : : : ; n, we get

a complex

C1
p;0(X;E)

d
00

�! � � � �! C1
p;q
(X;E)

d
00

�! C1
p;q+1(X;E) �! � � �

known as the Dolbeault complex of (p; �)-forms with values in E.

(11.4) Notation. The q-th cohomology group of the Dolbeault complex is

denoted Hp;q(X;E) and is called the (p; q) Dolbeault cohomology group with

values in E.

The Dolbeault-Grothendieck lemma I-2.11 shows that the complex of

sheaves d00 : C10;�(X;E) is a soft resolution of the sheaf O(E). By the De

Rham-Weil isomorphism theorem IV-6.4, we get:

(11.5) Proposition. H0;q(X;E) ' Hq
�
X;O(E)

�
.

Most often, we will identify the locally free sheaf O(E) and the bundle E

itself ; the above sheaf cohomology group will therefore be simply denoted

Hq(X;E). Another standard notation in analytic or algebraic geometry is:
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(11.6) Notation. If X is a complex manifold, 

p

X
denotes the vector bundle

�pT ?X or its sheaf of sections.

It is clear that the complex C1
p;�(X;E) is identical to the complex

C10;�(X;

p

X

 E), therefore we obtain a canonical isomorphism:

(11.7) Dolbeault isomorphism. Hp;q(X;E) ' Hq(X;

p

X

 E).

In particular, Hp;0(X;E) is the space of global holomorphic sections of

the bundle 

p

X

 E.

12. Chern Connection

Let � : E ! X be a hermitian holomorphic vector bundle of rank r. By

Prop. 10.3, there exists a unique hermitian connection D such that D00 = d00.

(12.1) De�nition. The unique hermitian connection D such that D00 = d00

is called the Chern connection of E. The curvature tensor of this connection

will be denoted by �(E) and is called the Chern curvature tensor of E.

Let us compute D with respect to an arbitrary holomorphic trivialization

� : E�
 ! 
 � C r . Let H = (h��)1��;��r denote the hermitian matrix

with C1 coeÆcients representing the metric along the �bers of E�
 . For any

s; t 2 C1�;�(X;E) and � = �(s); � = �(t) one can write

fs; tg =
X
�;�

h���� ^ �� = �y ^H�;

where �y is the transposed matrix of �. It follows that

fDs; tg+(�1)deg sfs;Dtg = dfs; tg
= (d�)y ^H� + (�1)deg ��y ^ (dH ^ � +Hd�)

=
�
d� +H

�1
d0H ^ ��y ^H� + (�1)deg ��y ^ (d� +H

�1
d0H ^ �)

using the fact that dH = d0H + d0H and H
y
= H. Therefore the Chern

connection D coincides with the hermitian connection de�ned by

Ds '� d� +H
�1
d0H ^ �;(12:2)

D0 '� d0 +H
�1
d0H ^ � = H

�1
d0(H�); D00 = d00:(12:3)

It is clear from this relations that D02 = D002 = 0. Consequently D2 is given

by to D2 = D0D00 +D00D0, and the curvature tensor �(E) is of type (1; 1).

Since d0d00 + d00d0 = 0, we get
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(D0D00 +D00D0)s '� H�1d0H ^ d00� + d00(H
�1
d0H ^ �) = d00(H

�1
d0H) ^ �:

(12.4) Theorem. The Chern curvature tensor is such that

i�(E) 2 C11;1(X;Herm(E;E)):
If � : E�
 ! 
�C r is a holomorphic trivialization and if H is the hermitian

matrix representing the metric along the �bers of E�
, then

i�(E) = i d00(H
�1
d0H) on 
:

Let (e1; : : : ; er) be a C
1 orthonormal frame of E over a coordinate patch


 � X with complex coordinates (z1; : : : ; zn). On 
 the Chern curvature

tensor can be written

(12:5) i�(E) = i
X

1�j;k�n; 1��;��r
cjk�� dzj ^ dzk 
 e?� 
 e�

for some coeÆcients cjk�� 2 C . The hermitian property of i�(E) means that

cjk�� = ckj��.

(12.6) Special case. When r = rank E = 1, the hermitian matrix H is

a positive function which we write H = e�', ' 2 C1(
;R). By the above

formulas we get

(12:7) D0 '� d0 � d0' ^ � = e'd0(e�'�);
(12:8) i�(E) = id0d00' on 
:

Especially, we see that i�(E) is a closed real (1,1)-form on X.

(12.9) Remark. In general, it is not possible to �nd local frames (e1; : : : ; er)

of E�
 that are simultaneously holomorphic and orthonormal. In fact, we

have in this case H = (Æ��), so a necessary condition for the existence of

such a frame is that �(E) = 0 on 
. Conversely, if �(E) = 0, Prop. 6.7

and Rem. 7.5 show that E possesses local orthonormal parallel frames (e�) ;

we have in particular D00e� = 0, so (e�) is holomorphic; such a bundle E

arising from a unitary representation of �1(X) is said to be hermitian at.

The next proposition shows in a more local way that the Chern curvature

tensor is the obstruction to the existence of orthonormal holomorphic frames:

a holomorphic frame can be made \almost orthonormal" only up to curvature

terms of order 2 in a neighborhood of any point.

(12.10) Proposition. For every point x0 2 X and every coordinate system

(zj)1�j�n at x0, there exists a holomorphic frame (e�)1���r in a neighbor-

hood of x0 such that
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he�(z); e�(z)i = Æ�� �
X

1�j;k�n
cjk�� zjzk +O(jzj3)

where (cjk��) are the coeÆcients of the Chern curvature tensor �(E)x0. Such

a frame (e�) is called a normal coordinate frame at x0.

Proof. Let (h�) be a holomorphic frame of E. After replacing (h�) by suitable

linear combinations with constant coeÆcients, we may assume that
�
h�(x0)

�
is an orthonormal basis of Ex0 . Then the inner products hh�; h�i have an

expansion

hh�(z); h�(z)i = Æ�� +
X
j

(aj�� zj + a0
j��

zj) +O(jzj2)

for some complex coeÆcients aj��, a
0
j��

such that a0
j��

= aj��. Set �rst

g�(z) = h�(z)�
X
j;�

aj�� zj h�(z):

Then there are coeÆcients ajk��, a
0
jk��

, a00
jk��

such that

hg�(z); g�(z)i = Æ�� + O(jzj2)
= Æ�� +

X
j;k

�
ajk�� zjzk + a0

jk��
zjzk + a00

jk��
zjzk

�
+O(jzj3):

The holomorphic frame (e�) we are looking for is

e�(z) = g�(z)�
X
j;k;�

a0
jk��

zjzk g�(z):

Since a00
jk��

= a0
jk��

, we easily �nd

he�(z); e�(z)i = Æ�� +
X
j;k

ajk�� zjzk + O(jzj3);

d0he�; e�i = fD0e�; e�g =
X
j;k

ajk�� zk dzj + O(jzj2);

�(E) � e� = D00(D0e�) =
X
j;k;�

ajk�� dzk ^ dzj 
 e� + O(jzj);

therefore cjk�� = �ajk��. �
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13. Lelong-Poincar�e Equation and First Chern Class

Our goal here is to extend the Lelong-Poincar�e equation III-2.15 to any mero-

morphic section of a holomorphic line bundle.

(13.1) De�nition. A meromorphic section of a bundle E ! X is a section

s de�ned on an open dense subset of X, such that for every trivialization �� :

E�V� ! V� � C r the components of �� = ��(s) are meromorphic functions

on V�.

Let E be a hermitian line bundle, s a meromorphic section which does not

vanish on any component of X and � = �(s) the corresponding meromorphic

function in a trivialization � : E�
 ! 
 � C . The divisor of s is the current
on X de�ned by div s�
 = div � for all trivializing open sets 
. One can

write div s =
P
mjZj , where the sets Zj are the irreducible components of

the sets of zeroes and poles of s (cf. x II-5). The Lelong-Poincar�e equation

(II-5.32) gives

i

�
d0d00 log j�j =

X
mj [Zj];

and from the equalities jsj2 = j�j2e�' and d0d00' = �(E) we get

(13:2) id0d00 log jsj2 = 2�
X

mj [Zj ]� i�(E):

This equality can be viewed as a complex analogue of (9.9) (except that here

the hypersurfaces Zj are not necessarily smooth). In particular, if s is a non

vanishing holomorphic section of E�
 , we have

(13:3) i�(E) = �id0d00 log jsj2 on 
:

(13.4) Theorem. Let E ! X be a line bundle and let s be a meromor-

phic section of E which does not vanish identically on any component of X.

If
P
mjZj is the divisor of s, then

c1(E)R =
nX

mj [Zj ]
o
2 H2(X;R):

Proof. Apply Formula (13.2) and Th. 9.5, and observe that the bidimension

(1; 1)-current id0d00 log jsj2 = d
�
id00 log jsj2� has zero cohomology class. �

(13.5) Example. If � =
P
mjZj is an arbitrary divisor on X, we asso-

ciate to � the sheaf O(�) of germs of meromorphic functions f such that

div(f) +� � 0. Let (V�) be a covering of X and u� a meromorphic function

on V� such that div(u�) = � on V�. Then O(�)�V� = u�1
�
O, thus O(�) is

a locally free O-module of rank 1. This sheaf can be identi�ed to the line
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bundle E over X de�ned by the cocycle g�� := u�=u� 2 O?(V�\V�). In fact,

there is a sheaf isomorphism O(�) �! O(E) de�ned by

O(�)(
) 3 f 7�! s 2 O(E)(
) with ��(s) = fu� on 
 \ V�:
The constant meromorphic function f = 1 induces a meromorphic section

s of E such that div s = divu� = � ; in the special case when � � 0,

the section s is holomorphic and its zero set s�1(0) is the support of �. By
Th. 13.4, we have

(13:6) c1
�
O(�)

�
R
= f[�]g:

Let us consider the exact sequence 1 ! O? ! M? ! Div ! 0 already

described in (II-5.36). There is a corresponding cohomology exact sequence

(13:7) M?(X) �! Div(X)
@
0

�! H1(X;O?):

The connecting homomorphism @0 is equal to the map

� 7�! isomorphism class of O(�)

de�ned above. The kernel of this map consists of divisors which are divisors

of global meromorphic functions in M?(X). In particular, two divisors �1

and �2 give rise to isomorphic line bundles O(�1) ' O(�2) if and only if

�2 ��1 = div(f) for some global meromorphic function f 2 M?(X) ; such

divisors are called linearly equivalent. The image of @0 consists of classes of

line bundles E such that E has a global meromorphic section which does not

vanish on any component of X. Indeed, if s is such a section and � = div s,

there is an isomorphism

(13.8) O(�)
'�! O(E); f 7�! fs. �

The last result of this section is a characterization of 2-forms on X which

can be written as the curvature form of a hermitian holomorphic line bundle.

(13.9) Theorem. Let X be an arbitrary complex manifold.

a) For any hermitian line bundle E over M , the Chern curvature form
i
2�
�(E) is a closed real (1; 1)-form whose De Rham cohomology class

is the image of an integral class.

b) Conversely, let ! be a C1 closed real (1; 1)-form such that the class f!g 2
H2
DR

(X;R) is the image of an integral class. Then there exists a hermitian

line bundle E ! X such that i
2�
�(E) = !.

Proof. a) is an immediate consequence of Formula (12.9) and Th. 9.5, so we

have only to prove the converse part b). By Prop. III-1.20, there exist an open

covering (V�) of X and functions '� 2 C1(V�;R) such that i
2�
d0d00'� = !



14. Exact Sequences of Hermitian Vector Bundles 311

on V�. It follows that the function '� � '� is pluriharmonic on V� \ V� . If
(V�) is chosen such that the intersections V�\V� are simply connected, then

Th. I-3.35 yields holomorphic functions f�� on V� \ V� such that

2Re f�� = '� � '� on V� \ V� :
Now, our aim is to prove (roughly speaking) that

�
exp(�f��)

�
is a cocycle

in O? that de�nes the line bundle E we are looking for. The �Cech di�erential

(Æf)�� = f� � f� + f�� takes values in the constant sheaf iR because

2Re (Æf)�� = (' � '�)� (' � '�) + ('� � '�) = 0:

Consider the real 1-forms A� = i
4�
(d00'�� d0'�). As d0('� �'�) is equal to

d0(f�� + f��) = df�� , we get

(ÆA)�� = A� �A� =
i

4�
d(f�� � f��) =

1

2�
d Im f��:

Since ! = dA�, it follows by (9.6) and (9.7) that the �Cech cohomology class

fÆ( 1
2�

Im f��)g is equal to f!g 2 H2(X;R), which is by hypothesis the image

of a 2-cocycle (n��) 2 H2(X;Z). Thus we can write

Æ
� 1

2�
Im f��

�
= (n��) + Æ(c��)

for some 1-chain (c��) with values in R. If we replace f�� by f�� � 2�ic��,

then we can achieve c�� = 0, so Æ(f��) 2 2�iZ and g�� := exp(�f��) will be
a cocycle with values in O?. Since

'� � '� = 2Re f�� = � log jg��j2;
the line bundle E associated to this cocycle admits a global hermitian metric

de�ned in every trivialization by the matrix H� = (exp(�'�)) and therefore

i

2�
�(E) =

i

2�
d0d00'� = ! on V�: �

14. Exact Sequences of Hermitian Vector Bundles

Let us consider an exact sequence of holomorphic vector bundles over X :

(14:1) 0 �! S
j�! E

g�! Q �! 0:

Then E is said to be an extension of S by Q. A (holomorphic, resp. C1)
splitting of the exact sequence is a (holomorphic, resp. C1) homomorphism

h : Q �! E which is a right inverse of the projection E �! Q, i.e. such that

g Æ h = IdQ.
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Assume that a C1 hermitian metric on E is given. Then S and Q can be

endowed with the induced and quotient metrics respectively. Let us denote

by DE ; DS ; DQ the corresponding Chern connections. The adjoint homo-

morphisms

j? : E �! S; g? : Q �! E

are C1 and can be described respectively as the orthogonal projection of E

onto S and as the orthogonal splitting of the exact sequence (14.1). They

yield a C1 (in general non analytic) isomorphism

(14:2) j? � g : E '�! S �Q:

(14.3) Theorem. According to the C1 isomorphism j? � g, DE can be

written

DE =

�
DS ��?
� DQ

�
where � 2 C11;0

�
X;Hom(S;Q)

�
is called the second fundamental of S in E

and where �? 2 C10;1
�
X;Hom(Q;S)

�
is the adjoint of �. Furthermore, the

following identities hold:

a) D0Hom(S;E)j = g? Æ �; d00j = 0 ;

b) D0Hom(E;Q)g = �� Æ j?; d00g = 0 ;

c) D0Hom(E;S)j
?= 0; d00j?= �? Æ g ;

d) D0Hom(Q;E)g
?= 0; d00g?= �j Æ �?:

Proof. If we de�ne rE ' DS � DQ via (14.2), then rE is a hermitian

connection on E. By (7.3), we have therefore DE = rE + � ^ �, where
� 2 C11 (X;Hom(E;E)) and � ? = �� . Let us write

� =

�
� 

� Æ

�
; �? = ��; Æ? = �Æ;  = ��?;

(14:4) DE =

�
DS + � 

� DQ + Æ

�
:

For any section u 2 C1�;�(X;E) we have

DEu = DE(jj
?u+g?gu)

= jDS(j
?u)+g?DQ(gu)+(DHom(S;E)j)^j?u+(DHom(E;Q)g

?)^gu:
A comparison with (14.4) yields

DHom(S;E)j = j Æ �+ g? Æ �;
DHom(E;Q)g

? = j Æ  + g? Æ Æ;
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Since j is holomorphic, we have d00j = j Æ �0;1 + g? Æ �0;1 = 0, thus �0;1 =

�0;1 = 0. But �? = ��, hence � = 0 and � 2 C11;0(Hom(S;Q)) ; identity a)

follows. Similarly, we get

DS(j
?u) = j?DEu+ (DHom(E;S)j

?) ^ u;
DQ(gu) = gDEu+ (DHom(E;Q)g) ^ u;

and comparison with (14.4) yields

DHom(E;S)j
? = �� Æ j? �  Æ g = �? Æ g;

DHom(E;Q)g = �� Æ j? � Æ Æ g:

Since d00g = 0, we get Æ0;1 = 0, hence Æ = 0. Identities b), c), d) follow from

the above computations. �

(14.5) Theorem. We have d00(�?) = 0, and the Chern curvature of E is

�(E) =

�
�(S)� �? ^ � D0

Hom(Q;S)
�?

d00� �(Q)� � ^ �?
�
:

Proof. A computation of D2
E
yields

D2
E
=

�
D2
S
� �? ^ � �(DS Æ �? + �? ÆDQ)

� ÆDS +DQ Æ � D2
Q
� � ^ �?

�
:

Formula (13.4) implies

DHom(S;Q)� = � ÆDS +DQ Æ �;
DHom(Q;S)�

? = DS Æ �? + �? ÆDQ:

Since D2
E
is of type (1,1), it follows that d00�? = D00Hom(Q;S)�

? = 0. The proof

is achieved. �

A consequence of Th. 14.5 is that �(S) and �(Q) are given in terms of

�(E) by the following formulas, where �(E)�S, �(E)�Q denote the blocks in

the matrix of �(E) corresponding to Hom(S; S) and Hom(Q;Q):

�(S) = �(E)�S + �? ^ �;(14:6)

�(Q) = �(E)�Q + � ^ �?:(14:7)

By 14.3 c) the second fundamental form � vanishes identically if and only if

the orthogonal splitting E ' S � Q is holomorphic ; then we have �(E) =

�(S)� �(Q).

Next, we show that the d00-cohomology class f�?g2H0;1
�
X;Hom(Q;S)

�
characterizes the isomorphism class of E among all extensions of S by Q.
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Two extensions E and F are said to be isomorphic if there is a commutative

diagram of holomorphic maps

(14:8)

0 �!S �!E �!Q �! 0���� ?y ����
0 �!S �!F �!Q �! 0

in which the rows are exact sequences. The central vertical arrow is then

necessarily an isomorphism. It is easily seen that 0 ! S ! E ! Q! 0 has

a holomorphic splitting if and only if E is isomorphic to the trivial extension

S �Q.

(14.9) Proposition. The correspondence

fEg 7�! f�?g
induces a bijection from the set of isomorphism classes of extensions of S by

Q onto the cohomology group H1
�
X;Hom(Q;S)

�
. In particular f�?g vanishes

if and only if the exact sequence

0 �! S
j�! E

g�! Q �! 0

splits holomorphically.

Proof. a) The map is well de�ned, i.e. f�?g does not depend on the choice

of the hermitian metric on E. Indeed, a new hermitian metric produces a

new C1 splitting bg? and a new form b�? such that d00bg? = �j Æ b�?. Then
gg? = gbg? = IdQ, thus bg�g = j Æv for some section v 2 C1�X;Hom(Q;S)�.
It follows that b�? � �? = �d00v. Moreover, it is clear that an isomorphic

extension F has the same associated form �? if F is endowed with the image

of the hermitian metric of E.

b) The map is injective. Let E and F be extensions of S by Q. Select C1

splittings E;F ' S � Q. We endow S;Q with arbitrary hermitian metrics

and E;F with the direct sum metric. Then we have corresponding (0; 1)-

connections

D00
E
=

�
D00
S
��?

0 D00
Q

�
; D00

F
=

�
D00
S
�e�?

0 D00
Q

�
:

Assume that e�? = �? + d00v for some v 2 C1�X;Hom(Q;S)�. The isomor-

phism 	 : E �! F of class C1 de�ned by the matrix�
IdS v

0 IdQ

�
:

is then holomorphic, because the relation D00
S
Æ v � v ÆD00

Q
= d00v = e�? � �?

implies
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D00Hom(E;F )	 = D00
F
Æ 	 � 	 ÆD00

E

=

�
D00
S
�e�?

0 D00
Q

��
IdS v

0 IdQ

�
�
�
IdS v

0 IdQ

��
D00
S
��?

0 D00
Q

�
=

�
0 �e�? + �? + (D00

S
Æ v � v ÆD00

Q
)

0 0

�
= 0:

Hence the extensions E and F are isomorphic.

c) The map is surjective. Let  be an arbitrary d00-closed (0; 1)-form on X

with values in Hom(Q;S). We de�ne E as the C1 hermitian vector bundle

S �Q endowed with the (0; 1)-connection

D00
E
=

�
D00
S



0 D00
Q

�
:

We only have to show that this connection is induced by a holomorphic struc-

ture on E ; then we will have �? = �. However, the Dolbeault-Grothendieck
lemma implies that there is a covering of X by open sets U� on which

 = d00v� for some v� 2 C1
�
U�;Hom(Q;S)

�
. Part b) above shows that

the matrix�
IdS v�
0 IdQ

�
de�nes an isomorphism  � from E�U� onto the trivial extension (S �Q)�U�
such that D00Hom(E;S�Q) � = 0. The required holomorphic structure on E�U�

is the inverse image of the holomorphic structure of (S �Q)�U� by  � ; it is

independent of � because v�� v� and  � Æ �1� are holomorphic on U� \U� .
�

(14.10) Remark. If E and F are extensions of S by Q such that the cor-

responding forms �? and e�? = u Æ �? Æ v�1 di�er by u 2 H0
�
X;Aut(S)

�
,

v 2 H0
�
X;Aut(Q)

�
, it is easy to see that the bundles E and F are isomor-

phic. To see this, we need only replace the vertical arrows representing the

identity maps of S and Q in (14.8) by u and v respectively. Thus, if we want

to classify isomorphism classes of bundles E which are extensions of S by

Q rather than the extensions themselves, the set of classes is the quotient

of H1
�
X;Hom(Q;S)

�
by the action of H0

�
X;Aut(S)

� � H0
�
X;Aut(Q)

�
.

In particular, if S;Q are line bundles and if X is compact connected, then

H0
�
X;Aut(S)

�
, H0

�
X;Aut(Q)

�
are equal to C ? and the set of classes is the

projective space P
�
H1(X;Hom(Q;S))

�
.
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15. Line Bundles O(k) over Pn

15.A. Algebraic properties of O(k)

Let V be a complex vector space of dimension n + 1; n � 1. The quotient

topological space P (V ) = (V r f0g)=C ? is called the projective space of V ,

and can be considered as the set of lines in V if f0g is added to each class

C ? � x. Let
� : V r f0g �! P (V )

x 7�! [x] = C ? � x

be the canonical projection. When V = C n+1 , we simply denote P (V ) = Pn.

The space Pn is the quotient S2n+1=S1 of the unit sphere S2n+1 � C n+1

by the multiplicative action of the unit circle S1 � C , so Pn is compact.

Let (e0; : : : ; en) be a basis of V , and let (x0; : : : ; xn) be the coordinates of a

vector x 2 V rf0g. Then (x0; : : : ; xn) are called the homogeneous coordinates

of [x] 2 P (V ). The space P (V ) can be covered by the open sets 
j de�ned

by 
j = f[x] 2 P (V ) ; xj 6= 0g and there are homeomorphisms

�j : 
j �! C n

[x] 7�! (z0; : : : ; bzj ; : : : ; zn); zl = xl=xj for l 6= j:

The collection (�j) de�nes a holomorphic atlas on P (V ), thus P (V ) = Pn is

a compact n-dimensional complex analytic manifold.

Let �V be the trivial bundle P (V ) � V . We denote by O(�1) � �V the

tautological line subbundle

(15:1) O(�1) = �([x]; �) 2 P (V )� V ; � 2 C � x	
such that O(�1)[x] = C � x � V , x 2 V r f0g. Then O(�1)�
j admits a non

vanishing holomorphic section

[x] �! "j([x]) = x=xj = z0e0 + : : :+ ej + zj+1ej+1 + : : :+ znen;

and this shows in particular that O(�1) is a holomorphic line bundle.

(15.2) De�nition. For every k 2 Z, the line bundle O(k) is de�ned by

O(1) = O(�1)?; O(0) = P (V )� C ;
O(k) = O(1)
k = O(1)
 � � � 
 O(1) for k � 1;

O(�k) = O(�1)
k for k � 1

We also introduce the quotient vector bundle H = �V=O(�1) of rank n.
Therefore we have canonical exact sequences of vector bundles over P (V ) :
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(15:3) 0! O(�1)! �V ! H ! 0; 0! H? ! �V
? ! O(1)! 0:

The total manifold of the line bundle O(�1) gives rise to the so called

monoidal transformation, or Hopf �-process:

(15.4) Lemma. The holomorphic map � : O(�1)! V de�ned by

� : O(�1) ,�! �V = P (V )� V pr2�! V

sends the zero section P (V ) � f0g of O(�1) to the point f0g and induces a

biholomorphism of O(�1)r �P (V )� f0g� onto V r f0g.

Proof. The inverse map ��1 : V r f0g �! O(�1) is clearly de�ned by

��1 : x 7�! �[x]; x�: �

The space H0(Pn;O(k)) of global holomorphic sections of O(k) can be

easily computed by means of the above map �.

(15.5) Theorem. H0
�
P (V );O(k)

�
= 0 for k < 0, and there is a canonical

isomorphism

H0
�
P (V );O(k)

� ' SkV ?; k � 0;

where SkV ? denotes the k-th symmetric power of V ?.

(15.6) Corollary. We have dimH0
�
Pn;O(k)

�
=
�
n+k
n

�
for k � 0, and this

group is 0 for k < 0:

Proof. Assume �rst that k � 0. There exists a canonical morphism

� : SkV ? �! H0
�
P (V );O(k)

�
;

indeed, any element a 2 SkV ? de�nes a homogeneous polynomial of de-

gree k on V and thus by restriction to O(�1) � �V a section �(a) = ea of

(O(�1)?)
k = O(k) ; in other words � is induced by the k-th symmetric

power Sk�V ? ! O(k) of the canonical morphism �V ? ! O(1) in (15.3).

Assume now that k 2 Z is arbitrary and that s is a holomorphic section of

O(k). For every x 2 V r f0g we have s([x]) 2 O(k)[x] and ��1(x) 2 O(�1)[x].
We can therefore associate to s a holomorphic function on V r f0g de�ned
by

f(x) = s([x]) � ��1(x)k; x 2 V r f0g:
Since dimV = n + 1 � 2, f can be extended to a holomorphic function on

V and f is clearly homogeneous of degree k (� and ��1 are homogeneous of
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degree 1). It follows that f = 0, s = 0 if k < 0 and that f is a homogeneous

polynomial of degree k on V if k � 0. Thus, there exists a unique element

a 2 SkV ? such that

f(x) = a � xk = ea([x]) � ��1(x)k:
Therefore � is an isomorphism. �

The tangent bundle on Pn is closely related to the bundles H and O(1)

as shown by the following proposition.

(15.7) Proposition. There is a canonical isomorphism of bundles

TP (V ) ' H 
 O(1):

Proof. The di�erential d�x of the projection � : V r f0g ! P (V ) may be

considered as a map

d�x : V ! T[x]P (V ):

As d�x(x) = 0; d�x can be factorized through V=C � x = V=O(�1)[x] = H[x]:

Hence we get an isomorphism

de�x : H[x] �! T[x]P (V );

but this isomorphism depends on x and not only on the base point [x] in P (V ).

The formula �(�x + �) = �(x + ��1�); � 2 C ? ; � 2 V , shows that d��x =

��1d�x, hence the map

de�x 
 ��1(x) : H[x] �!
�
TP (V )
 O(�1)�

[x]

depends only on [x]. Therefore H ' TP (V )
 O(�1). �

15.B. Curvature of the Tautological Line Bundle

Assume now that V is a hermitian vector space. Then (15.3) yields exact

sequences of hermitian vector bundles. We shall compute the curvature of

O(1) and H.

Let a 2 P (V ) be �xed. Choose an orthonormal basis (e0; e1; : : : ; en) of V

such that a = [e0]. Consider the embedding

C n ,�! P (V ); 0 7�! a

which sends z = (z1; : : : ; zn) to [e0 + z1e1 + � � �+ znen]. Then

"(z) = e0 + z1e1 + � � �+ znen
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de�nes a non-zero holomorphic section of O(�1)�Cn and Formula (13.3) for

�
�
O(1)

�
= ���O(�1)� implies

�
�
O(1)

�
= d0d00 log j"(z)j2 = d0d00 log(1 + jzj2) on C n ;(15:8)

�
�
O(1)

�
a
=
X

1�j�n
dzj ^ dzj :(15:80)

On the other hand, Th. 14.3 and (14.7) imply

d00g? = �j Æ �?; �(H) = � ^ �?;
where j : O(�1) �! �V is the inclusion, g? : H �! �V the orthogonal splitting

and �? 2 C10;1
�
P (V );Hom(H;O(�1))�. The images (ee1; : : : ; een) of e1; : : : ; en

in H = �V=O(�1) de�ne a holomorphic frame of H�Cn and we have

g? � eej = ej � hej ; "ij"j2 = ej � zj

1 + jzj2 "; d00g?a � eej = �dzj 
 ";
�?
a
=
X

1�j�n
dzj 
 ee?j 
 "; �a =

X
1�j�n

dzj 
 "? 
 eej ;
�(H)a =

X
1�j;k�n

dzj ^ dzk 
 ee?k 
 eej :(15:9)

(15.10) Theorem. The cohomology algebra H�(Pn;Z) is isomorphic to the

quotient ring Z[h]=(hn+1) where the generator h is given by h = c1(O(1)) in

H2(Pn;Z):

Proof. Consider the inclusion Pn�1 = P (C n �f0g) � Pn: Topologically, Pn is

obtained from Pn�1 by attaching a 2n-cell B2n to Pn�1, via the map

f : B2n �! Pn

z 7�! [z; 1� jzj2]; z 2 C n ; jzj � 1

which sends S2n�1 = fjzj = 1g onto Pn�1. That is, Pn is homeomorphic to

the quotient space of B2n q Pn�1, where every point z 2 S2n�1 is identi�ed
with its image f(z) 2 Pn�1. We shall prove by induction on n that

(15:11) H2k(Pn;Z) = Z; 0 � k � n; otherwise H l(Pn;Z) = 0:

The result is clear for P0, which is reduced to a single point. For n � 1,

consider the covering (U1; U2) of P
n such that U1 is the image by f of the

open ball BÆ2n and U2 = Pnrff(0)g. Then U1 � BÆ2n is contractible, whereas
U2 = (B2n r f0g) qS2n�1 Pn�1. Moreover U1 \ U2 � BÆ2n r f0g can be

retracted on the (2n� 1)-sphere of radius 1=2. For q � 2, the Mayer-Vietoris

exact sequence IV-3.11 yields
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� � � Hq�1(Pn�1;Z) �! Hq�1(S2n�1;Z)

�! Hq(Pn;Z) �! Hq(Pn�1;Z) �! Hq(S2n�1;Z) � � � :

For q = 1, the �rst term has to be replaced by H0(Pn�1;Z)� Z, so that the

�rst arrow is onto. Formula (15.11) follows easily by induction, thanks to our

computation of the cohomology groups of spheres in IV-14.6.

We know that h = c1(O(1)) 2 H2(Pn;Z). It will follow necessarily that

hk is a generator of H2k(Pn;Z) if we can prove that hn is the fundamental

class in H2n(P;Z), or equivalently that

(15:12) c1
�
O(1)

�n
R
=

Z
Pn

� i

2�
�(O(1))

�n
= 1:

This equality can be veri�ed directly by means of (15.8), but we will avoid

this computation. Observe that the element e?
n
2 �C n+1�? de�nes a sectionee?n of H0(Pn;O(1)) transverse to 0, whose zero set is the hyperplane Pn�1.

As f i
2�
�(O(1))g = f[Pn�1]g by Th. 13.4, we get

c1(O(1)) =

Z
P1

[P0] = 1 for n = 1 and

c1(O(1))
n =

Z
Pn

[Pn�1] ^
� i

2�
�(O(1))

�n�1
=

Z
Pn�1

� i

2�
�(O(1))

�n�1
in general. Since O(�1)�Pn�1 can be identi�ed with the tautological line sub-

bundle OPn�1(�1) over Pn�1, we have �(O(1))�Pn�1 = �(OPn�1(1)) and the

proof is achieved by induction on n. �

15.C. Tautological Line Bundle Associated to a Vector Bundle

Let E be a holomorphic vector bundle of rank r over a complex man-

ifold X. The projectivized bundle P (E) is the bundle with Pr�1 �bers

over X de�ned by P (E)x = P (Ex) for all x 2 X. The points of P (E)

can thus be identi�ed with the lines in the �bers of E. For any trivial-

ization �� : E�U� ! U� � C r of E we have a corresponding trivializatione�� : P (E)�U� ! U� � Pr�1, and it is clear that the transition automorphisms

are the projectivizations eg�� 2 H0
�
U� \ U� ; PGL(r; C )

�
of the transition au-

tomorphisms g�� of E.

Similarly, we have a dual projectivized bundle P (E?) whose points can be

identi�ed with the hyperplanes of E (every hyperplane F in Ex corresponds

bijectively to the line of linear forms in E?
x
which vanish on F ); note that

P (E) and P (E?) coincide only when r = rkE = 2. If � : P (E?)! X is the

natural projection, there is a tautological hyperplane subbundle S of �?E

over P (E?) such that S[�] = ��1(0) � Ex for all � 2 E?
x
r f0g.�

exercise: check that S is actually locally trivial over P (E?)
�
.
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(15.13) De�nition. The quotient line bundle �?E=S is denoted OE(1) and

is called the tautological line bundle associated to E. Hence there is an exact

sequence

0 �! S �! �?E �! OE(1) �! 0

of vector bundles over P (E?).

Note that (13.3) applied with V = E?
x
implies that the restriction of OE(1)

to each �ber P (E?x) ' Pr�1 coincides with the line bundle O(1) introduced

in Def. 15.2. Theorem 15.5 can then be extended to the present situation and

yields:

(15.14) Theorem. For every k 2 Z, the direct image sheaf �?OE(k) on X

vanishes for k < 0 and is isomorphic to O(SkE) for k � 0.

Proof. For k � 0, the k-th symmetric power of the morphism �?E ! OE(1)

gives a morphism �?SkE ! OE(k). This morphism together with the pull-

back morphism yield canonical arrows

�U : H0(U; SkE)
�
?

�! H0
�
��1(U); �?SkE

� �! H0
�
��1(U);OE(k)

�
for any open set U � X. The right hand side is by de�nition the space of

sections of �?OE(k) over U , hence we get a canonical sheaf morphism

� : O(SkE) �! �?OE(k):

It is easy to check that this � coincides with the map � introduced in the

proof of Cor. 15.6 when X is reduced to a point. In order to check that �

is an isomorphism, we may suppose that U is chosen so small that E�U is

trivial, say E�U = U � V with dimV = r. Then P (E?) = U � P (V ?) and
OE(1) = p?O(1) where O(1) is the tautological line bundle over P (V ?) and

p : P (E?)! P (V ?) is the second projection. Hence we get

H0
�
��1(U);OE(k)

�
= H0

�
U � P (V ?); p?O(1)�

= OX (U)
H0
�
P (V ?);O(1)

�
= OX (U)
 SkV = H0(U; SkE);

as desired; the reason for the second equality is that p?O(1) coincides with

O(1) on each �ber fxg�P (V ?) of p, thus any section of p?O(1) over U�P (V ?)
yields a family of sections H0

�fxg�P (V ?);O(k)� depending holomorphically

in x. When k < 0 there are no non zero such sections, thus �?OE(k) = 0. �

Finally, suppose that E is equipped with a hermitian metric. Then the

morphism �?E ! OE(1) endows OE(1) with a quotient metric. We are going

to compute the associated curvature form �
�
OE(1)

�
.
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Fix a point x0 2 X and a 2 P (E?
x0
). Then Prop. 12.10 implies the exis-

tence of a normal coordinate frame (e�)1���r) of E at x0 such that a is the

hyperplane he2; : : : ; eri = (e?1)
�1(0) at x0. Let (z1; : : : ; zn) be local coordi-

nates on X near x0 and let (�1; : : : ; �r) be coordinates on E
? with respect to

the dual frame (e?1; : : : ; e
?

r
). If we assign �1 = 1, then (z1; : : : ; zn; �2; : : : ; �r)

de�ne local coordinates on P (E?) near a, and we have a local section of

OE(�1) := OE(1)
? � �?E? de�ned by

"(z; �) = e?1(z) +
X

2���r
�� e

?

�
(z):

The hermitian matrix (he?
�
; e?
�
i) is just the congugate inverse of (he�; e�i) =

Id��P cjk�� zjzk
�
+O(jzj3), hence we get

he?
�
(z); e?

�
(z)i = Æ�� +

X
1�j;k�n

cjk�� zjzk +O(jzj3);

where (cjk��) are the curvature coeÆcients of �(E) ; accordingly we have

�(E?) = ��(E)y. We infer from this

j"(z; �)j2 = 1 +
X

1�j;k�n
cjk11 zjzk +

X
2���r

j��j2 +O(jzj3):

Since �
�
OE(1)

�
= d0d00 log j"(z; �)j2, we get

�
�
OE(1)

�
a
=

X
1�j;k�n

cjk11 dzj ^ dzk +
X

2���r
d�� ^ d��:

Note that the �rst summation is simply �h�(E?)a; ai=jaj2 = � curvature of

E? in the direction a. A unitary change of variables then gives the slightly

more general formula:

(15.15) Formula. Let (e�) be a normal coordinate frame of E at x0 2 X and

let �(E)x0 =
P
cjk�� dzj^dzk
e?�
e�. At any point a 2 P (E?) represented

by a vector
P
a�e

?

�
2 E?x0 of norm 1, the curvature of OE(1) is

�
�
OE(1)

�
a
=

X
1�j;k�n; 1��;��r

cjk�� a�a� dzj ^ dzk +
X

1���r�1
d�� ^ d��;

where (��) are coordinates near a on P (E?), induced by unitary coordinates

on the hyperplane a? � E?
x0
. �
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16. Grassmannians and Universal Vector Bundles

16.A. Universal Subbundles and Quotient Vector Bundles

If V is a complex vector space of dimension d, we denote by Gr(V ) the set

of all r-codimensional vector subspaces of V . Let a 2 Gr(V ) and W � V be

�xed such that

V = a�W; dimC W = r:

Then any subspace x 2 Gr(V ) in the open subset


W = fx 2 Gr(V ) ; x�W = V g
can be represented in a unique way as the graph of a linear map u in

Hom(a;W ). This gives rise to a covering of Gr(V ) by aÆne coordinate charts


W ' Hom(a;W ) ' C r(d�r) . Indeed, let (e1; : : : ; er) and (er+1; : : : ; en) be

respective bases of W and a. Every point x 2 
W is the graph of a linear

map

(16:1) u : a �!W; u(ek) =
X

1�j�r
zjkej ; r + 1 � k � d;

i.e. x = Vect
�
ek +

P
1�j�r zjkej

�
r+1�k�d. We choose (zjk) as complex coor-

dinates on 
W . These coordinates are centered at a = Vect(er+1; : : : ; ed).

(16.2) Proposition. Gr(V ) is a compact complex analytic manifold of di-

mension n = r(d� r).

Proof. It is immediate to verify that the coordinate change between two aÆne

charts of Gr(V ) is holomorphic. Fix an arbitrary hermitian metric on V .

Then the unitary group U(V ) is compact and acts transitively on Gr(V ).

The isotropy subgroup of a point a 2 Gr(V ) is U(a)� U(a?), hence Gr(V )
is di�eomorphic to the compact quotient space U(V )=U(a)� U(a?). �

Next, we consider the tautological subbundle S � �V := Gr(V )�V de�ned

by Sx = x for all x 2 Gr(V ), and the quotient bundle Q = �V=S of rank r :

(16:3) 0 �! S �! �V �! Q �! 0:

An interesting special case is r = d � 1, Gd�1(V ) = P (V ), S = O(�1),
Q = H. The case r = 1 is dual, we have the identi�cation G1(V ) = P (V ?)

because every hyperplane x � V corresponds bijectively to the line in V ? of

linear forms � 2 V ? that vanish on x. Then the bundles O(�1) � �V ? and H
on P (V ?) are given by
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O(�1)[�] = C :� ' (V=x)? = Q?
x
;

H[�] = V ?=C :� ' x? = S?
x
;

therefore S = H?, Q = O(1). This special case will allow us to compute

H0(Gr(V ); Q) in general.

(16.4) Proposition. There is an isomorphism

V = H0
�
Gr(V );�V

� ��! H0
�
Gr(V ); Q

�
:

Proof. Let V = W �W 0 be an arbitrary direct sum decomposition of V with

codimW = r � 1. Consider the projective space

P (W ?) = G1(W ) � Gr(V );
its tautological hyperplane subbundle H? � �W = P (W ?)�W and the exact

sequence 0! H? ! �W ! O(1)! 0. Then S�P (W?) coincides with H
? and

Q�P (W?) = (�W ��W
0)=H? = (�W=H

?)��W
0 = O(1)��W

0:

Theorem 15.5 implies H0(P (W ?);O(1)) =W , therefore the space

H0(P (W ?); Q�P (W?)) =W �W 0

is generated by the images of the constant sections of �V . SinceW is arbitrary,

Prop. 16.4 follows immediately. �

Let us compute the tangent space TGr(V ). The linear group Gl(V ) acts

transitively on Gr(V ), and the tangent space to the isotropy subgroup of a

point x 2 Gr(V ) is the set of elements u 2 Hom(V; V ) in the Lie algebra such

that u(x) � x. We get therefore

TxGr(V ) ' Hom(V; V )=fu ; u(x) � xg
' Hom(V; V=x)=

�eu ; eu(x) = f0g	
' Hom(x; V=x) = Hom(Sx; Qx):

(16.5) Corollary. TGr(V ) = Hom(S;Q) = S? 
Q. �

16.B. Pl�ucker Embedding

There is a natural map, called the Pl�ucker embedding,

(16:6) jr : Gr(V ) ,�! P (�rV ?)

constructed as follows. If x 2 Gr(V ) is de�ned by r independent linear forms

�1; : : : ; �r 2 V ?, we set



16. Grassmannians and Universal Vector Bundles 325

jr(x) = [�1 ^ � � � ^ �r]:
Then x is the subspace of vectors v 2 V such that v (�1 ^ � � � ^ �r) = 0, so

jr is injective. Since the linear group Gl(V ) acts transitively on Gr(V ), the

rank of the di�erential djr is a constant. As jr is injective, the constant rank

theorem implies:

(16.7) Proposition. The map jr is a holomorphic embedding. �

Now, we de�ne a commutative diagram

(16:8)

�rQ
Jr�! O(1)

# #
Gr(V )

jr
,�! P (�rV ?)

as follows: for x = ��11 (0)\� � �\��1r (0) 2 Gr(V ) and ev = ev1 ^ � � � ^ evr 2 �rQx
where evk 2 Qx = V=x is the image of vk 2 V in the quotient, we let

Jr(ev) 2 O(1)jr(x) be the linear form on O(�1)jr(x) = C :�1 ^ : : : ^ �r such

that

hJr(ev); ��1 ^ : : : ^ �ri = � det
�
�j(vk)

�
; � 2 C :

Then Jr is an isomorphism on the �bers, so �rQ can be identi�ed with the

pull-back of O(1) by jr.

16.C. Curvature of the Universal Vector Bundles

Assume now that V is a hermitian vector space. We shall generalize our

curvature computations of x15.C to the present situation. Let a 2 Gr(V ) be
a given point. We take W to be the orthogonal complement of a in V and

select an orthonormal basis (e1; : : : ; ed) of V such that W = Vect(e1; : : : ; er),

a = Vect(er+1; : : : ; ed). For any point x 2 Gr(V ) in 
W with coordinates

(zjk), we set

"k(x) = ek +
X

1�j�r
zjkej ; r + 1 � k � d;

eej(x) = image of ej in Qx = V=x; 1 � j � r:
Then (ee1; : : : ; eer) and ("r+1; : : : ; "d) are holomorphic frames of Q and S re-

spectively. If g? : Q �! �V is the orthogonal splitting of g : �V �! Q,

then

g? � eej = ej +
X

r+1�k�d
�jk"k

for some �jk 2 C . After an easy computation we �nd
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0 = heej ; g"ki = hg?eej ; "ki = �jk + zjk +
X
l;m

�jmzlmzlk;

so that �jk = �zjk + O(jzj2). Formula (13.3) yields

d00g?
a
� eej = � X

r+1�k�d
dzjk 
 "k;

�?
a
=
X
j;k

dzjk 
 ee?j 
 "k; �a =
X
j;k

dzjk 
 "?k 
 eej ;
�(Q)a = (� ^ �?)a =

X
j;k;l

dzjk ^ dzlk 
 ee?l 
 eej ;(16:9)

�(S)a = (�? ^ �)a = �
X
j;k;l

dzjk ^ dzjl 
 "?k 
 "l:(16:10)



Chapter VI

Hodge Theory

The goal of this chapter is to prove a number of basic facts in the Hodge theory
of real or complex manifolds. The theory rests essentially on the fact that the De
Rham (or Dolbeault) cohomology groups of a compact manifold can be represented
by means of spaces of harmonic forms, once a Riemannian metric has been chosen.
At this point, some knowledge of basic results about elliptic di�erential operators
is required. The special properties of compact K�ahler manifolds are then investi-
gated in detail: Hodge decomposition theorem, hard Lefschetz theorem, Jacobian
and Albanese variety, : : : ; the example of curves is treated in detail. Finally, the
Hodge-Fr�olicher spectral sequence is applied to get some results on general com-
pact complex manifolds, and it is shown that Hodge decomposition still holds for
manifolds in the Fujiki class (C).

x1. Di�erential Operators on Vector Bundles

We �rst describe some basic concepts concerning di�erential operators (sym-

bol, composition, adjunction, ellipticity), in the general setting of vector bun-

dles. Let M be a C1 di�erentiable manifold, dimRM = m, and let E, F be

K -vector bundles over M , with K = R or K = C , rankE = r, rankF = r0.

(1.1) De�nition. A (linear) di�erential operator of degree Æ from E to F is

a K -linear operator P : C1(M;E)! C1(M;F ), u 7! Pu of the form

Pu(x) =
X
j�j�Æ

a�(x)D
�u(x);

where E�
 ' 
 � K r , F�
 ' 
 � K r
0

are trivialized locally on some

open chart 
 �M equipped with local coordinates (x1; : : : ; xm), and where

a�(x) =
�
a���(x)

�
1���r0; 1���r are r0 � r-matrices with C1 coeÆcients

on 
. Here D� = (@=@x1)
�1 : : : (@=@xm)

�m as usual, and u = (u�)1���r,
D�u = (D�u�)1���r are viewed as column matrices.

If t 2 K is a parameter, a simple calculation shows that e�tu(x)P (etu(x))
is a polynomial of degree Æ in t, of the form

e�tu(x)P (etu(x)) = tÆ�P (x; du(x)) + lower order terms cj(x)t
j , j < Æ;
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where �P is the polynomial map from T ?
M
! Hom(E;F ) de�ned by

(1:2) T ?
M;x
3 � 7! �P (x; �) 2 Hom(Ex; Fx); �P (x; �) =

X
j�j=Æ

a�(x)�
�:

The formula involving e�tuP (etu) shows that �P (x; �) actually does not de-

pend on the choice of coordinates nor on the trivializations used for E, F .

It is clear that �P (x; �) is smooth on T ?
M

as a function of (x; �), and is a

homogeneous polynomial of degree Æ in �. We say that �P is the principal

symbol of P . Now, if E, F , G are vector bundles and

P : C1(M;E)! C1(M;F ); Q : C1(M;F )! C1(M;G)

are di�erential operators of respective degrees ÆP , ÆQ, it is easy to check that

Q Æ P : C1(M;E)! C1(M;G) is a di�erential operator of degree ÆP + ÆQ
and that

(1:3) �QÆP (x; �) = �Q(x; �)�P (x; �):

Here the product of symbols is computed as a product of matrices.

Now, assume that M is oriented and is equipped with a smooth volume

form dV (x) = (x)dx1 ^ : : : dxm, where (x) > 0 is a smooth density. If E is

a euclidean or hermitian vector bundle, we have a Hilbert space L2(M;E) of

global sections u of E with measurable coeÆcients, satisfying the L2 estimate

(1:4) kuk2 =
Z
M

ju(x)j2 dV (x) < +1:

We denote by

(1:40) hhu; vii =
Z
M

hu(x); v(x)i dV (x); u; v 2 L2(M;E)

the corresponding L2 inner product.

(1.5) De�nition. If P : C1(M;E) ! C1(M;F ) is a di�erential operator

and both E, F are euclidean or hermitian, there exists a unique di�erential

operator

P ? : C1(M;F )! C1(M;E);

called the formal adjoint of P , such that for all sections u 2 C1(M;E) and

v 2 C1(M;F ) there is an identity

hhPu; vii = hhu; P ?vii; whenever Supp u \ Supp v ��M:

Proof. The uniqueness is easy, using the density of the set of elements u 2
C1(M;E) with compact support in L2(M;E). Since uniqueness is clear, it is
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enough, by a partition of unity argument, to show the existence of P ? locally.

Now, let Pu(x) =
P
j�j�Æ a�(x)D

�u(x) be the expansion of P with respect

to trivializations of E, F given by orthonormal frames over some coordinate

open set 
 �M . When Supp u \ Supp v �� 
 an integration by parts yields

hhPu; vii =
Z



X
j�j�Æ;�;�

a���D
�u�(x)v�(x) (x) dx1; : : : ; dxm

=

Z



X
j�j�Æ;�;�

(�1)j�ju�(x)D�((x) a���v�(x) dx1; : : : ; dxm

=

Z



hu;
X
j�j�Æ

(�1)j�j(x)�1D�
�
(x) ta�v(x)

�i dV (x):
Hence we see that P ? exists and is uniquely de�ned by

(1:6) P ?v(x) =
X
j�j�Æ

(�1)j�j(x)�1D�
�
(x) ta�v(x)

�
: �

It follows immediately from (1.6) that the principal symbol of P ? is

(1:7) �P?(x; �) = (�1)Æ
X
j�j=Æ

ta��
� = (�1)Æ�P (x; �)?:

(1.8) De�nition. A di�erential operator P is said to be elliptic if

�P (x; �) 2 Hom(Ex; Fx)

is injective for every x 2M and � 2 T ?
M;x

r f0g.

x2. Formalism of PseudoDi�erential Operators

We assume throughout this section that (M; g) is a compact Riemannian

manifold. For any positive integer k and any hermitian bundle F ! M ,

we denote by W k(M;F ) the Sobolev space of sections s : M ! F whose

derivatives up to order k are in L2. Let k kk be the norm of the Hilbert

space W k(M;F ). Let P be an elliptic di�erential operator of order d acting

on C1(M;F ). We need the following basic facts of elliptic PDE theory, see

e.g. (H�ormander 1963).

(2.1) Sobolev lemma. For k > l+ m

2
, W k(M;F ) � Cl(M;F ).

(2.2) Rellich lemma. For every integer k, the inclusion

W k+1(M;F ) ,�!W k(M;F )



330 Chapter VI Hodge Theory

is a compact linear operator.

(2.3) G�arding's inequality. Let eP be the extension of P to sections with

distribution coeÆcients. For any u 2 W 0(M;F ) such that ePu 2 W k(M;F ),

then u 2W k+d(M;F ) and

kukk+d � Ck(k ePukk + kuk0);
where Ck is a positive constant depending only on k.

(2.4) Corollary. The operator P : C1(M;F )! C1(M;F ) has the follow-

ing properties:

i) kerP is �nite dimensional.

ii) P
�
C1(M;F )

�
is closed and of �nite codimension; furthermore, if P ? is

the formal adjoint of P , there is a decomposition

C1(M;F ) = P
�
C1(M;F )

�� kerP ?

as an orthogonal direct sum in W 0(M;F ) = L2(M;F ).

Proof. (i) G�arding's inequality shows that kukk+d � Ckkuk0 for any u in

kerP . Thanks to the Sobolev lemma, this implies that kerP is closed in

W 0(M;F ). Moreover, the unit closed k k0-ball of kerP is contained in the

k kd-ball of radius C0, thus compact by the Rellich lemma. Riesz' theorem

implies that dimkerP < +1.

(ii) We �rst show that the extension

eP :W k+d(M;F )!W k(M;F )

has a closed range for any k. For every " > 0, there exists a �nite number of

elements v1; : : : ; vN 2W k+d(M;F ), N = N("), such that

(2:5) kuk0 � "kukk+d +
NX
j=1

jhhu; vjii0j ;

indeed the set

K(vj) =
n
u 2W k+d(M;F ) ; "kukk+d +

NX
j=1

jhhu; vjii0j � 1
o

is relatively compact in W 0(M;F ) and
T

(vj)
K(vj) = f0g. It follows that

there exist elements (vj) such that K(vj) is contained in the unit ball of

W 0(M;F ), QED. Substitute jjujj0 by the upper bound (2.5) in G�arding's

inequality; we get
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(1� Ck")kukk+d � Ck
�
k ePukk + NX

j=1

jhhu; vjii0j
�
:

De�ne G =
�
u 2 W k+d(M;F ) ; u ? vj ; 1 � j � ng and choose " = 1=2Ck.

We obtain

kukk+d � 2Ckk ePukk; 8u 2 G:
This implies that eP (G) is closed. Therefore

eP �W k+d(M;F )
�
= eP (G) + Vect

� eP (v1); : : : ; eP (vN )�
is closed in W k(M;F ). Take in particular k = 0. Since C1(M;F ) is dense in

W d(M;F ), we see that in W 0(M;F )� eP �W d(M;F )
��?

=
�
P
�
C1(M;F )

��?
= kerfP ?:

We have proved that

(2:6) W 0(M;F ) = eP�W d(M;F )
�� kerfP ?:

Since P ? is also elliptic, it follows that kerfP ? is �nite dimensional and that

kerfP ? = kerP ? is contained in C1(M;F ). Thanks to G�arding's inequality,

the decomposition formula (2.6) yields

W k(M;F ) = eP �W k+d(M;F )
�� kerP ?;(2:7)

C1(M;F ) = P
�
C1(M;F )

�� kerP ?:(2:8)

x3. Hodge Theory of Compact Riemannian Manifolds

x3.1. Euclidean Structure of the Exterior Algebra

Let (M; g) be an oriented Riemannian C1-manifold, dimRM = m, and

E ! M a hermitian vector bundle of rank r over M . We denote respec-

tively by (�1; : : : ; �m) and (e1; : : : ; er) orthonormal frames of TM and E over

an open subset 
 � M , and by (�?1 ; : : : ; �
?

m
), (e?1; : : : ; e

?

r
) the corresponding

dual frames of T ?
M
; E?. Let dV stand for the Riemannian volume form on

M . The exterior algebra �T ?
M

has a natural inner product h�; �i such that

(3:1) hu1 ^ : : : ^ up; v1 ^ : : : ^ vpi = det(huj; vki)1�j;k�p; uj ; vk 2 T ?M
for all p, with �T ?

M
=
L
�pT ?

M
as an orthogonal sum. Then the covectors

�?
I
= �?

i1
^ � � � ^ �?

ip
; i1 < i2 < � � � < ip, provide an orthonormal basis of �T ?

M
.

We also denote by h�; �i the corresponding inner product on �T ?
M

 E.
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(3.2) Hodge Star Operator. The Hodge-Poincar�e-De Rham operator ? is

the collection of linear maps de�ned by

? : �pT ?
M
! �m�pT ?

M
; u ^ ? v = hu; vi dV; 8u; v 2 �pT ?

M
:

The existence and uniqueness of this operator is easily seen by using the

duality pairing

�pT ?
M
� �m�pT ?

M
�! R

(u; v) 7�! u ^ v=dV =
X

"(I; {I)uIv{I ;(3:3)

where u =
P
jIj=p uI �

?

I
, v =

P
jJj=m�p vJ �

?

J
, where {I stands for the (or-

dered) complementary multi-index of I and "(I; {I) for the signature of the

permutation (1; 2; : : : ;m) 7�! (I; {I). From this, we �nd

(3:4) ? v =
X
jIj=p

"(I; {I)vI �
?

{I :

More generally, the sesquilinear pairing f�; �g de�ned in (V-7.1) yields an

operator ? on vector valued forms, such that

? : �pT ?M 
E ! �m�pT ?M 
E; fs; ? tg = hs; ti dV; s; t 2 �pT ?M 
 E;(3:30)

? t =
X
jIj=p;�

"(I; {I) tI;� �
?

{I 
 e�(3:40)

for t =
P
tI;� �

?

I

 e�. Since "(I; {I)"({I; I) = (�1)p(m�p) = (�1)p(m�1), we

get immediately

(3:5) ? ?t = (�1)p(m�1)t on �pT ?
M

 E:

It is clear that ? is an isometry of ��T ?
M

E.

We shall also need a variant of the ? operator, namely the conjugate-linear

operator

# : �pT ?
M

 E �! �m�pT ?

M

 E?

de�ned by s ^ # t = hs; ti dV; where the wedge product ^ is combined with

the canonical pairing E � E? ! C . We have

(3:6) # t =
X
jIj=p;�

"(I; {I) tI;� �
?

{I 
 e?�:

(3.7) Contraction by a Vector Field.. Given a tangent vector � 2 TM
and a form u 2 �pT ?

M
, the contraction � u 2 �p�1T ?

M
is de�ned by

� u (�1; : : : ; �p�1) = u(�; �1; : : : ; �p�1); �j 2 TM :
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In terms of the basis (�j), � � is the bilinear operation characterized by

�l (�?
i1
^ : : : ^ �?

ip
) =

�
0 if l =2 fi1; : : : ; ipg,
(�1)k�1�?

i1
^ : : :c�?

ik
: : : ^ �?

ip
if l = ik.

This formula is in fact valid even when (�j) is non orthonormal. A rather

easy computation shows that � � is a derivation of the exterior algebra, i.e.

that

� (u ^ v) = (� u) ^ v + (�1)deg uu ^ (� v):

Moreover, if e� = h�; �i 2 T ?
M
, the operator � � is the adjoint map of e� ^ �,

that is,

(3:8) h� u; vi = hu; e� ^ vi; u; v 2 �T ?M :
Indeed, this property is immediately checked when � = �l, u = �?

I
, v = �?

J
.

x3.2. Laplace-Beltrami Operators

Let us consider the Hilbert space L2(M;�pT ?
M
) of p-forms u on M with

measurable coeÆcients such that

kuk2 =
Z
M

juj2 dV < +1:

We denote by hh ; ii the global inner product on L2-forms. The Hilbert space

L2(M;�pT ?
M

E) is de�ned similarly.

(3.9) Theorem. The operator d? = (�1)mp+1 ? d ? is the formal adjoint of

the exterior derivative d acting on C1(M;�pT ?
M

 E).

Proof. If u 2 C1(M;�pT ?
M
); v 2 C1(M;�p+1T ?

M

) are compactly sup-

ported we get

hhdu; vii =
Z
M

hdu; vi dV =

Z
M

du ^ ? v

=

Z
M

d(u ^ ? v)� (�1)pu ^ d ? v = �(�1)p
Z
M

u ^ d ? v

by Stokes' formula. Therefore (3.4) implies

hhdu; vii = �(�1)p(�1)p(m�1)
Z
M

u ^ ? ? d ? v = (�1)mp+1hhu; ? d ? vii: �

(3.10) Remark. If m is even, the formula reduces to d? = � ? d ?.
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(3.11) De�nition.The operator � = dd?+d?d is called the Laplace-Beltrami

operator of M .

Since d? is the adjoint of d, the Laplace operator� is formally self-adjoint,

i.e. hh�u; vii = hhu;�vii when the forms u; v are of class C1 and compactly

supported.

(3.12) Example. Let M be an open subset of Rm and g =
P
m

i=1 dx
2
i
. In

that case we get

u =
X
jIj=p

uIdxI ; du =
X
jIj=p;j

@uI

@xj
dxj ^ dxI ;

hhu; vii =
Z
M

hu; vi dV =

Z
M

X
I

uIvI dV

One can write dv =
P
dxj ^ (@v=@xj) where @v=@xj denotes the form v in

which all coeÆcients vI are di�erentiated as @vI=@xj. An integration by parts

combined with contraction gives

hhd?u; vii = hhu; dvii =
Z
M

hu;
X
j

dxj ^ @v

@xj
i dV

=

Z
M

X
j

h @
@xj

u;
@v

@xj
i dV = �

Z
M

h
X
j

@

@xj

@u

@xj
; vi dV;

d?u = �
X
j

@

@xj

@u

@xj
= �

X
I;j

@uI

@xj

@

@xj
dxI :

We get therefore

dd?u = �
X
I;j;k

@2uI

@xj@xk
dxk ^

� @

@xj
dxI

�
;

d?du = �
X
I;j;k

@2uI

@xj@xk

@

@xj
(dxk ^ dxI):

Since

@

@xj
(dxk ^ dxI) =

� @

@xj
dxk

�
dxI � dxk ^

� @

@xj
dxI

�
;

we obtain

�u = �
X
I

�X
j

@2uI

@x2
j

�
dxI :

In the case of an arbitrary riemannian manifold (M; g) we have
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u =
X

uI �
?

I
;

du =
X
I;j

(�j � uI) �?j ^ �?I +
X
I

uI d�
?

I
;

d?u = �
X
I;j

(�j � uI) �j �?
I
+
X
I;K

�I;KuI �
?

K
;

for some C1 coeÆcients �I;K , jIj = p, jKj = p � 1. It follows that the

principal part of � is the same as that of the second order operator

u 7�! �
X
I

�X
j

�2j � uI
�
�?I :

As a consequence, � is elliptic.

Assume now that DE is a hermitian connection on E. The formal adjoint

operator of DE acting on C1(M;�pT ?
M

 E) is

(3:13) D?

E
= (�1)mp+1 ? DE ? :

Indeed, if s 2 C1(M;�pT ?
M

 E), t 2 C1(M;�p+1T ?

M

 E) have compact

support, we get

hhDEs; tii =
Z
M

hDEs; ti dV =

Z
M

fDEs; ? tg

=

Z
M

dfs; ? tg � (�1)pfs;DE ? tg = (�1)mp+1hhs; ? DE ? tii:

(3.14) De�nition. The Laplace-Beltrami operator associated to DE is the

second order operator �E = DED
?

E
+D?

E
DE .

�E is a self-adjoint elliptic operator with principal part

s 7�! �
X
I;�

�X
j

�2
j
� sI;�

�
�?
I

 e�:

x3.3. Harmonic Forms and Hodge Isomorphism

Let E be a hermitian vector bundle over a compact Riemannian manifold

(M; g). We assume that E possesses a at hermitian connection DE (this

means that �(DE) = D2
E

= 0, or equivalently, that E is given by a rep-

resentation �1(M) ! U(r), cf. xV-6). A fundamental example is of course

the trivial bundle E = M � C with the connection DE = d. Thanks to our

atness assumption, DE de�nes a generalized De Rham complex

DE : C1(M;�pT ?M 
 E) �! C1(M;�p+1T ?M 
 E):
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The cohomology groups of this complex will be denoted by H
p

DR
(M;E).

The space of harmonic forms of degree p with respect to the Laplace-

Beltrami operator �E = DED
?

E
+D?

E
DE is de�ned by

(3:15) Hp(M;E) =
�
s 2 C1(M;�pT ?

M

 E) ; �Es = 0

	
:

Since hh�Es; sii = jjDEsjj2 + jjD?

E
sjj2, we see that s 2 Hp(M;E) if and only

if DEs = D?

E
s = 0.

(3.16) Theorem. For any p, there exists an orthogonal decomposition

C1(M;�pT ?
M

 E) = Hp(M;E)� ImDE � ImD?

E
;

ImDE = DE
�
C1(M;�p�1T ?

M

 E)�;

ImD?

E
= D?

E

�
C1(M;�p+1T ?

M

 E)�:

Proof. It is immediate thatHp(M;E) is orthogonal to both subspaces ImDE
and ImD?

E
. The orthogonality of these two subspaces is also clear, thanks to

the assumption D2
E
= 0 :

hhDEs;D?

Etii = hhD2
Es; tii = 0:

We apply now Cor. 2.4 to the elliptic operator �E = �?

E
acting on p-forms,

i.e. on the bundle F = �pT ?
M

E. We get

C1(M;�pT ?M 
 E) = Hp(M;E)��E

�
C1(M;�pT ?M 
E)

�
;

Im�E = Im(DED
?

E
+D?

E
DE) � ImDE + ImD?

E
: �

(3.17) Hodge isomorphism theorem. The De Rham cohomology group

H
p

DR
(M;E) is �nite dimensional and H

p

DR
(M;E) ' Hp(M;E).

Proof. According to decomposition 3.16, we get

B
p

DR
(M;E) = DE

�
C1(M;�p�1T ?M 
E)

�
;

Z
p

DR
(M;E) = kerDE = (ImD?

E)
? = Hp(M;E)� ImDE :

This shows that every De Rham cohomology class contains a unique harmonic

representative. �

(3.18) Poincar�e duality. The bilinear pairing

H
p

DR
(M;E)�Hm�p

DR
(M;E?) �! C ; (s; t) 7�!

Z
M

s ^ t

is a non degenerate duality.
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Proof. First note that there exists a naturally de�ned at connection DE?

such that for any s1 2 C1� (M;E), s2 2 C1� (M;E?) we have

(3:19) d(s1 ^ s2) = (DEs1) ^ s2 + (�1)deg s1s1 ^DE?s2:

It is then a consequence of Stokes' formula that the map (s; t) 7! R
M
s^ t can

be factorized through cohomology groups. Let s 2 C1(M;�pT ?
M

 E). We

leave to the reader the proof of the following formulas (use (3.19) in analogy

with the proof of Th. 3.9):

DE?(# s) = (�1)p#D?

Es;

ÆE?(# s) = (�1)p+1#DEs;(3:20)

�E?(# s) = #�Es;

Consequently #s 2 Hm�p(M;E?) if and only if s 2 Hp(M;E). SinceZ
M

s ^# s =

Z
M

jsj2 dV = ksk2;

we see that the Poincar�e pairing has zero kernel in the left hand factor

Hp(M;E) ' Hp

DR
(M;E). By symmetry, it has also zero kernel on the right.

The proof is achieved. �

x4. Hermitian and K�ahler Manifolds

Let X be a complex n-dimensional manifold. A hermitian metric on X is a

positive de�nite hermitian form of class C1 on TX ; in a coordinate system

(z1; : : : ; zn), such a form can be written h(z) =
P

1�j;k�n hjk(z) dzj 
 dzk,
where (hjk) is a positive hermitian matrix with C1 coeÆcients. According

to (III-1.8), the fundamental (1; 1)-form associated to h is the positive form

of type (1; 1)

! = �Im h =
i

2

X
hjkdzj ^ dzk; 1 � j; k � n:

(4.1) De�nition.

a) A hermitian manifold is a pair (X;!) where ! is a C1 positive de�nite

(1; 1)-form on X.

b) The metric ! is said to be k�ahler if d! = 0.

c) X is said to be a K�ahler manifold if X carries at least one K�ahler metric.

Since ! is real, the conditions d! = 0, d0! = 0, d00! = 0 are all equivalent.

In local coordinates we see that d0! = 0 if and only if
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@hjk

@zl
=
@hlk

@zj
; 1 � j; k; l � n:

A simple computation gives

!n

n!
= det(hjk)

^
1�j�n

� i
2
dzj ^ dzj

�
= det(hjk) dx1 ^ dy1 ^ � � � ^ dxn ^ dyn;

where zn = xn + iyn. Therefore the (n; n)-form

(4:2) dV =
1

n!
!n

is positive and coincides with the hermitian volume element of X. If X is

compact, then
R
X
!n = n! Vol!(X) > 0. This simple remark already implies

that compact K�ahler manifolds must satisfy some restrictive topological con-

ditions:

(4.3) Consequence.

a) If (X;!) is compact K�ahler and if f!g denotes the cohomology class of !

in H2(X;R), then f!gn 6= 0.

b) If X is compact K�ahler, then H2k(X;R) 6= 0 for 0 � k � n. In fact, f!gk
is a non zero class in H2k(X;R).

(4.4) Example. The complex projective space Pn is K�ahler. A natural

K�ahler metric ! on Pn, called the Fubini-Study metric, is de�ned by

p?! =
i

2�
d0d00 log

�j�0j2 + j�1j2 + � � �+ j�nj2�
where �0; �1; : : : ; �n are coordinates of C n+1 and where p : C n+1 n f0g ! Pn

is the projection. Let z = (�1=�0; : : : ; �n=�0) be non homogeneous coordinates

on C n � Pn. Then (V-15.8) and (V-15.12) show that

! =
i

2�
d0d00 log(1 + jzj2) = i

2�
c
�
O(1)

�
;

Z
Pn

!n = 1:

Furthermore f!g 2 H2(Pn;Z) is a generator of the cohomology algebra

H�(Pn;Z) in virtue of Th. V-15.10.

(4.5) Example. A complex torus is a quotient X = C n=� by a lattice �

of rank 2n. Then X is a compact complex manifold. Any positive de�nite

hermitian form ! = i
P
hjkdzj ^ dzk with constant coeÆcients de�nes a

K�ahler metric on X.

(4.6) Example. Every (complex) submanifold Y of a K�ahler manifold (X;!)

is K�ahler with metric !�Y . Especially, all submanifolds of Pn are K�ahler.
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(4.7) Example. Consider the complex surface

X = (C 2 n f0g)=�
where � = f�n ; n 2 Zg, � < 1, acts as a group of homotheties. Since C 2 nf0g
is di�eomorphic to R?+ � S3, we have X ' S1 � S3. Therefore H2(X;R) = 0

by K�unneth's formula IV-15.10, and property 4.3 b) shows that X is not

K�ahler. More generally, one can obtaintake � to be an in�nite cyclic group

generated by a holomorphic contraction of C 2 , of the form�
z1
z2

�
7�!

�
�1z1
�2z2

�
; resp.

�
z1
z2

�
7�!

�
�z1

�z2 + z
p

1

�
;

where �; �1; �2 are complex numbers such that 0 < j�1j � j�2j < 1,

0 < j�j < 1, and p a positive integer. These non K�ahler surfaces are called

Hopf surfaces.

The following Theorem shows that a hermitian metric ! on X is K�ahler

if and only if the metric ! is tangent at order 2 to a hermitian metric with

constant coeÆcients at every point of X.

(4.8) Theorem. Let ! be a C1 positive de�nite (1; 1)-form on X. In order

that ! be K�ahler, it is necessary and suÆcient that to every point x0 2 X
corresponds a holomorphic coordinate system (z1; : : : ; zn) centered at x0 such

that

(4:9) ! = i
X

1�l;m�n
!lm dzl ^ dzm; !lm = Ælm +O(jzj2):

If ! is K�ahler, the coordinates (zj)1�j�n can be chosen such that

(4:10) !lm = h @
@zl

;
@

@zm
i = Ælm �

X
1�j;k�n

cjklm zjzk +O(jzj3);

where (cjklm) are the coeÆcients of the Chern curvature tensor

(4:11) �(TX)x0 =
X
j;k;l;m

cjklm dzj ^ dzk 

� @

@zl

�?

 @

@zm

associated to (TX ; !) at x0. Such a system (zj) will be called a geodesic co-

ordinate system at x0.

Proof. It is clear that (4.9) implies dx0! = 0, so the condition is suÆ-

cient. Assume now that ! is K�ahler. Then one can choose local coordinates

(x1; : : : ; xn) such that (dx1; : : : ; dxn) is an !-orthonormal basis of T ?
x0
X.

Therefore
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! = i
X

1�l;m�n
e!lm dxl ^ dxm; where

e!lm = Ælm +O(jxj) = Ælm +
X

1�j�n
(ajlmxj + a0

jlm
xj) +O(jxj2):(4:12)

Since ! is real, we have a0
jlm

= ajml ; on the other hand the K�ahler condition

@!lm=@xj = @!jm=@xl at x0 implies ajlm = aljm. Set now

zm = xm +
1

2

X
j;l

ajlmxjxl; 1 � m � n:

Then (zm) is a coordinate system at x0, and

dzm = dxm +
X
j;l

ajlmxjdxl;

i
X
m

dzm ^ dzm = i
X
m

dxm ^ dxm + i
X
j;l;m

ajlmxj dxl ^ dxm

+ i
X
j;l;m

ajlmxj dxm ^ dxl + O(jxj2)

= i
X
l;m

e!lm dxl ^ dxm + O(jxj2) = ! +O(jzj2):

Condition (4.9) is proved. Suppose the coordinates (xm) chosen from the

beginning so that (4.9) holds with respect to (xm). Then the Taylor expansion

(4.12) can be re�ned into

e!lm = Ælm +O(jxj2)(4:13)

= Ælm +
X
j;k

�
ajklmxjxk + a0

jklm
xjxk + a00

jklm
xjxk

�
+ O(jxj3):

These new coeÆcients satisfy the relations

a0
jklm

= a0
kjlm

; a00
jklm

= a0
jkml

; ajklm = akjml:

The K�ahler condition @!lm=@xj = @!jm=@xl at x = 0 gives the equal-

ity a0
jklm

= a0
lkjm

; in particular a0
jklm

is invariant under all permutations

of j; k; l. If we set

zm = xm +
1

3

X
j;k;l

a0
jklm

xjxkxl; 1 � m � n;

then by (4.13) we �nd
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dzm = dxm +
X
j;k;l

a0
jklm

xjxk dxl; 1 � m � n;

! = i
X

1�m�n
dzm ^ dzm + i

X
j;k;l;m

ajklm xjxk dxl ^ dxm + O(jxj3);

! = i
X

1�m�n
dzm ^ dzm + i

X
j;k;l;m

ajklm zjzk dzl ^ dzm + O(jzj3):(4:14)

It is now easy to compute the Chern curvature tensor �(TX)x0 in terms of

the coeÆcients ajklm. Indeed

h @
@zl

;
@

@zm
i = Ælm +

X
j;k

ajklm zjzk + O(jzj3);

d0h @
@zl

;
@

@zm
i =

n
D0

@

@zl
;
@

@zm

o
=
X
j;k

ajklm zk dzj + O(jzj2);

�(TX) �
@

@zl
= D00D0

� @

@zl

�
= �

X
j;k;m

ajklm dzj ^ dzk 

@

@zm
+O(jzj);

therefore cjklm = �ajklm and the expansion (4.10) follows from (4.14). �

(4.15) Remark. As a by-product of our computations, we �nd that on a

K�ahler manifold the coeÆcients of �(TX) satisfy the symmetry relations

cjklm = ckjml; cjklm = clkjm = cjmlk = clmjk:

x5. Basic Results of K�ahler Geometry

x5.1. Operators of Hermitian Geometry

Let (X;!) be a hermitian manifold and let zj = xj + iyj , 1 � j � n, be ana-
lytic coordinates at a point x 2 X such that !(x) = i

P
dzj ^dzj is diagonal-

ized at this point. The associated hermitian form is the h(x) = 2
P
dzj 
dzj

and its real part is the euclidean metric 2
P
(dxj)

2+(dyj)
2. It follows from this

that jdxjj = jdyjj = 1=
p
2, jdzj j = jdzj j = 1, and that (@=@z1; : : : ; @=@zn) is

an orthonormal basis of (T ?
x
X;!). Formula (3.1) with uj ; vk in the orthogonal

sum (C 
 TX)? = T ?
X
� T ?

X
de�nes a natural inner product on the exterior

algebra ��(C 
 TX)?. The norm of a form

u =
X
I;J

uI;JdzI ^ dzJ 2 �(C 
 TX)?

at the given point x is then equal to
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(5:1) ju(x)j2 =
X
I;J

juI;J (x)j2:

The Hodge ? operator (3.2) can be extended to C -valued forms by the

formula

(5:2) u ^ ? v = hu; vi dV:
It follows that ? is a C -linear isometry

? : �p;qT ?
X
�! �n�q;n�pT ?

X
:

The usual operators of hermitian geometry are the operators d; Æ = � ?

d ?; � = dÆ + Æd already de�ned, and their complex counterparts

(5:3)

8><>:
d = d0 + d00;

Æ = d0? + d00?; d0? = (d0)? = � ? d00?; d00? = (d00)? = � ? d0?;
�0 = d0d0? + d0?d0; �00 = d00d00? + d00?d00:

Another important operator is the operator L of type (1,1) de�ned by

(5:4) Lu = ! ^ u
and its adjoint � = ?�1L? :

(5:5) hu; �vi = hLu; vi:

x5.2. Commutation Identities

If A;B are endomorphisms of the algebra C1�;�(X; C ), their graded commu-

tator (or graded Lie bracket) is de�ned by

(5:6) [A;B] = AB � (�1)abBA
where a; b are the degrees of A and B respectively. If C is another endomor-

phism of degree c, the following Jacobi identity is easy to check:

(5:7) (�1)ca�A; [B;C]�+ (�1)ab�B; [C;A]�+ (�1)bc�C; [A;B]� = 0:

For any � 2 �p;qT ?
X
, we still denote by � the endomorphism of type (p; q) on

��;�T ?
X
de�ned by u 7! � ^ u.

Let  2 �1;1T ?
X

be a real (1,1)-form. There exists an !-orthogonal basis

(�1; �2; : : : ; �n) in TX which diagonalizes both forms ! and  :

! = i
X

1�j�n
�?
j
^ �?

j
;  = i

X
1�j�n

j �
?

j
^ �?

j
; j 2 R:

(5.8) Proposition. For every form u =
P
uJ;K �

?

J
^ �?K , one has
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[; �]u =
X
J;K

�X
j2J

j +
X
j2K

j �
X

1�j�n
j

�
uJ;K �

?

J
^ �?

K
:

Proof. If u is of type (p; q), a brute-force computation yields

�u = i(�1)p
X
J;K;l

uJ;K (�l �?
J
) ^ (�l �

?

K
); 1 � l � n;

 ^ u = i(�1)p
X
J;K;m

muJ;K �
?

m
^ �?

J
^ �?

m
^ �?

K
; 1 � m � n;

[; �]u =
X

J;K;l;m

m uJ;K

��
�?
l
^ (�m �?

J
)
� ^ ��?

l
^ (�m �

?

K
)
�

� ��m (�?l ^ �?J)
� ^ ��m (�

?

l ^ �
?

K)
��

=
X
J;K;m

m uJ;K

�
�?m ^ (�m �?J) ^ �

?

K

+ �?
J
^ �?m ^ (�m �

?

K
)� �?

J
^ �?

K

�
=
X
J;K

�X
m2J

m +
X
m2K

m �
X

1�m�n
m

�
uJ;K �

?

J
^ �?

K
: �

(5.9) Corollary. For every u 2 �p;qT ?
X
, we have

[L;�]u = (p+ q � n)u:

Proof. Indeed, if  = !, we have 1 = � � � = n = 1. �

This result can be generalized as follows: for every u 2 �k(C 
 TX)?, we
have

(5:10) [Lr; �]u = r(k � n+ r � 1)Lr�1u:

In fact, it is clear that

[Lr; �]u =
X

0�m�r�1
Lr�1�m[L;�]Lmu

=
X

0�m�r�1
(2m+ k � n)Lr�1�mLmu = �r(r � 1) + r(k � n)�Lr�1u:
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x5.3. Primitive Elements and Hard Lefschetz Theorem

In this subsection, we prove a fundamental decomposition theorem for the

representation of the unitary group U(TX) ' U(n) acting on the spaces

�p;qT ?
X
of (p; q)-forms. It turns out that the representation is never irreducible

if 0 < p; q < n.

(5.11) De�nition. A homogeneous element u 2 �k(C 
TX )? is called prim-

itive if �u = 0. The space of primitive elements of total degree k will be

denoted

Primk T ?
X
=
M
p+q=k

Primp;q T ?
X
:

Let u 2 Primk T ?
X
. Then

�sLru = �s�1(�Lr � Lr�)u = r(n� k � r + 1)�s�1Lr�1u:

By induction, we get for r � s
(5:12) �sLru = r(r � 1) � � � (r � s+ 1) � (n� k � r + 1) � � � (n� k � r + s)Lr�su:

Apply (5.12) for r = n + 1. Then Ln+1u is of degree > 2n and therefore we

have Ln+1u = 0. This gives

(n+ 1) � � � �n+ 1� (s� 1)
� � (�k)(�k + 1) � � � (�k + s� 1)Ln+1�su = 0:

The integral coeÆcient is 6= 0 if s � k, hence:

(5.13) Corollary. If u 2 Primk T ?
X
, then Lsu = 0 for s � (n+ 1� k)+.

(5.14) Corollary. Primk T ?
X
= 0 for n+ 1 � k � 2n.

Proof. Apply Corollary 5.13 with s = 0. �

(5.15) Primitive decomposition formula. For every u 2 �k(C 
 TX)?,
there is a unique decomposition

u =
X

r�(k�n)+

Lrur; ur 2 Primk�2r T ?
X
:

Furthermore ur = �k;r(L;�)u where �k;r is a non commutative polynomial

in L;� with rational coeÆcients. As a consequence, there are direct sum

decompositions of U(n)-representations
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�k(C 
 TX)? =
M

r�(k�n)+
Lr Primk�2r T ?

X
;

�p;qT ?
X
=

M
r�(p+q�n)+

Lr Primp�r;q�r T ?
X
:

Proof of the uniqueness of the decomposition Assume that u = 0 and that

ur 6= 0 for some r. Let s be the largest integer such that us 6= 0. Then

�su = 0 =
X

(k�n)+�r�s
�sLrur =

X
(k�n)+�r�s

�s�r�rLrur:

But formula (5.12) shows that �rLrur = ck;rur for some non zero integral

coeÆcient ck;r = r!(n� k + r + 1) � � � (n � k + 2r). Since ur is primitive we

get �sLrur = 0 when r < s, hence us = 0, a contradiction.

Proof of the existence of the decomposition We prove by induction on s �
(k � n)+ that �su = 0 implies

(5:16) u =
X

(k�n)+�r<s
Lrur; ur = �k;r;s(L;�)u 2 Primk�2r T ?

X
:

The Theorem will follow from the step s = n+ 1.

Assume that the result is true for s and that �s+1u = 0. Then �su is in

Primk�2s T ?
X
. Since s � (k � n)+ we have ck;s 6= 0 and we set

us =
1

ck;s
�su 2 Primk�2s T ?

X
;

u0 = u� Lsus =
�
1� 1

ck;s
Ls�s

�
u:

By formula (5.12), we get

�su0 = �su� �sLsus = �su� ck;sus = 0:

The induction hypothesis implies

u0 =
X

(k�n)+�r<s
Lru0

r
; u0

r
= �k;r;s(L;�)u

0 2 Primk�2r T ?
X
;

hence u =
P

(k�n)+�r�s L
rur with8<:ur = u0r = �k;r;s(L;�)
�
1� 1

ck;s
Ls�s

�
u; r < s;

us =
1
ck;s

�su:

It remains to prove the validity of the decomposition 5.16) for the initial step

s = (k � n)+, i.e. that �su = 0 implies u = 0. If k � n, then s = 0 and
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there is nothing to prove. We are left with the case k > n, �k�nu = 0. Then

v = ? u 2 �2n�k(C 
 TX)? and 2n� k < n. Since the decomposition exists

in degree � n by what we have just proved, we get

v = ? u =
X
r�0

Lrvr; vr 2 Prim2n�k�2r T ?
X
;

0 = ? �k�nu = Lk�n ? u =
X
r�0

Lr+k�nvr;

with degree (Lr+k�nvr) = 2n� k+2(k�n) = k. The uniqueness part shows

that vr = 0 for all r , hence u = 0. The Theorem is proved. �

(5.17) Corollary. The linear operators

Ln�k : �k(C 
 TX)? �! �2n�k(C 
 TX)?;
Ln�p�q : �p;qT ?X �! �n�q;n�pT ?X ;

are isomorphisms for all integers k � n, p+ q � n.

Proof. For every u 2 �k
C
T ?
X
, the primitive decomposition u =

P
r�0 L

rur is

mapped bijectively onto that of Ln�ku :

Ln�ku =
X
r�0

Lr+n�kur: �

x6. Commutation Relations

x6.1. Commutation Relations on a K�ahler Manifold

Assume �rst that X = 
 � C n is an open subset and that ! is the standard

K�ahler metric

! = i
X

1�j�n
dzj ^ dzj :

For any form u 2 C1(
;�p;qT ?
X
) we have

d0u =
X
I;J;k

@uI;J

@zk
dzk ^ dzI ^ dzJ ;(6:10)

d00u =
X
I;J;k

@uI;J

@zk
dzk ^ dzI ^ dzJ :(6:100)

Since the global L2 inner product is given by
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hhu; vii =
Z



X
I;J

uI;JvI;J dV;

easy computations analogous to those of Example 3.12 show that

d0?u = �
X
I;J;k

@uI;J

@zk

@

@zk
(dzI ^ dzJ);(6:20)

d00?u = �
X
I;J;k

@uI;J

@zk

@

@zk
(dzI ^ dzJ ):(6:200)

We �rst prove a lemma due to (Akizuki and Nakano 1954).

(6.3) Lemma. In C n , we have [d00?; L] = id0.

Proof. Formula (6.200) can be written more briey

d00?u = �
X
k

@

@zk

� @u
@zk

�
:

Then we get

[d00?; L]u = �
X
k

@

@zk

� @

@zk
(! ^ u)

�
+ ! ^

X
k

@

@zk

� @u
@zk

�
:

Since ! has constant coeÆcients, we have
@

@zk
(!^u) = !^ @u

@zk
and therefore

[d00?; L]u = �
X
k

�
@

@zk

�
! ^ @u

@zk

�
� ! ^

� @

@zk

@u

@zk

��
= �

X
k

� @

@zk
!
�
^ @u

@zk
:

Clearly
@

@zk
! = �idzk, so

[d00?; L]u = i
X
k

dzk ^ @u

@zk
= id0u: �

We are now ready to derive the basic commutation relations in the case

of an arbitrary K�ahler manifold (X;!).

(6.4) Theorem. If (X;!) is K�ahler, then

[d00?; L]= id0; [d0?; L]= �id00;
[�; d00] = �id0?; [�; d0] = id00?:
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Proof. It is suÆcient to verify the �rst relation, because the second one is the

conjugate of the �rst, and the relations of the second line are the adjoint of

those of the �rst line. If (zj) is a geodesic coordinate system at a point x0 2 X,

then for any (p; q)-forms u; v with compact support in a neighborhood of x0,

(4.9) implies

hhu; vii =
Z
M

�X
I;J

uIJvIJ +
X

I;J;K;L

aIJKL uIJvKL

�
dV;

with aIJKL(z) = O(jzj2) at x0. An integration by parts as in (3.12) and

(6.200) yields

d00?u = �
X
I;J;k

@uI;J

@zk

@

@zk
(dzI ^ dzJ ) +

X
I;J;K;L

bIJKL uIJ dzK ^ dzL;

where the coeÆcients bIJKL are obtained by derivation of the aIJKL's.

Therefore bIJKL = O(jzj). Since @!=@zk = O(jzj), the proof of Lemma 6.3

implies here [d00?; L]u = id0u + O(jzj), in particular both terms coincide at

every given point x0 2 X. �

(6.5) Corollary. If (X;!) is K�ahler, the complex Laplace-Beltrami operators

satisfy

�0 = �00 =
1

2
�:

Proof. It will be �rst shown that �00 = �0. We have

�00 = [d00; d00?] = �i�d00; [�; d0]�:
Since [d0; d00] = 0, Jacobi's identity (5.7) implies

��d00; [�; d0]�+ �d0; [d00; �]� = 0;

hence �00 =
�
d0;�i[d00; �]� = [d0; d0?] = �0. On the other hand

� = [d0 + d00; d0? + d00?] = �0 +�00 + [d0; d00?] + [d00; d0?]:

Thus, it is enough to prove:

(6.6) Lemma. [d0; d00?] = 0; [d00; d0?] = 0.

Proof. We have [d0; d00?] = �i�d0; [�; d0]� and (5.7) implies

��d0; [�; d0]�+ ��; [d0; d0]�+ �d0; [d0; �]� = 0;

hence �2�d0; [�; d0]� = 0 and [d0; d00?] = 0. The second relation [d00; d0?] = 0 is

the adjoint of the �rst. �
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(6.7) Theorem. � commutes with all operators ?; d0; d00; d0?; d00?; L; �.

Proof. The identities [d0; �0] = [d0?; �0] = 0, [d00; �00] = [d00?; �00] = 0 and

[�; ?] = 0 are immediate. Furthermore, the equality [d0; L] = d0! = 0

together with the Jacobi identity implies

[L;�0] =
�
L; [d0; d0?]

�
= ��d0; [d0?; L]� = i[d0; d00] = 0:

By adjunction, we also get [�0; �] = 0. �

x6.2 Commutation Relations on Hermitian Manifolds

We are going to extend the commutation relations of x 6.1 to an arbitrary

hermitian manifold (X;!). In that case ! is no longer tangent to a constant

metric, and the commutation relations involve extra terms arising from the

torsion of !. Theorem 6.8 below is taken from (Demailly 1984), but the idea

was already contained in (GriÆths 1966).

(6.8) Theorem. Let � be the operator of type (1; 0) and order 0 de�ned by

� = [�; d0!]. Then

a) [d00?; L]= i(d0 + �);

b) [d0?; L] = �i(d00 + �);

c) [�; d00] = �i(d0? + �?);

d) [�; d0] = i(d00? + �?) ;

d0! will be called the torsion form of !, and � the torsion operator.

Proof. b) follows from a) by conjugation, whereas c), d) follow from a), b) by

adjunction. It is therefore enough to prove relation a).

Let (zj)1�j�n be complex coordinates centered at a point x0 2 X, such

that (@=@z1; : : : ; @=@zn) is an orthonormal basis of Tx0X for the metric !(x0).

Consider the metric with constant coeÆcients

!0 = i
X

1�j�n
dzj ^ dzj :

The metric ! can then be written

! = !0 +  with  = O(jzj):
Denote by h ; i0; L0; �0; d

0?
0 ; d

00?
0 the inner product and the operators

associated to the constant metric !0, and let dV0 = !n0 =2
nn!. The proof of

relation a) is based on a Taylor expansion of L; �; d0?; d00? in terms of the

operators with constant coeÆcients L0; �0; d
0?
0 ; d

00?
0 .

(6.9) Lemma. Let u; v 2 C1(X;�p;qT ?
X
). Then in a neighborhood of x0
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hu; vi dV = hu� [; �0]u; vi0 dV0 +O(jzj2):

Proof. In a neighborhood of x0, let

 = i
X

1�j�n
j �

?

j
^ �?

j
; 1 � 2 � � � � � n;

be a diagonalization of the (1,1)-form (z) with respect to an orthonormal

basis (�j)1�j�n of TzX for !0(z). We thus have

! = !0 +  = i
X

�j �
?

j ^ �
?

j

with �j = 1 + j and j = O(jzj). Set now
J = fj1; : : : ; jpg; �?J = �?j1 ^ � � � ^ �?jp ; �J = �j1 � � ��jp ;

u =
X

uJ;K �
?

J
^ �?K ; v =

X
vJ;K �

?

J
^ �?

K

where summations are extended to increasing multi-indices J , K such that

jJ j = p, jKj = q. With respect to ! we have h�?
j
; �?
j
i = ��1

j
, hence

hu; vi dV =
X
J;K

��1
J
��1
K
uJ;KvJ;K �1 � � ��n dV0

=
X
J;K

�
1�

X
j2J

j �
X
j2K

j +
X

1�j�n
j

�
uJ;KvJ;K dV0 +O(jzj2):

Lemma 6.9 follows if we take Prop. 5.8 into account. �

(6.10) Lemma. d00? = d00?0 +
�
�0; [d

00?
0 ; ]

�
at point x0, i.e. at this point both

operators have the same formal expansion.

Proof. Since d00? is an operator of order 1, Lemma 6.9 shows that d00? coincides
at point x0 with the formal adjoint of d00 for the metric

hhu; vii1 =
Z
X

hu� [; �0]u; vi0 dV0:

For any compactly supported u 2 C1(X;�p;qT ?
X
), v 2 C1(X;�p;q�1T ?

X
) we

get by de�nition

hhu; d00vii1 =
Z
X

hu� [; �0]u; d
00vi0 dV0 =

Z
X

hd00?0 u� d00?0 [; �0]u; vi0 dV0:

Since ! and !0 coincide at point x0 and since (x0) = 0 we obtain at this

point

d00?u = d00?0 u� d00?0 [; �0]u = d00?0 u� �d00?0 ; [; �0]
�
u ;

d00? = d00?0 �
�
d00?0 ; [; �0]

�
:
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We have [�0; d
00?
0 ] = [d00; L0]

? = 0 since d00!0 = 0. The Jacobi identity (5.7)

implies�
d00?0 ; [; �0]

�
+
�
�0; [d

00?
0 ; ]

�
= 0;

and Lemma 6.10 follows. �

Proof Proof of formula 6.8 a) The equality L = L0+ and Lemma 6.10 yield

(6:11) [L; d00?] = [L0; d
00?
0 ] +

h
L0;
�
�0; [d

00?
0 ; ]

�i
+ [; d00?0 ]

at point x0, because the triple bracket involving  twice vanishes at x0. From

the Jacobi identity applied to C = [d00?0 ; ], we get

(6:12)

8<:
�
L0; [�0; C]

�
= �[�0; [C;L0]

�� �C; [L0; �0]
�
;

[C;L0] =
�
L0; [d

00?
0 ; ]

�
=
�
; [L0; d

00?
0 ]
�

(since [; L0] = 0):

Lemma 6.3 yields [L0; d
00?
0 ] = �id0, hence

(6:13) [C;L0] = �[; id0] = id0 = id0!:

On the other hand, C is of type (1; 0) and Cor. 5.9 gives

(6:14)
�
C; [L0; �0]

�
= �C = �[d00?0 ; ]:

From (6.12), (6.13), (6.14) we geth
L0;
�
�0; [d

00?
0 ; ]

�i
= �[�0; id

0!] + [d00?0 ; ]:

This last equality combined with (6.11) implies

[L; d00?] = [L0; d
00?
0 ]� [�0; id

0!] = �i(d0 + �)

at point x0. Formula 6.8 a) is proved. �

(6.15) Corollary. The complex Laplace-Beltrami operators satisfy

�00 = �0 + [d0; �?]� [d00; �?];

[d0; d00?] = �[d0; �?]; [d00; d0?] = �[d00; �?];
� = �0 +�00 � [d0; �?]� [d00; �?]:

Therefore �0, �00 and 1
2
� no longer coincide, but they di�er by linear di�er-

ential operators of order 1 only.

Proof. As in the K�ahler case (Cor. 6.5 and Lemma 6.6), we �nd
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�00 = [d00; d00?] =
�
d00;�i[�; d0]� �?]

=
�
d0;�i[d00; �]�� [d00; �?

�
= �0 + [d0; �?]� [d00; �?];

[d0; d00? + �?] = �i�d0; [�; d0]� = 0;

and the �rst two lines are proved. The third one is an immediate consequence

of the second. �

x7. Groups Hp;q(X;E) and Serre Duality

Let (X;!) be a compact hermitian manifold and E a holomorphic hermitian

vector bundle of rank r over X. We denote by DE the Chern connection

of E, by D?

E
= � ? DE ? the formal adjoint of DE , and by D0?

E
; D00?

E
the

components of D?

E
of type (�1; 0) and (0;�1).

Corollary 6.8 implies that the principal part of the operator �00
E

=

D00D00?
E

+ D00?
E
D00 is one half that of �E . Consequently, the operator �00

E

acting on each space C1(X;�p;qT ?
X

 E) is a self-adjoint elliptic operator.

Since D002 = 0, the following results can be obtained in a way similar to those

of x 3.3.

(7.1) Theorem. For every bidegree (p; q), there exists an orthogonal decom-

position

C1(X;�p;qT ?
X

 E) = Hp;q(X;E)� ImD00

E
� ImD00?

E

where Hp;q(X;E) is the space of �00
E
-harmonic forms in C1(X;�p;qT ?

X

E).

The above decomposition shows that the subspace of d00-cocycles in

C1(X;�p;qT ?
X

E) is Hp;q(X;E)� ImD00

E
. From this, we infer

(7.2) Hodge isomorphism theorem. The Dolbeault cohomology group

Hp;q(X;E) is �nite dimensional, and there is an isomorphism

Hp;q(X;E) ' Hp;q(X;E):

(7.3) Serre duality theorem. The bilinear pairing

Hp;q(X;E)�Hn�p;n�q(X;E?) �! C ; (s; t) 7�!
Z
M

s ^ t

is a non degenerate duality.

Proof. Let s1 2 C1(X;�p;qT ?X 
E), s2 2 C1(X;�n�p;n�q�1T ?X 
E). Since
s1 ^ s2 is of bidegree (n; n� 1), we have

(7:4) d(s1 ^ s2) = d00(s1 ^ s2) = d00s1 ^ s2 + (�1)p+qs1 ^ d00s2:
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Stokes' formula implies that the above bilinear pairing can be factorized

through Dolbeault cohomology groups. The # operator de�ned in x 3.1 is

such that

# : C1(X;�p;qT ?
X

 E) �! C1(X;�n�p;n�qT ?

X

 E?):

Furthermore, (3.20) implies

d00(# s) = (�1)deg s#D00?E s; D00?E?(# s) = (�1)deg s+1#D00?E s;

�00
E?(# s) = #�00

E
s;

where DE? is the Chern connection of E?. Consequently, s 2 Hp;q(X;E) if

and only if # s 2 Hn�p;n�q(X;E?). Theorem 7.3 is then a consequence of

the fact that the integral ksk2 = R
X
s^# s does not vanish unless s = 0. �

x8. Cohomology of Compact K�ahler Manifolds

x8.1. Bott-Chern Cohomology Groups

Let X be for the moment an arbitrary complex manifold. The following \co-

homology" groups are helpful to describe Hodge theory on compact complex

manifolds which are not necessarily K�ahler.

(8.1) De�nition. We de�ne the Bott-Chern cohomology groups of X to be

H
p;q

BC(X; C ) =
�
C1(X;�p;qT ?X) \ ker d

�
=d0d00C1(X;�p�1;q�1T ?X):

Then H
�;�
BC(X; C ) has the structure of a bigraded algebra, which we call the

Bott-Chern cohomology algebra of X.

As the group d0d00C1(X;�p�1;q�1T ?
X
) is contained in the coboundary

groups d00C1(X;�p;q�1T ?
X
) or dC1(X;�p+q�1(C 
 TX)?), there are cano-

nical morphisms

Hp;q

BC(X; C ) �! Hp;q(X; C );(8:2)

H
p;q

BC(X; C ) �! H
p+q
DR (X; C );(8:3)

of the Bott-Chern cohomology to the Dolbeault or De Rham cohomology.

These morphisms are homomorphisms of C -algebras. It is also clear from the

de�nition that we have the symmetry property H
q;p

BC(X; C ) = H
p;q

BC(X; C ).

It can be shown from the Hodge-Fr�olicher spectral sequence (see x 11 and

Exercise 13.??) that H
p;q

BC(X; C ) is always �nite dimensional if X is compact.
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x8.2. Hodge Decomposition Theorem

We suppose from now on that (X;!) is a compact K�ahler manifold. The

equality � = 2�00 shows that � is homogeneous with respect to bidegree

and that there is an orthogonal decomposition

(8:4) Hk(X; C ) =
M
p+q=k

Hp;q(X; C ):

As �00 = �0 = �00, we also have Hq;p(X; C ) = Hp;q(X; C ). Using the Hodge

isomorphism theorems for the De Rham and Dolbeault cohomology, we get:

(8.5) Hodge decomposition theorem. On a compact K�ahler manifold,

there are canonical isomorphisms

Hk(X; C ) '
M
p+q=k

Hp;q(X; C ) (Hodge decomposition);

Hq;p(X; C ) ' Hp;q(X; C ) (Hodge symmetry):

The only point which is not a priori completely clear is that this decom-

position is independent of the K�ahler metric. In order to show that this is

the case, one can use the following Lemma, which allows us to compare all

three types of cohomology groups considered in x 8.1.

(8.6) Lemma. Let u be a d-closed (p; q)-form. The following properties are

equivalent:

a) u is d-exact ;

b0) u is d0-exact ;

b00) u is d00-exact ;

c) u is d0d00-exact, i.e. u can be written u = d0d00v.

d) u is orthogonal to Hp;q(X; C ).

Proof. It is obvious that c) implies a), b0), b00) and that a) or b0) or b00)
implies d). It is thus suÆcient to prove that d) implies c). As du = 0, we have

d0u = d00u = 0, and as u is supposed to be orthogonal to Hp;q(X; C ), Th. 7.1

implies u = d00s, s 2 C1(X;�p;q�1T ?
X
). By the analogue of Th. 7.1 for d0,

we have s = h+ d0v+ d0?w, with h 2 Hp;q�1(X; C ), v 2 C1(X;�p�1;q�1T ?
X
)

and w 2 C1(X;�p+1;q�1T ?
X
). Therefore

u = d00d0v + d00d0?w = �d0d00v � d0?d00w
in view of Lemma 6.6. As d0u = 0, the component d0?d00w orthogonal to ker d0

must be zero. �
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From Lemma 8.6 we infer the following Corollary, which in turn implies

that the Hodge decomposition does not depend on the K�ahler metric.

(8.7) Corollary. Let X be a compact K�ahler manifold. Then the natural

morphisms

H
p;q

BC(X; C ) �! Hp;q(X; C );
M
p+q=k

H
p;q

BC(X; C ) �! Hk

DR(X; C )

are isomorphisms.

Proof. The surjectivity of H
p;q

BC(X; C ) ! Hp;q(X; C ) comes from the fact that

every class in Hp;q(X; C ) can be represented by a harmonic (p; q)-form, thus

by a d-closed (p; q)-form; the injectivity means nothing more than the equiv-

alence (8.5 b00), (8:5 c). Hence H
p;q

BC(X; C ) ' Hp;q(X; C ) ' Hp;q(X; C ), and

the isomorphism
L

p+q=kH
p;q

BC(X; C ) �! Hk

DR(X; C ) follows from (8.4). �

Let us quote now two simple applications of Hodge theory. The �rst

of these is a computation of the Dolbeault cohomology groups of Pn. As

H
2p
DR(P

n; C ) = C and Hp;p(Pn; C ) 3 f!pg 6= 0, the Hodge decomposition

formula implies:

(8.8) Application. The Dolbeault cohomology groups of Pn are

Hp;p(Pn; C ) = C for 0 � p � n; Hp;q(Pn; C ) = 0 for p 6= q: �

(8.9) Proposition. Every holomorphic p-form on a compact K�ahler mani-

fold X is d-closed.

Proof. If u is a holomorphic form of type (p; 0) then d00u = 0. Furthermore

d00?u is of type (p;�1), hence d00?u = 0. Therefore �u = 2�00u = 0, which

implies du = 0. �

(8.10) Example. Consider the Heisenberg group G � Gl3(C ), de�ned as the

subgroup of matrices

M =

0@ 1 x z

0 1 y

0 0 1

1A ; (x; y; z) 2 C 3 :

Let � be the discrete subgroup of matrices with entries x; y; z 2 Z[i] (or

more generally in the ring of integers of an imaginary quadratic �eld). Then

X = G=� is a compact complex 3-fold, known as the Iwasawa manifold. The

equality
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M�1dM =

0@ 0 dx dz � xdy
0 0 dy

0 0 0

1A
shows that dx; dy; dz � xdy are left invariant holomorphic 1-forms on G.

These forms induce holomorphic 1-forms on the quotient X = G=� . Since

dz � xdy is not d-closed, we see that X cannot be K�ahler.

x8.3. Primitive Decomposition and Hard Lefschetz Theorem

We �rst introduce some standard notation. The Betti numbers and Hodge

numbers of X are by de�nition

(8:11) bk = dimC H
k(X; C ); hp;q = dimC H

p;q(X; C ):

Thanks to Hodge decomposition, these numbers satisfy the relations

(8:12) bk =
X
p+q=k

hp;q; hq;p = hp;q:

As a consequence, the Betti numbers b2k+1 of a compact K�ahler manifold

are even. Note that the Serre duality theorem gives the additional relation

hp;q = hn�p;n�q, which holds as soon as X is compact. The existence of prim-

itive decomposition implies other interesting speci�c features of the cohomol-

ogy algebra of compact K�ahler manifolds.

(8.13) Lemma. If u =
P
r�(k�n)+ L

rur is the primitive decomposition of a

harmonic k-form u, then all components ur are harmonic.

Proof. Since [�;L] = 0, we get 0 = �u =
P

r
Lr�ur, hence �ur = 0 by

uniqueness. �

Let us denote by PrimHk(X; C ) =
L

p+q=k PrimH
p;q(X; C ) the spaces

of primitive harmonic k-forms and let bk;prim, h
p;q

prim be their respective di-

mensions. Lemma 8.13 yields

Hp;q(X; C ) =
M

r�(p+q�n)+
Lr PrimHp�r;q�r(X; C );(8:14)

hp;q =
X

r�(p+q�n)+

h
p�r;q�r
prim :(8:15)

Formula (8.15) can be rewritten

(8:150)

8<: if p+ q � n; hp;q = h
p;q

prim + h
p�1;q�1
prim + � � �

if p+ q � n; hp;q = h
n�q;n�p
prim + h

n�q�1;n�p�1
prim + � � � :
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(8.16) Corollary. The Hodge and Betti numbers satisfy the inequalities

a) if k = p+ q � n, then hp;q � hp�1;q�1; bk � bk�2,
b) if k = p+ q � n, then hp;q � hp+1;q+1; bk � bk+2. �

Another important result of Hodge theory (which is in fact a direct con-

sequence of Cor. 5.17) is the

(8.17) Hard Lefschetz theorem. The mappings

Ln�k : Hk(X; C )�! H2n�k(X; C ); k � n;
Ln�p�q : Hp;q(X; C )�! Hn�q;n�p(X; C ); p+ q � n;

are isomorphisms. �

x9. Jacobian and Albanese Varieties

x9.1. Description of the Picard Group

An important application of Hodge theory is a description of the Picard

group H1(X;O?) of a compact K�ahler manifold. We assume here that X is

connected. The exponential exact sequence 0! Z! O! O? ! 1 gives

0 �!H1(X;Z) �! H1(X;O) �! H1(X;O?)(9:1)
c1�!H2(X;Z) �! H2(X;O)

because the map exp(2�i�) : H0(X;O) = C �! H0(X;O?) = C ? is onto.

We have H1(X;O) ' H0;1(X; C ) by (V-11.6). The dimension of this group is

called the irregularity of X and is usually denoted

(9:2) q = q(X) = h0;1 = h1;0:

Therefore we have b1 = 2q and

(9:3) H1(X;O) ' C q ; H0(X;
1
X
) = H1;0(X; C ) ' C q :

(9.4) Lemma. The image of H1(X;Z) in H1(X;O) is a lattice.

Proof. Consider the morphisms

H1(X;Z) �! H1(X;R) �! H1(X; C ) �! H1(X;O)

induced by the inclusions Z � R � C � O. Since the �Cech cohomology groups

with values in Z, R can be computed by �nite acyclic coverings, we see that

H1(X;Z) is a �nitely generated Z-module and that the image of H1(X;Z)

in H1(X;R) is a lattice. It is enough to check that the map H1(X;R) �!
H1(X;O) is an isomorphism. However, the commutative diagram
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0�!C �! E0
d�! E1

d�! E2 �!� � �?y ?y ?y ?y
0�!O�!E0;0 d

00

�!E0;1 d
00

�!E0;2�!� � �
shows that the map H1(X;R) �! H1(X;O) corresponds in De Rham and

Dolbeault cohomologies to the composite mapping

H1
DR

(X;R) � H1
DR

(X; C ) �! H0;1(X; C ):

Since H1;0(X; C ) and H0;1(X; C ) are complex conjugate subspaces in

H1
DR

(X; C ), we conclude that H1
DR

(X;R) �! H0;1(X; C ) is an isomorphism.

�

As a consequence of this lemma, H1(X;Z) ' Z2q. The q-dimensional

complex torus

(9:5) Jac(X) = H1(X;O)=H1(X;Z)

is called the Jacobian variety of X and is isomorphic to the subgroup of

H1(X;O?) corresponding to line bundles of zero �rst Chern class. On the

other hand, the kernel of

H2(X;Z) �! H2(X;O) = H0;2(X; C )

which consists of integral cohomology classes of type (1; 1), is equal to the

image of c1 in H
2(X;Z). This subgroup is called the Neron-Severi group of X,

and is denoted NS(X). The exact sequence (9.1) yields

(9:6) 0 �! Jac(X) �! H1(X;O?)
c1�! NS(X) �! 0:

The Picard groupH1(X;O?) is thus an extension of the complex torus Jac(X)

by the �nitely generated Z-module NS(X).

(9.7) Corollary. The Picard group of Pn is H1(Pn;O?) ' Z, and every line

bundle over Pn is isomorphic to one of the line bundles O(k), k 2 Z.

Proof. We have Hk(Pn;O) = H0;k(Pn; C ) = 0 for k � 1 by Appl. 8.8, thus

Jac(Pn) = 0 and NS(Pn) = H2(Pn;Z) ' Z. Moreover, c1
�
O(1)

�
is a genera-

tor of H2(Pn;Z) in virtue of Th. V-15.10. �

x9.2. Albanese Variety

A proof similar to that of Lemma 9.4 shows that the image of H2n�1(X;Z)
in Hn�1;n(X; C ) via the composite map

(9:8) H2n�1(X;Z)! H2n�1(X;R) ! H2n�1(X; C ) ! Hn�1;n(X; C )

is a lattice. The q-dimensional complex torus
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(9:9) Alb(X) = Hn�1;n(X; C )= ImH2n�1(X;Z)

is called the Albanese variety of X. We �rst give a slightly di�erent description

of Alb(X), based on the Serre duality isomorphism

Hn�1;n(X; C ) ' �H1;0(X; C )
�? ' �H0(X;
1

X
)
�?
:

(9.10) Lemma. For any compact oriented di�erentiable manifold M with

dimRM = m, there is a natural isomorphism

H1(M;Z)! Hm�1(M;Z)

where H1(M;Z) is the �rst homology group of M , that is, the abelianization

of �1(M).

Proof. This is a well known consequence of Poincar�e duality, see e.g. (Spanier

1966). We will content ourselves with a description of the morphism. Fix a

base point a 2 M . Every homotopy class [] 2 �1(M;a) can be represented

by as a composition of closed loops di�eomorphic to S1. Let  be such a loop.

As every oriented vector bundle over S1 is trivial, the normal bundle to 

is trivial. Hence (S1) has a neighborhood U di�eomorphic to S1 � Rm�1 ,
and there is a di�eomorphism ' : S1 � Rm�1 ! U with '�S1�f0g = .

Let fÆ0g 2 Hm�1
c (Rm�1 ;Z) be the fundamental class represented by the

Dirac measure Æ0 2 D00(R
m�1) in De Rham cohomology. Then the carte-

sian product 1� fÆ0g 2 Hm�1
c

(S1 � Rm�1 ;Z) is represented by the current

[S1]
 fÆ0g 2 D01(S1 � Rm�1) and the current of integration over  is pre-

cisely the direct image current

I := '?([S
1]
 Æ0) = ('�1)?([S1]
 Æ0):

Its cohomology class fIg 2 Hm�1
c

(U;R) is thus the image of the class

('�1)?
�
1� fÆ0g

� 2 Hm�1
c (U;Z). Therefore, we have obtained a well de�ned

morphism

�1(M;a) �! Hm�1
c

(U;Z)�! Hm�1(M;Z); [] 7�! ('�1)?
�
1� fÆ0g

�
and the image of [] in Hm�1(M;R) is the De Rham cohomology class of the

integration current I . �

Thanks to Lemma 9.10, we can reformulate the de�nition of the Albanese

variety as

(9:11) Alb(X) =
�
H0(X;
1

X
)
�?
= ImH1(X;Z)

where H1(X;Z) is mapped to
�
H0(X;
1

X
)
�?

by

[] 7�! eI = �u 7! Z


u
�
:
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Observe that the integral only depends on the homotopy class [] because all

holomorphic 1-forms u on X are closed by Prop. 8.9.

We are going to show that there exists a canonical holomorphic map

� : X ! Alb(X). Let a be a base point in X. For any x 2 X, we select

a path � from a to x and associate to x the linear form in
�
H0(X;
1

X
)
�?

de�ned by eI�. By construction the class of this linear form mod ImH1(X;Z)

does not depend on �, since eI�0 �1� is in the image of H1(X;Z) for any other

path �0. It is thus legitimate to de�ne the Albanese map as

(9:12) � : X �! Alb(X); x 7�!
�
u 7!

Z x

a

u
�

mod Im H1(X;Z):

Of course, if we �x a basis (u1; : : : ; uq) of H
0(X;
1

X
), the Albanese map can

be seen in coordinates as the map

(9:13) � : X �! C q=�; x 7�!
� Z x

a

u1; : : : ;

Z x

a

uq

�
mod �;

where � � C q is the group of periods of (u1; : : : ; uq) :

(9:130) � =
n�Z



u1; : : : ;

Z


uq

�
; [] 2 �1(X; a)

o
:

It is then clear that � is a holomorphic map. With the original de�nition

(9.9) of the Albanese variety, it is not diÆcult to see that � is the map given

by

(9:14) � : X �! Alb(X); x 7�! fIn�1;n
�

g mod H2n�1(X;Z);

where fIn�1;n
�

g 2 Hn�1;n(X; C ) denotes the (n� 1; n)-component of the De

Rham cohomology class fI�g.

x10. Complex Curves

We show here how Hodge theory can be used to derive quickly the basic

properties of compact manifolds of complex dimension 1 (also called complex

curves or Riemann surfaces). Let X be such a curve. We shall always assume

in this section that X is compact and connected. Since every positive (1; 1)-

form on a curve de�nes a K�ahler metric, the results of x 8 and x 9 can be

applied.

x10.1. Riemann-Roch Formula

Denoting g = h1(X;O), we �nd
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H1(X;O) ' C g ; H0(X;
1
X
) ' C g ;(10:1)

H0(X;Z) = Z; H1(X;Z) = Z2g; H2(X;Z) = Z:(10:2)

The classi�cation of oriented topological surfaces shows that X is homeomor-

phic to a sphere with g handles ( = torus with g holes), but this property

will not be used in the sequel. The number g is called the genus of X.

Any divisor on X can be written � =
P
mjaj where (aj) is a �nite

sequence of points and mj 2 Z. Let E be a line bundle over X. We shall

identify E and the associated locally free sheaf O(E). According to V-13.2,

we denote by E(�) the sheaf of germs of meromorphic sections f of E such

that div f +� � 0, i.e. which have a pole of order � mj at aj if mj > 0, and

which have a zero of order � jmj j at aj if mj < 0. Clearly

(10:3) E(�) = E 
 O(�); O(�+�0) = O(�)
 O(�0):
For any point a 2 X and any integer m > 0, there is an exact sequence

0 �! E �! E(m[a]) �! S �! 0

where S = E(m[a])=E is a sheaf with only one non zero stalk Sa isomorphic to

Cm . Indeed, if z is a holomorphic coordinate near a, the stalk Sa corresponds

to the polar parts
P
�m�k<0 ckz

k in the power series expansions of germs of

meromorphic sections at point a. We get an exact sequence

H0
�
X;E(m[a])

� �! Cm �! H1(X;E):

When m is chosen larger than dimH1(X;E), we see that E(m[a]) has a non

zero section and conclude:

(10.4) Theorem. Let a be a given point on a curve. Then every line bundle

E has non zero meromorphic sections f with a pole at a and no other poles.

If � is the divisor of a meromorphic section f of E, we have E ' O(�),
so the map

Div(X) �! H1(X;O?); � 7�! O(�)

is onto (cf. (V-13.8)). On the other hand, Div is clearly a soft sheaf, thus

H1(X;Div) = 0. The long cohomology sequence associated to the exact se-

quence 1! O? !M? ! Div! 0 implies:

(10.5) Corollary. On any complex curve, one has H1(X;M?) = 0 and there

is an exact sequence

0 �! C ? �!M?(X) �! Div(X) �! H1(X;O?) �! 0:

The �rst Chern class c1(E) 2 H2(X;Z) can be interpreted as an integer.

This integer is called the degree of E. If E ' O(�) with � =
P
mjaj ,
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formula V-13.6 shows that the image of c1(E) in H
2(X;R) is the De Rham

cohomology class of the associated current [�] =
P
mjÆaj , hence

(10:6) c1(E) =

Z
X

[�] =
X

mj :

If
P
mjaj is the divisor of a meromorphic function, we have

P
mj = 0

because the associated bundle E = O(
P
mjaj) is trivial.

(10.7) Theorem. Let E be a line bundle on a complex curve X. Then

a) H0(X;E) = 0 if c1(E) < 0 or if c1(E) = 0 and E is non trivial ;

b) For every positive (1; 1)-form ! on X with
R
X
! = 1, E has a hermitian

metric such that i
2�
�(E) = c1(E)!. In particular, E has a metric of

positive (resp. negative) curvature if and only if c1(E) > 0 (resp. if and

only if c1(E) < 0).

Proof. a) If E has a non zero holomorphic section f , then its degree is c1(E) =R
X
div f � 0. In fact, we even have c1(E) > 0 unless f does not vanish, in

which case E is trivial.

b) Select an arbitrary hermitian metric h on E. Then c1(E)!� i
2�
�h(E)

is a real (1; 1)-form cohomologous to zero (the integral over X is zero), so

Lemma 8.6 c) implies

c1(E)! � i

2�
�h(E) = id0d00'

for some real function ' 2 C1(X;R). If we replace the initial metric of E by

h0 = h e�', we get a metric of constant curvature c1(E)!. �

(10.8) Riemann-Roch formula. Let E be a holomorphic line bundle and

let hq(E) = dimHq(X;E). Then

h0(E)� h1(E) = c1(E)� g + 1:

Moreover h1(E) = h0(K 
 E?), where K = 
1
X

is the canonical line bundle

of X.

Proof. We claim that for every line bundle F and every divisor � we have

the equality

(10:9) h0
�
F (�)

�� h1�F (�)� = h0(F )� h1(F ) +
Z
X

[�]:

If we writeE = O(�) and apply the above equality with F = O, the Riemann-

Roch formula results from (10.6), (10.9) and from the equalities

h0(O) = dimH0(X;O) = 1; h1(O) = dimH1(X;O) = g:
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However, (10.9) need only be proved when � � 0 : otherwise we are reduced

to this case by writing � = �1 ��2 with �1; �2 � 0 and by applying the

result to the pairs (F;�1) and
�
F (�); �2

�
. If � =

P
mjaj � 0, there is an

exact sequence

0 �! F �! F (�) �! S �! 0

where Saj ' Cmj and the other stalks are zero. Let m =
P
mj =

R
X
[�]. The

sheaf S is acyclic, because its support fajg is of dimension 0. Hence there is

an exact sequence

0 �! H0(F ) �! H0
�
F (�)

� �! Cm �! H1(F ) �! H1
�
F (�)

� �! 0

and (10.9) follows. The equality h1(E) = h0(K
E?) is a consequence of the
Serre duality theorem�

H0;1(X;E)
�? ' H1;0(X;E?); i.e.

�
H1(X;E)

�? ' H0(X;K 
 E?): �

(10.10) Corollary (Hurwitz' formula). c1(K) = 2g � 2.

Proof. Apply Riemann-Roch to E = K and observe that

(10:11)
h0(K) = dimH0(X;
1

X) = g

h1(K) = dimH1(X;
1
X) = h1;1 = b2 = 1

(10.12) Corollary. For every a 2 X and every m 2 Z
h0
�
K(�m[a])

�
= h1

�
O(m[a])

�
= h0

�
O(m[a])

��m+ g � 1:

x10.2. Jacobian of a Curve

By the Neron-Severi sequence (9.6), there is an exact sequence

(10:13) 0 �! Jac(X) �! H1(X;O?)
c1�! Z �! 0;

where the Jacobian Jac(X) is a g-dimensional torus. Choose a base point

a 2 X. For every point x 2 X, the line bundle O([x] � [a]) has zero �rst

Chern class, so we have a well-de�ned map

(10:14) �a : X �! Jac(X); x 7�! O([x]� [a]):

Observe that the Jacobian Jac(X) of a curve coincides by de�nition with the

Albanese variety Alb(X).

(10.15) Lemma. The above map �a coincides with the Albanese map

� : X �! Alb(X) de�ned in (9:12).
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Proof. By holomorphic continuation, it is enough to prove that �a(x) = �(x)

when x is near a. Let z be a complex coordinate and let D0 �� D be open

disks centered at a. Relatively to the covering

U1 = D; U2 = X nD0;
the line bundle O([x]� [a]) is de�ned by the �Cech cocycle c 2 C1(U ;O?) such
that

c12(z) =
z � x
z � a on U12 = D nD0:

On the other hand, we compute �(x) by Formula (9.14). The path inte-

gral current I[a;x] 2 D01(X) is equal to 0 on U2. Lemma I-2.10 implies

d00(dz=2�iz) = Æ0 dz ^ dz=2i = Æ0 according to the usual identi�cation of dis-

tributions and currents of degree 0, thus

I
0;1

[a;x]
= d00

� dz

2�iz
? I

0;1

[a;x]

�
on U1:

Therefore fI0;1
[a;x]
g 2 H0;1(X; C ) is equal to the �Cech cohomology class [�

0g in
H1(X;O) represented by the cocycle

c012(z) =
dw

2�iw
? I0;1

[a;x]
=

1

2�i

Z x

a

dw

w � z =
1

2�i
log

z � x
z � a on U12

and we have c = exp(2�ic0) in H1(X;O?). �

The nature of �a depends on the value of the genus g. A careful exami-

nation of �a will enable us to determine all curves of genus 0 and 1.

(10.16) Theorem. The following properties are equivalent:

a) g = 0 ;

b) X has a meromorphic function f having only one simple pole p ;

c) X is biholomorphic to P1.

Proof. c) =) a) is clear.

a) =) b). Since g = 0, we have Jac(X) = 0. If p; p0 2 X are distinct points,

the bundle O([p0] � [p]) has zero �rst Chern class, therefore it is trivial and

there exists a meromorphic function f with div f = [p0]� [p]. In particular p

is the only pole of f , and this pole is simple.

b) =) c). We may consider f as a map X �! P1 = C [ f1g. For every
value w 2 C , the function f � w must have exactly one simple zero x 2 X
because

R
X
div(f � w) = 0 and p is a simple pole. Therefore f : X ! P1 is

bijective and X is biholomorphic to P1. �



x10. Complex Curves 365

(10.17) Theorem. The map �a is always injective for g � 1.

a) If g = 1, �a is a biholomorphism. In particular every curve of genus 1 is

biholomorphic to a complex torus C =� .

b) If g � 2, �a is an embedding.

Proof. If �a is not injective, there exist points x1 6= x2 such that O([x1]�[x2])
is trivial; then there is a meromorphic function f such that div f = [x1]� [x2]
and Th. 10.16 implies that g = 0.

When g = 1, �a is an injective map X �! Jac(X) ' C =� , thus �a is

open. It follows that �a(X) is a compact open subset of C =� , so �a(X) =

C =� and �a is a biholomorphism of X onto C =� .

In order to prove that �a is an embedding when g � 2, it is suÆcient to

show that the holomorphic 1-forms u1; : : : ; ug do not all vanish at a given

point x 2 X. In fact, X has no non constant meromorphic function having

only a simple pole at x, thus h0
�
O([x])

�
= 1 and Cor. 10.12 implies

h0
�
K(�[x])� = g � 1 < h0(K) = g:

Hence K has a section u which does not vanish at x. �

x10.3. Weierstrass Points of a Curve

We want to study how many meromorphic functions have a unique pole

of multiplicity � m at a given point a 2 X, i.e. we want to compute

h0
�
O(m[a])

�
. As we shall see soon, these numbers may depend on a only

if m is small. We have c1
�
K(�m[a])

�
= 2g� 2�m, so the degree is < 0 and

h0
�
K(�m[a])

�
= 0 for m � 2g � 1 by 10.7 a). Cor. 10.12 implies

(10:18) h0
�
O(m[a])

�
= m� g + 1 for m � 2g � 1:

It remains to compute h0
�
K(�m[a])

�
for 0 � m � 2g � 2 and g � 1.

Let u1; : : : ; ug be a basis of H0(X;K) and let z be a complex coordinate

centered at a. Any germ u 2 O(K)a can be written u = U(z) dz with

U(z) =
P
m2N

1
m!
U (m)(a)zm dz. The unique non zero stalk of the quotient

sheaf O
�
K(�m[a])

�
=O
�
K(�(m+ 1)[a])

�
is canonically isomorphic to Km+1

a

via the map u 7! U (m)(a)(dz)m+1, which is independant of the choice of z.

Hence
V
g
�
O(K)=O(K � g[a])� ' K1+2+:::+g

a
and the Wronskian

(10:19) W (u1; : : : ; ug) =

����������

U1(z) : : : Ug(z)

U 01(z) : : : U 0g(z)
...

...

U
(g�1)
1 (z) : : : U

(g�1)
g (z)

����������
dz1+2+:::+g

de�nes a global sectionW (u1; : : : ; ug) 2 H0(X;Kg(g+1)=2). At the given point

a, we can �nd linear combinations eu1; : : : ; eug of u1; : : : ; ug such that
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euj(z) = �zsj�1 +O(zsj )
�
dz; s1 < : : : < sg:

We know that not all sections of K vanish at a and that c1(K) = 2g�2, thus
s1 = 1 and sg � 2g � 1. We have W (eu1; : : : ; eug) � W (zs1�1dz; : : : ; zsg�1dz)
at point a, and an easy induction on

P
sj combined with di�erentiation in

z yields

W (zs1�1dz; : : : ; zsg�1dz) = C zs1+:::+sg�g(g+1)=2 dzg(g+1)=2

for some positive integer constant C. In particular,W (u1; : : : ; ug) is not iden-

tically zero and vanishes at a with multiplicity

(10:20) �a = s1 + : : :+ sg � g(g + 1)=2 > 0

unless s1 = 1, s2 = 2, : : :, sg = g. Now, we have

h0
�
K(�m[a])

�
= cardfj ; sj > mg = g � cardfj ; sj � mg

and Cor. 10.12 gives

(10:21) h0
�
O(m[a])

�
= m+ 1� cardfj ; sj � mg:

If a is not a zero of W (u1; : : : ; ug), we �nd

(10:22)

�
h0
�
O(m[a])

�
= 1 for m � g,

h0
�
O(m[a])

�
= m+ 1� g for m > g.

The zeroes of W (u1; : : : ; ug) are called the Weierstrass points of X, and the

associated Weierstrass sequence is the sequence wm = h0
�
O(m[a])

�
, m 2 N .

We have wm�1 � wm � wm�1+1 and s1 < : : : < sg are precisely the integers

m � 1 such that wm = wm�1. The numbers sj 2 f1; 2; : : : ; 2g� 1g are called
the gaps and �a the weight of the Weierstrass point a. Since W (u1; : : : ; ug)

is a section of Kg(g+1)=2, Hurwitz' formula implies

(10:23)
X
a2X

�a = c1(K
g(g+1)=2) = g(g + 1)(g � 1):

In particular, a curve of genus g has at most g(g + 1)(g � 1) Weierstrass

points.
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x11. Hodge-Fr�olicher Spectral Sequence

Let X be a compact complex n-dimensional manifold. We consider the double

complex Kp;q = C1(X;�p;qT ?
X
), d = d0 + d00. The Hodge-Fr�olicher spectral

sequence is by de�nition the spectral sequence associated to this double com-

plex (cf. IV-11.9). It starts with

(11:1) E
p;q

1 = Hp;q(X; C )

and the limit term Ep;q1 is the graded module associated to a �ltration of

the De Rham cohomology group Hk(X; C ), k = p + q. In particular, if the

numbers bk and h
p;q are still de�ned as in (8.11), we have

(11:2) bk =
X
p+q=k

dimEp;q1 �
X
p+q=k

dimE
p;q

1 =
X
p+q=k

hp;q:

The equality is equivalent to the degeneration of the spectral sequence at

E�1 . As a consequence, the Hodge-Fr�olicher spectral sequence of a compact

K�ahler manifold degenerates in E�1 .

(11.3) Theorem and De�nition. The existence of an isomorphism

Hk

DR(X; C ) '
M
p+q=k

Hp;q(X; C )

is equivalent to the degeneration of the Hodge-Fr�olicher spectral sequence

at E1. In this case, the isomorphism is canonically de�ned and we say that

X admits a Hodge decomposition. �

In general, interesting informations can be deduced from the spectral

sequence. Theorem IV-11.8 shows in particular that

(11:4) b1 � dimE
1;0
2 + (dimE

0;1
2 � dimE

2;0
2 )+:

However, E
1;0
2 is the central cohomology group in the sequence

d1 = d0 : E0;0
1 �! E

1;0
1 �! E

2;0
1 ;

and as E
0;0
1 is the space of holomorphic functions on X, the �rst map d1

is zero (by the maximum principle, holomorphic functions are constant on

each connected component of X ). Hence dimE
1;0
2 � h1;0 � h2;0. Similarly,

E
0;1
2 is the kernel of a map E

0;1
1 ! E

1;1
1 , thus dimE

0;1
2 � h0;1 � h1;1.

By (11.4) we obtain

(11:5) b1 � (h1;0 � h2;0)+ + (h0;1 � h1;1 � h2;0)+:
Another interesting relation concerns the topological Euler-Poincar�e charac-

teristic
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�top(X) = b0 � b1 + : : :� b2n�1 + b2n:

We need the following simple lemma.

(11.6) Lemma. Let (C�; d) a bounded complex of �nite dimensional vector

spaces over some �eld. Then, the Euler characteristic

�(C�) =
X

(�1)q dimCq

is equal to the Euler characteristic �
�
H�(C�)

�
of the cohomology module.

Proof. Set

cq = dimCq; zq = dimZq(C�); bq = dimBq(C�); hq = dimHq(C�):

Then

cq = zq + bq+1; hq = zq � bq:
Therefore we �ndX

(�1)q cq =
X

(�1)q zq �
X

(�1)q bq =
X

(�1)q hq: �

In particular, if the term E�
r
of the spectral sequence of a �ltered complex

K� is a bounded and �nite dimensional complex, we have

�(E�
r
) = �(E�

r+1) = : : : = �(E�1) = �
�
H�(K�)

�
because E�r+1 = H�(E�r ) and dimEl1 = dimH l(K�). In the Hodge-Fr�olicher

spectral sequence, we have dimEl1 =
P
p+q=l h

p;q, hence:

(11.7) Theorem. For any compact complex manifold X, one has

�top(X) =
X

0�k�2n
(�1)kbk =

X
0�p;q�n

(�1)p+qhp;q:

x12. E�ect of a Modi�cation on Hodge Decomposition

In this section, we show that the existence of a Hodge decomposition on a

compact complex manifold X is guaranteed as soon as there exists such a

decomposition on a modi�cation eX of X (see II-??.?? for the De�nition).

This leads us to extend Hodge theory to a class of manifolds which are non

necessarily K�ahler, the so called Fujiki class (C) of manifolds bimeromorphic

to K�ahler manifolds.
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x12.1. Sheaf Cohomology Reinterpretation of H
p;q

BC
(X; C )

We �rst give a description of H
p;q

BC(X; C ) in terms of the hypercohomology of

a suitable complex of sheaves. This interpretation, combined with the ana-

logue of the Hodge-Fr�olicher spectral sequence, will imply in particular that

H
p;q

BC(X; C ) is always �nite dimensional when X is compact. Let us denote by

Ep;q the sheaf of germs of C1 forms of bidegree (p; q), and by 
p the sheaf

of germs of holomorphic p-forms on X. For a �xed bidegree (p0; q0), we let

k0 = p0 + q0 and we introduce a complex of sheaves (L�
p0;q0

; Æ), also denoted

L� for simplicity, such that

L
k =

M
p+q=k;p<p0;q<q0

E
p;q for k � k0 � 2;

Lk�1 =
M

p+q=k;p�p0;q�q0
Ep;q for k � k0:

The di�erential Æk on Lk is chosen equal to the exterior derivative d for

k 6= k0 � 2 (in the case k � k0 � 3, we neglect the components which fall

outside Lk+1), and we set

Æk0�2 = d0d00 : Lk0�2 = Ep0�1;q0�1 �! Lk0�1 = Ep0;q0 :

We �nd in particular H
p0;q0

BC (X; C ) = Hk0�1
�
L�(X)

�
. We observe that L�

has subcomplexes (S0 �; d0) and (S00 �; d00) de�ned by

S0 k= 
k
X

for 0 � k � p0 � 1; S0 k = 0 otherwise;

S00 k= 
k
X

for 0 � k � q0 � 1; S00 k= 0 otherwise:

If p0 = 0 or q0 = 0 we set instead S0 0 = C or S00 0 = C , and take the other

components to be zero. Finally, we let S� = S0 �+S00 � � L� (the sum is direct

except for S0); we denote by M� the sheaf complex de�ned in the same way

as L�, except that the sheaves Ep;q are replaced by the sheaves of currents

D0
n�p;n�q.

(12.1) Lemma. The inclusions S� � L� �M� induce isomorphisms
Hk(S�) ' Hk(L�) ' Hk(M�);

and these cohomology sheaves vanish for k 6= 0; p0 � 1; q0 � 1.

Proof. We will prove the result only for the inclusion S� � L�, the other case
S� �M� is identical. Let us denote by Zp;q the sheaf of d00-closed di�erential

forms of bidegree (p; q). We consider the �ltration

Fp(L
k) = Lk \

M
r�p

Er;�
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and the induced �ltration on S�. In the case of L�, the �rst spectral sequence
has the following terms E�0 and E�1 :

if p < p0 E
p;�
0 : 0 �! Ep;0

d
00

�! Ep;1 �! � � � d
00

�! Ep;q0�1 �! 0;

if p � p0 E
p;�
0 : 0 �! Ep;q0

d
00

�! Ep;q0+1 �! � � � �! Ep;q
d
00

�! � � � ;
if p < p0 E

p;0
1 = 


p

X
; E

p;q0�1
1 ' Zp;q0 ; E

p;q

1 = 0 for q 6= 0; q0 � 1;

if p � p0 E
p;q0�1
1 = Zp;q0 ; E

p;q

1 = 0 for q 6= q0 � 1:

The isomorphism in the third line is given by

Ep;q0�1=d00Ep;q0�2 ' d00Ep;q0�1 ' Zp;q0 :
The map d1 : E

p0�1;q0�1
1 �! E

p0;q0�1
1 is induced by d0d00 acting on

Ep0�1;q0�1, but thanks to the previous identi�cation, this map becomes d0

acting on Zp0�1;q0 . Hence E�1 consists of two sequences

E
�;0
1 : 0 �! 
0

X

d
0

�! 
1
X �! � � � d

0

�! 

p0�1
X

�! 0;

E
�;q0�1
1 : 0 �! Z

0;q0 d
0

�! Z
1;q0 �! � � � �! Z

p;q0
d
0

�! � � � ;
if these sequences overlap (q0 = 1), only the second one has to be considered.

The term E�1 in the spectral sequence of S� has the same �rst line, but the

second is reduced to E
0;q0�1
1 = d


q0�2
X

(resp. = C for q0 = 1). Thanks to

Lemma 12.2 below, we see that the two spectral sequences coincide in E�2 ,
with at most three non zero terms:

E
0;0
2 = C ; E

p0�1;0
2 = d


p0�2
X

for p0 � 2; E
0;q0�1
2 = d


q0�2
X

for q0 � 2:

HenceHk(S�) ' Hk(L�) and these sheaves vanish for k 6= 0; p0�1; q0�1. �

(12.2) Lemma. The complex of sheaves

0 �! Z0;q0
d
0

�! Z1;q0 �! � � � �! Zp;q0
d
0

�! � � �
is a resolution of d


q0�1
X

for q0 � 1, resp. of C for q0 = 0.

Proof. Embed Z�;q0 in the double complex

Kp;q = Ep;q for q < q0; Kp;q = 0 for q � q0:
For the �rst �tration of K�, we �nd

E
p;q0�1
1 = Zp;q0 ; E

p;q

1 = 0 for q 6= q0 � 1

The second �tration gives eEp;q1 = 0 for q � 1 and

eEp;01 = H0(K�;p) =

�
H0(Ep;�) = 
p

X
for p � q0 � 1

0 for p � q0,
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thus the cohomology of Z�;q0 coincides with that of (

p

X
; d)0�p<q0. �

Lemma IV-11.10 and formula (IV-12.9) imply

H k (X; S�) ' H k (X;L�) ' H k (X;M�)(12:3)

' Hk
�
L�(X)

� ' Hk
�
M�(X)

�
because the sheaves Lk and Mk are soft. In particular, the group H

p;q

BC(X; C )

can be computed either by means of C1 di�erential forms or by means of

currents. This property also holds for the De Rham or Dolbeault groups

Hk(X; C ), Hp;q(X; C ), as was already remarked in xIV-6. Another important

consequence of (12.3) is:

(12.4) Theorem. If X is compact, then dimH
p;q

BC(X; C ) < +1.

Proof. We show more generally that the hypercohomology groups H k (X; S�)
are �nite dimensional. As there is an exact sequence

0 �! C �! S0 � � S00 � �! S� �! 0

and a corresponding long exact sequence for hypercohomology groups, it

is enough to show that the groups H k (X; S0 �) are �nite dimensional. This

property is proved for S0 � = S0 �
p0

by induction on p0. For p0 = 0 or 1, the

complex S0 � is reduced to its term S0 0, thus

H k (X; S�) = Hk(X; S0 0) =

�
Hk(X; C ) for p0 = 0

Hk(X;O) for p0 = 1

and this groups are �nite dimensional. In general, we have an exact sequence

0 �! 

p0

X
�! S�

p0+1
�! S�

p0
�! 0

where 

p0

X
denotes the subcomplex of S�

p0+1
reduced to one term in degree p0.

As

H k (X;

p0

X
) = Hk�p0(X;
p0

X
) = Hp0;k�p0(X; C )

is �nite dimensional, the Theorem follows. �

(12.5) De�nition. We say that a compact manifold admits a strong Hodge

decomposition if the natural maps

H
p;q

BC(X; C ) �! Hp;q(X; C );
M
p+q=k

H
p;q

BC(X; C ) �! Hk(X; C )

are isomorphisms.

This implies of course that there are natural isomorphisms
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Hk(X; C ) '
M
p+q=k

Hp;q(X; C ); Hq;p(X; C ) ' Hp;q(X; C )

and that the Hodge-Fr�olicher spectral sequence degenerates in E�1 . It follows
from x 8 that all K�ahler manifolds admit a strong Hodge decomposition.

x12.2. Direct and Inverse Image Morphisms

Let F : X �! Y be a holomorphic map between complex analytic manifolds

of respective dimensions n;m, and r = n�m. We have pull-back morphisms

(12:6)

F ? : Hk(Y; C )�! Hk(X; C );

F ? : Hp;q(Y; C )�! Hp;q(X; C );

F ? : H
p;q

BC(Y; C )�! H
p;q

BC(X; C );

commuting with the natural morphisms (8.2), (8.3).

Assume now that F is proper. Theorem I-1.14 shows that one can de�ne

direct image morphisms

F? : D0k(X) �! D0k(Y ); F? : D0p;q(X) �! D0p;q(Y );

commuting with d0; d00. To F? therefore correspond cohomology morphisms

(12:7)

F? : Hk(X; C )�! Hk�2r(Y; C );
F? : Hp;q(X; C )�! Hp�r;q�r(Y; C );
F? : H

p;q

BC(X; C )�! H
p�r;q�r
BC (Y; C );

which commute also with (8.2), (8.3). In addition, I-1.14 c) implies the ad-

junction formula

(12:8) F?(� ` F ?�) = (F?�) ` �

whenever � is a cohomology class (of any of the three above types) on X,

and � a cohomology class (of the same type) on Y .

x12.3. Modi�cations and the Fujiki Class (C)

Recall that a modi�cation of a compact manifold X is a holomorphic map

� : eX �! X such that

i) eX is a compact complex manifold of the same dimension as X ;

ii) there exists an analytic subset S � X of codimension � 1 such that

� : eX n ��1(S) �! X n S is a biholomorphism.

(12.9) Theorem. If eX admits a strong Hodge decomposition, and if � :eX �! X is a modi�cation, then X also admits a strong Hodge decomposition.
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Proof. We �rst observe that �?�
?f = f for every smooth form f on Y . In

fact, this property is equivalent to the equalityZ
Y

(�?�
?f) ^ g =

Z
X

�?(f ^ g) =
Z
Y

f ^ g

for every smooth form g on Y , and this equality is clear because � is a bi-

holomorphism outside sets of Lebesgue measure 0. Consequently, the induced

cohomology morphism �? is surjective and �? is injective (but these maps

need not be isomorphisms). Now, we have commutative diagrams

H
p;q

BC(
eX; C ) �!Hp;q( eX; C ); M

p+q=k

H
p;q

BC(
eX; C ) �!Hk( eX; C )

�?
?yx?�? �?

?yx?�? �?
?yx?�? �?

?yx?�?
H
p;q

BC(X; C ) �!Hp;q(X; C );
M
p+q=k

H
p;q

BC(X; C ) �!Hk(X; C )

with either upward or downward vertical arrows. Hence the surjectivity or

injectivity of the top horizontal arrows implies that of the bottom horizontal

arrows. �

(12.10) De�nition. A manifold X is said to be in the Fujiki class (C) if X

admits a K�ahler modi�cation eX.

By Th. 12.9, Hodge decomposition still holds for a manifold in the class

(C). We will see later that there exist non-K�ahler manifolds in (C), for example

all non projective Moi�sezon manifolds (cf. x?.?). The class (C) has been �rst

introduced in (Fujiki 1978).





Chapter VII

Positive Vector Bundles and Vanishing

Theorems

In this chapter, we prove a few vanishing theorems for hermitian vector bundles
over compact complex manifolds. All these theorems are based on an a priori in-
equality for (p; q)-forms with values in a vector bundle, known as the Bochner-
Kodaira-Nakano inequality. This inequality naturally leads to several positivity no-
tions for the curvature of a vector bundle (Kodaira 1953, 1954), (GriÆths 1969) and
(Nakano 1955, 1973). The corresponding algebraic notion of ampleness introduced
by (Grothendieck 196?) and (Hartshorne 1966) is also discussed. The di�erential
geometric techniques yield optimal vanishing results in the case of line bundles
(Kodaira-Akizuki-Nakano and Girbau vanishing theorems) and also some partial
results in the case of vector bundles (Nakano vanishing theorem). As an illustration,
we compute the cohomology groups Hp;q(Pn;O(k)) ; much �ner results will be ob-
tained in chapters 8{11. Finally, the Kodaira vanishing theorem is combined with
a blowing-up technique in order to establish the projective embedding theorem for
manifolds admitting a Hodge metric.

1. Bochner-Kodaira-Nakano Identity

Let (X;!) be a hermitian manifold, dimC X = n, and let E be a hermitian

holomorphic vector bundle of rank r over X. We denote by D = D0 +D00 its
Chern connection (or DE if we want to specify the bundle), and by Æ = Æ0+Æ00

the formal adjoint operator ofD. The operators L;� of chapter 6 are extended

to vector valued forms in �p;qT ?X 
 E by taking their tensor product with

IdE . The following result extends the commutation relations of chapter 6 to

the case of bundle valued operators.

(1.1) Theorem. If � is the operator of type (1; 0) de�ned by � = [�; d0!] on
C1�;�(X;E), then

a) [Æ00
E
; L] = i(D0

E
+ �);

b) [Æ0
E
; L] = �i(D00

E
+ �);

c) [�;D00
E
]= �i(Æ0

E
+ �?);

d) [�;D0
E
]= i(Æ00

E
+ �?):

Proof. Fix a point x0 in X and a coordinate system z = (z1; : : : ; zn) centered

at x0. Then Prop. V-12.?? shows the existence of a normal coordinate frame
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(e�) at x0. Given any section s =
P
�
��
e� 2 C1p;q(X;E), it is easy to check

that the operators DE , Æ
00
E
; : : : have Taylor expansions of the type

DEs =
X
�

d�� 
 e� +O(jzj); Æ00
E
s =

X
�

Æ00�� 
 e� + O(jzj); : : :

in terms of the scalar valued operators d, Æ, : : :. Here the terms O(jzj) depend
on the curvature coeÆcients of E. The proof of Th. 1.1 is then reduced to

the case of scalar valued operators, which is granted by Th. VI-10.1. �

The Bochner-Kodaira-Nakano identity expresses the antiholomorphic La-

place operator �00 = D00Æ00 + Æ00D00 acting on C1�;�(X;E) in terms of its

conjugate operator �0 = D0Æ0 + Æ0D0, plus some extra terms involving the

curvature of E and the torsion of the metric ! (in case ! is not K�ahler). Such

identities appear frequently in riemannian geometry (Weitzenb�ock formula).

(1.2) Theorem. �00 = �0 + [i�(E); �] + [D0; �?]� [D00; �?].

Proof. Equality 1.1 d) yields Æ00 = �i[�;D0]� �?, hence
�00 = [D00; Æ00] = �i[D00; ��;D0]�� [D00; �?]:

The Jacobi identity VI-10.2 and relation 1.1 c) imply�
D00; [�;D0]

�
=
�
�; [D0; D00]] +

�
D0; [D00; �]

�
= [�;�(E)] + i[D0; Æ0 + �?];

taking into account that [D0; D00] = D2 = �(E). Theorem 1.2 follows. �

(1.3) Corollary (Akizuki-Nakano 1955). If ! is K�ahler, then

�00 = �0 + [i�(E); �]:

In the latter case, �00 � �0 is therefore an operator of order 0 closely

related to the curvature of E. When ! is not K�ahler, Formula 1.2 is not

really satisfactory, because it involves the �rst order operators [D0; �?] and
[D00; �?]. In fact, these operators can be combined with �0 in order to yield

a new positive self-adjoint operator �0� .

(1.4) Theorem (Demailly 1985). The operator �0
�
= [D0 + �; Æ0 + �?] is

a positive and formally self-adjoint operator with the same principal part as

the Laplace operator �0. Moreover

�00 = �0� + [i�(E); �] + T!;

where T! is an operator of order 0 depending only on the torsion of the

hermitian metric ! :
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T! =
h
�;
�
�;

i

2
d0d00!

�i� �d0!; (d0!)?�:
Proof. The �rst assertion is clear, because the equality (D0 + �)? = Æ0 + �?

implies the self-adjointness of �0
�
and

hh�0
�
u; uii = kD0u+ �uk2 + kÆ0u+ �?uk2 � 0

for any compactly supported form u 2 C1
p;q
(X;E). In order to prove the

formula, we need two lemmas.

(1.5) Lemma. a) [L; � ] = 3d0!; b) [�; � ] = �2i�?:

Proof. a) Since [L; d0!] = 0, the Jacobi identity implies

[L; � ] =
�
L; [�; d0!]

�
= ��d0!; [L;�]� = 3d0!;

taking into account Cor. VI-10.4 and the fact that d0! is of degree 3.

b) By 1.1 a) we have � = �i[Æ00; L]�D0, hence
[�; � ] = �i��; [Æ00; L]�� [�;D0] = �i���; [Æ00; L]�+ Æ00 + �?

�
:

Using again VI-10.4 and the Jacobi identity, we get�
�; [Æ00; L]

�
= ��L; [�; Æ00]�� �Æ00; [L;�]�
= ��[d00; L]; ��? � Æ00 = �[d00!;�]? � Æ00 = �? � Æ00:

A substitution in the previous equality gives [�; � ] = �2i�?. �

(1.6) Lemma. The following identities hold:

a) [D0; �?] = �[D0; Æ00] = [�; Æ00];

b) �[D00; �?] = [�; Æ0 + �?] + T!:

Proof. a) The Jacobi identity implies

��D0; [�;D0]�+ �D0; [D0; �]�+ ��; [D0; D0]� = 0;

hence �2�D0; [�;D0]� = 0 and likewise
�
Æ00; [Æ00; L]

�
= 0. Assertion a) is now

a consequence of 1.1 a) and d).

b) In order to verify b), we start from the equality �? = i
2
[�; � ] provided by

Lemma 1.5 b). It follows that

(1:7) [D00; �?] =
i

2

�
D00; [�; � ]

�
:

The Jacobi identity will now be used several times. One obtains
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D00; [�; � ]

�
=
�
�; [�;D00]

�
+
�
�; [D00; �]

�
;(1:8)

[�;D00] = [D00; � ] =
�
D00; [�; d0!]

�
=
�
�; [d0!;D00]

�
+
�
d0!; [D00; �]

�
(1:9)

= [�; d00d0!] + [d0!;A]

with A = [D00; �] = i(Æ0 + �?). From (1.9) we deduce

(1:10)
�
�; [�;D00]

�
=
�
�; [�; d00d0!]

�
+
�
�; [d0!;A]

�
:

Let us compute now the second Lie bracket in the right hand side of (1.10:�
�; [d0!;A]

�
=
�
A; [�; d0!]

�� �d0!; [A;�]� = [�; A] +
�
d0!; [�;A]

�
;(1:11)

[�;A] = i[�; Æ0 + �?] = i[D0 + �; L]?:(1:12)

Lemma 1.5 b) provides [�; L] = �3d0!, and it is clear that [D0; L] = d0!.
Equalities (1.12) and (1.11) yield therefore

[�;A] = �2i(d0!)?;�
�; [d0!;A]

�
=
�
�; [D00; �]

�� 2i[d0!; (d0!)?]:(1:13)

Substituting (1.10) and (1.13) in (1.8) we get�
D00; [�; � ]

�
=
�
�; [�; d00d0!]

�
+ 2
�
�; [D00; �]

�� 2i
�
d0!; (d0!)?

�
(1:14)

= 2i
�
T! + [�; Æ0 + �?]

�
:

Formula b) is a consequence of (1.7) and (1.14). �

Theorem 1.4 follows now from Th. 1.2 if Formula 1.6 b) is rewritten

�0 + [D0; �?]� [D00; �?] = [D0 + �; Æ0 + �?] + T!:

When ! is K�ahler, then � = T! = 0 and Lemma 1.6 a) shows that

[D0; Æ00] = 0. Together with the adjoint relation [D00; Æ0] = 0, this equality

implies

(1:15) � = �0 +�00:

When ! is not K�ahler, Lemma 1.6 a) can be written [D0 + �; Æ00] = 0 and we

obtain more generally

[D + �; Æ + �?] =
�
(D0 + �) +D00; (Æ0 + �?) + Æ00

�
= �0� +�00:

(1.16) Proposition. Set �� = [D + �; Æ + �?]. Then �� = �0� +�00.
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2. Basic a Priori Inequality

Let (X;!) be a compact hermitian manifold, dimC X = n, and E a hermi-

tian holomorphic vector bundle over X. For any section u 2 C1
p;q
(X;E) we

have hh�00u; uii = kD00uk2 + kÆ00uk2 and the similar formula for �0
�
gives

hh�0
�
u; uii � 0. Theorem 1.4 implies therefore

(2:1) kD00uk2 + kÆ00uk2 �
Z
X

�h[i�(E); �]u; ui+ hT!u; ui�dV:
This inequality is known as the Bochner-Kodaira-Nakano inequality. When

u is �00-harmonic, we get in particular

(2:2)

Z
X

�h[i�(E); �]u; ui+ hT!u; ui�dV � 0:

These basic a priori estimates are the starting point of all vanishing theorems.

Observe that [i�(E); �] + T! is a hermitian operator acting pointwise on

�p;qT ?X 
 E (the hermitian property can be seen from the fact that this

operator coincides with �00 � �0� on smooth sections). Using Hodge theory

(Cor. VI-11.2), we get:

(2.3) Corollary. If the hermitian operator [i�(E); �]+T! is positive de�nite

on �p;qT ?X 
E, then Hp;q(X;E) = 0. �

In some circumstances, one can improve Cor. 2.3 thanks to the following

\analytic continuation lemma" due to (Aronszajn 1957):

(2.4) Lemma. Let M be a connected C1-manifold, F a vector bundle over

M , and P a second order elliptic di�erential operator acting on C1(M;F ).

Then any section � 2 ker P vanishing on a non-empty open subset of M

vanishes identically on M .

(2.5) Corollary. Assume that X is compact and connected. If

[i�(E); �] + T! 2 Herm
�
�p;qT ?X 
E�

is semi-positive on X and positive de�nite in at least one point x0 2 X, then

Hp;q(X;E) = 0.

Proof. By (2.2) every �00-harmonic (p; q)-form u must vanish in the neigh-

borhood of x0 where [i�(E); �] + T! > 0, thus u � 0. Hodge theory implies

Hp;q(X;E) = 0. �
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3. Kodaira-Akizuki-Nakano Vanishing Theorem

The main goal of vanishing theorems is to �nd natural geometric or algebraic

conditions on a bundle E that will ensure that some cohomology groups with

values in E vanish. In the next three sections, we prove various vanishing

theorems for cohomology groups of a hermitian line bundle E over a compact

complex manifold X.

(3.1) De�nition. A hermitian holomorphic line bundle E on X is said

to be positive (resp. negative) if the hermitian matrix
�
cjk(z)

�
of its Chern

curvature form

i�(E) = i
X

1�j;k�n
cjk(z) dzj ^ dzk

is positive (resp. negative) de�nite at every point z 2 X.

Assume that X has a K�ahler metric !. Let

1(x) � : : : � n(x)
be the eigenvalues of i�(E)x with respect to !x at each point x 2 X, and let

i�(E)x = i
X

1�j�n
j(x) �j ^ �j ; �j 2 T ?xX

be a diagonalization of i�(E)x. By Prop. VI-8.3 we have

h[i�(E); �]u; ui=
X
J;K

�X
j2J

j +
X
j2K

j �
X

1�j�n
j

�
juJ;K j2

� (1 + : : :+ q � p+1 � : : :� n)juj2(3:2)

for any form u =
P
J;K

uJ;K �J ^ �K 2 �p;qT ?X.

(3.3) Akizuki-Nakano vanishing theorem (1954). Let E be a holomor-

phic line bundle on X.

a) If E is positive, then Hp;q(X;E) = 0 for p+ q � n+ 1:

b) If E is negative, then Hp;q(X;E) = 0 for p+ q � n� 1:

Proof. In case a), choose ! = i�(E) as a K�ahler metric on X. Then we have

j(x) = 1 for all j and x, so that

hh[i�(E); �]u; uii � (p+ q � n)jjujj2

for any u 2 �p;qT ?X 
 E. Assertion a) follows now from Corollary 2.3.

Property b) is proved similarly, by taking ! = �i�(E). One can also derive

b) from a) by Serre duality (Theorem VI-11.3). �
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When p = 0 or p = n, Th. 3.3 can be generalized to the case where i�(E)

degenerates at some points. We use here the standard notations

(3:4) 

p

X
= �pT ?X; KX = �nT ?X; n = dimC X ;

KX is called the canonical line bundle of X.

(3.5) Theorem (Grauert-Riemenschneider 1970). Let (X;!) be a com-

pact and connected K�ahler manifold and E a line bundle on X.

a) If i�(E) � 0 on X and i�(E) > 0 in at least one point x0 2 X, then

Hq(X;KX 
 E) = 0 for q � 1:

b) If i�(E) � 0 on X and i�(E) < 0 in at least one point x0 2 X, then

Hq(X;E) = 0 for q � n� 1:

It will be proved in Volume II, by means of holomorphic Morse inequali-

ties, that the K�ahler assumption is in fact unnecessary. This improvement is

a deep result �rst proved by (Siu 1984) with a di�erent ad hoc method.

Proof. For p = n, formula (3.2) gives

(3:6) hh[i�(E); �]u; uii � (1 + : : :+ q)juj2

and a) follows from Cor. 2.5. Now b) is a consequence of a) by Serre duality.

�

4. Girbau's Vanishing Theorem

Let E be a line bundle over a compact connected K�ahler manifold (X;!). Gir-

bau's theorem deals with the (possibly everywhere) degenerate semi-positive

case. We �rst state the corresponding generalization of Th. 4.5.

(4.1) Theorem. If i�(E) is semi-positive and has at least n� s+1 positive

eigenvalues at a point x0 2 X for some integer s 2 f1; : : : ; ng, then
Hq(X;KX 
E) = 0 for q � s:

Proof. Apply 2.5 and inequality (3.6), and observe that q(x0) > 0 for all

q � s. �

(4.2) Theorem (Girbau 1976). If i�(E) is semi-positive and has at least

n� s+ 1 positive eigenvalues at every point x 2 X, then

Hp;q(X;E) = 0 for p+ q � n+ s:
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Proof. Let us consider on X the new K�ahler metric

!" = "! + i�(E); " > 0;

and let i�(E) = i
P
j �j ^ �j be a diagonalization of i�(E) with respect to

! and with 1 � : : : � n. Then

!" = i
X

("+ j) �j ^ �j :

The eigenvalues of i�(E) with respect to !" are given therefore by

(4:3) j;" = j=("+ j) 2 [0; 1[; 1 � j � n:
On the other hand, the hypothesis is equivalent to s > 0 on X. For j � s

we have j � s, thus

(4:4) j;" =
1

1 + "=j
� 1

1 + "=s
� 1� "=s; s � j � n:

Let us denote the operators and inner products associated to !" with " as an

index. Then inequality (3.2) combined with (4.4) implies

h[i�(E); �"]u; ui" �
��
q � s+ 1)

�
(1� "=s)� (n� p)

�
juj2

=
�
p+ q � n� s+ 1� (q � s+ 1)"=s

�juj2:
Theorem 4.2 follows now from Cor. 2.3 if we choose

" <
p+ q � n� s+ 1

q � s+ 1
min
x2X

s(x): �

(4.5) Remark. The following example due to (Ramanujam 1972, 1974)

shows that Girbau's result is no longer true for p < n when i�(E) is only

assumed to have n� s+ 1 positive eigenvalues on a dense open set.

Let V be a hermitian vector space of dimension n+1 and X the manifold

obtained from P (V ) ' Pn by blowing-up one point a. The manifoldX may be

described as follows: if P (V=C a) is the projective space of lines ` containing

a, then

X =
�
(x; `) 2 P (V )� P (V=C a) ; x 2 `	:

We have two natural projections

�1 : X �! P (V ) ' Pn;

�2 : X �! Y = P (V=C a) ' Pn�1:

It is clear that the preimage ��11 (x) is the single point
�
x; ` = (ax)

�
if x 6= a

and that ��11 (a) = fag � Y ' Pn�1, therefore
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�1 : X n (fag � Y ) �! P (V ) n fag
is an isomorphism. On the other hand, �2 is a locally trivial �ber bundle over

Y with �ber ��12 (`) = ` ' P1, in particular X is smooth and n-dimensional.

Consider now the line bundle E = �?1O(1) over X, with the hermitian metric

induced by that of O(1). Then E is semi-positive and i�(E) has n positive

eigenvalues at every point of X n (fag� Y ), hence the assumption of Th. 4.2

is satis�ed on X n (fag � Y ). However, we will see that
Hp;p(X;E) 6= 0; 0 � p � n� 1;

in contradiction with the expected generalization of (4.2) when 2p � n+ 1.

Let j : Y ' fag � Y �! X be the inclusion. Then �1 Æ j : Y ! fag and
�2Æj = IdY ; in particular j?E = (�1Æj)?O(1) is the trivial bundle Y �O(1)a.
Consider now the composite morphism

Hp;p(Y; C )
H0
�
P (V );O(1)

��! Hp;p(X;E)
j
?

�!Hp;p(Y; C ) 
 O(1)a
u
s 7�! �?2u
 �?1s;

given by u 
 s 7�! (�2 Æ j)?u 
 (�1 Æ j)?s = u 
 s(a) ; it is surjective and

Hp;p(Y; C ) 6= 0 for 0 � p � n� 1, so we have Hp;p(X;E) 6= 0. �

5. Vanishing Theorem for Partially Positive Line

Bundles

Even in the case when the curvature form i�(E) is not semi-positive, some

cohomology groups of high tensor powers Ek still vanish under suitable as-

sumptions. The prototype of such results is the following assertion, which

can be seen as a consequence of the Andreotti-Grauert theorem (Andreotti-

Grauert 1962), see IX-?.?; the special case where E is > 0 (that is, s = 1) is

due to (Kodaira 1953) and (Serre 1956).

(5.1) Theorem. Let F be a holomorphic vector bundle over a compact com-

plex manifold X, s a positive integer and E a hermitian line bundle such that

i�(E) has at least n� s+ 1 positive eigenvalues at every point x 2 X. Then

there exists an integer k0 � 0 such that

Hq(X;Ek 
 F ) = 0 for q � s and k � k0:

Proof. The main idea is to construct a hermitian metric !" on X in such

a way that all negative eigenvalues of i�(E) with respect to !" will be of

small absolute value. Let ! denote a �xed hermitian metric on X and let

1 � : : : � n be the corresponding eigenvalues of i�(E).
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(5.2) Lemma. Let  2 C1(R;R). If A is a hermitian n � n matrix with

eigenvalues �1 � : : : � �n and corresponding eigenvectors v1; : : : ; vn, we

de�ne  [A] as the hermitian matrix with eigenvalues  (�j) and eigenvectors

vj, 1 � j � n. Then the map A 7�!  [A] is C1 on Herm(C n).

Proof. Although the result is very well known, we give here a short proof.

Without loss of generality, we may assume that  is compactly supported.

Then we have

 [A] =
1

2�

Z +1

�1
b (t)eitAdt

where b is the rapidly decreasing Fourier transform of  . The equalityR
t

0
(t � u)puq du = p! q!=(p+ q + 1)! and obvious power series developments

yield

DA(e
itA) �B = i

Z t

0

ei(t�u)A B eiuAdu:

Since eiuA is unitary, we get kDA(eitA)k � jtj. A di�erentiation under

the integral sign and Leibniz' formula imply by induction on k the bound

kDk

A
(eitA)k � jtjk. Hence A 7�!  [A] is smooth. �

Let us consider now the positive numbers

t0 = inf
X

s > 0; M = sup
X

max
j

jjj > 0:

We select a function  " 2 C1(R;R) such that

 "(t) = t for t � t0;  "(t) � t for 0 � t � t0;  "(t) =M=" for t � 0:

By Lemma 5.2, !" :=  "[i�(E)] is a smooth hermitian metric on X. Let us

write

i�(E) = i
X

1�j�n
j �j ^ �j ; !" = i

X
1�j�n

 "(j) �j ^ �j

in an orthonormal basis (�1; : : : ; �n) of T
?X for !. The eigenvalues of i�(E)

with respect to !" are given by j;" = j= "(j) and the construction of  "
shows that �" � j;" � 1, 1 � j � n, and j;" = 1 for s � j � n. Now, we

have

Hq(X;Ek 
 F ) ' Hn;q(X;Ek 
G)
where G = F 
 K?

X
. Let e, (g�)1���r and (�j)1�j�n denote orthonormal

frames of E, G and (T ?X;!") respectively. For

u =
X
jJj=q;�

uJ;� �1 ^ : : : ^ �n ^ �J 
 ek 
 g� 2 �n;qT ?X 
 Ek 
G;
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inequality (3.2) yields

h[i�(E); �"]u; ui" =
X
J;�

�X
j2J

j;"

�
juJ;�j2 �

�
q � s+ 1� (s� 1)"

�juj2:
Choosing " = 1=s and q � s, the right hand side becomes � (1=s)juj2. Since
�(Ek 
G) = k�(E)
 IdG+�(G), there exists an integer k0 such that�

i�(Ek 
G); �"
�
+ T!" acting on �n;qT ?X 
 Ek 
G

is positive de�nite for q � s and k � k0. The proof is complete. �

6. Positivity Concepts for Vector Bundles

Let E be a hermitian holomorphic vector bundle of rank r over X, where

dimC X = n. Denote by (e1; : : : ; er) an orthonormal frame of E over a coor-

dinate patch 
 � X with complex coordinates (z1; : : : ; zn), and

(6:1) i�(E) = i
X

1�j;k�n; 1��;��r
cjk�� dzj ^ dzk 
 e?� 
 e�; cjk�� = ckj��

the Chern curvature tensor. To i�(E) corresponds a natural hermitian form

�E on TX 
 E de�ned by

�E =
X
j;k;�;�

cjk��(dzj 
 e?�)
 (dzk 
 e?�);

and such that

�E(u; u) =
X
j;k;�;�

cjk��(x)uj�uk�; u 2 TxX 
Ex:(6:2)

(6.3) De�nition (Nakano 1955). E is said to be Nakano positive (resp.

Nakano semi-negative) if �E is positive de�nite (resp. semi-negative) as a

hermitian form on TX 
E, i.e. if for every u 2 TX 
E; u 6= 0; we have

�E(u; u) > 0 (resp. � 0):

We write >Nak (resp. �Nak) for Nakano positivity (resp. semi-negativity).

(6.4) De�nition (GriÆths 1969). E is said to be GriÆths positive (resp.

GriÆths semi-negative) if for all � 2 TxX, � 6= 0 and s 2 Ex, s 6= 0 we have

�E(� 
 s; � 
 s) > 0 (resp. � 0):

We write >Grif (resp. �Grif) for GriÆths positivity (resp. semi-negativity).
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It is clear that Nakano positivity implies GriÆths positivity and that both

concepts coincide if r = 1 (in the case of a line bundle, E is merely said to

be positive). One can generalize further by introducing additional concepts

of positivity which interpolate between GriÆths positivity and Nakano posi-

tivity.

(6.5) De�nition. Let T and E be complex vector spaces of dimensions n; r

respectively, and let � be a hermitian form on T 
 E.
a) A tensor u 2 T 
E is said to be of rank m if m is the smallest � 0 integer

such that u can be written

u =

mX
j=1

�j 
 sj; �j 2 T; sj 2 E:

b) � is said to be m-positive (resp. m-semi-negative) if �(u; u) > 0 (resp.

�(u; u) � 0) for every tensor u 2 T 
E of rank � m, u 6= 0. In this case,

we write

� >m 0 (resp. � �m 0):

We say that the bundle E is m-positive if �E >m 0. GriÆths positivity

corresponds to m = 1 and Nakano positivity to m � min(n; r).

(6.6) Proposition. A bundle E is GriÆths positive if and only if E? is

GriÆths negative.

Proof. By (V-4.30) we get i�(E?) = �i�(E)y, hence
�E?(�1 
 s2; �2 
 s1) = ��E(�1 
 s1; �2 
 s2); 8�1; �2 2 TX; 8s1; s2 2 E;

where sj = h�; sji 2 E?. Proposition 6.6 follows immediately. �

It should be observed that the corresponding duality property for Nakano

positive bundles is not true. In fact, using (6.1) we get

i�(E?) = �i
X
j;k;�;�

cjk��dzj ^ dzk 
 e??� 
 e?�;

(6:7) �E?(v; v) = �
X
j;k;�;�

cjk��vj�vk�;

for any v =
P
vj� (@=@zj) 
 e?� 2 TX 
 E?. The following example shows

that Nakano positivity or negativity of �E and �E? are unrelated.

(6.8) Example. Let H be the rank n bundle over Pn de�ned in x V-15. For
any u =

P
uj�(@=@zj)
 ee� 2 TX 
H, v =

P
vj�(@=@zj)
 ee?� 2 TX 
H?,

1 � j; � � n, formula (V-15.9) implies
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(6:9)

8<: �H(u; u) =
X

uj�u�j

�H?(v; v) =
X

vjjv�� =
��X vjj

��2:
It is then clear that H �Grif 0 and H

? �Nak 0 , but H is neither �Nak 0 nor

�Nak 0.

(6.10) Proposition. Let 0 ! S ! E ! Q ! 0 be an exact sequence of

hermitian vector bundles. Then

a) E �Grif 0 =) Q �Grif 0;

b) E �Grif 0 =) S �Grif 0;

c) E �Nak 0 =) S �Nak 0;

and analogous implications hold true for strict positivity.

Proof. If � is written
P
dzj 
 �j , �j 2 hom(S;Q), then formulas (V-14.6)

and (V-14.7) yield

i�(S) = i�(E)�S �
X

dzj ^ dzk 
 �?k�j ;
i�(Q) = i�(E)�Q +

X
dzj ^ dzk 
 �j�?k :

Since � � (� 
 s) =P �j�j � s and �? � (� 
 s) =
P
�
k
�?
k
� s we get

�S(� 
 s; �0 
 s0) = �E(� 
 s; �0 
 s0)�
X
j;k

�j�
0
k
h�j � s; �k � s0i;

�S(u; u) = �E(u; u)� j� � uj2;
�Q(� 
 s; �0 
 s0) = �E(� 
 s; �0 
 s0) +

X
j;k

�j�
0
k
h�?
k
� s; �?

j
� s0i;

�Q(� 
 s; � 
 s) = �E(� 
 s; � 
 s) + j�? � (� 
 s)j2: �

Since H is a quotient bundle of the trivial bundle �V , Example 6.8 shows

that E �Nak 0 does not imply Q �Nak 0.
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7. Nakano Vanishing Theorem

Let (X;!) be a compact K�ahler manifold, dimC X = n, and E �! X a her-

mitian vector bundle of rank r. We are going to compute explicitly the hermi-

tian operator [i�(E); �] acting on �p;qT ?X
E. Let x0 2 X and (z1; : : : ; zn)

be local coordinates such that (@=@z1; : : : ; @=@zn) is an orthonormal basis of

(TX; !) at x0. One can write

!x0 = i
X

1�j�n
dzj ^ dzj ;

i�(E)x0 = i
X
j;k;�;�

cjk�� dzj ^ dzk 
 e?� 
 e�

where (e1; : : : ; er) is an orthonormal basis of Ex0 . Let

u =
X

jJj=p; jKj=q;�
uJ;K;� dzJ ^ dzK 
 e� 2

�
�p;qT ?X 
 E�

x0
:

A simple computation as in the proof of Prop. VI-8.3 gives

�u = i(�1)p
X

J;K;�;s

uJ;K;�

� @

@zs
dzJ

�
^
� @

@zs
dzK

�

 e�;

i�(E) ^ u = i(�1)p
X

j;k;�;�;J;K

cjk�� uJ;K;� dzj ^ dzJ ^ dzk ^ dzK 
 e�;

[i�(E); �]u =
X

j;k;�;�;J;K

cjk�� uJ;K;� dzj ^
� @

@zk
dzJ

�
^ dzK 
 e�

+
X

j;k;�;�;J;K

cjk�� uJ;K;� dzJ ^ dzk ^
� @

@zj
dzK

�

 e�

�
X

j;�;�;J;K

cjj�� uJ;K;� dzJ ^ dzK 
 e�:

We extend the de�nition of uJ;K;� to non increasing multi-indices J = (js),

K = (ks) by deciding that uJ;K;� = 0 if J orK contains identical components

repeated and that uJ;K;� is alternate in the indices (js), (ks). Then the above

equality can be written

h[i�(E); �]u; ui =
X

cjk�� uJ;jS;�uJ;kS;�

+
X

cjk�� ukR;K;�ujR;K;�

�
X

cjj�� uJ;K;�uJ;K;�;

extended over all indices j; k; �; �; J;K;R; S with jRj = p�1, jSj = q�1. This
hermitian form appears rather diÆcult to handle for general (p; q) because of

sign compensation. Two interesting cases are p = n and q = n.
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� For u =PuK;� dz1 ^ : : : ^ dzn ^ dzK 
 e� of type (n; q), we get

(7:1) h[i�(E); �]u; ui =
X
jSj=q�1

X
j;k;�;�

cjk�� ujS;�ukS;�;

because of the equality of the second and third summations in the general

formula. Since ujS;� = 0 for j 2 S, the rank of the tensor (ujS;�)j;� 2 C n
C r
is in fact � minfn� q + 1; rg. We obtain therefore:

(7.2) Lemma. Assume that E >m 0 in the sense of Def. 6:5. Then the

hermitian operator [i�(E); �] is positive de�nite on �n;qT ?X 
 E for q � 1

and m � minfn� q + 1; rg:

(7.3) Theorem. Let X be a compact connected K�ahler manifold of dimension

n and E a hermitian vector bundle of rank r. If �E �m 0 on X and �E >m 0

in at least one point, then

Hn;q(X;E) = Hq(X;KX 
 E) = 0 for q � 1 and m � minfn� q + 1; rg:

� Similarly, for u =
P
uJ;� dzJ ^ dz1 ^ : : : ^ dzn 
 e� of type (p; n), we get

h[i�(E); �]u; ui =
X

jRj=p�1

X
j;k;�;�

cjk�� ukR;�ujR;�;

because of the equality of the �rst and third summations in the general

formula. The indices j; k are twisted, thus [i�(E); �] de�nes a positive her-

mitian form under the assumption i�(E)y >m 0, i.e. i�(E?) <m 0, with

m � minfn� p+ 1; rg. Serre duality �Hp;0(X;E)
�?

= Hn�p;n(X;E?) gives:

(7.4) Theorem. Let X and E be as above. If �E �m 0 on X and �E <m 0

in at least one point, then

Hp;0(X;E) = H0(X;

p

X

E) = 0 for p < n and m � minfp+ 1; rg:

The special case m = r yields:

(7.5) Corollary. For X and E as above:

a) Nakano vanishing theorem (1955):

E �Nak 0; strictly in one point =) Hn;q(X;E) = 0 for q � 1:

b) E �Nak 0, strictly in one point =) Hp;0(X;E) = 0 for p < n.
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8. Relations Between Nakano and GriÆths Positivity

It is clear that Nakano positivity implies GriÆths positivity. The main result

of x 8 is the following \converse" to this property (Demailly-Skoda 1979).

(8.1) Theorem. For any hermitian vector bundle E,

E >Grif 0 =) E 
 detE >Nak 0:

To prove this result, we �rst use (V-4.20) and (V-4.6). If End(E 
 detE)

is identi�ed to hom(E;E), one can write

�(E 
 detE) = �(E) + TrE(�(E))
 IdE ;

�E
detE = �E + TrE �E 
 h;
where h denotes the hermitian metric on E and where TrE �E is the hermitian

form on TX de�ned by

TrE �E(�; �) =
X

1���r
�E(� 
 e�; � 
 e�); � 2 TX;

for any orthonormal frame (e1; : : : ; er) of E. Theorem 8.1 is now a conse-

quence of the following simple property of hermitian forms on a tensor prod-

uct of complex vector spaces.

(8.2) Proposition. Let T;E be complex vector spaces of respective dimen-

sions n; r; and h a hermitian metric on E. Then for every hermitian form

� on T 
 E
� >Grif 0 =) � +TrE � 
 h >Nak 0:

We �rst need a lemma analogous to Fourier inversion formula for discrete

Fourier transforms.

(8.3) Lemma. Let q be an integer � 3, and x�; y�; 1 � �; � � r, be complex
numbers. Let � describe the set Ur

q
of r-tuples of q-th roots of unity and put

x0
�
=
X

1���r
x���; y0

�
=
X

1���r
y���; � 2 Ur

q
:

Then for every pair (�; �); 1 � �; � � r, the following identity holds:

q�r
X
�2Ur

q

x0
�
y0
�
���� =

8<:
x�y� if � 6= �;X
1���r

x�y� if � = �:
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Proof. The coeÆcient of x�y� in the summation q�r
P
�2Ur

q

x0
�y
0
�
���� is

given by

q�r
X
�2Ur

q

��������:

This coeÆcient equals 1 when the pairs f�; �g and f�; �g are equal (in which

case �������� = 1 for any one of the qr elements of Ur
q
). Hence, it is suÆcient

to prove thatX
�2Ur

q

�������� = 0

when the pairs f�; �g and f�; �g are distinct.
If f�; �g 6= f�; �g, then one of the elements of one of the pairs does not

belong to the other pair. As the four indices �; �; �; � play the same role, we

may suppose for example that � =2 f�; �g. Let us apply to � the substitution

� 7! � , where � is de�ned by

�� = e2�i=q��; �� = �� for � 6= �:

We get

X
�

�������� =
X
�

=

8>><>>:
e2�i=q

X
�

if � 6= �;

e4�i=q
X
�

if � = �;

Since q � 3 by hypothesis, it follows thatX
�

�������� = 0:

Proof of Proposition 8.2. Let (tj)1�j�n be a basis of T , (e�)1���r an or-

thonormal basis of E and � =
P
j
�jtj 2 T , u =

P
j;�
uj� tj 
 e� 2 T 
 E.

The coeÆcients cjk�� of � with respect to the basis tj 
 e� satisfy the sym-

metry relation cjk�� = ckj��, and we have the formulas

�(u; u) =
X
j;k;�;�

cjk��uj�uk�;

TrE �(�; �) =
X
j;k;�

cjk���j�k;

(� + TrE � 
 h)(u; u) =
X
j;k;�;�

cjk��uj�uk� + cjk��uj�uk�:

For every � 2 Ur
q
(cf. Lemma 8.3), put
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u0
j�

=
X

1���r
uj��� 2 C ;

bu� =X
j

u0
j�
tj 2 T ; be� =X

�

��e� 2 E:

Lemma 8.3 implies

q�r
X
�2Ur

q

�(bu� 
 be�; bu� 
 be�) = q�r
X
�2Ur

q

cjk��u
0
j�
u0
k�
����

=
X

j;k;�6=�
cjk��uj�uk� +

X
j;k;�;�

cjk��uj�uk�:

The GriÆths positivity assumption shows that the left hand side is � 0,

hence

(� + TrE � 
 h)(u; u) �
X
j;k;�

cjk��uj�uk� � 0

with strict positivity if � >Grif 0 and u 6= 0. �

(8.4) Example. Take E = H over Pn = P (V ). The exact sequence

0 �! O(�1) �! �V �! H �! 0

implies det�V = detH 
 O(�1). Since det�V is a trivial bundle, we get (non

canonical) isomorphisms

detH ' O(1);
TPn = H 
 O(1) ' H 
 detH:

We already know that H �Grif 0, hence TP
n �Nak 0. A direct computation

based on (6.9) shows that

�TPn(u; u) = (�H + TrH �H 
 h)(u; u)
=

X
1�j;k�n

ujkukj + ujkujk =
1

2

X
1�j;k�n

jujk + ukj j2:

In addition, we have TPn >Grif 0. However, the Serre duality theorem gives

Hq(Pn; KPn 
 TPn)? ' Hn�q(Pn; T ?Pn)

= H1;n�q(Pn; C ) =

�
C if q = n� 1,

0 if q 6= n� 1.

For n � 2, Th. 7.3 implies that TPn has no hermitian metric such that

�TPn �2 0 on Pn and �TPn >2 0 in one point. This shows that the notion of

2-positivity is actually stronger than 1-positivity (i.e. GriÆths positivity).
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(8.5) Remark. Since TrH �H = �O(1) is positive and �TPn is not >Nak 0

when n � 2, we see that Prop. 8.2 is best possible in the sense that there

cannot exist any constant c < 1 such that

� >Grif 0 =) � + cTrE � 
 h �Nak 0:

9. Applications to GriÆths Positive Bundles

We �rst need a preliminary result.

(9.1) Proposition. Let T be a complex vector space and (E; h) a hermitian

vector space of respective dimensions n; r with r � 2. Then for any hermitian

form � on T 
E and any integer m � 1

� >Grif 0 =) mTrE � 
 h�� >m 0:

Proof. Let us distinguish two cases.

a) m = 1. Let u 2 T 
 E be a tensor of rank 1. Then u can be written

u = �1 
 e1 with �1 2 T; �1 6= 0, and e1 2 E; je1j = 1. Complete e1 into an

orthonormal basis (e1; : : : ; er) of E. One gets immediately

(TrE � 
 h)(u; u) = TrE �(�1; �1) =
X

1���r
�(�1 
 e�; �1 
 e�)

> �(�1 
 e1; �1 
 e1) = �(u; u):

b) m � 2. Every tensor u 2 T 
 E of rank � m can be written

u =
X

1���q
�� 
 e� ; �� 2 T;

with q = min(m; r) and (e�)1���r an orthonormal basis of E. Let F be the

vector subspace of E generated by (e1; : : : ; eq) and �F the restriction of �

to T 
 F . The �rst part shows that
�0 := TrF �F 
 h��F >Grif 0:

Proposition 9.2 applied to �0 on T 
 F yields

�0 + TrF �
0 
 h = qTrF �F 
 h��F >q 0:

Since u 2 T 
 F is of rank � q � m, we get (for u 6= 0)
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�(u; u) = �F (u; u) < q(TrF �F 
 h)(u; u)
= q

X
1�j;��q

�(�j 
 e�; �j 
 e�) � mTrE � 
 h(u; u):�

Proposition 9.1 is of course also true in the semi-positive case. From these

facts, we deduce

(9.2) Theorem. Let E be a GriÆths (semi-)positive bundle of rank r � 2.

Then for any integer m � 1

E? 
 (detE)m >m 0 (resp. �m 0):

Proof. Apply Prop. 8.1 to � = ��E? >Grif 0 and observe that

�detE = ��detE? = TrE? �:

(9.3) Theorem. Let 0! S ! E ! Q! 0 be an exact sequence of hermitian

vector bundles. Then for any m � 1

E >m 0 =) S 
 (detQ)m >m 0:

Proof. Formulas (V-14.6) and (V-14.7) imply

i�(S) >m i�? ^ � ; i�(Q) >m i� ^ �?;
i�(detQ) = TrQ(i�(Q)) > TrQ(i� ^ �?):

If we write � =
P
dzj 
 �j as in the proof of Prop. 6.10, then

TrQ(i� ^ �?) =
X

idzj ^ dzk TrQ(�j�?k)
=
X

idzj ^ dzk TrS(�?k�j) = TrS(�i�? ^ �):

Furthermore, it has been already proved that �i�? ^ � �Nak 0. By Prop. 8.1

applied to the corresponding hermitian form � on TX 
 S, we get
mTrS(�i�? ^ �)
 IdS +i�

? ^ � �m 0;

and Th. 9.3 follows.

(9.4) Corollary. Let X be a compact n-dimensional complex manifold, E a

vector bundle of rank r � 2 and m � 1 an integer. Then

a) E >Grif 0 =) Hn;q(X;E 
 det E) = 0 for q � 1 ;

b) E >Grif 0 =) Hn;q
�
X;E? 
 (det E)m

�
= 0 for q � 1

and m � minfn� q + 1; rg ;
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c) Let 0 ! S ! E ! Q ! 0 be an exact sequence of vector bundles and

m = minfn � q + 1; rk Sg, q � 1. If E >m 0 and if L is a line bundle

such that L
 (detQ)�m � 0, then

Hn;q(X;S 
 L) = 0:

Proof. Immediate consequence of Theorems 7.3, 8.1, 9.2 and 9.3. �

Note that under our hypotheses ! = i TrE �(E) = i�(�rE) is a K�ahler

metric on X. Corollary 2.5 shows that it is enough in a), b), c) to assume

semi-positivity and strict positivity in one point (this is true a priori only if

X is supposed in addition to be K�ahler, but this hypothesis can be removed

by means of Siu's result mentioned after (4.5).

a) is in fact a special case of a result of (GriÆths 1969), which we will

prove in full generality in volume II (see the chapter on vanishing theorems

for ample vector bundles); property b) will be also considerably strengthened

there. Property c) is due to (Skoda 1978) for q = 0 and to (Demailly 1982c)

in general. Let us take the tensor product of the exact sequence in c) with

(det Q)l. The corresponding long cohomology exact sequence implies that

the natural morphism

Hn;q
�
X;E 
 (det Q)l

� �! Hn;q
�
X;Q
 (det Q)l

�
is surjective for q � 0 and l;m � minfn � q; rk Sg, bijective for q � 1 and

l;m � minfn� q + 1; rk Sg.

10. Cohomology Groups of O(k) over Pn

As an illustration of the above results, we compute now the cohomology

groups of all line bundles O(k)! Pn. This precise evaluation will be needed

in the proof of a general vanishing theorem for vector bundles, due to Le

Potier (see volume II). As in xV-15, we consider a complex vector space V of

dimension n+ 1 and the exact sequence

(10:1) 0 �! O(�1) �! �V �! H �! 0

of vector bundles over Pn = P (V ). We thus have det�V = detH 
 O(�1),
and as TP (V ) = H 
 O(1) by Th. V-15.7, we �nd

(10:2) KP (V ) = detT ?P (V ) = detH? 
 O(�n) = det�V
? 
 O(�n� 1)

where det�V is a trivial line bundle.

Before going further, we need some notations. For every integer k 2 N ,

we consider the homological complex C�;k(V ?) with di�erential  such that
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(10:3)

8><>:
Cp;k(V ?) = �pV ? 
 Sk�pV ?; 0 � p � k;

= 0 otherwise;

 : �pV ? 
 Sk�pV ? �! �p�1V ? 
 Sk�p+1V ?;
where  is the linear map obtained by contraction with the Euler vector

�eld IdV 2 V 
 V ?, through the obvious maps V 
 �pV ? �! �p�1V ? and

V ?
Sk�pV ? �! Sk�p+1V ?. If (z0; : : : ; zn) are coordinates on V , the module

Cp;k(V ?) can be identi�ed with the space of p-forms

�(z) =
X
jIj=p

�I(z) dzI

where the �I 's are homogeneous polynomials of degree k�p. The di�erential
 is given by contraction with the Euler vector �eld � =

P
0�j�n zj @=@zj.

Let us denote by Zp;k(V ?) the space of p-cycles of C�;k(V ?), i.e. the space
of forms � 2 Cp;k(V ?) such that � � = 0. The exterior derivative d also

acts on C�;k(V ?) ; we have

d : Cp;k(V ?) �! Cp+1;k(V ?);

and a trivial computation shows that d + d = k � IdC�;k(V ?) :

(10.4) Theorem. For k 6= 0, C�;k(V ?) is exact and there exist canonical

isomorphisms

C�;k(V ?) = �pV ? 
 Sk�pV ? ' Zp;k(V ?)� Zp�1;k(V ?):

Proof. The identity d + d = k � Id implies the exactness. The isomorphism

is given by 1
k
d�  and its inverse by P1 +

1
k
d Æ P2. �

Let us consider now the canonical mappings

� : V n f0g �! P (V ); �0 : V n f0g �! O(�1)
de�ned in xV-15. As T[z]P (V ) ' V=C �(z) for all z 2 V n f0g, every form

� 2 Zp;k(V ?) de�nes a holomorphic section of �?
�
�pT ?P (V )

�
, �(z) being

homogeneous of degree k with respect to z. Hence �(z) 
 �0(z)�k is a holo-

morphic section of �?
�
�pT ?P (V )
 O(k)�, and since its homogeneity degree

is 0, it induces a holomorphic section of �pT ?P (V )
O(k). We thus have an

injective morphism

(10:5) Zp;k(V ?) �! Hp;0
�
P (V );O(k)

�
:

(10.6) Theorem. The groups Hp;0
�
P (V );O(k)

�
are given by

a) Hp;0
�
P (V );O(k)

� ' Zp;k(V ?) for k � p � 0;
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b) Hp;0
�
P (V );O(k)

�
= 0 for k � p and (k; p) 6= (0; 0).

Proof. Let s be a holomorphic section of �pT ?P (V )
 O(k). Set
�(z) = (d�z)

?
�
s([z])
 �0(z)k�; z 2 V n f0g:

Then � is a holomorphic p-form on V n f0g such that � � = 0, and the

coeÆcients of � are homogeneous of degree k � p on V n f0g (recall that

d��z = ��1d�z). It follows that � = 0 if k < p and that � 2 Zp;k(V ?) if

k � p. The injective morphism (10.5) is therefore also surjective. Finally,

Zp;p(V ?) = 0 for p = k 6= 0, because of the exactness of C�;k(V ?) when

k 6= 0. The proof is complete. �

(10.7) Theorem. The cohomology groups Hp;q
�
P (V );O(k)

�
vanish in the

following cases:

a) q 6= 0; n; p ;

b) q = 0; k � p and (k; p) 6= (0; 0) ;

c) q = n; k � �n+ p and (k; p) 6= (0; n) ;

d) q = p 6= 0; n; k 6= 0:

The remaining non vanishing groups are:

b) Hp;0
�
P (V );O(k)

� ' Zp;k(V ?) for k > p ;

c) Hp;n
�
P (V );O(k)

� ' Zn�p;�k(V ) for k < �n+ p ;

d) Hp;p
�
P (V ); C

�
= C ; 0 � p � n:

Proof. � d) is already known, and so is a) when k = 0 (Th. VI-13.3).

� b) and b) follow from Th. 10.6, and c), c) are equivalent to b), b) via Serre

duality:

Hp;q
�
P (V );O(k)

�?
= Hn�p;n�q�P (V );O(�k)�;

thanks to the canonical isomorphism
�
Zp;k(V )

�?
= Zp;k(V ?).

� Let us prove now property a) when k 6= 0 and property d). By Serre duality,

we may assume k > 0. Then

�pT ?P (V ) ' KP (V ) 
 �n�pTP (V ):
It is very easy to verify that E �Nak 0 implies �sE �Nak 0 for every integer

s. Since TP (V ) �Nak 0, we get therefore

F = �n�pTP (V )
 O(k) >Nak 0 for k > 0;

and the Nakano vanishing theorem implies

Hp;q
�
P (V );O(k)

�
= Hq

�
P (V ); �pT ?P (V )
 O(k)�

= Hq
�
P (V ); KP (V ) 
 F

�
= 0; q � 1: �
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11. Ample Vector Bundles

11.A. Globally Generated Vector Bundles

All de�nitions concerning ampleness are purely algebraic and do not involve

di�erential geometry. We shall see however that ampleness is intimately con-

nected with the di�erential geometric notion of positivity. For a general dis-

cussion of properties of ample vector bundles in arbitrary characteristic, we

refer to (Hartshorne 1966).

(11.1) De�nition. Let E ! X be a holomorphic vector bundle over an

arbitrary complex manifold X.

a) E is said to be globally generated if for every x 2 X the evaluation map

H0(X;E)! Ex is onto.

b) E is said to be semi-ample if there exists an integer k0 such that SkE is

globally generated for k � k0.

Any quotient of a trivial vector bundle is globally generated, for example

the tautological quotient vector bundle Q over the Grassmannian Gr(V ) is

globally generated. Conversely, every globally generated vector bundle E of

rank r is isomorphic to the quotient of a trivial vector bundle of rank � n+r,
as shown by the following result.

(11.2) Proposition. If a vector bundle E of rank r is globally generated, then

there exists a �nite dimensional subspace V � H0(X;E), dimV � n+r, such
that V generates all �bers Ex, x 2 X.

Proof. Put an arbitrary hermitian metric on E and consider the Fr�echet space

F =
�
H0(X;E)

�n+r
of (n+ r)-tuples of holomorphic sections of E, endowed

with the topology of uniform convergence on compact subsets of X. For every

compact set K � X, we set

A(K) = f(s1; : : : ; sn+r) 2 F which do not generate E on Kg:
It is enough to prove that A(K) is of �rst category in F : indeed, Baire's

theorem will imply that A(X) =
S
A(K�) is also of �rst category, if (K�)

is an exhaustive sequence of compact subsets of X. It is clear that A(K) is

closed, because A(K) is characterized by the closed condition

min
K

X
i1<���<ir

jsi1 ^ � � � ^ sir j = 0:

It is therefore suÆcient to prove that A(K) has no interior point. By hypoth-

esis, each �ber Ex, x 2 K, is generated by r global sections s01; : : : ; s
0
r
. We

have in fact s01 ^ � � � ^ s0r 6= 0 in a neighborhood Ux of x. By compactness
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of K, there exist �nitely many sections s01; : : : ; s
0
N

which generate E in a

neighborhood 
 of the set K.

If T is a complex vector space of dimension r, de�ne Rk(T
p) as the set of

p-tuples (x1; : : : ; xp) 2 T p of rank k. Given a 2 Rk(T p), we can reorder the

p-tuple in such a way that a1 ^ � � � ^ ak 6= 0. Complete these k vectors into a

basis (a1; : : : ; ak; b1; : : : ; br�k) of T . For every point x 2 T p in a neighborhood
of a, then (x1; : : : ; xk; b1; : : : ; br�k) is again a basis of T . Therefore, we will

have x 2 Rk(T p) if and only if the coordinates of xl, k + 1 � l � N , relative

to b1; : : : ; br�k vanish. It follows that Rk(T
p) is a (non closed) submanifold

of T p of codimension (r � k)(p� k).
Now, we have a surjective aÆne bundle-morphism

� : 
 � C N(n+r) �! En+r

(x; �) 7�! �sj(x) + X
1�k�N

�jks
0
k
(x)
�
1�j�n+r:

Therefore ��1(Rk(En+r)) is a locally trivial di�erentiable bundle over 
,

and the codimension of its �bers in C N(n+r) is (r � k)(n + r � k) � n + 1

if k < r ; it follows that the dimension of the total space ��1(Rk(En+r)) is
� N(n+ r)� 1. By Sard's theorem[

k<r

P2

�
��1

�
Rk(E

n+r)
��

is of zero measure in C N(n+r) . This means that for almost every value of

the parameter � the vectors sj(x) +
P
k
�jks

0
k
(x) 2 Ex, 1 � j � n + r, are

of maximum rank r at each point x 2 
. Therefore A(K) has no interior

point. �

Assume now that V � H0(X;E) generates E on X. Then there is an

exact sequence

(11:3) 0 �! S �! �V �! E �! 0

of vector bundles over X, where Sx = fs 2 V ; s(x) = 0g, codimV Sx = r.

One obtains therefore a commutative diagram

(11:4)

E
	V�! Q

# #
X

 V�! Gr(V )

where  V ; 	V are the holomorphic maps de�ned by

 V (x) = Sx; x 2 X;
	V (u) = fs 2 V ; s(x) = ug 2 V=Sx; u 2 Ex:
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In particular, we see that every globally generated vector bundle E of rank

r is the pull-back of the tautological quotient vector bundle Q of rank r over

the Grassmannian by means of some holomorphic map X �! Gr(V ). In the

special case when rkE = r = 1, the above diagram becomes

(11:40)
E

	V�! O(1)

# #
X

 V�! P (V ?)

(11.5) Corollary. If E is globally generated, then E possesses a hermitian

metric such that E �Grif 0 (and also E? �Nak 0).

Proof. Apply Prop. 6.11 to the exact sequence (11.3), where �V is endowed

with an arbitrary hermitian metric. �

When E is of rank r = 1, then SkE = E
k and any hermitian metric of

E
k yields a metric on E after extracting k-th roots. Thus:

(11.6) Corollary. If E is a semi-ample line bundle, then E � 0. �

In the case of vector bundles (r � 2) the answer is unknown, mainly

because there is no known procedure to get a GriÆths semipositive metric

on E from one on SkE.

11.B. Ampleness

We are now turning ourselves to the de�nition of ampleness. If E �! X is

a holomorphic vector bundle, we de�ne the bundle JkE of k-jets of sections

of E by (JkE)x = Ox(E)=
�Mk+1

x
� Ox(E)

�
for every x 2 X, where Mx is

the maximal ideal of Ox. Let (e1; : : : ; er) be a holomorphic frame of E and

(z1; : : : ; zn) analytic coordinates on an open subset 
 � X. The �ber (JkE)x
can be identi�ed with the set of Taylor developments of order k :X

1���r;j�j�k
c�;�(z � x)� e�(z);

and the coeÆcients c�;� de�ne coordinates along the �bers of JkE. It is

clear that the choice of another holomorphic frame (e�) would yield a linear

change of coordinates (c�;�) with holomorphic coeÆcients in x. Hence JkE

is a holomorphic vector bundle of rank r
�
n+k
n

�
.

(11.7) De�nition.

a) E is said to be very ample if all evaluation maps H0(X;E) ! (J1E)x,

H0(X;E)! Ex �Ey; x; y 2 X; x 6= y, are surjective.
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b) E is said to be ample if there exists an integer k0 such that SkE is very

ample for k � k0.

(11.8) Example. O(1)! Pn is a very ample line bundle (immediate veri�ca-

tion). Since the pull-back of a (very) ample vector bundle by an embedding

is clearly also (very) ample, diagram (V-16.8) shows that �rQ ! Gr(V )

is very ample. However, Q itself cannot be very ample if r � 2, because

dimH0(Gr(V ); Q) = dimV = d, whereas

rank(J1Q) = (rankQ)
�
1 + dimGr(V )

�
= r
�
1 + r(d� r)� > d if r � 2:

(11.9) Proposition. If E is very ample of rank r, there exists a subspace V

of H0(X;E), dimV � max
�
nr+n+ r; 2(n+ r)

�
, such that all the evaluation

maps V ! Ex �Ey, x 6= y, and V ! (J1E)x, x 2 X, are surjective.

Proof. The arguments are exactly the same as in the proof of Prop. 11.4, if

we consider instead the bundles J1E �! X and E � E �! X � X n �X

of respective ranks r(n + 1) and 2r, and sections s01; : : : ; s
0
N
2 H0(X;E)

generating these bundles. �

(11.10) Proposition. Let E ! X be a holomorphic vector bundle.

a) If V � H0(X;E) generates J1E �! X and E�E �! X�X n�X , then

 V is an embedding.

b) Conversely, if rankE = 1 and if there exists V � H0(X;E) generating E

such that  V is an embedding, then E is very ample.

Proof. b) is immediate, because E =  ?
V
(O(1)) and O(1) is very ample. Note

that the result is false for r � 2 as shown by the example E = Q over

X = Gr(V ).

a) Under the assumption of a), it is clear since Sx = fs 2 V ; s(x) = 0g that
Sx = Sy implies x = y, hence  V is injective. Therefore, it is enough to prove

that the map x 7! Sx has an injective di�erential. Let x 2 X and W � V

such that Sx �W = V . Choose a coordinate system in a neighborhood of x

in X and a small tangent vector h 2 TxX. The element Sx+h 2 Gr(V ) is the
graph of a small linear map u = O(jhj) : Sx !W . Thus we have

Sx+h = fs0 = s+ t 2 V ; s 2 Sx; t = u(s) 2W; s0(x+ h) = 0g:
Since s(x) = 0 and jtj = O(jhj), we �nd

s0(x+ h) = s0(x) + dxs
0 � h+O(js0j � jhj2) = t(x) + dxs � h+ O(jsj � jhj2);

thus s0(x+ h) = 0 if and only if t(x) = �dxs �h+O(jsj � jhj2). Thanks to the
�ber isomorphism 	V : Ex �! V=Sx 'W , t(x) 7�! t mod Sx, we get:
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u(s) = t = 	V (t(x)) = �	V
�
dxs � h+O(jsj � jhj2)�:

Recall that TyGr(V ) = hom(Sy; Qy) = hom(y; V=y) (see V-16.5) and use

these identi�cations at y = Sx. It follows that

(11:11) (dx V ) � h = u =
�
Sx �! V=Sx; s 7�! �	V (dxs � h)

�
;

Now hypothesis a) implies that Sx 3 s 7�! dxs 2 hom(TxX;Ex) is onto,

hence dx V is injective. �

(11.12) Corollary. If E is an ample line bundle, then E > 0.

Proof. If E is very ample, diagram (11:40) shows that E is the pull-back of

O(1) by the embedding  V , hence i�(E) =  ?
V

�
i�(O(1))

�
> 0 with the

induced metric. The ample case follows by extracting roots. �

(11.13) Corollary. If E is a very ample vector bundle, then E carries a

hermitian metric such that E? <Nak 0, in particular E >Grif 0.

Proof. Choose V as in Prop. 11.9 and select an arbitrary hermitian metric

on V . Then diagram 11.4 yields E =  ?
V
Q, hence �E = 	?

V
�Q. By formula

(V-16.9) we have for every � 2 TGr(V ) = hom(S;Q) and t 2 Q :

�Q(� 
 t; � 
 t) =
X
j;k;l

�jk�lktltj =
X
k

���X
j

tj�jk

���2 = jh�; ti Æ �j2:
Let h 2 TxX, t 2 Ex. Thanks to formula (11.11), we get

�E(h
 t; h
 t) = �Q
�
(dx V � h)
 	V (t); (dx V � h)
 	V (t)

�
=
��h�; 	V (t)i Æ (dx V � h)��2 = ��Sx 3 s 7�! h	V (dxs � h); 	V (t)i��2

=
��Sx 3 s 7�! hdxs � h; ti��2 � 0:

As Sx 3 s 7! dxs 2 T ?X
E is surjective, it follows that �E(h
 t; h
 t) 6= 0

when h 6= 0, t 6= 0. Now, dxs de�nes a linear form on TX
E? and the above

formula for the curvature of E clearly yields

�E?(u; u) = �jSx 3 s 7�! dxs � uj2 < 0 if u 6= 0: �

(11.14) Problem (GriÆths 1969). If E is an ample vector bundle over a

compact manifold X, then is E >Grif 0 ?

GriÆths' problem has been solved in the aÆrmative when X is a curve

(Umemura 1973), see also (Campana-Flenner 1990), but the general case is

still unclear and seems very deep. The next sections will be concerned with

the important result of Kodaira asserting the equivalence between positivity

and ampleness for line bundles.
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12. Blowing-up along a Submanifold

Here we generalize the blowing-up process already considered in Remark 4.5

to arbitrary manifolds. Let X be a complex n-dimensional manifold and Y a

closed submanifold with codimX Y = s.

(12.1) Notations. The normal bundle of Y in X is the vector bundle over Y

de�ned as the quotient NY = (TX)�Y =TY . The �bers of NY are thus given

by NyY = TyX=TyY at every point y 2 Y . We also consider the projectivized

normal bundle P (NY ) �! Y whose �bers are the projective spaces P (NyY )

associated to the �bers of NY .

The blow-up of X with center Y (to be constructed later) is a complex

n-dimensional manifold eX together with a holomorphic map � : eX �! X

such that:

i) E := ��1(Y ) is a smooth hypersurface in eX, and the restriction � : E ! Y

is a holomorphic �ber bundle isomorphic to the projectivized normal bun-

dle P (NY )! Y .

ii) � : eX nE �! X n Y is a biholomorphism.

In order to construct eX and �, we �rst de�ne the set-theoretic underlying

objects as the disjoint sumseX= (X n Y )qE; where E := P (NY );

�= IdXnY q �; where � : E �! Y:

This means intuitively that we have replaced each point y 2 Y by the pro-

jective space of all directions normal to Y . When Y is reduced to a single

point, the geometric picture is given by Fig. 1 below. In general, the picture is

obtained by slicing X transversally to Y near each point and by blowing-up

each slice at the intersection point with Y .

It remains to construct the manifold structure on eX and in particular to

describe what are the holomorphic functions near a point of E. Let f; g be

holomorphic functions on an open set U � X such that f = g = 0 on Y \U .
Then df and dg vanish on TY�Y \U , hence df and dg induce linear forms on

NY�Y \U . The holomorphic function h(z) = f(z)=g(z) on the open set

Ug :=
�
z 2 U ; g(z) 6= 0

	 � U n Y
can be extended in a natural way to a function eh on the seteUg = Ug [

�
(z; [�]) 2 P (NY )�Y \U ; dgz(�) 6= 0

	 � eX
by letting

eh(z; [�]) = dfz(�)

dgz(�)
; (z; [�]) 2 P (NY )�Y \U :
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Fig. 1 Blow-up of one point in X.

Using this observation, we now de�ne the manifold structure on eX by giving

explicitly an atlas. Every coordinate chart of X nY is taken to be also a coor-

dinate chart of eX. Furthermore, for every point y0 2 Y , there exists a neigh-
borhood U of y0 in X and a coordinate chart �(z) = (z1; : : : ; zn) : U ! C n

centered at y0 such that �(U) = B0�B00 for some balls B0 � C s , B00 � C n�s ,
and such that Y \ U = ��1(f0g � B00) = fz1= : : :=zs=0g. It follows that

(zs+1; : : : ; zn) are local coordinates on Y \ U and that the vector �elds

(@=@z1; : : : ; @=@zs) yield a holomorphic frame of NY�Y \U . Let us denote

by (�1; : : : ; �s) the corresponding coordinates along the �bers of NY . Then

(�1; : : : ; �s; zs+1; : : : ; zn) are coordinates on the total space NY . For every

j = 1; : : : ; s, we seteUj = eUzj = �z 2 U n Y ; zj 6= 0
	 [ �(z; [�]) 2 P (NY )�Y \U ; �j 6= 0

	
:

Then (eUj)1�j�s is a covering of eU = ��1(U) and for each j we de�ne a

coordinate chart e�j = (w1; : : : ; wn) : eUj �! C n by

wk :=
�zk
zj

��
for 1 � k � s; k 6= j ; wk := zk for k > s or k = j:
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For z 2 U n Y , resp. (z; [�]) 2 P (NY )�Y \U , we get

e�j(z) = (w1; : : : ; wn) =
�z1
zj
; : : : ;

zj�1
zj

; zj ;
zj+1

zj
; : : : ;

zs

zj
; zs+1; : : : ; zn

�
;

e�j(z; [�]) = (w1; : : : ; wn) =
��1
�j
; : : : ;

�j�1
�j

; 0 ;
�j+1

�j
; : : : ;

�s

�j
; �s+1; : : : ; �n

�
:

With respect to the coordinates (wk) on eUj and (zk) on U , the map � is

given by

eUj ��! U(12:2)

w
�j7�! (w1wj ; : : : ; wj�1wj ; wj ; wj+1wj ; : : : ; wswj ; ws+1; : : : ; wn)

where �j = � Æ � Æ e��1
j

, thus � is holomorphic. The range of the coordinate

chart e�j is e�j(eUj) = ��1
j

�
�(U)

�
, so it is actually open in C n . Furthermore E\eUj is de�ned by the single equation wj = 0, thus E is a smooth hypersurface ineX. It remains only to verify that the coordinate changes w 7�! w0 associated

to any coordinate change z 7�! z0 on X are holomorphic. For that purpose, it

is suÆcient to verify that (f=g)� is holomorphic in (w1; : : : ; wn) on eUj \ eUg.
As g vanishes on Y \ U , we can write g(z) =

P
1�k�s zkAk(z) for some

holomorphic functions Ak on U . Therefore

g(z)

zj
= Aj(�j(w)) +

X
k 6=j

wkAk(�j(w))

has an extension (g=zj)
� to eUj which is a holomorphic function of the vari-

ables (w1; : : : ; wn). Since (g=zj)
�(z; [�]) = dgz(�)=�j on E \ eUj , it is clear

thateUj \ eUg = �w 2 eUj ; (g=zj)�(w) 6= 0
	
:

Hence eUj \ eUg is open in eUg and (f=g)� = (f=zj)
�=(g=zj)� is holomorphic

on eUj \ eUg.
(12.3) De�nition. The map � : eX ! X is called the blow-up of X with

center Y and E = ��1(Y ) ' P (NY ) is called the exceptional divisor of eX.

According to (V-13.5), we denote by O(E) the line bundle on eX associated

to the divisor E and by h 2 H0( eX;O(E)) the canonical section such that

div(h) = [E]. On the other hand, we denote by OP (NY )(�1) � �?(NY ) the

tautological line subbundle over E = P (NY ) such that the �ber above the

point (z; [�]) is C � � NzY .

(12.4) Proposition. O(E) enjoys the following properties:
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a) O(E)�E is isomorphic to OP (NY )(�1).
b) Assume that X is compact. For every positive line bundle L over X, the

line bundle O(�E)
 �?(Lk) over eX is positive for k > 0 large enough.

Proof. a) The canonical section h 2 H0( eX;O(E)) vanishes at order 1 along E,
hence the kernel of its di�erential

dh : (T eX)�E �! O(E)�E

is TE. We get therefore an isomorphism NE ' O(E)�E . Now, the map

� : eX ! X satis�es �(E) � Y , so its di�erential d� : T eX �! �?(TX) is

such that d�(TE) � �?(TY ). Therefore d� induces a morphism

(12:5) NE �! �?(NY ) = �?(NY )

of vector bundles over E. The vector �eld @=@wj yields a non vanishing

section of NE on eUj , and (12:2) implies

d�j

� @

@wj

�
=

@

@zj
+

X
1�k�s;k 6=j

wk
@

@zk
==

X
1�k�s

�k
@

@zk

at every point (z; [�]) 2 E. This shows that (12.5) is an isomorphism of NE

onto OP (NY )(�1) � �?(NY ), hence
(12:6) O(E)�E ' NE ' OP (NY )(�1):
b) Select an arbitrary hermitian metric on TX and consider the induced met-

rics on NY and on OP (NY )(1) �! E = P (NY ). The restriction of OP (NY )(1)

to each �ber P (NzY ) is the standard line bundle O(1) over Ps�1 ; thus by
(V-15.10) this restriction has a positive de�nite curvature form. Extend now

the metric of OP (NY )(1) on E to a metric of O(�E) on X in an arbitrary

way. If F = O(�E)
 �?(Lk), then �(F ) = �(O(�E)) + k �?�(L), thus for

every t 2 T eX we have

�F (t; t) = �O(�E)(t; t) + k �L
�
d�(t); d�(t)

�
:

By the compactness of the unitary tangent bundle to eX and the positivity

of �L, it is suÆcient to verify that �O(�E)(t; t) > 0 for every unit vector

t 2 Tz eX such that d�(t) = 0. However, from the computations of a), this can

only happen when z 2 E and t 2 TE, and in that case d�(t) = d�(t) = 0, so

t is tangent to the �ber P (NzY ). Therefore

�O(�E)(t; t) = �OP(NY )(1)(t; t) > 0: �

(12.7) Proposition. The canonical line bundle of eX is given by
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KeX = O
�
(s� 1)E

�
 �?KX ; where s = codimX Y:

Proof. KX is generated on U by the holomorphic n-form dz1^: : :^dzn. Using
(12.2), we see that �?KX is generated on eUj by

�?(dz1 ^ : : : ^ dzn) = ws�1
j

dw1 ^ : : : ^ dwn:

Since the divisor of the section h 2 H0( eX;O(E)) is the hypersurface E de�ned

by the equation wj = 0 in eUj , we have a well de�ned line bundle isomorphism

�?KX �! O
�
(1� s)E�
KeX ; � 7�! h1�s�?(�): �

13. Equivalence of Positivity and Ampleness for Line

Bundles

We have seen in section 11 that every ample line bundle carries a hermi-

tian metric of positive curvature. The converse will be a consequence of the

following result.

(13.1) Theorem. Let L �! X be a positive line bundle and Lk the k-th

tensor power of L. For every N -tuple (x1; : : : ; xN ) of distinct points of X,

there exists a constant C > 0 such that the evaluation maps

H0(X;Lk) �! (JmLk)x1 � � � � � (JmLk)xN

are surjective for all integers m � 0, k � C(m+ 1).

(13.2) Lemma. Let � : eX �! X be the blow-up of X with center the

�nite set Y = fx1; : : : ; xNg, and let O(E) be the line bundle associated to the

exceptional divisor E. Then

H1( eX;O(�mE)
 �?Lk) = 0

for m � 1, k � Cm and C � 0 large enough.

Proof. By Prop. 12.7 we get KeX = O
�
(n� 1)E

�
 �?KX and

H1
� eX;O(�mE)
 �?Lk� = Hn;1

� eX;K�1eX 
 O(�mE)
 �?Lk� = Hn;1
� eX;F �

where F = O
�� (m+n� 1)E�
�?(K�1

X

Lk), so the conclusion will follow

from the Kodaira-Nakano vanishing theorem if we can show that F > 0 when

k is large enough. Fix an arbitrary hermitian metric on KX . Then

�(F ) = (m+ n� 1)�(O(�E)) + �?
�
k�(L)� �(KX)

�
:
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There is k0 � 0 such that i
�
k0�(L) � �(KX)

�
> 0 on X, and Prop. 12.4

implies the existence of C0 > 0 such that i
�
�(O(�E)) + C0�

?�(L)
�
> 0

on eX. Thus i�(F ) > 0 for m � 2� n and k � k0 + C0(m+ n� 1). �

Proof of Theorem 13.1. Let vj 2 H0(
j ; L
k) be a holomorphic section of Lk

in a neighborhood 
j of xj having a prescribed m-jet at xj . Set

v(x) =
X
j

 j(x)vj(x)

where  j = 1 in a neighborhood of xj and  j has compact support in 
j .

Then d00v =
P
d00 j � vj vanishes in a neighborhood of x1; : : : ; xN . Let h

be the canonical section of O(E)�1 such that div(h) = [E]. The (0; 1)-form

�?d00v vanishes in a neighborhood of E = h�1(0), hence

w = h�(m+1)�?d00v 2 C10;1
� eX;O(�(m+ 1)E)
 �?Lk�:

and w is a d00-closed form. By Lemma 13.2 there exists a smooth section

u 2 C10;0
� eX;O(�(m + 1)E) 
 �?Lk� such that d00u = w = h�(m+1)�?d00v.

This implies

�?v � hm+1u 2 H0( eX; �?Lk);
and since �?L is trivial near E, there exists a section g 2 H0(X;Lk) such

that �?g = �?v�hm+1u. As h vanishes at order 1 along E, the m-jet of g at

xj must be equal to that of v (or vj). �

(13.3) Corollary. For any holomorphic line bundle L �! X, the following

conditions are equivalent:

a) L is ample;

b) L > 0, i.e. L possesses a hermitian metric such that i�(L) > 0.

Proof. a) =) b) is given by Cor. 11.12, whereas b) =) a) is a consequence

of Th. 13.1 for m = 1. �

14. Kodaira's Projectivity Criterion

The following fundamental projectivity criterion is due to (Kodaira 1954).

(14.1) Theorem. Let X be a compact complex manifold, dimC X = n. The

following conditions are equivalent.

a) X is projective algebraic, i.e. X can be embedded as an algebraic subman-

ifold of the complex projective space PN for N large.

b) X carries a positive line bundle L.



14. Kodaira's Projectivity Criterion 409

c) X carries a Hodge metric, i.e. a K�ahler metric ! with rational cohomology

class f!g 2 H2(X;Q).

Proof. a) =) b). Take L = O(1)�X .

b) =) c). Take ! = i
2�
�(L) ; then f!g is the image of c1(L) 2 H2(X;Z).

c) =) b). We can multiply f!g by a common denominator of its coeÆcients

and suppose that f!g is in the image of H2(X;Z). Then Th. V-13.9 b) shows

that there exists a hermitian line bundle L such that i
2�
�(L) = ! > 0.

b) =) a). Corollary 13.3 shows that F = Lk is very ample for some integer

k > 0. Then Prop. 11.9 enables us to �nd a subspace V of H0(X;F ), dimV �
2n+ 2, such that  V : X �! G1(V ) = P (V ?) is an embedding. Thus X can

be embedded in P2n+1 and Chow's theorem II-7.10 shows that the image is

an algebraic set in P2n+1. �

(14.2) Remark. The above proof shows in particular that every n-dimen-

sional projective manifold X can be embedded in P2n+1. This can be shown

directly by using generic projections PN ! P2n+1 and Whitney type argu-

ments as in 11.2.

(14.3) Corollary. Every compact Riemann surface X is isomorphic to an

algebraic curve in P3.

Proof. Any positive smooth form ! of type (1; 1) is K�ahler, and ! is in fact

a Hodge metric if we normalize its volume so that
R
X
! = 1. �

This example can be somewhat generalized as follows.

(14.4) Corollary. Every K�ahler manifold (X;!) such that H2(X;O) = 0 is

projective.

Proof. By hypothesis H0;2(X; C ) = 0 = H2;0(X; C ), hence

H2(X; C ) = H1;1(X; C )

admits a basis f�1g; : : : ; f�Ng 2 H2(X;Q) where �1; : : : ; �N are harmonic

real (1; 1)-forms. Since f!g is real, we have f!g = �1f�1g + : : :+ �Nf�Ng,
�j 2 R, thus

! = �1�1 + : : :+ �N�N

because ! itself is harmonic. If �1; : : : ; �N are rational numbers suÆciently

close to �1; : : : ; �N , then e! := �1�1+� � ��N�N is close to !, so e! is a positive

de�nite d-closed (1; 1)-form, and fe!g 2 H2(X;Q). �
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We obtain now as a consequence the celebrated Riemann criterion char-

acterizing abelian varieties ( = projective algebraic complex tori).

(14.5) Corollary. A complex torus X = C n=� (� a lattice of C n) is an

abelian variety if and only if there exists a positive de�nite hermitian form h

on C n such that

Im
�
h(1; 2)

� 2 Z for all 1; 2 2 �:

Proof (SuÆciency of the condition). Set ! = � Imh. Then ! de�nes a con-

stant K�ahler metric on C n , hence also on X = C n=� . Let (a1; : : : ; a2n) be an

integral basis of the lattice � . We denote by Tj , Tjk the real 1- and 2-tori

Tj = (R=Z)aj ; 1 � j � n; Tjk = Tj � Tk; 1 � j < k � 2n:

Topologically we have X � T1 � : : :� T2n, so the K�unneth formula IV-15.7

yields

H�(X;Z) '
O

1�j�2n

�
H0(Tj ;Z)�H1(Tj ;Z)

�
;

H2(X;Z) '
M

1�j<k�2n
H1(Tj ;Z)
H1(Tk;Z) '

M
1�j<k�2n

H2(Tjk;Z)

where the projection H2(X;Z) �! H2(Tjk;Z) is induced by the injection

Tjk � X. In the identi�cation H2(Tjk;R) ' R, we get

(14:6) f!g�Tjk =
Z
Tjk

! = !(aj; ak) = � Imh(aj ; ak):

The assumption on h implies f!g�Tjk 2 H2(Tjk;Z) for all j; k, therefore

f!g 2 H2(X;Z) and X is projective by Th. (14.1).

Proof (Necessity of the condition). If X is projective, then X admits a K�ahler

metric ! such that f!g is in the image of H2(X;Z). In general, ! is not

invariant under the translations �x(y) = y � x of X. Therefore, we replace !

by its \mean value":

e! =
1

Vol(X)

Z
x2X

(�?
x
!) dx;

which has the same cohomology class as ! (�x is homotopic to the identity).

Now e! is the imaginary part of a constant positive de�nite hermitian form h

on C n , and formula (14.6) shows that Imh(aj ; ak) 2 Z. �

(14.7) Example. Let X be a projective manifold. We shall prove that the

Jacobian Jac(X) and the Albanese variety Alb(X) (cf. x VI-13 for de�nitions)
are abelian varieties.
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In fact, let ! be a K�ahler metric on X such that f!g is in the image

of H2(X;Z) and let h be the hermitian metric on H1(X;O) ' H0;1(X; C )

de�ned by

h(u; v) =

Z
X

�2iu ^ v ^ !n�1

for all closed (0; 1)-forms u; v. As

�2iu ^ v ^ !n�1 = 2

n
juj2 !n;

we see that h is a positive de�nite hermitian form on H0;1(X; C ). Consider el-

ements j 2 H1(X;Z), j = 1; 2. If we write j = 0
j
+00

j
in the decomposition

H1(X; C ) = H1;0(X; C ) �H0;1(X; C ), we get

h(001 ; 
00
2 ) =

Z
X

�2i 001 ^ 02 ^ !n�1;

Imh(001 ; 
00
2 ) =

Z
X

(01 ^ 002 + 001 ^ 02) ^ !n�1 =
Z
X

1 ^ 2 ^ !n�1 2 Z:

Therefore Jac(X) is an abelian variety.

Now, we observe that Hn�1;n(X; C ) is the anti-dual of H0;1(X; C ) by

Serre duality. We select on Hn�1;n(X; C ) the dual hermitian metric h?. Since

the Poincar�e bilinear pairing yields a unimodular bilinear map

H1(X;Z)�H2n�1(X;Z)�! Z;

we easily conclude that Imh?(001 ; 
00
2 ) 2 Q for all 1; 2 2 H2n�1(X;Z).

Therefore Alb(X) is also an abelian variety.





Chapter VIII

L
2 Estimates on Pseudoconvex Manifolds

The main goal of this chapter is to show that the di�erential geometric technique
that has been used in order to prove vanishing theorems also yields very precise
L
2 estimates for the solutions of equations d00u = v on pseudoconvex manifolds.

The central idea, due to (H�ormander 1965), is to introduce weights of the type
e
�' where ' is a function satisfying suitable convexity conditions. This method
leads to generalizations of many standard vanishing theorems to weakly pseudo-
convex manifolds. As a special case, we obtain the original H�ormander estimates
for pseudoconvex domains of C n , and give some applications to algebraic geome-
try (H�ormander-Bombieri-Skoda theorem, properties of zero sets of polynomials in
C
n ). We also derive the Ohsawa-Takegoshi extension theorem for L2 holomorphic

functions and Skoda's L2 estimates for surjective bundle morphisms (Skoda 1972a,
1978, Demailly 1982c). Skoda's estimates can be used to obtain a quick solution of
the Levi problem, and have important applications to local algebra and Nullstel-
lensatz theorems. Finally, L2 estimates are used to prove the Newlander-Nirenberg
theorem on the analyticity of almost complex structures. We apply it to establish
Kuranishi's theorem on deformation theory of compact complex manifolds.

1. Non Bounded Operators on Hilbert Spaces

A few preliminaries of functional analysis will be needed here. Let H1, H2

be complex Hilbert spaces. We consider a linear operator T de�ned on a

subspace DomT � H1 (called the domain of T ) into H2. The operator T is

said to be densely de�ned if DomT is dense in H1, and closed if its graph

GrT =
�
(x; Tx) ; x 2 DomT

	
is closed in H1 �H2.

Assume now that T is closed and densely de�ned. The adjoint T ? of T (in

Von Neumann's sense) is constructed as follows: DomT ? is the set of y 2 H2

such that the linear form

DomT 3 x 7�! hTx; yi2
is bounded in H1-norm. Since DomT is dense, there exists for every y in

DomT ? a unique element T ?y 2 H1 such that hTx; yi2 = hx; T ?yi1 for all

x 2 DomT ?. It is immediate to verify that GrT ? =
�
Gr(�T )�? in H1�H2.
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It follows that T ? is closed and that every pair (u; v) 2 H1 � H2 can be

written

(u; v) = (x;�Tx) + (T ?y; y); x 2 DomT; y 2 DomT ?:

Take in particular u = 0. Then

x+ T ?y = 0; v = y � Tx = y + TT ?y; hv; yi2 = kyk22 + kT ?yk21:
If v 2 (DomT ?)? we get hv; yi2 = 0, thus y = 0 and v = 0. Therefore T ? is

densely de�ned and our discussion implies:

(1.1) Theorem (Von Neumann 19??). If T : H1 �! H2 is a closed and

densely de�ned operator, then its adjoint T ? is also closed and densely de�ned

and (T ?)? = T . Furthermore, we have the relation Ker T ? = (ImT )? and its

dual (Ker T )? = ImT ?. �

Consider now two closed and densely de�ned operators T , S :

H1
T�! H2

S�! H3

such that S ÆT = 0. By this, we mean that the range T (DomT ) is contained

in KerS � DomS, in such a way that there is no problem for de�ning the

composition S Æ T . The starting point of all L2 estimates is the following

abstract existence theorem.

(1.2) Theorem. There are orthogonal decompositions

H2 = (KerS \Ker T ?)� ImT � ImS?;

KerS = (KerS \Ker T ?)� ImT :

In order that ImT = KerS, it suÆces that

(1:3) kT ?xk21 + kSxk23 � Ckxk22; 8x 2 DomS \ DomT ?

for some constant C > 0. In that case, for every v 2 H2 such that Sv = 0,

there exists u 2 H1 such that Tu = v and

kuk21 �
1

C
kvk22:

In particular

ImT = ImT = KerS; ImS? = ImS? = KerT ?:

Proof. Since S is closed, the kernel KerS is closed in H2. The relation

(KerS)? = ImS? implies

(1:4) H2 = KerS � ImS?
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and similarly H2 = Ker T ?� ImT . However, the assumption S ÆT = 0 shows

that ImT � KerS, therefore

(1:5) KerS = (KerS \KerT ?)� ImT :

The �rst two equalities in Th. 1.2 are then equivalent to the conjunction of

(1.4) and (1.5).

Now, under assumption (1.3), we are going to show that the equation

Tu = v is always solvable if Sv = 0. Let x 2 DomT ?. One can write

x = x0 + x00 where x0 2 KerS and x00 2 (KerS)? � (ImT )? = KerT ?:

Since x; x00 2 DomT ?, we have also x0 2 DomT ?. We get

hv; xi2 = hv; x0i2 + hv; x00i2 = hv; x0i2
because v 2 KerS and x00 2 (KerS)?. As Sx0 = 0 and T ?x00 = 0, the

Cauchy-Schwarz inequality combined with (1.3) implies

jhv; xi2j2 � kvk22 kx0k22 �
1

C
kvk22 kT ?x0k21 =

1

C
kvk22 kT ?xk21:

This shows that the linear form T ?
X
3 x 7�! hx; vi2 is continuous on

ImT ? � H1 with norm � C�1=2kvk2. By the Hahn-Banach theorem, this

form can be extended to a continuous linear form on H1 of norm �
C�1=2kvk2, i.e. we can �nd u 2 H1 such that kuk1 � C�1=2kvk2 and
hx; vi2 = hT ?x; ui1; 8x 2 DomT ?:

This means that u 2 Dom(T ?)? = DomT and v = Tu. We have thus

shown that ImT = KerS, in particular ImT is closed. The dual equality

ImS? = KerT ? follows by considering the dual pair (S?; T ?). �

2. Complete Riemannian Manifolds

Let (M; g) be a riemannian manifold of dimension m, with metric

g(x) =
X

gjk(x) dxj 
 dxk; 1 � j; k � m:

The length of a path  : [a; b] �!M is by de�nition

`() =

Z
b

a

j0(t)jgdt =
Z
b

a

�X
j;k

gjk
�
(t)

�
0
j
(t)0

k
(t)
�1=2

dt:

The geodesic distance of two points x; y 2M is

Æ(x; y) = inf


`() over paths  with (a) = x; (b) = y;
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if x; y are in the same connected component of M , Æ(x; y) = +1 otherwise.

It is easy to check that Æ satis�es the usual axioms of distances: for the

separation axiom, use the fact that if y is outside some closed coordinate ball

B of radius r centered at x and if g � cjdxj2 on B, then Æ(x; y) � c1=2r.

In addition, Æ satis�es the axiom:

(2:1) for every x; y 2M , inf
z2M

maxfÆ(x; z); Æ(y; z)g = 1

2
Æ(x; y):

In fact for every " > 0 there is a path  such that (a) = x, (b) = y,

`() < Æ(x; y) + " and we can take z to be at mid-distance between x

and y along . A metric space E with a distance Æ satisfying the addi-

tional axiom (2.1) will be called a geodesic metric space. It is then easy

to see by dichotomy that any two points x; y 2 E can be joined by

a chain of points x = x0, x1; : : : ; xN = y such that Æ(xj ; xj+1) < " andP
Æ(xj; xj+1) < Æ(x; y) + ".

(2.2) Lemma (Hopf-Rinow). Let (E; Æ) be a geodesic metric space. Then the

following properties are equivalent:

a) E is locally compact and complete ;

b) all closed geodesic balls B(x0; r) are compact.

Proof. Since any Cauchy sequence is bounded, it is immediate that b) im-

plies a). We now check that a) =) b). Fix x0 and de�ne R to be the supre-

mum of all r > 0 such that B(x0; r) is compact. Since E is locally compact,

we have R > 0. Suppose that R < +1. Then B(x0; r) is compact for ev-

ery r < R. Let y� be a sequence of points in B(x0; R). Fix an integer p. As

Æ(x0; y�) � R, axiom (2.1) shows that we can �nd points z� 2 M such that

Æ(x0; z�) � (1 � 2�p)R and Æ(z� ; y�) � 21�pR. Since B(x0; (1 � 2�p)R) is
compact, there is a subsequence (z�(p;q))q2N converging to a limit point wp
with Æ(z�(p;q); wp) � 2�q. We proceed by induction on p and take �(p+ 1; q)

to be a subsequence of �(p; q). Then

Æ(y�(p;q); wp) � Æ(y�(p;q); z�(p;q)) + Æ(z�(p;q); wp) � 21�pR+ 2�q:

Since (y�(p+1;q)) is a subsequence of (y�(p;q)), we infer from this that

Æ(wp; wp+1) � 3 2�pR by letting q tend to +1. By the completeness hypo-

thesis, the Cauchy sequence (wp) converges to a limit point w 2M , and the

above inequalities show that (y�(p;p)) converges to w 2 B(x0; R). Therefore
B(x0; R) is compact. Now, each point y 2 B(x0; R) can be covered by a com-

pact ball B(y; "y), and the compact set B(x0; R) admits a �nite covering by

concentric balls B(yj; "yj=2). Set " = min "yj . Every point z 2 B(x0; R+"=2)

is at distance � "=2 of some point y 2 B(x0; R), hence at distance �
"=2 + "yj=2 of some point yj , in particular B(x0; R + "=2) � SB(yj; "yj )
is compact. This is a contradiction, so R = +1. �
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The following standard de�nitions and properties will be useful in order

to deal with the completeness of the metric.

(2.3) De�nitions.

a) A riemannian manifold (M; g) is said to be complete if (M; Æ) is complete

as a metric space.

b) A continuous function  : M ! R is said to be exhaustive if for every

c 2 R the sublevel set Mc = fx 2 M ;  (x) < cg is relatively compact

in M .

c) A sequence (K�)�2N of compact subsets of M is said to be exhaustive if

M =
S
K� and if K� is contained in the interior of K�+1 for all � (so

that every compact subset of M is contained in some K�).

(2.4) Lemma. The following properties are equivalent:

a) (M; g) is complete;

b) there exists an exhaustive function  2 C1(M;R) such that jd jg � 1 ;

c) there exists an exhaustive sequence (K�)�2N of compact subsets of M and

functions  � 2 C1(M;R) such that

 � = 1 in a neighborhood of K� ; Supp  � � KÆ�+1;
0 �  � � 1 and jd � jg � 2�� :

Proof. a) =) b). Without loss of generality, we may assume that M is con-

nected. Select a point x0 2 M and set  0(x) = 1
2
Æ(x0; x). Then  0 is a

Lipschitz function with constant 1
2
, thus  0 is di�erentiable almost every-

where on M and jd 0jg � 1
2
. We can �nd a smoothing  of  0 such that

jd jg � 1 and j �  0j � 1. Then  is an exhaustion function of M .

b) =) c). Choose  as in a) and a function � 2 C1(R;R) such that � = 1

on ]�1; 1:1], � = 0 on [1:9;+1[ and 0 � �0 � 2 on [1; 2]. Then

K� = fx 2M ;  (x) � 2�+1g;  �(x) = �
�
2���1 (x)

�
satisfy our requirements.

c) =) b). Set  =
P

2�(1�  �).
b) =) a). The inequality jd jg � 1 implies j (x) �  (y)j � Æ(x; y) for all

x; y 2M , so all Æ-balls must be relatively compact in M . �
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3. L2 Hodge Theory on Complete Riemannian

Manifolds

Let (M; g) be a riemannian manifold and let F1; F2 be hermitian C1 vector

bundles over M . If P : C1(M;F1) �! C1(M;F2) is a di�erential operator

with smooth coeÆcients, then P induces a non bounded operatoreP : L2(M;F1) �! L2(M;F2)

as follows: if u 2 L2(M;F1), we compute ePu in the sense of distribution

theory and we say that u 2 Dom eP if ePu 2 L2(M;F2). It follows that eP is

densely de�ned, since DomP contains the set D(M;F1) of compactly sup-

ported sections of C1(M;F1), which is dense in L2(M;F1). Furthermore

Gr eP is closed: if u� ! u in L2(M;F1) and ePu� ! v in L2(M;F2) thenePu� ! ePu in the weak topology of distributions, thus we must have ePu = v

and (u; v) 2 Gr eP . By the general results of x 1, we see that eP has a closed

and densely de�ned Von Neumann adjoint
� eP�?. We want to stress, however,

that
� eP �? does not always coincide with the extension (P ?)� of the formal

adjoint P ? : C1(M;F2) �! C1(M;F1), computed in the sense of distribu-

tion theory. In fact u 2 Dom( eP )?, resp. u 2 Dom(P ?)�, if and only if there is
an element v 2 L2(M;F1) such that hu; ePfi = hv; fi for all f 2 Dom eP , resp.
for all f 2 D(M;F1). Therefore we always have Dom( eP )? � Dom(P ?)� and

the inclusion may be strict because the integration by parts to perform may

involve boundary integrals for ( eP )?.
(3.1) Example. Consider

P =
d

dx
: L2

�
]0; 1[

� �! L2
�
]0; 1[

�
where the L2 space is taken with respect to the Lebesgue measure dx. Then

Dom eP consists of all L2 functions with L2 derivatives on ]0; 1[. Such functions

have a continuous extension to the interval [0; 1]. An integration by parts

shows thatZ 1

0

u
df

dx
dx =

Z 1

0

�du
dx
f dx

for all f 2 D(]0; 1[), thus P ? = �d=dx = �P . However for f 2 Dom eP the

integration by parts involves the extra term u(1)f(1)� u(0)f(0) in the right

hand side, which is thus continuous in f with respect to the L2 topology if

and only if du=dx 2 L2 and u(0) = u(1) = 0. Therefore Dom( eP )? consists

of all u 2 Dom(P ?)� = Dom eP satisfying the additional boundary condition

u(0) = u(1) = 0. �

Let E !M be a di�erentiable hermitian bundle. In what follows, we still

denote by D; Æ;� the di�erential operators of x VI-2 extended in the sense of
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distribution theory (as explained above). These operators are thus closed and

densely de�ned operators on L2
�(M;E) =

L
p
L2
p
(M;E). We also introduce

the space Dp(M;E) of compactly supported forms in C1
p
(M;E). The theory

relies heavily on the following important result.

(3.2) Theorem. Assume that (M; g) is complete. Then

a) D�(M;E) is dense in DomD, Dom Æ and DomD\Dom Æ respectively for

the graph norms

u 7! kuk+ kDuk; u 7! kuk+ kÆuk; u 7! kuk+ kDuk+ kÆuk:

b) D? = Æ, Æ? = D as adjoint operators in Von Neumann's sense.

c) One has hu;�ui = kDuk2 + kÆuk2 for every u 2 Dom�. In particular

Dom� � DomD \ Dom Æ; Ker� = KerD \Ker Æ;
and � is self-adjoint.

d) If D2 = 0, there are orthogonal decompositions

L2
�(M;E) = H

�(M;E)� ImD � Im Æ;

KerD = H�(M;E)� ImD;

where H�(M;E) =
�
u 2 L2

�(M;E) ; �u = 0
	 � C1� (M;E) is the space

of L2 harmonic forms.

Proof. a) We show that every element u 2 DomD can be approximated in the

graph norm of D by smooth and compactly supported forms. By hypothesis,

u and Du belong to L2
�(M;E). Let ( �) be a sequence of functions as in

Lemma 2.4 c). Then  �u ! u in L2
�(M;E) and D( �u) =  �Du + d � ^ u

where

jd � ^ uj � jd � j juj � 2�� juj:
Therefore d � ^ u ! 0 and D( �u) ! Du. After replacing u by  �u, we

may assume that u has compact support, and by using a �nite partition

of unity on a neighborhood of Supp u we may also assume that Supp u is

contained in a coordinate chart of M on which E is trivial. Let A be the

connection form of D on this chart and (�") a family of smoothing kernels.

Then u ? �" 2 D�(M;E) converges to u in L2(M;E) and

D(u ? �")� (Du) ? �" = A ^ (u ? �")� (A ^ u) ? �"
because d commutes with convolution (as any di�erential operator with con-

stant coeÆcients). Moreover (Du) ? �" converges to Du in L2(M;E) and

A ^ (u ? �"), (A ^ u) ? �" both converge to A ^ u since A ^ � acts continu-
ously on L2. Thus D(u?�") converges to Du and the density of D�(M;E) in

DomD follows. The proof for Dom Æ and DomD \ Dom Æ is similar, except
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that the principal part of Æ no longer has constant coeÆcients in general.

The convolution technique requires in this case the following lemma due to

K.O. Friedrichs (see e.g. H�ormander 1963).

(3.3) Lemma. Let Pf =
P
ak @f=@xk + bf be a di�erential operator of

order 1 on an open set 
 � Rn , with coeÆcients ak 2 C1(
), b 2 C0(
).

Then for any v 2 L2(Rn) with compact support in 
 we have

lim
"!0
jjP (v ? �")� (Pv) ? �"jjL2 = 0:

Proof. It is enough to consider the case when P = a@=@xk. As the result is

obvious if v 2 C1, we only have to show that

jjP (v ? �")� (Pv) ? �"jjL2 � CjjvjjL2
and to use a density argument. A computation of w" = P (v ? �")� (Pv) ? �"
by means of an integration by parts gives

w"(x) =

Z
Rn

�
a(x)

@v

@xk
(x� "y)�(y)� a(x� "y) @v

@xk
(x� "y)�(y)

�
dy

=

Z
Rn

��
a(x)� a(x� "y)�v(x� "y)1

"
@k�(y)

+ @ka(x� "y)v(x� "y)�(y)
�
dy:

If C is a bound for jdaj in a neighborhood of Supp v, we get

jw"(x)j � C
Z
Rn

jv(x� "y)j�jyj j@k�(y)j+ j�(y)j�dy;
so Minkowski's inequality jjf ? gjjLp � jjf jjL1jjgjjLp gives

jjw"jjL2 � C
� Z

Rn

�jyj j@k�(y)j+ j�(y)j�dy�jjvjjL2: �

Proof (end). b) is equivalent to the fact that

hhDu; vii = hhu; Ævii; 8u 2 DomD; 8v 2 Dom Æ:

By a), we can �nd u� ; v� 2 D�(M;E) such that

u� ! u; v� ! v; Du� ! Du and Æv� ! Æv in L2
�(M;E);

and the required equality is the limit of the equalities hhDu� ; v�ii = hhu� ; Æv�ii.
c) Let u 2 Dom�. As � is an elliptic operator of order 2, u must be in

W 2
� (M;E; loc) by G�arding's inequality. In particular Du; Æu 2 L2(M;E; loc)
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and we can perform all integrations by parts that we want if the forms are

multiplied by compactly supported functions  � . Let us compute

k �Duk2 + k �Æuk2 =
= hh 2

�
Du;Duii+ hhu;D( 2

�
Æu)ii

= hhD( 2
�
u); Duii+ hhu;  2

�
DÆuii � 2hh �d � ^ u;Duii+ 2hhu;  �d � ^ Æuii

= hh 2
�u;�uii � 2hhd � ^ u;  �Duii+ 2hhu; d � ^ ( �Æu)ii

� hh 2
�
u;�uii+ 2��

�
2k �Duk kuk+ 2k �Æuk kuk

�
� hh 2

�
u;�uii+ 2��

�k �Duk2 + k �Æuk2 + 2kuk2�:
We get therefore

k �Duk2 + k �Æuk2 � 1

1� 2��
�hh 2

�
u;�uii+ 21��kuk2�:

By letting � tend to +1, we obtain kDuk2+ kÆuk2 � hhu;�uii, in particular

Du, Æu are in L2
�(M;E). This implies

hhu;�vii = hhDu;Dvii+ hhÆu; Ævii; 8u; v 2 Dom�;

because the equality holds for  �u and v, and because we have  �u! u,

D( �u)! Du and Æ( �u)! Æu in L2. Therefore � is self-adjoint.

d) is an immediate consequence of b), c) and Th. 1.2. �

On a complete hermitian manifold (X;!), there are of course similar

results for the operators D0; D00; Æ0; Æ00; �0; �00 attached to a hermitian vector

bundle E.

4. General Estimate for d00 on Hermitian Manifolds

Let (X;!) be a complete hermitian manifold and E a hermitian holomorphic

vector bundle of rank r over X. Assume that the hermitian operator

(4:1) AE;! = [i�(E); �] + T!

is semi-positive on �p;qT ?
X

 E. Then for every form u 2 DomD00 \ Dom Æ00

of bidegree (p; q) we have

(4:2) kD00uk2 + kÆ00uk2 �
Z
X

hAE;!u; ui dV:

In fact (4.2) is true for all u 2 Dp;q(X;E) in view of the Bochner-Kodaira-

Nakano identity VII-2.3, and this result is easily extended to every u in

DomD00 \Dom Æ00 by density of Dp;q(X;E) (Th. 3.2 a)).

Assume now that a form g 2 L2
p;q
(X;E) is given such that
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(4:3) D00g = 0;

and that for almost every x 2 X there exists � 2 [0;+1[ such that

jhg(x); uij2 � � hAE;!u; ui
for every u 2 (�p;qT ?

X

 E)x. If the operator AE;! is invertible, the minimal

such number � is jA�1=2
E;!

g(x)j2 = hA�1
E;!

g(x); g(x)i, so we shall always denote
it in this way even when AE;! is no longer invertible. Assume furthermore

that

(4:4)

Z
X

hA�1
E;!

g; gi dV < +1:

The basic result of L2 theory can be stated as follows.

(4.5) Theorem. If (X;!) is complete and AE;! � 0 in bidegree (p; q), then

for any g 2 L2
p;q
(X;E) satisfying (4.4) such that D00g = 0 there exists f 2

L2
p;q�1(X;E) such that D00f = g and

kfk2 �
Z
X

hA�1
E;!

g; gi dV:

Proof. For every u 2 DomD00 \Dom Æ00 we have��hhu; gii��2 = ��� Z
X

hu; gi dV
���2 � �Z

X

hAE;!u; ui1=2hA�1E;!g; gi1=2 dV
�2

�
Z
X

hA�1
E;!

g; gi dV �
Z
X

hAE;!u; ui dV

by means of the Cauchy-Schwarz inequality. The a priori estimate (4.2) im-

plies��hhu; gii��2 � C�kD00uk2 + kÆ00uk2�; 8u 2 DomD00 \Dom Æ00

where C is the integral (4.4). Now we just have to repeat the proof of the

existence part of Th. 1.2. For any u 2 Dom Æ00, let us write

u = u1 + u2; u1 2 KerD00; u2 2 (KerD00)? = Im Æ00:

Then D00u1 = 0 and Æ00u2 = 0. Since g 2 KerD00, we get��hhu; gii��2 = ��hhu1; gii��2 � CkÆ00u1k2 = CkÆ00uk2:
The Hahn-Banach theorem shows that the continuous linear form

L2
p;q�1(X;E) 3 Æ00u 7�! hhu; gii
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can be extended to a linear form v 7�! hhv; fii, f 2 L2
p;q�1(X;E), of norm

kfk � C1=2. This means that

hhu; gii = hhÆ00u; fii; 8u 2 Dom Æ00;

i.e. that D00f = g. The theorem is proved. �

(4.6) Remark. One can always �nd a solution f 2 (KerD00)? : otherwise

replace f by its orthogonal projection on (KerD00)?. This solution is clearly

unique and is precisely the solution of minimal L2 norm of the equation

D00f = g. We have f 2 Im Æ00, thus f sati�es the additional equation

(4:7) Æ00f = 0:

Consequently �00f = Æ00D00f = Æ00g. If g 2 C1
p;q
(X;E), the ellipticity of �00

shows that f 2 C1
p;q�1(X;E).

(4.8) Remark. If AE;! is positive de�nite, let �(x) > 0 be the smallest

eigenvalue of this operator at x 2 X. Then � is continuous on X and we haveZ
X

hA�1
E;!

g; gi dV �
Z
X

�(x)�1jg(x)j2 dV:

The above situation occurs for example if ! is complete K�ahler, E >m 0 and

p = n, q � 1, m � minfn� q + 1; rg (apply Lemma VII-7.2).

5. Estimates on Weakly Pseudoconvex Manifolds

We �rst introduce a large class of complex manifolds on which the L2 esti-

mates will be easily tractable.

(5.1) De�nition. A complex manifold X is said to be weakly pseudoconvex

if there exists an exhaustion function  2 C1(X;R) such that id0d00 � 0 on

X, i.e.  is plurisubharmonic.

For domains 
 � C n , the above weak pseudoconvexity notion is equiva-

lent to pseudoconvexity (cf. Th. I-4.14). Note that every compact manifold

is also weakly pseudoconvex (take  � 0). Other examples that will appear

later are Stein manifolds, or the total space of a GriÆths semi-negative vector

bundle over a compact manifold (cf. Prop. IX-?.?).

(5.2) Theorem. Every weakly pseudoconvex K�ahler manifold (X;!) carries

a complete K�ahler metric b!.
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Proof. Let  2 C1(X;R) be an exhaustive plurisubharmonic function on

X. After addition of a constant to  , we can assume  � 0. Then b! =

! + id0d00( 2) is K�ahler and

b! = ! + 2i d0d00 + 2id0 ^ d00 � ! + 2id0 ^ d00 :
Since d = d0 + d00 , we get jd jb! =

p
2jd0 jb! � 1 and Lemma 2.4 shows

that b! is complete. �

Observe that we could have set more generally b! = !+id0d00(�Æ ) where
� is a convex increasing function. Then

b! = ! + i(�0 Æ  )d0d00 + i(�00 Æ  )d0 ^ d00 
� ! + id0(� Æ  ) ^ d00(� Æ  )(5:3)

where �(t) =
R
t

0

p
�00(u) du. We thus have jd0(� Æ  )jb! � 1 and b! will be

complete as soon as limt!+1 �(t) = +1, i.e.

(5:4)

Z +1

0

p
�00(u) du = +1:

One can take for example �(t) = t� log(t) for t � 1.

It follows from the above considerations that almost all vanishing theo-

rems for positive vector bundles over compact manifolds are also valid on

weakly pseudoconvex manifolds. Let us mention here the analogues of some

results proved in Chapter 7.

(5.5) Theorem. For any m-positive vector bundle of rank r over a weakly

pseudoconvex manifold X, we have Hn;q(X;E) = 0 for all q � 1 and

m � minfn� q + 1; rg.

Proof. The curvature form i�(detE) is a K�ahler metric on X, hence X

possesses a complete K�ahler metric !. Let  2 C1(X;R) be an exhaus-

tive plurisubharmonic function. For any convex increasing function � 2
C1(R;R), we denote by E� the holomorphic vector bundle E together with

the modi�ed metric juj2
�
= juj2 exp �� � Æ  (x)�, u 2 Ex. We get

i�(E�) = i�(E) + id0d00(� Æ  )
 IdE �m i�(E);

thus AE�;! � AE;! > 0 in bidegree (n; q). Let g be a given form of bidegree

(n; q) with L2
loc coeÆcients, such that D00g = 0. The integralsZ

X

hA�1
E�;!

g; gi� dV �
Z
X

hA�1
E;!

g; gi e��Æ dV;
Z
X

jgj2 e��Æ dV

become convergent if � grows fast enough. We can thus apply Th. 4.5 to

(X;E�; !) and �nd a (n; q � 1) form f such that D00f = g. If g is smooth,

Remark 4.6 shows that f can also be chosen smooth. �
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(5.6) Theorem. If E is a positive line bundle over a weakly pseudoconvex

manifold X, then Hp;q(X;E) = 0 for p+ q � n+ 1.

Proof. The proof is similar to that of Th. 5.5, except that we use here the

K�ahler metric

!� = i�(E�) = ! + id0d00(� Æ  ); ! = i�(E);

which depends on �. By (5.4) !� is complete as soon as � is a convex in-

creasing function that grows fast enough. Apply now Th. 4.5 to (X;E�; !�)

and observe that AE�;!� = [i�(E�); ��] = (p+q�n) Id in bidegree (p; q) in

virtue of Cor. VI-8.4 It remains to show that for every form g 2 C1
p;q
(X;E)

there exists a choice of � such that g 2 L2
p;q
(X;E�; !�). By (5.3) the norm

of a scalar form with respect to !� is less than its norm with respect to !,

hence jgj2
�
� jgj2 exp(�� Æ  ). On the other hand

dV� � C
�
1 + �0 Æ  + �00 Æ  �n dV

where C is a positive continuous function on X. The following lemma implies

that we can always choose � in order that the integral of jgj2� dV� converges

on X.

(5.7) Lemma. For any positive function � 2 C1�[0;+1[;R
�
, there exists

a smooth convex function � 2 C1�[0;+1[;R
�
such that �; �0; �00 � � and

(1 + �0 + �00)ne�� � 1=�.

Proof. We shall construct � such that �00 � �0 � � � � and �00=�2 � C for

some constant C. Then � satisties the conclusion of the lemma after addition

of a constant. Without loss of generality, we may assume that � is increasing

and � � 1. We de�ne � as a power series

�(t) =

+1X
k=0

a0a1 : : : ak t
k;

where ak > 0 is a decreasing sequence converging to 0 very slowly. Then � is

real analytic on R and the inequalities �00 � �0 � � are realized if we choose

ak � 1=k, k � 1. Select a strictly increasing sequence of integers (Np)p�1 so
large that 1

p
�(p+ 1)1=Np 2 [1=p; 1=(p� 1)[. We set

a0 = : : : = aN1�1 = e �(2);

ak =
1

p
�(p+ 1)1=Np e1=

p
k; Np � k < Np+1:

Then (ak) is decreasing. For t 2 [0; 1] we have �(t) � a0 � �(t) and for

t 2 [1;+1[ the choice k = Np where p = [t] is the integer part of t gives

�(t) � �(p) � (a0a1 : : : ak)p
k � (akp)

k � �(p+ 1) � �(t):
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Furthermore, we have

�(t)2 �
X
k�0

(a0a1 : : : ak)
2 t2k;

�00(t) =
X
k�0

(k + 1)(k + 2) a0a1 : : : ak+2 t
k;

thus we will get �00(t) � C�(t)2 if we can prove that

m2 a0a1 : : : a2m � C 0(a0a1 : : : am)2; m � 0:

However, as 1
p
�(p+ 1)1=Np is decreasing, we �nd

a0a1 : : : a2m

(a0a1 : : : am)2
=
am+1 : : : a2m

a0a1 : : : am

� exp
� 1p

m+ 1
+ � � �+ 1p

2m
� 1p

1
� � � � � 1p

m
+ O(1)

�
� exp

�
2
p
2m� 4

p
m+O(1)

� � C 0m�2: �

As a last application, we generalize the Girbau vanishing theorem in

the case of weakly pseudoconvex manifolds. This result is due to (Abdelka-

der 1980) and (Ohsawa 1981). We present here a simpli�ed proof which ap-

peared in (Demailly 1985).

(5.8) Theorem. Let (X;!) be a weakly pseudoconvex K�ahler manifold. If E

is a semi-positive line bundle such that i�(E) has at least n� s+ 1 positive

eigenvalues at every point, then

Hp;q(X;E) = 0 for p+ q � n+ s:

Proof. Let �; � 2 C1(R;R) be convex increasing functions to be speci�ed

later. We use here the hermitian metric

� = i�(E�) + exp(�� Æ  )!
= i�(E) + id0d00(� Æ  ) + exp(�� Æ  )!:

Although ! is K�ahler, the metric � is not so. Denote by 
�;!

j
(resp. 

�;�

j
),

1 � j � n, the eigenvalues of i�(E�) with respect to ! (resp. �), rearranged

in increasing order. The minimax principle implies �;!
j
� 0;!

j
, and the

hypothesis yields 0 < 0;!s � 
0;!
s+1 � : : : � 0;!n on X. By means of a

diagonalization of i�(E�) with respect to !, we �nd

1 � �;�
j

=
�;!
j


�;!

j
+ exp(�� Æ  ) �

0;!
j


0;!
j

+ exp(�� Æ  ) :
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Let " > 0 be small. Select � such that exp(�� Æ  (x)) � "0;!
s

(x) at every

point. Then for j � s we get


�;�

j
� 

0;!
j


0;!
j

+ "
0;!
j

=
1

1 + "
� 1� ";

and Th. VI-8.3 implies

h�i�(E�); ���u; ui� � ��;�1 + � � �+ �;�
p
� �;�

q+1 � : : :� �;�n

�juj2
� �(p� s+ 1)(1� ")� (n� q)�juj2
� �1� (p� s+ 1)"

�juj2:
It remains however to control the torsion term T�. As ! is K�ahler, trivial

computations yield

d0� = ��0 Æ  exp(�� Æ  ) d0 ^ !;
d0d00� = exp(�� Æ  ) ��(�0 Æ  )2 � �00 Æ  �d0 ^ d00 � �0 Æ  d0d00 

� ^ !:
Since

� � i(�0 Æ  d0d00 + �00 Æ  d0 ^ d00 ) + exp(�� Æ  )!;
we get the upper bounds

jd0�j� � �0 Æ  jd0 j� j exp(�� Æ  )!j� � �0 Æ  (�00 Æ  )� 1
2

jd0d00�j� � (�0 Æ  )2 + �00 Æ  
�00 Æ  +

�0 Æ  
�0 Æ  :

It is then clear that we can choose � growing suÆciently fast in order that

jT�j� � ". If " is chosen suÆciently small, we get AE�;� � 1
2
Id, and the

conclusion is obtained in the same way as for Th. 5.6. �

6. H�ormander's Estimates for non Complete K�ahler

Metrics

Our aim here is to derive also estimates for a non complete K�ahler metric,

for example the standard metric of C n on a bounded domain 
 �� C n .

A result of this type can be obtained in the situation described at the end

of Remark 4.8. The underlying idea is due to (H�ormander 1966), although

we do not apply his so called \three weights" technique, but use instead an

approximation of the given metric ! by complete K�ahler metrics.

(6.1) Theorem. Let (X; b!) be a complete K�ahler manifold, ! another K�ahler

metric, possibly non complete, and E �! X a m-semi-positive vector bundle.

Let g 2 L2
n;q

(X;E) be such that D00g = 0 and
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X

hA�1
q
g; gi dV < +1

with respect to !, where Aq stands for the operator i�(E) ^ � in bidegree

(n; q) and q � 1, m � minfn� q + 1; rg. Then there exists f 2 L2
n;q�1(X;E)

such that D00f = g and

kfk2 �
Z
X

hA�1
q
g; gi dV:

Proof. For every " > 0, the K�ahler metric

!" = ! + "b!
is complete. The idea of the proof is to apply the L2 estimates to !" and to

let " tend to zero. Let us put an index " to all objects depending on !". It

follows from Lemma 6.3 below that

(6:2) juj2" dV" � juj2 dV; hA�1q;"u; ui" dV" � hA�1q u; ui dV
for every u 2 �n;qT ?

X

 E. If these estimates are taken for granted, Th. 4.5

applied to !" yields a section f" 2 L2
n;q�1(X;E) such that D00f" = g andZ

X

jf"j2" dV" �
Z
X

hA�1q;"g; gi" dV" �
Z
X

hA�1q g; gi dV:

This implies that the family (f") is bounded in L2 norm on every compact

subset of X. We can thus �nd a weakly convergent subsequence (f"� ) in L
2
loc.

The weak limit f is the solution we are looking for. �

(6.3) Lemma. Let !,  be hermitian metrics on X such that  � !. For

every u 2 �n;qT ?
X

 E, q � 1, we have

juj2 dV � juj2 dV; hA�1q;u; ui dV � hA�1q u; ui dV
where an index  means that the corresponding term is computed in terms of

 instead of !.

Proof. Let x0 2 X be a given point and (z1; : : : ; zn) coordinates such that

! = i
X

1�j�n
dzj ^ dzj ;  = i

X
1�j�n

j dzj ^ dzj at x0;

where 1 � : : : � n are the eigenvalues of  with respect to ! (thus j � 1).

We have jdzj j2 = �1
j

and jdzK j2 = �1
K

for any multi-index K, with the

notation K =
Q
j2K j . For every u =

P
uK;�dz1 ^ : : : ^ dzn ^ dzK 
 e�,

jKj = q, 1 � � � r, the computations of x VII-7 yield
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juj2

=
X
K;�

(1 : : : n)
�1�1

K
juK;�j2; dV = 1 : : : n dV;

juj2

dV =

X
K;�

�1
K
juK;�j2 dV � juj2 dV;

�u =
X
jIj=q�1

X
j;�

i(�1)n+j�1�1
j
ujI;� (cdzj) ^ dzI 
 e�;

where (cdzj) means dz1 ^ : : : cdzj : : : ^ dzn,
Aq;u =

X
jIj=q�1

X
j;k;�;�

�1
j
cjk�� ujI;� dz1 ^ : : : ^ dzn ^ dzkI 
 e�;

hAq;u; ui = (1 : : : n)
�1

X
jIj=q�1

�1
I

X
j;k;�;�

�1
j
�1
k
cjk�� ujI;�ukI;�

� (1 : : : n)
�1 X
jIj=q�1

�2
I

X
j;k;�;�

�1
j
�1
k
cjk�� ujI;�ukI;�

= 1 : : : n hAqSu; Sui
where S is the operator de�ned by

Su =
X
K

(1 : : : nK)
�1 uK;� dz1 ^ : : : ^ dzn ^ dzK 
 e�:

We get therefore

jhu; vij2 = jhu; Svij2 � hA�1q u; uihAqSv; Svi
� (1 : : : n)

�1hA�1q u; uihAq;v; vi;

and the choice v = A�1
q;
u implies

hA�1
q;
u; ui � (1 : : : n)

�1 hA�1
q
u; ui ;

this relation is equivalent to the last one in the lemma. �

An important special case is that of a semi-positive line bundle E. If we

let 0 � �1(x) � : : : � �n(x) be the eigenvalues of i�(E)x with respect to !x
for all x 2 X, formula VI-8.3 implies

hAqu; ui � (�1 + � � �+ �q)juj2;Z
X

hA�1
q
g; gi dV �

Z
X

1

�1 + � � �+ �q
jgj2 dV:(6:4)

A typical situation where these estimates can be applied is the case when E

is the trivial line bundle X � C with metric given by a weight e�'. One can
assume for example that ' is plurisubharmonic and that id0d00' has at least

n� q+1 positive eigenvalues at every point, i.e. �q > 0 on X. This situation
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leads to very important L2 estimates, which are precisely those given by

(H�ormander 1965, 1966). We state here a slightly more general result.

(6.5) Theorem. Let (X;!) be a weakly pseudoconvex K�ahler manifold, E a

hermitian line bundle on X, ' 2 C1(X;R) a weight function such that the

eigenvalues �1 � : : : � �n of i�(E) + id0d00' are � 0. Then for every form

g of type (n; q), q � 1, with L2
loc (resp. C1) coeÆcients such that D00g = 0

andZ
X

1

�1 + � � �+ �q
jgj2 e�' dV < +1;

we can �nd a L2
loc (resp. C1) form f of type (n; q � 1) such that D00f = g

andZ
X

jf j2 e�' dV �
Z
X

1

�1 + � � �+ �q
jgj2 e�' dV:

Proof. Apply the general estimates to the bundle E' deduced from E by

multiplication of the metric by e�' ; we have i�(E') = i�(E)+ id0d00'. It is
not necessary here to assume in addition that g 2 L2

n;q
(X;E'). In fact, g is

in L2
loc and we can exhaust X by the relatively compact weakly pseudoconvex

domains

Xc =
�
x 2 X ;  (x) < c

	
where  2 C1(X;R) is a plurisubharmonic exhaustion function (note that

� log(c�  ) is also such a function on Xc). We get therefore solutions fc on

Xc with uniform L2 bounds; any weak limit f gives the desired solution. �

If estimates for (p; q)-forms instead of (n; q)-forms are needed, one can

invoke the isomorphism �pT ?
X
' �n�pTX 
 �nT ?X (obtained through con-

traction of n-forms by (n� p)-vectors) to get

�p;qT ?
X

 E ' �n;qT ?

X

 F; F = E 
 �n�pTX :

Let us look more carefully to the case p = 0. The (1; 1)-curvature form of

�nTX with respect to a hermitian metric ! on TX is called the Ricci curvature

of !. We denote:

(6.6) De�nition. Ricci(!) = i�(�nTX) = i Tr �(TX).

For any local coordinate system (z1; : : : ; zn), the holomorphic n-form

dz1 ^ : : : ^ dzn is a section of �nT ?
X
, hence Formula V-13.3 implies

(6:7) Ricci(!) = id0d00 log jdz1 ^ : : : ^ dznj2! = �id0d00 log det(!jk):
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The estimates of Th. 6.5 can therefore be applied to any (0; q)-form g, but

�1 � : : : � �n must be replaced by the eigenvalues of the (1; 1)-form

(6:8) i�(E) + Ricci(!) + id0d00' (supposed � 0):

We consider now domains 
 � C n equipped with the euclidean metric

of C n , and the trivial bundle E = 
 � C . The following result is especially

convenient because it requires only weak plurisubharmonicity and avoids to

compute the curvature eigenvalues.

(6.9) Theorem. Let 
 � C n be a weakly pseudoconvex open subset and ' an

upper semi-continuous plurisubharmonic function on 
. For every " 2 ]0; 1]

and every g 2 L2
p;q
(
; loc) such that d00g = 0 andZ




�
1 + jzj2�jgj2 e�'dV < +1;

we can �nd a L2
loc form f of type (p; q � 1) such that d00f = g andZ




�
1 + jzj2��" jf j2 e�' dV � 4

q"2

Z



�
1 + jzj2�jgj2 e�' dV < +1:

Moreover f can be chosen smooth if g and ' are smooth.

Proof. Since �pT
 is a trivial bundle with trivial metric, the proof is imme-

diately reduced to the case p = 0 (or equivalently p = n). Let us �rst suppose

that ' is smooth. We replace ' by � = '+ � where

�(z) = log
�
1 + (1 + jzj2)"�:

(6.10) Lemma. The smallest eigenvalue �1(z) of id
0d00�(z) satis�es

�1(z) � "2

2(1 + jzj2)�1 + (1 + jzj2)"� :
In fact a brute force computation of the complex hessian H�z(�) and the

Cauchy-Schwarz inequality yield

H�z(�) =

=
"(1+jzj2)"�1j�j2
1 + (1+jzj2)" +

"("� 1)(1+jzj2)"�2jh�; zij2
1 + (1+jzj2)" �"

2(1+jzj2)2"�2jh�; zij2�
1 + (1+jzj2)"�2

� "
�

(1 + jzj2)"�1
1 + (1 + jzj2)" �

(1� ")(1 + jzj2)"�2jzj2
1 + (1 + jzj2)" � "(1 + jzj2)2"�2jzj2�

1 + (1 + jzj2)"�2
�
j�j2

= "
1 + "jzj2 + (1 + jzj2)"

(1 + jzj2)2�"�1 + (1 + jzj2)"�2 j�j2 � "2j�j2
(1 + jzj2)1�"�1 + (1 + jzj2)"�2

� "2

2(1 + jzj2)�1 + (1 + jzj2)"� j�j2: �
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The Lemma implies e��=�1 � 2(1 + jzj2)="2, thus Cor. 6.5 provides an f
such thatZ




�
1 + (1 + jzj2)"��1 jf j2 e�' dV � 2

q"2

Z



�
1 + jzj2�jgj2 e�' dV < +1;

and the required estimate follows. If ' is not smooth, apply the result to

a sequence of regularized weights �" ? ' � ' on an increasing sequence of

domains 
c �� 
, and extract a weakly convergent subsequence of solutions.
�

7. Extension of Holomorphic Functions from

Subvarieties

The existence theorems for solutions of the d00 operator easily lead to an

extension theorem for sections of a holomorphic line bundle de�ned in a

neighborhood of an analytic subset. The following result (Demailly 1982) is an

improvement and a generalization of Jennane's extension theorem (Jennane

1976).

(7.1) Theorem. Let (X;!) be a weakly pseudoconvex K�ahler manifold, L

a hermitian line bundle and E a hermitian vector bundle over X. Let Y be

an analytic subset of X such that Y = ��1(0) for some section � of E, and

p the maximal codimension of the irreducible components of Y . Let f be a

holomorphic section of KX 
 L de�ned in the open set U � Y of points

x 2 X such that j�(x)j < 1. If
R
U
jf j2dV < +1 and if the curvature form of

L satis�es

i�(L) �
� p

j�j2 +
"

1 + j�j2
�
fi�(E)�; �g

for some " > 0, there is a section F 2 H0(X;KX 
 L) such that F�Y = f�Y
andZ

X

jF j2
(1 + j�j2)p+" dV �

�
1 +

(p+ 1)2

"

�Z
U

jf j2 dV:

The proof will involve a weight with logarithmic singularities along Y .

We must therefore apply the existence theorem over X r Y . This requires to

know whether X r Y has a complete K�ahler metric.

(7.2) Lemma. Let (X;!) be a K�ahler manifold, and Y = ��1(0) an analytic

subset de�ned by a section of a hermitian vector bundle E ! X. If X is

weakly pseudoconvex and exhausted by Xc = fx 2 X ;  (x) < cg, then
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Xc r Y has a complete K�ahler metric for all c 2 R. The same conclusion

holds for XrY if (X;!) is complete and if for some constant C � 0 we have

�E �Grif C ! 
 h ; iE on X.

Proof. Set � = log j�j2. Then d0� = fD0�; �g=j�j2 and D00D0� = D2� =

�(E)�, thus

id0d00� = i
fD0�;D0�g
j�j2 � i

fD0�; �g ^ f�;D0�g
j�j4 � fi�(E)�; �gj�j2 :

For every � 2 TX , we �nd therefore

H�(�) =
j�j2 jD0� � �j2 � jhD0� � �; �ij2

j�j4 � �E(� 
 �; � 
 �)
j�j2

� ��E(� 
 �; � 
 �)j�j2

by the Cauchy-Schwarz inequality. If C is a bound for the coeÆcients of �E
on the compact subset Xc, we get id

0d00� � �C! on Xc. Let � 2 C1(R;R)
be a convex increasing function. We set

b! = ! + id0d00(� Æ �):
Formula 5.3 shows that b! is positive de�nite if �0 � 1=2C and that b! is

complete near Y = ��1(�1) as soon asZ 0

�1

p
�00(t) dt = +1:

One can choose for example � such that �(t) = 1
5C

(t� log jtj) for t � �1. In
order to obtain a complete K�ahler metric on Xc r Y , we need also that the

metric be complete near @Xc. Such a metric is given by

e! = b! + id0d00 log(c�  )�1 = b! +
id0d00 

c�  +
id0 ^ d00 
(c�  )2

� id0 log(c�  )�1 ^ d00 log(c�  )�1 ;
e! is complete on Xc r
 because log(c�  )�1 tends to +1 on @Xc. �

Proof of Theorem 7.1. When we replace � by (1 + �)� for some small � > 0

and let � tend to 0, we see that we can assume f de�ned in a neighborhood

of U . Let h be the continuous section of L such that h = (1 � j�jp+1)f on

U = fj�j < 1g and h = 0 on X r U . We have h�Y = f�Y and

d00h = �p+ 1

2
j�jp�1 f�;D0�g f on U; d00h = 0 on X r U:

We consider g = d00h as a (n; 1)-form with values in the hermitian line bundle

L' = L, endowed with the weight e�' given by
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' = p log j�j2 + " log(1 + j�j2):
Notice that ' is singular along Y . The Cauchy-Schwarz inequality implies

ifD0�; �g ^ f�;D0�g � ifD0�;D0�g as in Lemma 7.2, and we �nd

id0d00 log(1 + j�j2) = (1 + j�j2)ifD0�;D0�g � ifD0�; �g ^ f�;D0�g
(1 + j�j2)2

� fi�(E)�; �g
1 + j�j2 � ifD0�;D0�g

(1 + j�j2)2 �
fi�(E)�; �g
1 + j�j2 :

The inequality id0d00 log j�j2 � �fi�(E)�; �g=j�j2 obtained in Lemma 7.2 and

the above one imply

i�(L') = i�(L) + p id0d00 log j�j2 + " id0d00 log(1 + j�j2)

� i�(L)�
� p

j�j2 +
"

1 + j�j2
�
fi�(E)�; �g+ "

ifD0�;D0�g
(1 + j�j2)2

� " i fD
0�; �g ^ f�;D0�g
j�j2 (1 + j�j2)2 ;

thanks to the hypothesis on the curvature of L and the Cauchy-Schwarz

inequality. Set � = (p+ 1)=2 j�jp�1fD0�; �g =P �j dzj in an !-orthonormal

basis @=@zj, and let b� =P �j@=@zj be the dual (0; 1)-vector �eld. For every

(n; 1)-form v with values in L', we �nd��hd00h; vi�� = ��h� ^ f; vi�� = ��hf; b� vi
�� � jf j jb� vj;b� v =

X
�i�j dzj ^ �v = �i� ^ �v;

jhd00h; vij2 � jf j2 jb� vj2 = jf j2h�i� ^ �v; b� vi
= jf j2h�i� ^ � ^ �v; vi = jf j2h[i� ^ �; �]v; vi

� (p+ 1)2

4"
j�j2p (1 + j�j2)2 jf j2 h[i�(L'); �]v; vi:

Thus, in the notations of Th. 6.1, the form g = d00h satis�es

hA�11 g; gi � (p+ 1)2

4"
j�j2p(1 + j�j2)2 jf j2 � (p+ 1)2

"
jf j2 e';

where the last equality results from the fact that (1+j�j2)2 � 4 on the support

of g. Lemma 7.2 shows that the existence theorem 6.1 can be applied on each

set Xc r Y . Letting c tend to in�nity, we infer the existence of a (n; 0)-form

u with values in L such that d00u = g on X r Y andZ
XrY

juj2 e�' dV �
Z
XrY

hA�11 g; gie�'; thusZ
XrY

juj2
j�j2p(1 + j�j2)" dV �

(p+ 1)2

"

Z
U

jf j2 dV:
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This estimate implies in particular that u is locally L2 near Y . As g is conti-

nuous over X, Lemma 7.3 below shows that the equality d00u = g = d00h ex-

tends to X, thus F = h � u is holomorphic everywhere. Hence u = h� F
is continuous on X. As j�(x)j � C d(x; Y ) in a neighborhood of every point

of Y , we see that j�j�2p is non integrable at every point x0 2 Yreg, because
codimY � p. It follows that u = 0 on Y , so

F�Y = h�Y = f�Y :

The �nal L2-estimate of Th. 7.1 follows from the inequality

jF j2 = jh� uj2 � (1 + j�j�2p) juj2 + (1 + j�j2p) jf j2

which implies

jF j2
(1 + j�j2)p �

juj2
j�j2p + jf j

2: �

(7.3) Lemma. Let 
 be an open subset of C n and Y an analytic subset of 
.

Assume that v is a (p; q � 1)-form with L2
loc coeÆcients and w a (p; q)-form

with L1
loc coeÆcients such that d00v = w on 
rY (in the sense of distribution

theory). Then d00v = w on 
.

Proof. An induction on the dimension of Y shows that it is suÆcient to

prove the result in a neighborhood of a regular point a 2 Y . By using a local
analytic isomorphism, the proof is reduced to the case where Y is contained

in the hyperplane z1 = 0, with a = 0. Let � 2 C1(R;R) be a function such

that �(t) = 0 for t � 1
2
and �(t) = 1 for t � 1. We must show that

(7:4)

Z



w ^ � = (�1)p+q
Z



v ^ d00�

for all � 2 Dn�p;n�q(
). Set �"(z) = �(jz1j=") and replace � in the integral

by �"�. Then �"� 2 Dn�p;n�q(
 r Y ) and the hypotheses implyZ



w ^ �"� = (�1)p+q
Z



v ^ d00(�"�) = (�1)p+q
Z



v ^ (d00�" ^ �+ �"d
00�):

As w and v have L1
loc coeÆcients on 
, the integrals of w^�"� and v^�"d00�

converge respectively to the integrals of w^� and v^d00� as " tends to 0. The

remaining term can be estimated by means of the Cauchy-Schwarz inequality:��� Z



v ^ d00�" ^ �
���2 � Z

jz1j�"
jv ^ �j2 dV:

Z
Supp�

jd00�"j2 dV ;

as v 2 L2
loc(
), the integral

R
jz1j�" jv ^�j2 dV converges to 0 with ", whereas



436 Chapter VIII L2 Estimates on Pseudoconvex ManifoldsZ
Supp�

jd00�"j2 dV � C

"2
Vol
�
Supp � \ fjz1j � "g

� � C 0:
Equality (7.4) follows when " tends to 0. �

(7.5) Corollary. Let 
 � C n be a weakly pseudoconvex domain and let ',

 be plurisubharmonic functions on 
, where  is supposed to be �nite and

continuous. Let � = (�1; : : : ; �r) be a family of holomorphic functions on 
,

let Y = ��1(0), p = maximal codimension of Y and set

a) U = fz 2 
 ; j�(z)j2 < e� (z)g, resp.

b) U 0 = fz 2 
 ; j�(z)j2 < e (z)g.
For every " > 0 and every holomorphic function f on U , there exists a

holomorphic function F on 
 such that F�Y = f�Y andZ



jF j2 e�'+p 
(1 + j�j2e )p+" dV �

�
1 +

(p+ 1)2

"

�Z
U

jf j2 e�'+p dV; resp:a) Z



jF j2 e�'
(e + j�j2)p+" dV �

�
1 +

(p+ 1)2

"

�Z
U

jf j2 e�'�(p+") dV:b)

Proof. After taking convolutions with smooth kernels on pseudoconvex sub-

domains 
c �� 
, we may assume ',  smooth. In either case a) or b),

apply Th. 7.1 to

a) E = 
� C r with the weight e , L = 
� C with the weight e�'+p , and
U = fj�j2e < 1g. Then

i�(E) = �id0d00 
 IdE � 0; i�(L) = id0d00'� p id0d00 � p i�(E):

b) E = 
�C r with the weight e� , L = 
�C with the weight e�'�(p+") ,
and U = fj�j2e� < 1g. Then

i�(E) = id0d00 
 IdE � 0; i�(L) = id0d00'+ (p+ ") id0d00 � (p+ ") i�(E):

The condition on �(L) is satis�ed in both cases and K
 is trivial. �

(7.6) H�ormander-Bombieri-Skoda theorem. Let 
 � C n be a weakly

pseudoconvex domain and ' a plurisubharmonic function on 
. For every

" > 0 and every point z0 2 
 such that e�' is integrable in a neighborhood

of z0, there exists a holomorphic function F on 
 such that F (z0) = 1 andZ



jF (z)j2 e�'(z)
(1 + jzj2)n+" dV < +1:

(Bombieri 1970) originally stated the theorem with the exponent 3n in-

stead of n + " ; the improved exponent n + " is due to (Skoda 1975). The

example 
 = C n , '(z) = 0 shows that one cannot replace " by 0.
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Proof. Apply Cor. 7.5 b) to f � 1, �(z) = z�z0, p = n and  � log r2 where

U = B(z0; r) is a ball such that
R
U
e�' dV < +1. �

(7.7) Corollary. Let ' be a plurisubharmonic function on a complex mani-

fold X. Let A be the set of points z 2 X such that e�' is not locally integrable

in a neighborhood of z. Then A is an analytic subset of X.

Proof. Let 
 � X be an open coordinate patch isomorphic to a ball of C n ,

with coordinates (z1; : : : ; zn). De�ne E � H0(
;O) to be the Hilbert space

of holomorphic functions f on 
 such thatZ



jf(z)j2e�'(z) dV (z) < +1:

Then A \ 
 =
T
f2E f

�1(0). In fact, every f in E must obviously vanish

on A ; conversely, if z0 =2 A, Th. 7.6 shows that there exists f 2 E such that

f(z0) 6= 0. By Th. II-5.5, we conclude that A is analytic. �

8. Applications to Hypersurface Singularities

We �rst give some basic de�nitions and results concerning multiplicities of

divisors on a complex manifold.

(8.1) Proposition. Let X be a complex manifold and � =
P
�j [Zj ] a divisor

on X with real coeÆcients �j � 0. Let x 2 X and fj = 0, 1 � j � N ,

irreducible equations of Zj on a neighborhood U of x.

a) The multiplicity of � at x is de�ned by

�(�; x) =
X

�j ordxfj :

b) � is said to have normal crossings at a point x 2 Supp � if all hypersur-

faces Zj containing x are smooth at x and intersect transversally, i.e. if

the linear forms dfj de�ning the corresponding tangent spaces TxZj are

linearly independent at x. The set nnc(�) of non normal crossing points

is an analytic subset of X.

c) The non-integrability locus nil(�) is de�ned as the set of points x 2 X
such that

Q jfjj�2�j is non integrable near x. Then nil(�) is an analytic

subset of X and there are inclusions

fx 2 X ; �(�; x) � ng � nil(�) � fx 2 X ; �(�; x) � 1g:
Moreover nil(�) � nnc(�) if all coeÆcients of � satisfy �j < 1.

Proof. b) The set nnc(�) \ U is the union of the analytic sets
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fj1 = : : : = fjp = 0; dfj1 ^ : : : ^ dfjp = 0;

for each subset fj1; : : : ; jpg of the index set f1; : : : ; Ng. Thus nnc(�) is ana-
lytic.

c) The analyticity of nil(�) follows from Cor. 7.7 applied to the plurisub-

harmonic function ' =
P

2�j log jfjj. Assume �rst that �j < 1 and that �

has normal crossings at x. Let fj1(x) = : : : = fjs(x) = 0 and fj(x) 6= 0 for

j 6= jl. Then, we can choose local coordinates (w1; : : : ; wn) on U such that

w1 = fj1(z), : : :, ws = fjs(z), and we haveZ
U

d�(z)Q jfj(z)j2�j �
Z
U

C d�(w)

jw1j2�1 : : : jwsj2�s < +1:

It follows that nil(�) � nnc(�). Let us prove now the statement relating

nil(�) with multiplicity sets. Near any point x, we have jfj(z)j � Cj jz�xjmj

with mj = ordxfj, thusY
jfj j�2�j � C jz � xj�2�(�;x):

It follows that x 2 nil(�) as soon as �(�; x) � n. On the other hand,

we are going to prove that �(�; x) < 1 implies x =2 nil(�), i.e.
Q jfjj�2�j

integrable near x. We may assume �j rational; otherwise replace each �j by

a slightly larger rational number in such a way that �(�; x) < 1 is still true.

Set f =
Q
f
k�j

j
where k is a common denominator. The result is then a

consequence of the following lemma. �

(8.2) Lemma. If f 2 OX;x is not identically 0, there exists a neighborhood

U of x such that
R
U
jf j�2� dV converges for all � < 1=m, m = ordxf .

Proof. One can assume that f is a Weierstrass polynomial

f(z) = zmn + a1(z
0)zm�1n + � � �+ am(z

0); aj(z
0) 2 On�1; aj(0) = 0;

with respect to some coordinates (z1; : : : ; zn) centered at x. Let vj(z
0),

1 � j � m, denote the roots zn of f(z) = 0. On a small neighborhood U

of x we have jvj(z0)j � 1. The inequality between arithmetic and geometric

mean impliesZ
fjznj�1g

jf(z)j�2� dxndyn =
Z
fjznj�1g

Y
1�j�m

jzn � vj(z0)j�2� dxndyn

� 1

m

Z
fjznj�1g

X
1�j�m

jzn � vj(z0)j�2m� dxndyn

�
Z
fjznj�2g

dxndyn

jznj2m� ;

so the Lemma follows from the Fubini theorem. �
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Another interesting application concerns the study of multiplicities of sin-

gular points for algebraic hypersurfaces in Pn. Following (Waldschmidt 1975),

we introduce the following de�nition.

(8.3) De�nition. Let S be a �nite subset of Pn. For any integer t � 1,

we de�ne !t(S) as the minimum of the degrees of non zero homogeneous

polynomials P 2 C [z0 ; : : : ; zn] which vanish at order t at every point of S,

i.e. D�P (w) = 0 for every w 2 S and every multi-index � = (�0; : : : ; �n) of

length j�j < t.

It is clear that t 7�! !t(S) is a non-decreasing and subadditive function,

i.e. for all integers t1; t2 � 1 we have !t1+t2(S) � !t1(S)+!t2(S). One de�nes

(8:4) 
(S) = inf
t�1

!t(S)

t
:

For all integers t; t0 � 1, the monotonicity and subadditivity of !t(S) show

that

!t(S) � ([t=t0] + 1)!t0(S); hence 
(S) � !t(S)

t
�
� 1
t0
+

1

t

�
!t0(S):

We �nd therefore

(8:5) 
(S) = lim
t!+1

!t(S)

t
:

Our goal is to �nd a lower bound of 
(S) in terms of !t(S). For n = 1, it

is obvious that 
(S) = !t(S)=t = cardS for all t. From now on, we assume

that n � 2.

(8.6) Theorem. Let t1; t2 � 1 be integers, let P be a homogeneous poly-

nomial of degree !t2(S) vanishing at order � t2 at every point of S. If P =

P k11 : : : P kN
N

is the decomposition of P in irreducible factors and Zj = P�1
j

(0),

we set

� =
t1 + n� 1

t2
; � =

X
(kj�� [kj�]) [Zj]; a = dim

�
nil(�)

�
:

Then we have the inequality

!t1(S) + n� a� 1

t1 + n� 1
� !t2(S)

t2
:

Let us �rst make a few comments before giving the proof. If we let t2 tend

to in�nity and observe that nil(�) � nnc(�) by Prop. 8.1 c), we get a � 2

and

(8:7)
!t1(S) + 1

t1 + n� 1
� 
(S) � !t2(S)

t2
:
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Such a result was �rst obtained by (Waldschmidt 1975, 1979) with the

lower bound !t1(S)=(t1 + n � 1), as a consequence of the H�ormander-

Bombieri-Skoda theorem. The above improved inequalities were then found

by (Esnault-Viehweg 1983), who used rather deep tools of algebraic geom-

etry. Our proof will consist in a re�nement of the Bombieri-Waldschmidt

method due to (Azhari 1990). It has been conjectured by (Chudnovsky 1979)

that 
(S) � (!1(S) + n � 1)=n. Chudnovsky's conjecture is true for n = 2

(as shown by (8.7)); this case was �rst veri�ed independently by (Chud-

novsky 1979) and (Demailly 1982). The conjecture can also be veri�ed in

case S is a complete polytope, and the lower bound of the conjecture is then

optimal (see Demailly 1982a and ??.?.?). More generally, it is natural to ask

whether the inequality

(8:8)
!t1(S) + n� 1

t1 + n� 1
� 
(S) � !t2(S)

t2

always holds; this is the case if there are in�nitely many t2 for which P can

be chosen in such a way that nil(�) has dimension a = 0.

(8.9) Bertini's lemma. If E � Pn is an analytic subset of dimension a,

there exists a dense subset in the grassmannian of k-codimensional linear

subspaces Y of Pn such that dim(E \ Y ) � a � k (when k > a this means

that E \ Y = ; ).

Proof. By induction on n, it suÆces to show that dim(E \ H) � a � 1 for

a generic hyperplane H � Pn. Let Ej be the (�nite) family of irreducible

components of E, and wj 2 Ej an arbitrary point. Then E \H =
S
Ej \H

and we have dimEj \H < dimEj � a as soon as H avoids all points wj . �

Proof of Theorem 8.6. By Bertini's lemma, there exists a linear subspace

Y � Pn of codimension a + 1 such that nil(�) \ Y = ;. We consider P as

a section of the line bundle O(D) over Pn, where D = deg P (cf. Th. V-

15.5). There are sections �1; : : : ; �a+1 of O(1) such that Y = ��1(0). We

shall apply Th. 7.1 to E = O(1) with its standard hermitian metric, and

to L = O(k) equipped with the additional weight ' = � log jP j2. We may

assume that the open set U = fj�j < 1g is such that nil(�)\U = ;, otherwise
it suÆces to multiply � by a large constant. This implies that the polynomial

Q =
Q
P
[kj�]

j
satis�esZ

U

jQj2 e�' dV =

Z
U

Y
jPjj�2(kj��[kj�]) dV < +1:

Set ! = ic
�
O(1)

�
. We have id0d00 log jP j2 � �ic�O(D)� = �D! by the Lelong-

Poincar�e equation, thus i�(L') � (k��D)!. The desired curvature inequal-

ity i�(L') � (a+ 1 + ")i�(E) is satis�ed if k � �D � (a+ 1 + "). We thus

take
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k = [�D] + a+ 2:

The section f 2 H0(U;KPn 
 L) = H0
�
U;O(k � n � 1)

�
is taken to be a

multiple of Q by some polynomial. This is possible provided that

k � n� 1 � deg Q () �D + a+ 2� n� 1 �
X

[kj�] deg Pj ;

or equivalently, as D =
P
kj deg Pj ,

(8:10)
X

(kj�� [kj�]) deg Pj � n� a� 1:

Then we get f 2 H0(U;KPn 
 L) such that
R
U
jf j2 e�' dV < +1. Theorem

7.1 implies the existence of F 2 H0(Pn; KPn 
 L), i.e. of a polynomial F of

degree k � n� 1, such thatZ
Pn

jF j2e�' dV =

Z
Pn

jF j2
jP j2� dV < +1 ;

observe that j�j is bounded, for we are on a compact manifold. Near any

w 2 S, we have jP (z)j � Cjz�wjt2 , thus jP (z)j2� � Cjz � wj2(t1+n�1). This
implies that the above integral can converge only if F vanishes at order � t1
at each point w 2 S. Therefore

!t1(S) � deg F = k � n� 1 = [�D] + a+ 1� n � �!t2(S) + a+ 1� n;
which is the desired inequality.

However, the above proof only works under the additional assumption

(8.10). Assume on the contrary that

� =
X

(kj�� [kj�]) deg Pj < n� a� 1:

Then the polynomial Q has degreeX
[kj�] deg Pj = � deg P � � = �D � �;

and Q vanishes at every point w 2 S with order

ordwQ �
X

[kj�] ordwPj = �
X

kj ordwPj �
X

(kj�� [kj�]) ordwPj

� � ordwP � � � �t2 � � = t1 � (� � n+ 1):

This implies ordwQ � t1�[��n+1]. As [��n+1] < n�a�1�n+1 = �a � 0,

we can take a derivative of order �[� � n + 1] of Q to get a polynomial F

with

deg F = �D � � + [� � n+ 1] � �D � n+ 1;

which vanishes at order t1 on S. In this case, we obtain therefore

!t1(S) � �D � n+ 1 =
t1 + n� 1

t2
!t2(S)� n+ 1

and the proof of Th. 8.6 is complete. �
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9. Skoda's L2 Estimates for Surjective Bundle

Morphisms

Let (X;!) be a K�ahler manifold, dimX = n, and g : E �! Q a holomorphic

morphism of hermitian vector bundles over X. Assume in the �rst instance

that g is surjective. We are interested in conditions insuring for example

that the induced morphism g : Hk(X;KX 
 E) �! Hk(X;KX 
 Q) is
also surjective. For that purpose, it is natural to consider the subbundle

S = Ker g � E and the exact sequence

(9:1) 0 �! S �! E
g�! Q �! 0:

Assume for the moment that S and Q are endowed with the metrics induced

by that of E. Let L be a line bundle over X. We consider the tensor product

of sequence (9.1) by L :

(9:2) 0 �! S 
 L �! E 
 L g�! Q
 L �! 0:

(9.3) Theorem. Let k be an integer such that 0 � k � n. Set r = rk E,

q = rkQ, s = rk S = r � q and

m = minfn� k; sg = minfn� k; r � qg:
Assume that (X;!) possesses also a complete K�ahler metric b!, that E �m 0,

and that L �! X is a hermitian line bundle such that

i�(L)� (m+ ")i�(detQ) � 0

for some " > 0. Then for every D00-closed form f of type (n; k) with values

in Q
L such that kfk < +1, there exists a D00-closed form h of type (n; k)

with values in E 
 L such that f = g � h and

khk2 � (1 +m=") kfk2:

The idea of the proof is essentially due to (Skoda 1978), who actually

proved the special case k = 0. The general case appeared in (Demailly 1982c).

Proof. Let j : S ! E be the inclusion morphism, g? : Q! E and j? : E ! S

the adjoints of g; j, and

DE =

�
DS ��?
� DQ

�
; � 2 C11;0

�
X; hom(S;Q)

�
; �? 2 C10;1

�
X; hom(Q;S)

�
;

the matrix of DE with respect to the orthogonal splitting E ' S � Q (cf.

xV-14). Then g?f is a lifting of f in E 
 L. We shall try to �nd h under the

form
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h = g?f + ju; u 2 L2
n;k

(X;S 
 L):
As the images of S and Q in E are orthogonal, we have jhj2 = jf j2 + juj2
at every point of X. On the other hand D00

Q
Lf = 0 by hypothesis and

D00g? = �j Æ �? by V-14.3 d), hence

D00
E
Lh = �j(�? ^ f) + j D00

S
L = j(D00
S
L � �? ^ f):

We are thus led to solve the equation

(9:4) D00S
Lu = �? ^ f;
and for that, we apply Th. 4.5 to the (n; k + 1)-form �? ^ f . One observes

now that the curvature of S
L can be expressed in terms of �. This remark

will be used to prove:

(9.5) Lemma. hA�1
k
(�? ^ f); (�? ^ f)i � (m=") jf j2.

If the Lemma is taken for granted, Th. 4.5 yields a solution u of (9.4)

in L2
n;q(X;S 
 L) such that kuk2 � (m=") kfk2. As khk2 = kfk2 + kuk2, the

proof of Th. 9.3 is complete. �

Proof of Lemma 9.5. Exactly as in the proof of Th. VII-10.3, formulas (V-

14.6) and (V-14.7) yield

i�(S) �m i�? ^ �; i�(detQ) � TrQ(i� ^ �?) = TrS(�i�? ^ �):
Since C11;1(X;HermS) 3 � := �i�? ^ � �Grif 0, Prop. VII-10.1 implies

m TrS(�i�? ^ �)
 IdS +i�
? ^ � �m 0:

From the hypothesis on the curvature of L we get

i�(S 
 L) �m i�(S)
 IdL+(m+ ") i�(detQ)
 IdS
L

�m
�
i�? ^ � + (m+ ") TrS(�i�? ^ �)
 IdS

�
 IdL

�m ("=m) (�i�? ^ �)
 IdS 
 IdL :

For any v 2 �n;k+1T ?
X

 S 
 L, Lemma VII-7.2 implies

(9:6) hAk;S
Lv; vi � ("=m) h�i�? ^ � ^ �v; vi;
because rk(S 
 L) = s and m = minfn � k; sg. Let (dz1; : : : ; dzn) be an

orthonormal basis of T ?
X
at a given point x0 2 X and set

� =
X

1�j�n
dzj 
 �j ; �j 2 hom(S;Q):

The adjoint of the operator �? ^ � =P dzj ^ �?j � is the contraction � �
de�ned by
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� v =
X @

@zj
(�jv) =

X
�idzj ^ �(�jv) = �i� ^ �v:

We get consequently h�i�? ^ � ^ �v; vi = j� vj2 and (9.6) implies

jh�? ^ f; vij2 = jhf; � vij2 � jf j2 j� vj2 � (m=")hAk;S
Lv; vi jf j2: �

If X has a plurisubharmonic exhaustion function  , we can select a convex

increasing function � 2 C1(R;R) and multiply the metric of L by the weight

exp(��Æ ) in order to make the L2 norm of f converge. Theorem 9.3 implies

therefore:

(9.7) Corollary. Let (X;!) be a weakly pseudoconvex K�ahler manifold, let

g : E ! Q be a surjective bundle morphism with r = rk E, q = rk Q, let

m = minfn� k; r � qg and let L ! X be a hermitian line bundle. Suppose

that E �m 0 and

i�(L)� (m+ ") i�(detQ) � 0

for some " > 0. Then g induces a surjective map

Hk(X;KX 
E 
 L) �! Hk(X;KX 
Q
 L):

The most remarkable feature of this result is that it does not require any

strict positivity assumption on the curvature (for instance E can be a at

bundle). A careful examination of the proof shows that it amounts to verify

that the image of the coboundary morphism

��? ^ � : Hk(X;KX 
Q
 L) �! Hk+1(X;KX 
 S 
 L)
vanishes; however the cohomology group Hk+1(X;KX 
 S 
 L) itself does
not vanish in general as it would do under a strict positivity assumption (cf.

Th. VII-9.4).

We want now to get also estimates when Q is endowed with a metric given

a priori, that can be distinct from the quotient metric of E by g. Then the

map g?(gg?)�1 : Q �! E is the lifting of Q orthogonal to S = Ker g. The

quotient metric j � j0 on Q is therefore de�ned in terms of the original metric

j � j by
jvj02 = jg?(gg?)�1vj2 = h(gg?)�1v; vi = det(gg?)�1 hggg?v; vi

where ggg? 2 End(Q) denotes the endomorphism of Q whose matrix is the

transposed of the comatrix of gg?. For every w 2 detQ, we �nd

jwj02 = det(gg?)�1 jwj2:
If Q0 denotes the bundle Q with the quotient metric, we get
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i�(detQ0) = i�(detQ) + id0d00 log det(gg?):

In order that the hypotheses of Th. 9.3 be satis�ed, we are led to de�ne a

new metric j � j0 on L by juj02 = juj2 �det(gg?)��m�". Then
i�(L0) = i�(L) + (m+ ") id0d00 log det(gg?) � (m+ ") i�(detQ0):

Theorem 9.3 applied to (E;Q0; L0) can now be reformulated:

(9.8) Theorem. Let X be a complete K�ahler manifold equipped with a K�ahler

metric ! on X, let E ! Q be a surjective morphism of hermitian vector

bundles and let L ! X be a hermitian line bundle. Set r = rk E, q = rk Q

and m = minfn� k; r � qg and suppose E �m 0,

i�(L)� (m+ ")i�(detQ) � 0

for some " > 0. Then for every D00-closed form f of type (n; k) with values

in Q
 L such that

I =

Z
X

hggg?f; fi (det gg?)�m�1�" dV < +1;

there exists a D00-closed form h of type (n; k) with values in E 
 L such that

f = g � h andZ
X

jhj2 (det gg?)�m�" dV � (1 +m=") I: �

Our next goal is to extend Th. 9.8 in the case when g : E �! Q is only

generically surjective; this means that the analytic set

Y = fx 2 X ; gx : Ex �! Qx is not surjective g
de�ned by the equation �qg = 0 is nowhere dense in X. Here �qg is a section

of the bundle hom(�qE; detQ).

(9.9) Theorem. The existence statement and the estimates of Th. 9:8 re-

main true for a generically surjective morphism g : E ! Q provided that X

is weakly pseudoconvex.

Proof. Apply Th. 9.8 to each relatively compact domain Xc r Y (these do-

mains are complete K�ahler by Lemma 7.2). From a sequence of solutions on

XcrY we can extract a subsequence converging weakly on XrY as c tends

to +1. One gets a form h satisfying the estimates, such that D00h = 0 on

X r Y and f = g � h. In order to see that D00h = 0 on X, it suÆces to

apply Lemma 7.3 and to observe that h has L2
loc coeÆcients on X by our

estimates. �
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A very special but interesting case is obtained for the trivial bundles

E = 
 � C r , Q = 
 � C over a pseudoconvex open set 
 � C n . Then the

morphism g is given by a r-tuple (g1; : : : ; gr) of holomorphic functions on 
.

Let us take k = 0 and L = 
 � C with the metric given by a weight e�'. If
we observe thatggg? = Id when rk Q = 1, Th. 9.8 applied on X = 
 r g�1(0)
and Lemmas 7.2, 7.3 give:

(9.10) Theorem (Skoda 1978). Let 
 be a complete K�ahler open subset of

C n and ' a plurisubharmonic function on 
. Set m = minfn; r � 1g. Then
for every holomorphic function f on 
 such that

I =

Z

rZ

jf j2 jgj�2(m+1+")e�' dV < +1;

where Z = g�1(0), there exist holomorphic functions (h1; : : : ; hr) on 
 such

that f =
P
gjhj andZ


rY

jhj2 jgj�2(m+")e�' dV � (1 +m=")I: �

This last theorem can be used in order to obtain a quick solution of the

Levi problem mentioned in xI-4. It can be used also to prove a result of

(Diederich-Pug 1981), relating the pseudoconvexity property and the exis-

tence of complete K�ahler metrics for domains of C n .

(9.11) Theorem. Let 
 � C n be an open subset. Then:

a) 
 is a domain of holomorphy if and only if 
 is pseudoconvex ;

b) If (
)Æ = 
 and if 
 has a complete K�ahler metric b!, then 
 is pseudo-

convex.

Note that statement b) can be false if the assumption (
)Æ = 
 is omitted:

in fact C nrf0g is complete K�ahler by Lemma 7.2, but it is not pseudoconvex

if n � 2.

Proof. b) By Th. I-4.12, it is enough to verify that 
 is a domain of holomor-

phy, i.e. that for every connected open subset U such that U \ @
 6= ; and
every connected component W of U \
 there exists a holomorphic function

h on 
 such that h�W cannot be continued to U . Since (
)Æ = 
, the set

U r
 is not empty. We select a 2 U r
. Then the integralZ



jz � aj�2(n+") dV (z)

converges. By Th. 9.10 applied to f(z) = 1, gj(z) = zj � aj and ' = 0, there

exist holomorphic functions hj on 
 such that
P
(zj � aj)hj(z) = 1. This
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shows that at least one of the functions hj cannot be analytically continued

at a 2 U .
a) Assume that 
 is pseudoconvex. Given any open connected set U such

that U \ @
 6= ;, choose a 2 U \ @
. By Th. I-4.14 c) the function

'(z) = (n+ ")(log(1 + jzj2)� 2 log d(z; {
)
�

is plurisubharmonic on 
. Then the integralZ



jz � aj�2(n+") e�'(z) dV (z) �
Z



(1 + jzj2)�n�" dV (z)

converges, and we conclude as for b). �

10. Application of Skoda's L2 Estimates to Local

Algebra

We apply here Th. 9.10 to the study of ideals in the ring On = C fz1 ; : : : ; zng
of germs of holomorphic functions on (C n ; 0). Let I = (g1; : : : ; gr) 6= (0) be

an ideal of On.

(10.1) De�nition. Let k 2 R+ . We associate to I the following ideals:

a) the ideal I
(k)

of germs u 2 On such that juj � Cjgjk for some constant

C � 0, where jgj2 = jg1j2 + � � �+ jgrj2.
b) the ideal bI(k) of germs u 2 On such thatZ




juj2 jgj�2(k+") dV < +1

on a small ball 
 centered at 0, if " > 0 is small enough.

(10.2) Proposition. For all k; l 2 R+ we have

a) I
(k) � bI(k) ;

b) Ik � I(k) if k 2 N ;
c) I

(k)
:I
(l) � I(k+l) ;

d) I
(k)
:bI(l) � bI(k+l):

All properties are immediate from the de�nitions except a) which is a

consequence of Lemma 8.2. Before stating the main result, we need a simple

lemma.
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(10.3) Lemma. If I = (g1; : : : ; gr) and r > n, we can �nd elementseg1; : : : ; egn 2 I such that C�1jgj � jegj � Cjgj on a neighborhood of 0. Each egj
can be taken to be a linear combination

egj = aj: g =
X

1�k�r
ajkgk; aj 2 C r r f0g

where the coeÆcients ([a1]; : : : ; [an]) are chosen in the complement of a proper

analytic subset of (Pr�1)n.

It follows from the Lemma that the ideal J = (eg1; : : : ; egn) � I satis�es

J(k) = I(k) and bJ(k) = bI(k) for all k.
Proof. Assume that g 2 O(
)r. Consider the analytic subsets in 
� (Pr�1)n
de�ned by

A =
�
(z; [w1]; : : : ; [wn]) ; wj : g(z) = 0

	
;

A? =
[

irreducible components of A not contained in g�1(0)� (Pr�1)n:

For z =2 g�1(0) the �ber Az = f([w1]; : : : ; [wn]) ; wj : g(z) = 0g = A?
z
is a

product of n hyperplanes in Pr�1, hence A\ (
rg�1(0))� (Pr�1)n is a �ber

bundle with base 
 r g�1(0) and �ber (Pr�2)n. As A? is the closure of this
set in 
 � (Pr�1)n, we have

dimA? = n+ n(r � 2) = n(r � 1) = dim(Pr�1)n:

It follows that the zero �ber

A?0 = A? \ �f0g � (Pr�1)n
�

is a proper subset of f0g � (Pr�1)n. Choose (a1; : : : ; an) 2 (C r r f0g)n
such that (0; [a1]; : : : ; [an]) is not in A?0. By an easy compactness argu-

ment the set A? \ �B(0; ")� (Pr�1)n
�
is disjoint from the neighborhood

B(0; ")�Q[B(aj; ")] of (0; [a1]; : : : ; [an]) for " small enough. For z 2 B(0; ")
we have jaj : g(z)j � "jg(z)j for some j, otherwise the inequality jaj : g(z)j <
"jg(z)j would imply the existence of hj 2 C r with jhj j < " and aj : g(z) =

hj : g(z). Since g(z) 6= 0, we would have

(z; [a1 � h1]; : : : ; [an � hn]) 2 A? \
�
B(0; ")� (Pr�1)n

�
;

a contradiction. We obtain therefore

"jg(z)j � max jaj : g(z)j � (max jajj) jg(z)j on B(0; "): �

(10.4) Theorem (Brian�con-Skoda 1974). Set p = minfn� 1; r � 1g. Then
a) bI(k+1) = IbI(k) = IbI(k) for k � p.
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b) I
(k+p) � bI(k+p) � Ik for all k 2 N.

Proof. a) The inclusions IbI(k) � IbI(k) � bI(k+1) are obvious thanks to

Prop. 10.2, so we only have to prove that bI(k+1) � IbI(k). Assume �rst that

r � n. Let f 2 bI(k+1) be such thatZ



jf j2 jgj�2(k+1+") dV < +1:

For k � p � 1, we can apply Th. 9.10 with m = r � 1 and with the weight

' = (k �m) log jgj2. Hence f can be written f =
P
gjhj withZ




jhj2 jgj�2(k+") dV < +1;

thus hj 2 bI(k) and f 2 IbI(k). When r > n, Lemma 10.3 shows that there is

an ideal J � I with n generators such that bJ(k) = bI(k). We �ndbI(k+1) = bJ(k+1) � JbJ(k) � IbI(k) for k � n� 1:

b) Property a) implies inductively bI(k+p) = Ik bI(p) for all k 2 N . This gives

in particular bI(k+p) � Ik. �

(10.5) Corollary.

a) The ideal I is the integral closure of I, i.e. by de�nition the set of germs

u 2 On which satisfy an equation

ud + a1u
d�1 + � � �+ ad = 0; as 2 Is; 1 � s � d:

b) Similarly, I
(k)

is the set of germs u 2 On which satisfy an equation

ud + a1u
d�1 + � � �+ ad = 0; as 2 I]ks[; 1 � s � d;

where ]t[ denotes the smallest integer � t.

As the ideal I
(k)

is �nitely generated, property b) shows that there always

exists a rational number l � k such that I(l) = I(k).

Proof. a) If u 2 On satis�es a polynomial equation with coeÆcients as 2 Is,
then clearly jasj � Cs jgjs and Lemma II-4.10 implies juj � C jgj.

Conversely, assume that u 2 I. The ring On is Noetherian, so the idealbI(p) has a �nite number of generators v1; : : : ; vN . For every j we have uvj 2
IbI(p) = IbI(p), hence there exist elements bjk 2 I such that

uvj =
X

1�k�N
bjkvk:



450 Chapter VIII L2 Estimates on Pseudoconvex Manifolds

The matrix (uÆjk � bjk) has the non zero vector (vj) in its kernel, thus u

satis�es the equation det(uÆjk � bjk) = 0, which is of the required type.

b) Observe that v1; : : : ; vN satisfy simultaneously some integrability conditionR


jvj j�2(p+") < +1, thus bI(p) = bI(p+�) for � 2 [0; "[. Let u 2 I(k). For every

integer m 2 N we have

umvj 2 I(km)bI(p+�) � bI(km+�+p):

If k =2 Q , we can �nd m such that d(km + "=2;Z) < "=2, thus km + � 2 N
for some � 2 ]0; "[. If k 2 Q , we take m such that km 2 N and � = 0. Then

umvj 2 bI(N+p) = I
N bI(p) with N = km+ � 2 N ;

and the reasoning made in a) gives det(umÆjk � bjk) = 0 for some bjk 2 IN .
This is an equation of the type described in b), where the coeÆcients as
vanish when s is not a multiple of m and ams 2 INs � I]kms[. �

Let us mention that Brian�con and Skoda's result 10.4 b) is optimal for

k = 1. Take for example I = (g1; : : : ; gr) with gj(z) = zr
j
, 1 � j � r, and

f(z) = z1 : : : zr. Then jf j � Cjgj and 10.4 b) yields fr 2 I ; however, it is easy
to verify that fr�1 =2 I. The theorem also gives an answer to the following

conjecture made by J. Mather.

(10.6) Corollary. Let f 2 On and If = (z1@f=@z1; : : : ; zn@f=@zn). Then

f 2 If , and for every integer k � 0, fk+n�1 2 Ik
f
.

The Corollary is also optimal for k = 1 : for example, one can verify that

the function f(z) = (z1 : : : zn)
3+ z3n�11 + : : :+ z3n�1

n
is such that fn�1 =2 If .

Proof. Set gj(z) = zj @f=@zj, 1 � j � n. By 10.4 b), it suÆces to show that

jf j � Cjgj. For every germ of analytic curve C 3 t 7�! (t),  6� 0, the

vanishing order of f Æ (t) at t = 0 is the same as that of

t
d(f Æ )
dt

=
X

1�j�n
t 0
j
(t)

@f

@zj

�
(t)

�
:

We thus obtain

jf Æ (t)j � C1 jtj
���d(f Æ )

dt

��� � C2

X
1�j�n

jt 0
j
(t)j

��� @f
@zj

�
(t)

���� � C3 jg Æ (t)j

and conclude by the following elementary lemma. �

(10.7) Lemma. Let f; g1; : : : ; gr 2 On be germs of holomorphic functions

vanishing at 0. Then we have jf j � Cjgj for some constant C if and only if
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for every germ of analytic curve  through 0 there exists a constant C such

that jf Æ j � C jg Æ j.

Proof. If the inequality jf j � Cjgj does not hold on any neighborhood of 0,

the germ of analytic set (A; 0) � (C n+r ; 0) de�ned by

gj(z) = f(z)zn+j ; 1 � j � r;
contains a sequence of points

�
z� ; gj(z�)=f(z�)

�
converging to 0 as � tends

to +1, with f(z�) 6= 0. Hence (A; 0) contains an irreducible component on

which f 6� 0 and there is a germ of curve e = (; n+j) : (C ; 0) ! (C n+r ; 0)

contained in (A; 0) such that f Æ  6� 0. We get gj Æ  = (f Æ )n+j, hence
jg Æ (t)j � Cjtj jf Æ (t)j and the inequality jf Æ j � C jg Æ j does not hold.

�

11. Integrability of Almost Complex Structures

Let M be a C1 manifold of real dimension m = 2n. An almost complex

structure on M is by de�nition an endomorphism J 2 End(TM) of class C1

such that J2 = � Id. Then TM becomes a complex vector bundle for which

the scalar multiplication by i is given by J . The pair (M;J) is said to be

an almost complex manifold. For such a manifold, the complexi�ed tangent

space TCM = C 
R TM splits into conjugate complex subspaces

(11:1) TCM = T 1;0M � T 0;1M; dimC T
1;0M = dimC T

0;1M = n;

where T 1;0M , T 0;1M � TCM are the eigenspaces of Id
J corresponding to

the eigenvalues i and �i. The complexi�ed exterior algebra C 
R ��T ?M =

��T ?
C
M has a corresponding splitting

(11:2) �kT ?
C
M =

M
p+q=k

�p;qT ?
C
M

where we denote by de�nition

(11:3) �p;qT ?
C
M = �p(T 1;0M)? 
C �q(T 0;1M)?:

As for complex manifolds, we let Csp;q(M;E) be the space of di�erential forms

of class Cs and bidegree (p; q) on M with values in a complex vector bundle

E. There is a natural antisymmetric bilinear map

� : C1(M;T 1;0M)� C1(M;T 1;0M) �! C1(M;T 0;1M)

which associates to a pair (�; �) of (1; 0)-vector �elds the (0; 1)-component of

the Lie bracket [�; �]. Since

[�; f�] = f [�; �] + (�:f) �; 8f 2 C1(M; C )
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we see that �(�; f�) = f �(�; �). It follows that � is in fact a (2; 0)-form on M

with values in T 0;1M .

If M is a complex analytic manifold and J its natural almost complex

structure, we have in fact � = 0, because [@=@zj; @=@zk] = 0, 1 � j; k � n,

for any holomorphic local coordinate system (z1; : : : ; zn).

(11.4) De�nition. The form � 2 C12;0(M;T 0;1M) is called the torsion form

of J . The almost complex structure J is said to be integrable if � = 0.

(11.5) Example. If M is of real dimension m = 2, every almost complex

structure is integrable, because n = 1 and alternate (2; 0)-forms must be zero.

Assume that M is a smooth oriented surface. To any Riemannian metric g

we can associate the endomorphism J 2 End(TM) equal to the rotation of

+�=2. A change of orientation changes J into the conjugate structure �J .
Conversely, if J is given, TM is a complex line bundle, so M is oriented, and

a Riemannian metric g is associated to J if and only if g is J -hermitian. As a

consequence, there is a one-to-one correspondence between conformal classes

of Riemannian metrics on M and almost complex structures corresponding

to a given orientation. �

If (M;J) is an almost complex manifold and u 2 C1p;q(M; C ), we let

d0u; d00u be the components of type (p + 1; q) and (p; q + 1) in the exterior

derivative du. Let (�1; : : : ; �n) be a frame of T 1;0M�
 . The torsion form � can

be written

� =
X

1�j�n
�j 
 �j ; �j 2 C12;0(
; C ):

Then � yields conjugate operators �0; �00 on ��T ?
C
M such that

(11:6) �0u =
X

1�j�n
�j ^ (�j u); �00u =

X
1�j�n

�j ^ (�j u):

If u is of bidegree (p; q), then �0u and �00u are of bidegree (p+ 2; q � 1) and

(p� 1; q + 2). It is clear that �0, �00 are derivations, i.e.

�0(u ^ v) = (�0u) ^ v + (�1)deg uu ^ (�0v)
for all smooth forms u; v, and similarly for �00.

(11.7) Proposition. We have d = d0 + d00 � �0 � �00.

Proof. Since all operators occuring in the formula are derivations, it is suÆ-

cient to check the formula for forms of degree 0 or 1. If u is of degree 0, the

result is obvious because �0u = �00u = 0 and du can only have components of

types (1; 0) or (0; 1). If u is a 1-form and �; � are complex vector �elds, we

have
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du(�; �) = �:u(�)� �:du(�)� u([�; �]):
When u is of type (0; 1) and �; � of type (1; 0), we �nd

(du)2;0(�; �) = �u��(�; �)�
thus (du)2;0 = ��0u, and of course (du)1;1 = d0u, (du)0;2 = d00u, �00u = 0 by

de�nition. The case of a (1; 0)-form u follows by conjugation. �

Proposition 11.7 shows that J is integrable if and only if d = d0 + d00. In
this case, we infer immediately

d02 = 0; d0d00 + d00d0 = 0; d002 = 0:

For an integrable almost complex structure, we thus have the same formalism

as for a complex analytic structure, and indeed we shall prove:

(11.8) Newlander-Nirenberg theorem (1957). Every integrable almost

complex structure J on M is de�ned by a unique analytic structure.

The proof we shall give follows rather closely that of (H�ormander 1966),

which was itself based on previous ideas of (Kohn 1963, 1964). A func-

tion f 2 C1(
; C ), 
 � M , is said to be J -holomorphic if d00f = 0. Let

f1; : : : ; fp 2 C1(
; C ) and let h be a function of class C1 on an open subset

of C p containing the range of f = (f1; : : : ; fp). An easy computation gives

(11:9) d00(h Æ f) =
X

1�j�p

� @h
@zj
Æ f
�
d00fj +

� @h
@zj
Æ f
�
d0fj ;

in particular h Æ f is J -holomorphic as soon as f1; : : : ; fp are J -holomorphic

and h holomorphic in the usual sense.

Constructing a complex analytic structure on M amounts to show the

existence of J -holomorphic complex coordinates (z1; : : : ; zn) on a neighbor-

hood 
 of every point a 2M . Formula (11.9) then shows that all coordinate

changes h : (zk) 7! (wk) are holomorphic in the usual sense, so that M

is furnished with a complex analytic atlas. The uniqueness of the analytic

structure associated to J is clear, since the holomorphic functions are char-

acterized by the condition d00f = 0. In order to show the existence, we need

a lemma.

(11.10) Lemma. For every point a 2M and every integer s � 1, there exist

C1 complex coordinates (z1; : : : ; zn) centered at a such that

d00zj = O(jzjs); 1 � j � n:

Proof. By induction on s. Let (�?1 ; : : : ; �
?

n
) be a basis of �1;0T ?

C
M . One can

�nd complex functions zj such that dzj(a) = �?
j
, i.e.
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d0zj(a) = �?
j
; d00zj(a) = 0:

Then (z1; : : : ; zn) satisfy the conclusions of the Lemma for s = 1. If

(z1; : : : ; zn) are already constructed for the integer s, we have a Taylor ex-

pansion

d00zj =
X

1�k�n
Pjk(z; z) d0zk +O(jzjs+1)

where Pjk(z; w) is a homogeneous polynomial in (z; w) 2 C n � C n of total

degree s. As J is integrable, we have

0 = d002zj =
X

1�k;l�n

@Pjk

@zl
d00zl ^ d0zk + @Pjk

@zl
d0zl ^ d0zk +O(jzjs)

=
X

1�k<l�n

h@Pjk
@zl

� @Pjl

@zk

i
d0zl ^ d0zk +O(jzjs)

because @Pjk=@zl is of degree s� 1 and d00zl = O(jzjs). Since the polynomial

between brackets is of degree s� 1, we must have

@Pjk

@zl
� @Pjl

@zk
= 0; 8j; k; l:

We de�ne polynomials Qj of degree s+ 1

Qj(z; z) =

Z 1

0

X
1�l�n

zl Pjl(z; tz) dt:

Trivial computations show that

@Qj

@zk
=

Z 1

0

�
Pjk +

X
1�l�n

zl
@Pjl

@zk

�
(z; tz) dt

=

Z 1

0

d

dt

h
t Pjk(z; tz)

i
dt = Pjk(z; z);

d00
�
zj �Qj(z; z)

�
= d00zj �

X
1�k�n

@Qj

@zk
d0zk �

X
1�k�n

@Qj

@zk
d00zk

= �
X

1�k�n

@Qj

@zk
d00zk +O(jzjs+1) = O(jzjs+1)

because @Qj=@zk is of degree s and d
00zl = O(jzj). The new coordinates

ezj = zj �Qj(z; z); 1 � j � n
ful�ll the Lemma at step s+ 1. �
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All usual notions de�ned on complex analytic manifolds can be extended

to integrable almost complex manifolds. For example, a smooth function ' is

said to be strictly plurisubharmonic if id0d00' is a positive de�nite (1; 1)-form.

Then ! = id0d00' is a K�ahler metric on (M;J).

In this context, all L2 estimates proved in the previous paragraphs still

apply to an integrable almost complex manifold; remember that the proof

of the Bochner-Kodaira-Nakano identity used only Taylor developments of

order � 2, and the coordinates given by Lemma 11.10 work perfectly well for

that purpose. In particular, Th. 6.5 is still valid.

(11.11) Lemma. Let (z1; : : : ; zn) be coordinates centered at a point a 2 M
with d00zj = O(jzjs), s � 3. Then the functions

 (z) = jzj2; '"(z) = jzj2 + log(jzj2 + "2); " 2 ]0; 1]

are strictly plurisubharmonic on a small ball jzj < r0.

Proof. We have

id0d00 = i
X

1�j�n
d0zj ^ d0zj + d0zj ^ d00zj + zj d

0d00zj + zj d
0d00zj :

The last three terms are O(jzjs) and the �rst one is positive de�nite at z = 0,

so the result is clear for  . Moreover

id0d00'" = id0d00 + i
(jzj2 + "2)

P
d0zj ^ d0zj �

P
zjd
0zj ^

P
zjd0zj

(jzj2 + "2)2

+
O(jzjs)
jzj2 + "2

+
O(jzjs+2)
(jzj2 + "2)2

:

We observe that the �rst two terms are positive de�nite, whereas the remain-

der is O(jzj) uniformly in ".

Proof of theorem 11.8. With the notations of the previous lemmas, consider

the pseudoconvex open set


 = fjzj < rg = f (z)� r2 < 0g; r < r0;

endowed with the K�ahler metric ! = id0d00 . Let h 2 D(
) be a cut-o�

function with 0 � h � 1 and h = 1 on a neighborhood of z = 0. We apply

Th. 6.5 to the (0; 1)-forms

gj = d00
�
zjh(z)

� 2 C10;1(
; C )
for the weight

'(z) = Ajzj2 + (n+ 1) log jzj2 = lim
"!0

Ajzj2 + (n+ 1) log(jzj2 + "2):
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Lemma 11.11 shows that ' is plurisubharmonic for A � n + 1, and for A

large enough we obtain

id0d00'+ Ricci(!) � ! on 
:

By Remark (6.8) we get a function fj such that d00fj = gj andZ



jfj j2e�'dV �
Z



jgjj2e�'dV:

As gj = d00zj = O(jzjs) and e�' = O(jzj�2n�2) near z = 0, the integral of gj
converges provided that s � 2. Then

R jfj(z)j2jzj�2n�2dV converges also at

z = 0. Since the solution fj is smooth, we must have fj(0) = dfj(0) = 0. We

set

ezj = zjh(z)� fj ; 1 � j � n:
Then ezj is J -holomorphic and dezj(0) = dzj(0), so (z1; : : : ; zn) is a J -

holomorphic coordinate system at z = 0. �

In particular, any Riemannian metric on an oriented 2-dimensional real

manifold de�nes a unique analytic structure. This fact will be used in order

to obtain a simple proof of the well-known:

(11.12) Uniformization theorem. Every simply connected Riemann sur-

face X is biholomorphic either to P1, C or the unit disk �.

Proof. We will merely use the fact that H1(X;R) = 0. If X is compact,

then X is a complex curve of genus 0, so X ' P1 by Th. VI-14.16. On the

other hand, the elementary Riemann mapping theorem says that an open set


 � C with H1(
;R) = 0 is either equal to C or biholomorphic to the unit

disk. Thus, all we have to show is that a non compact Riemann surface X

with H1(X;R) = 0 can be embedded in the complex plane C .

Let 
� be an exhausting sequence of relatively compact connected open

sets with smooth boundary in X. We may assume that X r
� has no rela-

tively compact connected components, otherwise we \�ll the holes" of 
� by

taking the union with all such components. We let Y� be the double of the

manifold with boundary (
� ; @
�), i.e. the union of two copies of 
� with

opposite orientations and the boundaries identi�ed. Then Y� is a compact

oriented surface without boundary.

(11.13) Lemma. We have H1(Y� ;R) = 0.

Proof. Let us �rst computeH1
c (
� ;R). Let u be a closed 1-form with compact

support in
� . By Poincar�e dualityH
1
c
(X;R) = 0, so u = df for some function

f 2 D(X). As df = 0 on a neighborhood of X r 
� and as all connected

components of this set are non compact, f must be equal to the constant
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zero near X r 
� . Hence u = df is the zero class in H1
c
(
� ;R) and we get

H1
c
(
� ;R) = H1(
� ;R) = 0. The exact sequence of the pair (
� ; @
�) yields

R = H0(
� ;R) �! H0(@
�;R) �! H1(
� ; @
� ; R) ' H1
c
(
� ;R) = 0;

thus H0(@
� ;R) = R. Finally, the Mayer-Vietoris sequence applied to small

neighborhoods of the two copies of 
� in Y� gives an exact sequence

H0(
� ;R)
�2 �! H0(@
�;R) �! H1(Y� ;R) �! H1(
� ;R)

�2 = 0

where the �rst map is onto. Hence H1(Y� ;R) = 0. �

Proof End of the proof of the uniformization theorem. Extend the almost

complex structure of 
� in an arbitrary way to Y� , e.g. by an extension of a

Riemannian metric. Then Y� becomes a compact Riemann surface of genus

0, thus Y� ' P1 and we obtain in particular a holomorphic embedding �� :


� �! C . Fix a point a 2 
0 and a non zero linear form �? 2 TaX. We can

take the composition of �� with an aÆne linear map C ! C so that ��(a) = 0

and d��(a) = �?. By the well-known properties of injective holomorphic

maps, (��) is then uniformly bounded on every small disk centered at a,

thus also on every compact subset of X by a connectedness argument. Hence

(��) has a subsequence converging towards an injective holomorphic map

� : X �! C . �





Chapter IX

Finiteness Theorems for q-Convex Spaces and

Stein Spaces

1. Topological Preliminaries

1.A. Krull Topology of On-Modules

We shall use in an essential way di�erent kind of topological results. The �rst

of these concern the topology of modules over a local ring and depend on the

Artin-Rees and Krull lemmas. Let R be a noetherian local ring; \local" means

that R has a unique maximal ideal m, or equivalently, that R has an ideal m

such that every element � 2 Rr m is invertible.

(1.1) Nakayama lemma. Let E be a �nitely generated R-module such that

mE = E. Then E = f0g.

Proof. By induction on the number of generators of E : if E is generated by

x1; : : : ; xp, the hypothesis E = mE shows that xp = �1x1 + � � �+ �pxp with

�j 2 m ; as 1� �p 2 Rr m is invertible, we see that xp can be expressed in

terms of x1; : : : ; xp�1 if p > 1 and that x1 = 0 if p = 1. �

(1.2) Artin-Rees lemma. Let F be a �nitely generated R-module and let

E be a submodule. There exists an integer s such that

E \mkF = m
k�s(E \ msF ) for k � s:

Proof. Let Rt be the polynomial ring R[mt] = R+mt+ � � �+mktk+ � � � where
t is an indeterminate. If g1; : : : ; gp is a set of generators of the ideal m over

R, we see that the ring Rt is generated by g1t; : : : ; gpt over R, hence Rt is

also noetherian. Now, we consider the Rt-modules

Et =
M

E tk; Ft =
M

(mkF ) tk:

Then Ft is generated over Rt by the generators of F over R, hence the

submodule Et \Ft is �nitely generated. Let s be the highest exponent of t in
a set of generators P1(t); : : : ; PN (t) of Et \Ft. If we identify the components

of tk in the extreme terms of the equality
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E \mkF � tk = Et \ Ft =

X
j

�M
k

m
k tk
�
Pj(t);

we get

E \mkF �
X
l�s

m
k�l(E \mlF ) � m

k�s(E \ msF ):

The opposite inclusion is clear. �

(1.3) Krull lemma. Let F be a �nitely generated R-module and let E be a

submodule. Then

a)
T
k�0m

kF = f0g.
b)
T
k�0(E +m

kF ) = E.

Proof. a) Put G =
T
k�0m

kF � F . By the Artin-Rees lemma, there exists

s 2 N such that G \ mkF = m
k�s(G \ msF ). Taking k = s + 1, we �nd

G � mG, hence mG = G and G = f0g by the Nakayama lemma.

b) By applying a) to the quotient module F=E we get
T
m
k(F=E) = f0g.

Property b) follows. �

Now assume that R = On = C fz1 ; : : : ; zng and m = (z1; : : : ; zn). Then

On=m
k is a �nite dimensional vector space generated by the monomials z�,

j�j < k. It follows that E=mkE is a �nite dimensional vector space for any

�nitely generated On-module E. As
T
m
kE = f0g by 1.3 a), there is an

injection

(1:4) E ,�!
Y
k2N

E=mkE:

We endow E with the Hausdor� topology induced by the product, i.e. with

the weakest topology that makes all projections E �! E=mkE continuous

for the complex vector space topology on E=mkE. This topology is called the

Krull topology (or rather, the analytic Krull topology; the \algebraic" Krull

topology would be obtained by taking the discrete topology on E=mkE). For

E = On, this is the topology of simple convergence on coeÆcients, de�ned

by the collection of semi-norms
P
c�z

� 7�! jc�j. Observe that this topology
is not complete: the completion of On can be identi�ed with the ring of

formal power series C [[z1 ; : : : ; zn]]. In general, the completion is the inverse

limit bE = lim
 �

E=mkE. Every On-homomorphism E �! F is continuous,

because the induced �nite dimensional linear maps E=mkE �! F=mkF are

continuous.

(1.5) Theorem. Let E � F be �nitely generated On-modules. Then:
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a) The map F �! G = F=E is open, i.e. the Krull topology of G is the

quotient of the Krull topology of F ;

b) E is closed in F and the topology induced by F on E coincides with the

Krull topology of E.

Proof. a) is an immediate consequence of the fact that the surjective �nite

dimensional linear maps F=mkF �! G=mkG are open.

b) Let E be the closure of E in F . The image of E in F=mkF is mapped into

the closure of the image of E. As every subspace of a �nite dimensional space

is closed, the images of E and E must coincide, i.e. E + m
kF = E + m

kF .

Therefore

E � E �
\

(E +m
kF ) = E

thanks to 1.3 b). The topology induced by F on E is the weakest that makes

all projections E �! E=E \ mkF continuous (via the injections E=E \
m
kF ,�! F=mkF ). However, the Artin-Rees lemma gives

m
kE � E \ mkF = m

k�s(E \msF ) � m
k�sE for k � s;

so the topology induced by F coincides with that induced by
Q
E=mkE. �

1.B. Compact Pertubations of Linear Operators

We now recall some basic results in the perturbation theory of linear opera-

tors. These results will be needed in order to obtain a �niteness criterion for

cohomology groups.

(1.6) De�nition. Let E;F be Hausdor� locally convex topological vector

spaces and g : E �! F a continuous linear operator.

a) g is said to be compact if there exists a neighborhood U of 0 in E such

that the image g(U) is compact in F .

b) g is said to be a monomorphism if g is a topological isomorphism of E

onto a closed subspace of F , and a quasi-monomorphism if ker g is �nite

dimensional and eg : E= ker g �! F a monomorphism.

c) g is said to be an epimorphism if g is surjective and open, and a quasi-

epimorphism if g is an epimorphism of E onto a closed �nite codimen-

sional subspace F 0 � F .
d) g is said to be a quasi-isomorphism if g is simultaneously a quasi-

monomorphism and a quasi-epimorphism.

(1.7) Lemma. Assume that E;F are Fr�echet spaces. Then
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a) g is a (quasi-) monomorphism if and only if g(E) is closed in F and g is

injective (resp. and ker g is �nite dimensional).

b) g is a (quasi-) epimorphism if and only if g is surjective (resp. g(E) is

�nite codimensional).

Proof. a) If g(E) is closed, the map eg : E= ker g �! g(E) is a continuous

bijective linear map between Fr�echet spaces, so eg is a topological isomorphism

by Banach's theorem.

b) If g is surjective, Banach's theorem implies that g is open, thus g is an epi-

morphism. If g(E) is �nite codimensional, let S be a supplementary subspace

of g(E) in F , dimS < +1. Then the map

G : (E= ker g)� S �! F; ex� y 7�! eg(ex) + y

is a bijective linear map between Fr�echet spaces, so it is a topological isomor-

phism. In particular g(E) = G
�
(E= ker g) � f0g� is closed as an image of a

closed subspace. Hence g(E) is also a Fr�echet space and g : E �! g(E) is an

epimorphism. �

(1.8) Theorem. Let h : E �! F be a compact linear operator.

a) If g : E �! F is a quasi-monomorphism, then g + h is a quasi-

monomorphism.

b) If E;F are Fr�echet spaces and if g : E �! F is a quasi-epimorphism,

then g + h is a quasi-epimorphism.

Proof. Set f = g + h and let U be an open convex symmetric neighborhood

of 0 in E such that K = h(U) is compact.

a) It is suÆcient to show that there is a �nite dimensional subspace E0 � E
such that f�E0 is a monomorphism. If we take E0 equal to a supplemen-

tary subspace of ker g, we see that we may assume g injective. Then g is a

monomorphism, so we may assume in fact that E is a subspace of F and that

g is the inclusion. Let V be an open convex symmetric neighborhood of 0 in

F such that U = V \ E. There exists a closed �nite codimensional subspace

F 0 � F such that K \ F 0 � 2�1V because
T
F 0
K \ F 0 = f0g. If we replace

E by E0 = h�1(F 0) and U by U 0 = U \E0, we get
K 0 := h(U 0) � K \ F 0 � 2�1V:

Hence, we may assume without loss of generality that K � 2�1V . Then we

show that f = g + h is actually a monomorphism. If 
 is an arbitrary open

neighborhood of 0 in E, we have to check that there exists a neighborhood

W of 0 in F such that f(x) 2W =) x 2 
. There is an integer N such that

2�NK \E � 
. We choose W convex and so small that
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(W + 2�NK) \ E � 
 and 2NW +K � 2�1V:

Let x 2 E be such that f(x) 2W . Then x 2 2nU for n large enough and we

infer

x = f(x)� h(x) 2W + 2nK � 2n�1V provided that n � �N:
Thus x 2 2n�1V \E = 2n�1U . By induction we �nally get x 2 2�NU , so

x 2 (W + 2�NK) \E � 
:
b) By Lemma 1.7 b), we only have to show that there is a �nite dimensional

subspace S � F such that the induced mapef : E �! F �! F=S

is surjective. If we take S equal to a supplementary subspace of g(E) and

replace g; h by the induced maps eg;eh : E �! F=S, we may assume that g

itself is surjective. Then g is open, so V = g(U) is a convex open neighborhood

of 0 in F . AsK is compact, there exists a �nite set of elements b1; : : : ; bN 2 K
such that K � S(bj+2�1V ). If we take now S = Vect(b1; : : : ; bN ), we obtaineK � 2�1 eV where eK is the closure of eh(U) and V = eg(U), so we may assume in

addition that K � 2�1V . Then we show that f = g+h is actually surjective.

Let y0 2 V . There exists x0 2 U such that g(x0) = y0, thus

y1 = y0 � f(x0) = �h(x0) 2 K � 2�1V:

By induction, we construct xn 2 2�nU such that g(xn) = yn and

yn+1 = yn � f(xn) = �h(xn) 2 2�nK � 2�n�1V:

Hence yn+1 = y0 � f(x0 + � � � + xn) tends to 0 in F , but we still have to

make sure that the series
P
xn converges in E. Let Up be a fundamental

system of convex neighborhoods of 0 in E such that Up+1 � 2�1Up. For each
p, K is contained in the union of the open sets g(2nUp \ 2�1U) when n 2 N ,
equal to g(2�1U) = 2�1V . There exists an increasing sequence N(p) such

that K � g(2N(p)Up \ 2�1U), thus

21�nK � g(2N(p)+1�nUp \ 2�nU):
As yn 2 21�nK, we see that we can choose xn 2 2N(p)+1�n Up \ 2�n U for

N(p) < n � N(p+ 1) ; then

xN(p)+1 + � � �+ xN(p+1) 2 (1 + 2�1 + � � � ) Up � 2Up:

As E is complete, the series x =
P
xn converges towards an element x such

that f(x) = y0, and f is surjective. �

The following important �niteness theorem due to L. Schwartz can be

easily deduced from this.
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(1.9) Theorem. Let (E�; d) and (F �; Æ) be complexes of Fr�echet spaces with
continuous di�erentials, and �� : E� �! F � a continuous complex morphism.
If �q is compact and Hq(��) : Hq(E�) �! Hq(F �) surjective, then Hq(F �)
is a Hausdor� �nite dimensional space.

Proof. Consider the operators

g; h : Zq(E�)� F q�1 �! Zq(F �);

g(x� y) = �q(x) + Æq�1(y); h(x� y) = ��q(x):
As Zq(E�) � Eq, Zq(F �) � F q are closed, all our spaces are Fr�echet spaces.
Moreover the hypotheses imply that h is compact and g is surjective since

Hq(��) is surjective. Hence g is an epimorphism and f = g + h = 0 �
Æq�1 is a quasi-epimorphism by 1.8 b). Therefore Bq(F �) is closed and �nite

codimensional in Zq(F �), thus Hq(F �) is Hausdor� and �nite dimensional.

�

(1.10) Remark. If �� : E� �! F � is a continuous morphism of Fr�echet

complexes and if Hq(��) is surjective, then Hq(��) is in fact open, because

the above map g is open. If Hq(��) is bijective, it follows that Hq(��) is

necessarily a topological isomorphism (however Hq(E�) and Hq(F �) need

not be Hausdor�). �

1.C. Abstract Mittag-Le�er Theorem

We will also need the following abstract Mittag-Le�er theorem, which is a

very eÆcient tool in order to deal with cohomology groups of inverse limits.

(1.11) Proposition. Let (E�� ; Æ)�2N be a sequence of Fr�echet complexes to-

gether with morphisms E�
�+1 �! E�

�
. We assume that the image of E�

�+1 in

E�
�
is dense and we let E� = lim � E�

�
be the inverse limit complex.

a) If all maps Hq(E�
�+1) �! Hq(E�

�
), � 2 N, are surjective, then the limit

Hq(E�) �! Hq(E�0) is surjective.

b) If all maps Hq(E�
�+1) �! Hq(E�

�
), � 2 N, have a dense range, then

Hq(E�) �! Hq(E�0) has a dense range.

c) If all maps Hq�1(E�
�+1) �! Hq�1(E�

�
) have a dense range and all maps

Hq(E��+1) �! Hq(E��) are injective, � 2 N, then Hq(E�) �! Hq(E�0) is
injective.

d) Let '� : F � �! E� be a morphism of Fr�echet complexes that has a

dense range. If every map Hq(F �) �! Hq(E�
�
) has a dense range, then

Hq(F �) �! Hq(E�) has a dense range.

Proof. If x is an element of E� or of E�
�
, � � �, we denote by x� its canon-

ical image in E�
�
. Let d� be a translation invariant distance that de�nes the

topology of E�
�
. After replacement of d�(x; y) by
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d0
�
(x; y) = max

���

�
d�(x

�; y�)
	
; x; y 2 E�

�
;

we may assume that all maps E�
�+1 �! E�

�
are Lipschitz continuous with

coeÆcient 1.

a) Let x0 2 Zq(E�0) represent a given cohomology class x0 2 Hq(E�0). We

construct by induction a convergent sequence x� 2 Zq(E��) such that x� is

mapped onto x0. If x� is already chosen, we can �nd by assumption x�+1 2
Zq(E��+1) such that x��+1 = x� , i.e. x

�

�+1 = x� + Æy� for some y� 2 Eq�1� . If

we replace x�+1 by x�+1�Æy�+1 where y�+1 2 Eq�1�+1 yields an approximation

y��+1 of y� , we may assume that maxfd�(y� ; 0); d�(Æy� ; 0)g � 2�� . Then (x�)

converges to a limit � 2 Zq(E�) and we have �0 = x0 + Æ
P
y0
�
.

b) The density assumption for cohomology groups implies that the map

Zq(E�
�+1)� Eq�1�

�! Zq(E�
�
); (x�+1; y�) 7�! x�

�+1 + Æy�

has a dense range. If we approximate y� by elements coming fromE
q�1
�+1, we see

that the map Zq(E�
�+1) �! Zq(E�

�
) has also a dense range. If x0 2 Zq(E�0),

we can �nd inductively a sequence x� 2 Zq(E�
�
) such that d�(x

�

�+1; x�) �
"2���1 for all �, thus (x�) converges to an element � 2 Zq(E�) such that

d0(�
0; x0) � " and Zq(E�) �! Zq(E�0) has a dense range.

c) Let x 2 Zq(E�) be such that x0 2 Hq(E�0) is zero. By assumption, the

image of x in Hq(E��) must be also zero, so we can write x
� = dy� , y� 2 Eq�1� .

We have z� = y�
�+1 � y� 2 Zq�1(E�

�
). Let z�+1 2 Zq�1(E�

�+1) be such

that z��+1 approximates z� . If we replace y�+1 by y�+1 � z�+1, we still have
x�+1 = dy�+1 and we may assume in addition that d�(y

�

�+1; y�) � 2�� . Then
(y�) converges towards an element y 2 Eq�1 such that x = dy, thus x = 0

and Hq(E�) �! Hq(E�0) is injective.

d) For every class y 2 Hq(E�), the hypothesis implies the existence of

a sequence x� 2 Zq(F �) such that 'q(x�)
� converges to y� , that is,

d�(y
� ; 'q(x�)

� + Æz�) tends to 0 for some sequence z� 2 Eq�1� . Approximate

z� by '
q�1(w�)� for some w� 2 F q�1 and replace x� by x

0
�
= x�+Æw� . Then

'q(x0
�
) converges to y in Zq(E�). �

2. q-Convex Spaces

2.A. q-Convex Functions

The concept of q-convexity, �rst introduced in (Rothstein 1955) and further

developed by (Andreotti-Grauert 1962), generalizes the concepts of pseu-

doconvexity already considered in chapters 1 and 8. Let M be a complex

manifold, dimC M = n. A function v 2 C2(M;R) is said to be strongly

(resp. weakly) q-convex at a point x 2M if id0d00v(x) has at least (n� q+1)
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strictly positive (resp. nonnegative) eigenvalues, or equivalently if there exists

a (n� q+ 1)-dimensional subspace F � TxM on which the complex Hessian

Hxv is positive de�nite (resp. semi-positive). Weak 1-convexity is thus equiv-

alent to plurisubharmonicity. Some authors use di�erent conventions for the

number of positive eigenvalues in q-convexity. The reason why we introduce

the number n� q + 1 instead of q is mainly due to the following result:

(2.1) Proposition. If v 2 C2(M;R) is strongly (weakly) q-convex and if Y

is a submanifold of M , then v�Y is strongly (weakly) q-convex.

Proof. Let d = dimY . For every x 2 Y , there exists F � TxM with dimF =

n � q + 1 such that Hv is (semi-) positive on F . Then G = F \ TxY has

dimension � (n� q+1)� (n� d) = d� q+1, and H(v�Y ) is (semi-) positive

on G � TxY . Hence v�Y is strongly (weakly) q-convex at x. �

(2.2) Proposition. Let vj 2 C2(M;R) be a weakly (strongly) qj-convex

function, 1 � j � s, and � 2 C2(Rs ;R) a convex function that is increas-

ing (strictly increasing) in all variables. Then v = �(v1; : : : ; vs) is weakly

(strongly) q-convex with q � 1 =
P
(qj � 1). In particular v1 + � � � + vs is

weakly (strongly) q-convex.

Proof. A simple computation gives

(2:3) Hv =
X
j

@�

@tj
(v1; : : : ; vs)Hvj +

X
j;k

@2�

@tj@tk
(v1; : : : ; vs) d

0vj 
 d0vk;

and the second sum de�nes a semi-positive hermitian form. In every tangent

space TxM there exists a subspace Fj of codimension qj � 1 on which Hvj
is semi-positive (positive de�nite). Then F =

T
Fj has codimension � q � 1

and Hv is semi-positive (positive de�nite) on F . �

The above result cannot be improved, as shown by the trivial example

v1(z) = �2jz1j2 + jz2j2 + jz3j2; v2(z) = jz1j2 � 2jz2j2 + jz3j2 on C 3 ;

in which case q1 = q2 = 2 but v1 + v2 is only 3-convex. However, formula

(2.3) implies the following result.

(2.4) Proposition. Let vj 2 C2(M;R), 1 � j � s, be such that every convex
linear combination

P
�jvj , �j � 0,

P
�j = 1, is weakly (strongly) q-convex.

If � 2 C2(Rs ;R) is a convex function that is increasing (strictly increasing)

in all variables, then �(v1; : : : ; vs) is weakly (strongly) q-convex. �

The invariance property of Prop. 2.1 immediately suggests the de�nition

of q-convexity on complex spaces or analytic schemes:



2. q-Convex Spaces 467

(2.5) De�nition. Let (X;OX) be an analytic scheme. A function v on X

is said to be strongly (resp. weakly) q-convex of class Ck on X if X can be

covered by patches G : U
'�! A, A � 
 � C N such that for each patch there

exists a function ev on 
 with ev�A ÆG = v�U , which is strongly (resp. weakly)

q-convex of class Ck.

The notion of q-convexity on a patch U does not depend on the way U is

embedded in C N , as shown by the following lemma.

(2.6) Lemma. Let G : U �! A � 
 � C N and G0 : U 0 �! A0 � 
0 � C N
0

be two patches of X. Let ev be a strongly (weakly) q-convex function on 
 and

v = ev�A ÆG. For every x 2 U \ U 0 there exists a strongly (weakly) q-convex

function ev0 on a neighborhood W 0 � 
0 of G0(x) such that ev0�A0\W 0 Æ G0
coincides with v on G0�1(W 0).

Proof. The isomorphisms

G0 ÆG�1 : A � G(U \ U 0) �! G0(U \ U 0) � A0
G ÆG0�1 : A0 � G0(U \ U 0) �! G(U \ U 0) � A

are restrictions of holomorphic maps H : W �! 
0, H 0 : W 0 �! 
 de-

�ned on neighborhoods W 3 G(x), W 0 3 G0(x) ; we can shrink W 0 so that

H 0(W 0) � W . If we compose the automorphism (z; z0) 7�! (z; z0 �H(z)) of

W � C N
0

with the function v(z) + jz0j2 we see that the function '(z; z0) =ev(z)+ jz0�H(z)j2 is strongly (weakly) q-convex on W �
0. Now,W 0 can be

embedded in W �
0 via the map z0 7�! �H 0(z0); z0�, so that the composite

function

ev0(z0) = '
�
H 0(z0); z0

�
= ev�H 0(z0)�+ jz0 �H ÆH 0(z0)j2

is strongly (weakly) q-convex on W 0 by Prop. 2.1. Since H Æ G = G0 and
H 0 ÆG0 = G on G0�1(W 0), we have ev0 ÆG0 = ev ÆG = v on G0�1(W 0) and the

lemma follows. �

A consequence of this lemma is that Prop. 2.2 is still valid for an analytic

scheme X (all the extensions evj near a given point x 2 X can be obtained

with respect to the same local embedding).

(2.7) De�nition. An analytic scheme (X;OX) is said to be strongly (resp.

weakly) q-convex if X has a C1 exhaustion function  which is strongly (resp.

weakly) q-convex outside an exceptional compact set K � X. We say that X

is strongly q-complete if  can be chosen so that K = ;. By convention, a

compact scheme X is said to be strongly 0-complete, with exceptional compact

set K = X.

We consider the sublevel sets
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(2:8) Xc = fx 2 X ;  (x) < cg; c 2 R:
If K � Xc, we may select a convex increasing function � such that � = 0

on ]�1; c] and �0 > 0 on ]c;+1[. Then � Æ  = 0 on Xc, so that � Æ  is

weakly q-convex everywhere in virtue of (2.3). In the weakly q-convex case,

we may therefore always assume K = ;. The following properties are almost

immediate consequences of the de�nition:

(2.9) Theorem.

a) A scheme X is strongly (weakly) q-convex if and only if the reduced space

Xred is strongly (weakly) q-convex.

b) If X is strongly (weakly) q-convex, every closed analytic subset Y of Xred

is strongly (weakly) q-convex.

c) If X is strongly (weakly) q-convex, every sublevel set Xc containing the

exceptional compact set K is strongly (weakly) q-convex.

d) If Uj is a weakly qj-convex open subset of X, 1 � j � s, the intersection

U = U1\ : : :\Us is weakly q-convex with q�1 =
P
(qj�1) ; U is strongly

q-convex (resp. q-complete) as soon as one of the sets Uj is strongly qj-

convex (resp. qj-complete).

Proof. a) is clear, since Def. 2.5 does not involve the structure sheaf OX . In

cases b) and c), let  be an exhaustion of the required type on X. Then

 �Y and 1=(c�  ) are exhaustions on Y and Xc respectively (this is so only

if Y is closed). Moreover, these functions are strongly (weakly) q-convex on

Y r (K \ Y ) and XcrK, thanks to Prop. 2.1 and 2.2. For property d), note

that a sum  =  1 + � � � +  s of exhaustion functions on the sets Uj is an

exhaustion on U , choose the  j 's weakly qj -convex everywhere, and apply

Prop. 2.2. �

(2.10) Corollary. Any �nite intersection U = U1\: : :\Us of weakly 1-convex
open subsets is weakly 1-convex. The set U is strongly 1-convex (resp. 1-

complete) as soon as one of the sets Uj is strongly 1-convex (resp. 1-complete).

2.B. Neighborhoods of q-complete subspaces

We prove now a rather useful result asserting the existence of q-complete

neighborhoods for q-complete subvarieties. The case q = 1 goes back to

(Siu 1976), who used a much more complicated method. The �rst step is

an approximation-extension theorem for strongly q-convex functions.

(2.11) Proposition. Let Y be an analytic set in a complex space X and  

a strongly q-convex C1 function on Y . For every continuous function Æ > 0

on Y , there exists a strongly q-convex C1 function ' on a neighborhood V

of Y such that  � '�Y <  + Æ.
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Proof. Let Zk be a stratication of Y as given by Prop. II.5.6, i.e. Zk is an

increasing sequence of analytic subsets of Y such that Y =
S
Zk and Zk r

Zk�1 is a smooth k-dimensional manifold (possibly empty for some k's). We

shall prove by induction on k the following statement:

There exists a C1 function 'k on X which is strongly q-convex along Y

and on a closed neighborhood V k of Zk in X, such that  � 'k�Y <  + Æ.

We �rst observe that any smooth extension '�1 of  to X satis�es the

requirements with Z�1 = V�1 = ;. Assume that Vk�1 and 'k�1 have been

constructed. Then ZkrVk�1 � ZkrZk�1 is contained in Zk;reg. The closed set
ZkrVk�1 has a locally �nite covering (A�) in X by open coordinate patches

A� � 
� � C N� in which Zk is given by equations z
0
�
= (z�;k+1; : : : ; z�;N�

) =

0. Let �� be C
1 functions with compact support in A� such that 0 � �� � 1

and
P
�� = 1 on Zk r Vk�1. We set

'k(x) = 'k�1(x) +
X

��(x) "
3
�
log(1 + "�4

�
jz0
�
j2) on X:

For "� > 0 small enough, we will have  � 'k�1�Y � 'k�Y <  + Æ. Now,

we check that 'k is still strongly q-convex along Y and near any x0 2 V k�1,
and that 'k becomes strongly q-convex near any x0 2 Zk r Vk�1. We may

assume that x0 2 Supp �� for some �, otherwise 'k coincides with 'k�1 in a

neighborhood of x0. Select � and a small neighborhood W �� 
� of x0 such

that

a) if x0 2 Zk r Vk�1, then ��(x0) > 0 and A� \W �� f�� > 0g ;
b) if x0 2 A� for some � (there is only a �nite set I of such �'s), then

A� \W �� A� and z��A�\W has a holomorphic extension ez� to W ;

c) if x0 2 V k�1, then 'k�1�A�\W has a strongly q-convex extension e'k�1 to
W ;

d) if x0 2 Y rV k�1, then 'k�1�Y \W has a strongly q-convex extension e'k�1
to W :

Otherwise take an arbitrary smooth extension e'k�1 of 'k�1�A�\W to W and

let e�� be an extension of ���A�\W to W . Then

e'k = e'k�1 +Xe�� "3� log(1 + "�4
�
jez 0
�
j2)

is an extension of 'k�A�\W to W , resp. of 'k�Y \W to W in case d). As

the function log(1 + "�4
�
jez 0
�
j2) is plurisubharmonic and as its �rst derivative

hez 0
�
; dez 0

�
i ("4

�
+ jez 0

�
j2)�1 is bounded by O("�2

�
), we see that

id0d00 e'k � id0d00 e'k�1 �O(P"�):

Therefore, for "� small enough, e'k remains q-convex on W in cases c) and

d). Since all functions ez 0
�
vanish along Zk \W , we have

id0d00 e'k � id0d00 e'k�1 +X
�2I

�� "
�1
�
id0d00jez 0

�
j2 � id0d00 e'k�1 + �� "

�1
�
id0d00jz0

�
j2
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at every point of Zk \W . Moreover id0d00 e'k�1 has at most (q � 1)-negative

eigenvalues on TZk since Zk � Y , whereas id0d00jz0
�
j2 is positive de�nite in

the normal directions to Zk in 
�. In case a), we thus �nd that e'k is strongly
q-convex on W for "� small enough; we also observe that only �nitely many

conditions are required on each "� if we choose a locally �nite covering ofS
Supp �� by neighborhoods W as above. Therefore, for "� small enough, 'k

is strongly q-convex on a neighborhood V
0
k
of Zk r Vk�1. The function 'k

and the set Vk = V 0
k
[ Vk�1 satisfy the requirements at order k. It is clear

that we can choose the sequence 'k stationary on every compact subset of

X ; the limit ' and the open set V =
S
Vk ful�ll the proposition. �

The second step is the existence of almost plurisubharmonic functions

having poles along a prescribed analytic set. By an almost plurisubharmonic

function on a manifold, we mean a function that is locally equal to the sum

of a plurisubharmonic function and of a smooth function, or equivalently, a

function whose complex Hessian has bounded negative part. On a complex

space, we require that our function can be locally extended as an almost

plurisubharmonic function in the ambient space of an embedding.

(2.12) Lemma. Let Y be an analytic subvariety in a complex space X. There

is an almost plurisubharmonic function v on X such that v = �1 on Y with

logarithmic poles and v 2 C1(X r Y ).

Proof. Since IY � OX is a coherent subsheaf, there is a locally �nite covering

of X by patches A� isomorphic to analytic sets in balls B(0; r�) � C N� , such

that IY admits a system of generators g� = (g�;j) on a neighborhood of each

set A�. We set

v�(z) = log jg�(z)j2 � 1

r2
�
� jz � z�j2 on A�;

v(z) =M(1;:::;1)

�
: : : ; v�(z); : : :

�
for � such that A� 3 z;

whereM� is the regularized max function de�ned in I-3.37. As the generators

(g�;j) can be expressed in terms of one another on a neighborhood of A�\A�,
we see that the quotient jg�j=jg�j remains bounded on this set. Therefore none

of the values v�(z) for A� 3 z and z near @A� contributes to the value of v,

since 1=(r2
�
� jz � z�j2) tends to +1 on @A�. It follows that v is smooth on

X r Y ; as each v� is almost plurisubharmonic on A�, we also see that v is

almost plurisubharmonic on X. �

(2.13) Theorem. Let X be a complex space and Y a strongly q-complete

analytic subset. Then Y has a fundamental family of strongly q-complete

neighborhoods V in X.

Proof. By Prop. 2.11 applied to a strongly q-convex exhaustion of Y and Æ =

1, there exists a strongly q-convex function ' on a neighborhoodW0 of Y such
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that '�Y is an exhaustion. Let W1 be a neighborhood of Y such that W 1 �
W0 and such that '�W 1

is an exhaustion. We are going to show that every

neighborhood W � W1 of Y contains a strongly q-complete neighborhood V .

If v is the function given by Lemma 2.12, we set

ev = v + � Æ ' on W

where � : R ! R is a smooth convex increasing function. If � grows fast

enough, we get ev > 0 on @W and the (q�1)-codimensional subspace on which

id0d00' is positive de�nite (in some ambient space) is also positive de�nite

for id0d00ev provided that �0 be large enough to compensate the bounded

negative part of id0d00v. Then ev is strongly q-convex. Let � be a smooth convex

increasing function on ]�1; 0[ such that �(t) = 0 for t < �3 and �(t) = �1=t
on ] � 1; 0[. The open set V = fz 2 W ; ev(z) < 0g is a neighborhood of Y

and e = '+ � Æ ev is a strongly q-convex exhaustion of V . �

2.C. Runge Open Subsets

In order to extend the classical Runge theorem into an approximation result

for sheaf cohomology groups, we need the concept of a q-Runge open subset.

(2.14) De�nition. An open subset U of a complex space X is said to be

q-Runge (resp. q-Runge complete) in X if for every compact subset L � U

there exists a smooth exhaustion function  on X and a sublevel set Xb of  

such that L � Xb �� U and  is strongly q-convex on X rXb (resp. on the

whole space X).

(2.15) Example. If X is strongly q-complete and if  is a strongly q-convex

exhaustion function of X, then every sublevel set Xc of  is q-Runge complete

in X : every compact set L � Xc satis�es L � Xb �� Xc for some b < c.

More generally, if X is strongly q-convex and if  is strongly q-convex on

X rK, every sublevel set Xc containing K is q-Runge in X.

Later on, we shall need the following technical result.

(2.16) Proposition. Let Y be an analytic subset of a complex space X. If U

is a q-Runge complete open subset of Y and L a compact subset, there exist

a neighborhood V of Y in X and a strongly q-convex exhaustion e on V such

that U = Y \ V and L � Y \ Vb �� U for some sublevel set Vb of e .
Proof. Let  be a strongly q-convex exhaustion on Y with L � f < bg �� U
as in Def. 2.14. Then L � f < b�Æg for some number Æ > 0 and Lemma 2.11

gives a strongly q-convex function ' on a neighborhood W0 of Y so that  �
'�Y <  +Æ. The neighborhood V and the function e = '+�Æev constructed
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in the proof of Th. 2.13 are the desired ones: we have  � e �Y = '�Y <  +Æ,

thus

L � Y \ Vb�Æ � f < bg �� U: �

3. q-Convexity Properties in Top Degrees

It is obvious by de�nition that a n-dimensional complex manifold M is

strongly q-complete for q � n + 1 (an arbitrary smooth function is then

strongly q-convex !). If M is connected and non compact, (Greene and

Wu 1975) have shown that M is strongly n-complete, i.e. there is a smooth

exhaustion function  onM such that id0d00 has at least one positive eigen-

value everywhere. We need the following lemmas.

(3.1) Lemma. Let  be a strongly q-convex function onM and " > 0 a given

number. There exists a hermitian metric ! on M such that the eigenvalues

1 � : : : � n of the Hessian form id0d00 with respect to ! satisfy 1 � �"
and q = : : : = n = 1.

Proof. Let !0 be a �xed hermitian metric, A0 2 C1(EndTM) the hermitian

endomorphism associated to the hermitian form id0d00 with respect to !0,

and 01 � : : : � 0n the eigenvalues of A0 (or id
0d00 ). We can choose a function

� 2 C1(M;R) such that 0 < �(x) � 0q (x) at each point x 2 M . Select a

positive function � 2 C1(R;R) such that

�(t) � jtj=" for t � 0; �(t) � t for t � 0; �(t) = t for t � 1:

We let ! be the hermitian metric de�ned by the hermitian endomorphism

A(x) = �(x) �[(�(x))�1A0(x)]

where �[��1A0] 2 C1(EndTM) is de�ned as in Lemma VII-6.2. By con-

struction, the eigenvalues of A(x) are �j(x) = �(x)�
�
0
j
(x)=�(x)

�
> 0 and we

have

�j(x) � j0j (x)j=" for 0
j
(x) � 0;

�j(x) � 0j (x) for 0
j
(x) � 0;

�j(x) = 0
j
(x) for j � q �

then 0
j
(x) � �(x)�:

The eigenvalues of id0d00 with respect to ! are j(x) = 0
j
(x)=�j(x) and

they have the required properties. �

On a hermitian manifold (M;!), we consider the Laplace operator �!

de�ned by
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(3:2) �!v = Trace!(id
0d00v) =

X
1�j;k�n

!jk(z)
@2v

@zj@zk

where (!jk) is the conjugate of the inverse matrix of (!jk). Note that �! may

di�er from the usual Laplace-Beltrami operator if ! is not K�ahler. We say

that v is strongly !-subharmonic if �!v > 0. This property implies clearly

that v is strongly n-convex; however, as

�!�(v1; : : : ; vs) =
X
j

@�

@tj
(v1; : : : ; vs)�!vj

+
X
j;k

@2�

@tj@tk
(v1; : : : ; vs) hd0vj ; d0vki!;

subharmonicity has the advantage of being preserved by all convex increasing

transformations. Conversely, if  is strongly n-convex and ! chosen as in

Lemma 3.1 with " small enough, we get �! � 1 � (n � 1)" > 0, thus  is

strongly subharmonic for a suitable metric !.

(3.3) Lemma. Let U;W � M be open sets such that for every con-

nected component Us of U there is a connected component Wt(s) of W such

that Wt(s) \ Us 6= ; and Wt(s) r Us 6= ;. Then there exists a function

v 2 C1(M;R), v � 0, with support contained in U [W , such that v is

strongly !-subharmonic and > 0 on U .

Proof. We �rst prove that the result is true when U;W are small cylinders

with the same radius and axis. Let a0 2 M be a given point and z1; : : : ; zn
holomorphic coordinates centered at a0. We set Re zj = x2j�1, Im zj = x2j ,

x0 = (x2; : : : ; x2n) and ! =
Pe!jk(x)dxj
dxk. Let U be the cylinder jx1j < r,

jx0j < r, and W the cylinder r� " < x1 < r+ ", jx0j < r. There are constants

c; C > 0 such thatXe!jk(x)�j�k � cj�j2 and
X
je!jk(x)j � C on U:

Let � 2 C1(R;R) be a nonnegative function equal to 0 on ] � 1;�r] [
[r+ ";+1[ and strictly convex on ]� r; r]. We take explicitly �(x1) = (x1 +

r) exp(�1=(x1 + r)2
�
on ]� r; r] and

v(x) = �(x1) exp
�
1=(jx0j2 � r2)� on U [W; v = 0 on M r (U [W ):

We have v 2 C1(M;R), v > 0 on U , and a simple computation gives

�!v(x)

v(x)
= e!11(x)�4(x1 + r)�5 � 2(x1 + r)�3

�
+
X
j>1

e!1j(x)�1 + 2(x1 + r)�2
�
(�2xj)(r2 � jx0j2)�2

+
X
j;k>1

e!jk(x)�xjxk�4� 8(r2 � jx0j2)�� 2(r2 � jx0j2)2Æjk
�
(r2 � jx0j2)�4:
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For r small, we get

�!v(x)

v(x)
� 2c(x1 + r)�5 � C1(x1 + r)�2jx0j(r2 � jx0j2)�2

+ (2cjx0j2 � C2r
4)(r2 � jx0j2)�4

with constants C1; C2 independent of r. The negative term is bounded by

C3(x1 + r)�4 + cjx0j2(r2 � jx0j2)�4, hence
�!v=v(x) � c(x1 + r)�5 + (cjx0j2 � C2r

4)(r2 � jx0j2)�4:
The last term is negative only when jx0j < C4r

2, in which case it is bounded

by C5r
�4 < c(x1 + r)�5. Hence v is strongly !-subharmonic on U .

Next, assume that U and W are connected. Then U [W is connected.

Fix a point a 2 W r U . If z0 2 U is given, we choose a path � � U [W
from z0 to a which is piecewise linear with respect to holomorphic coordinate

patches. Then we can �nd a �nite sequence of cylinders (Uj ;Wj) of the type

described above, 1 � j � N , whose axes are segments contained in � , such

that

Uj [Wj � U [W; W j � Uj+1 and z0 2 U0; a 2WN � W r U:

For each such pair, we have a function vj 2 C1(M) with support in U j[W j ,

vj � 0, strongly !-subharmonic and > 0 on Uj . By induction, we can �nd

constants Cj > 0 such that v0+C1v1+ � � �+Cjvj is strongly !-subharmonic

on U0 [ : : : [ Uj and !-subharmonic on M rW j . Then

wz0 = v0 + C1v1 + : : :+ CNvN � 0

is !-subharmonic on U and strongly !-subharmonic > 0 on a neighborhood


0 of the given point z0. Select a denumerable covering of U by such neigh-

borhoods 
p and set v(z) =
P
"pwzp(z) where "p is a sequence converging

suÆciently fast to 0 so that v 2 C1(M;R). Then v has the required proper-

ties.

In the general case, we �nd for each pair (Us;Wt(s)) a function vs with

support in Us [W t(s), strongly !-subharmonic and > 0 on Us. Any conver-

gent series v =
P
"svs yields a function with the desired properties. �

(3.4) Lemma. Let X be a connected, locally connected and locally compact

topological space. If U is a relatively compact open subset of X, we let eU
be the union of U with all compact connected components of X r U . TheneU is open and relatively compact in X, and X r eU has only �nitely many

connected components, all non compact.

Proof. A rather easy exercise of general topology. Intuitively, eU is obtained

by \�lling the holes" of U in X. �
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(3.5) Theorem (Greene-Wu 1975). Every n-dimensional connected non

compact complex manifold M has a strongly subharmonic exhaustion func-

tion with respect to any hermitian metric !. In particular, M is strongly

n-complete.

Proof. Let ' 2 C1(M;R) be an arbitrary exhaustion function. There exists

a sequence of connected smoothly bounded open sets 
0
�
�� M such that



0
�
� 
0

�+1 and M =
S

0
�
. Let 
� = e
0

�
be the relatively compact open

set given by Lemma 3.4. Then 
� � 
�+1, M =
S

� and M r 
� has no

compact connected component. We set

U1 = 
2; U� = 
�+1 r
��2 for � � 2:

Then @U� = @
�+1 [ @
��2 ; any connected component U�;s of U� has

its boundary @U�;s 6� @
��2, otherwise U�;s would be open and closed

in M r 
��2, hence U�;s would be a compact component of M r 
��2.
Therefore @U�;s intersects @
�+1 � U�+1. If @U�+1;t(s) is a connected com-

ponent of U�+1 containing a point of @U�;s, then U�+1;t(s) \ U�;s 6= ; and
U�+1;t(s) r U�;s 6= ;. Lemma 7 implies that there is a nonnegative function

v� 2 C1(M;R) with support in U� [U�+1, which is strongly !-subharmonic

on U� . An induction yields constants C� such that

 � = '+ C1v1 + � � �+ C�v�

is strongly !-subharmonic on 
� � U0 [ : : :[ U� , thus  = '+
P
C�v� is a

strongly !-subharmonic exhaustion function on M . �

By an induction on the dimension, the above result can be generalized

to an arbitrary complex space (or analytic scheme), as was �rst shown by

T. Ohsawa.

(3.6) Theorem (Ohsawa 1984). Let X be a complex space of maximal di-

mension n.

a) X is always strongly (n+ 1)-complete.

b) If X has no compact irreducible component of dimension n, then X is

strongly n-complete.

c) If X has only �nitely many irreducible components of dimension n, then

X is strongly n-convex.

Proof. We prove a) and b) by induction on n = dimX. For n = 0, property b)

is void and a) is obvious (any function can then be considered as strongly 1-

convex). Assume that a) has been proved in dimension � n�1. Let X 0 be the
union of Xsing and of the irreducible components of X of dimension at most

n� 1, and M = X rX 0 the n-dimensional part of Xreg. As dimX 0 � n� 1,

the induction hypothesis shows that X 0 is strongly n-complete. By Th. 2.13,
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there exists a strongly n-convex exhaustion function '0 on a neighborhood

V 0 of X 0. Take a closed neighborhood V � V 0 and an arbitrary exhaustion '

on X that extends '0�V . Since every function on a n-dimensional manifold is

strongly (n+1)-convex, we conclude that X is at worst (n+1)-complete, as

stated in a).

In case b), the hypothesis means that the connected components Mj of

M = X r X 0 have non compact closure M j in X. On the other hand,

Lemma 3.1 shows that there exists a hermitian metric ! on M such that

'�M\V is strongly !-subharmonic. Consider the open sets Uj;� � Mj pro-

vided by Lemma 3.7 below. By the arguments already used in Th. 3.5, we

can �nd a strongly !-subharmonic exhaustion  = ' +
P
j;�
Cj;�vj;� on X,

with vj;� strongly !-subharmonic on Uj;� , Supp vj;� � Uj;� [Uj;�+1 and Cj;�
large. Then  is strongly n-convex on X.

(3.7) Lemma. For each j, there exists a sequence of open sets Uj;� ��Mj,

� 2 N, such that

a) Mj r V 0 � S
�
Uj;� and (Uj;�) is locally �nite in M j ;

b) for every connected component Uj;�;s of Uj;� there is a connected compo-

nent Uj;�+1;t(s) of Uj;�+1 such that Uj;�+1;t(s)\Uj;�;s 6= ; and Uj;�+1;t(s)r
U j;�;s 6= ;.

Proof. By Lemma 3.4 applied to the space M j , there exists a sequence of

relatively compact connected open sets 
j;� in M j such that M j r
j;� has

no compact connected component, 
j;� � 
j;�+1 and M j =
S

j;� . We

de�ne a compact set Kj;� �Mj and an open set Wj;� �M j containing Kj;�

by

Kj;� = (
j;� r
j;��1)r V 0; Wj;� = 
j;�+1 r
j;��2:

By induction on �, we construct an open set Uj;� �� Wj;� r X 0 � Mj and

a �nite set Fj;� � @Uj;� r 
j;� . We let Fj;�1 = ;. If these sets are already

constructed for ��1, the compact setKj;�[Fj;��1 is contained in the open set
Wj;� , thus contained in a �nite union of connected componentsWj;�;s. We can

write Kj;� [Fj;��1 =
S
Lj;�;s where Lj;�;s is contained in Wj;�;srX

0 �Mj .

The open set Wj;�;s r X 0 is connected and non contained in 
j;� [ Lj;�;s,
otherwise its closure W j;�;s would have no boundary point 2 @
j;�+1, thus
would be open and compact inM jr
j;��2, contradiction. We select a point

as 2 (Wj;�;srX 0)r (
j;� [Lj;�;s) and a smoothly bounded connected open

set Uj;�;s �� Wj;�;s rX 0 containing Lj;�;s with as 2 @Uj;�;s. Finally, we set
Uj;� =

S
s
Uj;�;s and let Fj;� be the set of all points as. By construction, we

have Uj;� � Kj;� [Fj;��1, thus
S
Uj;� �

S
Kj;� =Mj rV

0, and @Uj;�;s 3 as
with as 2 Fj;� � Uj;�+1. Property b) follows. �

Proof of Theorem 3.6 c) (end). Let Y � X be the union of Xsing with all

irreducible components of X that are non compact or of dimension < n.
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Then dimY � n � 1, so Y is n-convex and Th. 2.13 implies that there is

an exhaustion function  2 C1(X;R) such that  is strongly n-convex on a

neighborhood V of Y . Then the complement K = X r V is compact and  

is strongly n-convex on X rK. �

(3.8) Proposition. Let M be a connected non compact n-dimensional com-

plex manifold and U an open subset of M . Then U is n-Runge complete in

M if and only if M r U has no compact connected component. �

Proof. First observe that a strongly n-convex function cannot have any local

maximum, so it satis�es the maximum principle. If M r U has a compact

connected component T , then T has a compact neighborhood L in M such

that @L � U . We have maxL  = max@L  for every strongly n-convex

function, thus @L � Mb implies L � Mb ; thus we cannot �nd a sublevel set

Mb such that @L �Mb �� U , and U is not n-Runge in M .

On the other hand, assume thatMrU has no compact connected compo-

nent and let L be a compact subset of U . Let ! be any hermitian metric onM

and ' a strongly !-subharmonic exhaustion function onM . Set b = 1+supL '

and

P = fx 2M r U ; '(x) � bg:
As M r U has no compact connected component, all its components T�
contain a point y� in

W = fx 2 X ; '(x) > b+ 1g:
For every point x 2 P with x 2 T�, there exists a connected open set Vx �
� M r L containing x such that @Vx 3 y� (M r L is a neighborhood of

MrU and we can consider a tubular neighborhood of a path from x to y� in

M r L). The compact set P can be covered by a �nite number of open sets

Vxj . Then Lemma 3.3 yields functions vj with support in V xj [W which are

strongly !-subharmonic on Vxj . Let � be a convex increasing function such

that �(t) = 0 on ]�1; b] and �0(t) > 0 on ]b;+1[. Consider the function

 = '+
X

Cjvj + � Æ ':

First, choose Cj large enough so that  � b on P . Then choose � increasing

fast enough so that  is strongly !-subharmonic on W . Then  is a strongly

n-convex exhaustion function on M , and as  � ' on M and  = ' on L,

we see that

L � fx 2M ;  (x) < bg � U:
This proves that U is n-Runge complete in M . �
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4. Andreotti-Grauert Finiteness Theorems

4.A. Case of Vector Bundles over Manifolds

The crucial point in the proof of the Andreotti-Grauert theorems is the fol-

lowing special case, which is easily obtained by the methods of chapter 8.

(4.1) Proposition. Let M be a strongly q-complete manifold with q � 1,

and E a holomorphic vector bundle over M . Then:

a) Hk
�
M;O(E)

�
= 0 for k � q.

b) Let U be a q-Runge complete open subset of M . Every d00-closed form

h 2 C10;q�1(U;E) can be approximated uniformly with all derivatives on

every compact subset of U by a sequence of global d00-closed forms eh� 2
C10;q�1(M;E).

Proof. We replace E by eE = �nTM 
 E ; then we can work with forms

of bidegree (n; k) instead of (0; k). Let  be a strongly q-convex exhaustion

function on M and ! the metric given by Lemma 3.1. Select a function

� 2 C1(M;R) which increases rapidly at in�nity so that the hermitian metrice! = e�! is complete on M . Denote by E� the bundle E endowed with the

hermitian metric obtained by multiplication of a �xed metric of E by the

weight exp(�� Æ ) where � 2 C1(R;R) is a convex increasing function. We

apply Th. VIII-4.5 for the bundle E� over the complete hermitian manifold

(M; e!). Then
ic(E�) = ic(E) + id0d00(� Æ  )
 IdE �Nak ic(E) + �0 Æ  id0d00 
 IdE :

The eigenvalues of id0d00 with respect to e! are e��j, so Lemma VII-7.2 and

Prop. VI-8.3 yield

[ic(E�); �] + Te! � [ic(E); �] + Te! + �0 Æ  [id0d00 ;�]
 IdE

� [ic(E); �] + Te! + �0 Æ  e��(1 + � � �+ k)
 IdE

when this curvature tensor acts on (n; k)-forms. For k � q, we have
1 + � � �+ k � 1� (q � 1)" > 0 if " � 1=q:

We choose �0 increasing fast enough so that all the eigenvalues of the above

curvature tensor are � 1 when � = �0. Then for every g 2 C1
n;k

(M;E) with

D00g = 0 the equation D00f = g can be solved with an estimateZ
M

jf j2e��Æ dV �
Z
M

jgj2e��Æ dV;

where � = �0 + �1 and where �1 is a convex increasing function chosen

so that the integral of g converges. This gives a). In order to prove b), let
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h 2 C1
n;q�1(U;E) be such that D00h = 0 and let L be an arbitrary compact

subset of U . Thanks to Def. 2.14, we can choose  such that there is a

sublevel set Mb with L � Mb �� U . Select b0 < b so that L � Mb0
, and let

� 2 C1(R;R) be a convex increasing function such that � = 0 on ]�1; b0[
and � � 1 on ]b;+1[. Let � 2 D(U) be a cut-o� function such that � = 1

on Mb. We solve the equation D00f = g for g = D00(�h) with the weight

� = �0 + �� Æ  and let � tend to in�nity. As g has compact support in

U rMb and � Æ  � �0 Æ  + � on this set, we �nd a solution f� such thatZ
Mb0

jf� j2e��0Æ dV �
Z
M

jf� j2e��Æ dV �
Z
UrMb

jgj2e��Æ dV � Ce�� ;

thus f� converges to 0 in L
2(Mb0

) and h� = �h�f� 2 C1n;q�1(M;E) is a D00-
closed form converging to h in L2(Mb0

). However, if we choose the minimal

solution such that Æ00
�
f� = 0 as in Rem. VIII-4.6, we get �00

�
f� = Æ00

�
g on M

and in particular �00�0f� = 0 on Mb0
. G�arding's inequality VI-3.3 applied to

the elliptic operator �00
�0

shows that f� converges to 0 with all derivatives on

L, hence h� converges to h on L. Now, replace L by an exhaustion L� of U by

compact sets; some diagonal subsequence h� converges to h in C1
n;q�1(U;E).

�

4.B. A Local Vanishing Result for Sheaves

Let (X;OX) be an analytic scheme and S a coherent sheaf of OX -modules.

We wish to extend Prop. 4.1 to the cohomology groups Hk(X; S). The �rst

step is to show that the result holds on small open sets, and this is done by

means of local resolutions of S.

For a given point x 2 X, we choose a patch (A;O
=J) of X containing x,

where A is an analytic subset of 
 � C N and J a sheaf of ideals with zero set

A. Let iA : A �! 
 be the inclusion. Then (iA)?S is a coherent O
-module

supported on A. In particular there is a neighborhood W0 � 
 of x and a

surjective sheaf morphism

Op0 �! (iA)?S on W0; (u1; : : : ; up0) 7�!
X

1�j�p0
ujGj

where G1; : : : ; Gp0 2 S(A\W0) are generators of (iA)?S on W0. If we repeat

the procedure inductively for the kernel of the above surjective morphism,

we get a homological free resolution of (iA)?S :

(4:3) Opl �! � � � �! Op1 �! Op0 �! (iA)?S �! 0 on Wl

of arbitrary large length l, on neighborhoods Wl � Wl�1 � : : : � W0. In

particular, after replacing 
 by W2N and A by A \W2N , we may assume

that (iA)?S has a resolution of length 2N on 
. In this case, we shall say

that A � 
 is a S-distinguished patch of X.
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(4.4) Lemma. Let A � 
 be a S-distinguished patch of X and U a strongly

q-convex open subset of A. Then

Hk(U; S) = 0 for k � q:

Proof. Theorem 2.13 shows that there exists a strongly q-convex open set

V � 
 such that U = A\V . Let us denote by Zl the kernel of Opl �! Opl�1

for l � 1 and Z0 = ker
�
Op0 �! (iA)?S

�
. There are exact sequences

0 �! Z0 �! Op0 �! (iA)?S �! 0;

0 �! Zl �! Opl �! Zl�1 �! 0; 1 � l � 2N:

For k � q, Prop. 4.1 a) gives Hk(V;Opl) = 0, therefore we get

Hk(U; S) ' Hk
�
V; (iA)?S

� ' Hk+1(V;Z0) ' : : : ' Hk+2N+1(V;Z2N);

and the last group vanishes because topdimV � dimR V = 2N . �

4.C. Topological Structure on Spaces of Sections and on

Cohomology Groups

Let V � 
 be a strongly 1-complete open set relatively to a S-distinguished

patch A � 
 and let U = A \ V . By the proof of Lemma 4.4, we have

H1(V;Z0) ' H2N+1(V;Z2N ) = 0;

hence we get an exact sequence

(4:5) 0 �! Z0(V ) �! Op0(V ) �! S(U) �! 0:

We are going to show that the Fr�echet space structure on Op0(V ) induces a

natural Fr�echet space structure on the groups of sections of S over any open

subset. We �rst note that Z0(V ) is closed in Op0(V ). Indeed, let f� 2 Z0(V )
be a sequence converging to a limit f 2 Op0(V ) uniformly on compact subsets

of V . For every x 2 V , the germs (f�)x converge to fx with respect to the

topology de�ned by (1.4) on Op0 . As Z0
x
is closed in Op0

x
in view of Th. 1.5 b),

we get fx 2 Z0x for all x 2 V , thus f 2 Z0(V ).

(4.6) Proposition. The quotient topology on S(U) is independent of the

choices made above.

Proof. For a smaller set U 0 = A \ V 0 where V 0 is a strongly 1-convex open

subset of V , the restriction map Op0(V ) �! Op0(V 0) is continuous, thus

S(U) �! S(U 0) is continuous. If (V�) is a countable covering of V by such

sets and U� = A\V�, we get an injection of S(U) onto the closed subspace of
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the product
Q
S(U�) consisting of families which are compatible in the inter-

sections. Therefore, the Fr�echet topology induced by the product coincides

with the original topology of S(U). If we choose other generators H1; : : : ; Hq0

for (iA)?S, the germs Hj;x can be expressed in terms of the Gj;x 's, thus we

get a commutative diagram

Op0(V )
G�!S(U)�! 0?y ����

Oq0(V )
H�!S(U)�! 0

provided that U and V are small enough. If we express the generators Gj in

terms of the Hj 's, we �nd a similar diagram with opposite vertical arrows

and we conclude easily that the topology obtained in both cases is the same.

Finally, it remains to show that the topology of S(U) is independent of the

embedding A � 
 near a given point x 2 X. We compare the given embed-

ding with the Zariski embedding (A; x) � 
0 of minimal dimension d. After

shrinking A and changing coordinates, we may assume 
 = 
0 � C N�d and

that the embedding iA : A �! 
 is the composite of i0
A
: A �! 
0 and

of the inclusion j : 
0 �! 
0 � f0g � 
. For V 0 � 
0 suÆcient small and

U 0 = A \ V 0, we have a surjective map G0 : Op0(V 0) �! S(U 0) obtained by

choosing generators G0
j
of (i0

A
)?S on a neighborhood of x in 
0. Then we

consider the open set V = V 0�C N�d � 
 and the surjective map onto S(U 0)
equal to the composite

Op0(V )
j
?

�! Op0(V 0)
G
0

�! S(U):

This map corresponds to a choice of generators Gj 2 (iA)
?S(V ) equal to

the functions G0
j
, considered as functions independent of the last variables

zd+1; : : : ; zN . Since j
? is open, it is obvious that the quotient topology on

S(U 0) is the same for both embeddings. �

Now, there is a natural topology on the cohomology groups Hk(X; S).

In fact, let (U�) be a countable covering of X by strongly 1-complete open

sets, such that each U� is contained in a S-distinguished patch. Since the

intersections U�0:::�k are again strongly 1-complete, the covering U is acyclic

by Lemma 4.4 and Leray's theorem shows that Hk(X; S) is isomorphic to
�Hq(U; S). We consider the product topology on the spaces of �Cech cochains

Ck(U; S) =
Q
S(U�0:::�k) and the quotient topology on �Hk(U; S). It is clear

that �H0(U; S) is a Fr�echet space; however the higher cohomology groups
�Hk(U; S) need not be Hausdor� because the coboundary groups may be non

closed in the cocycle groups. The resulting topology on Hk(X; S) is inde-

pendent of the choice of the covering: in fact we only have to check that

the bijective continuous map �Hk(U; S) �! �Hk(U0; S) is a topological isomor-

phism if U0 is a re�nement of U, and this follows from Rem. 1.10 applied to

the morphism of �Cech complexes C�(U; S) �! C�(U0; S).
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Finally, observe that when S is the locally free sheaf associated to a

holomorphic vector bundle E on a smooth manifold X, the topology on

Hk
�
X;O(E)

�
is the same as the topology associated to the Fr�echet space

structure on the Dolbeault complex
�
C10;�(X;E); d

00� : by the analogue of for-
mula (IV-6.11) we have a bijective continuous map

�Hk
�
U;O(E)

� �! Hk
�
C10;�(X;E)

�
f(c�0:::�k)g 7�! f(z) =

X
�0;:::;�q

c�0:::�q(z) ��q d
00��0 ^ : : : ^ d00��q�1

where (��) is a partition of unity subordinate to U. As in Rem. 1.10, the

continuity of the inverse follows by the open mapping theorem applied to the

surjective map

Zk
�
C�(U;O(E))

�� C10;k�1(X;E) �! Zk
�
C10;�(X;E)

�
:

We shall need a few simple additional results.

(4.7) Proposition. The following properties hold:

a) For every x 2 X, the map S(X) �! Sx is continuous with respect to the

topology of Sx de�ned by (1:4).

b) If S0 is a coherent analytic subsheaf of S, the space of global sections S0(X)

is closed in S(X).

c) If U 0 � U are open in X, the restriction maps Hk(U; S) �! Hk(U 0; S)
are continuous.

d) If U 0 is relatively compact in U , the restriction operator S(U) �! S(U 0)
is compact.

e) Let S �! S0 be a morphism of coherent sheaves over X. Then the induced

maps Hk(X; S) �! Hk(X; S0) are continuous.

Proof. a) Let V � 
 be a strongly 1-convex open neighborhood of x rela-

tively to a S-distinguished patch A � 
. The map Op0(V ) �! Op0x is con-

tinuous, and the same is true for Op0
x
�! Sx by x1. Therefore the composite

Op0(V ) �! Sx and its factorization S(U) �! Sx are continuous.

b) is a consequence of the above property a) and of the fact that each stalk

S0x is closed in Sx (cf. 1.5 b)).

c) The restriction map S(U) �! S(U 0) is continuous, and the case of higher

cohomology groups follows immediately.

d) Assume �rst that U = A \ V and U 0 = A \ V 0, where A � 
 is a

S-distinguished patch and V 0 �� V are strongly 1-convex open subsets of


. The operator Op0(V ) �! Op0(V 0) is compact by Montel's theorem, thus

S(U) �! S(U 0) is also compact. In the general case, select a �nite family of
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strongly 1-convex sets U 0
�
�� U� � U such that (U 0

�
) covers U

0
and U� is

contained in some distinguished patch. There is a commutative diagram

S(U) ���������������! S(U 0)?y ?yQ
S(U�) �!

Q
S(U 0

�
) �!QS(U 0 \ U 0

�
)

where the right vertical arrow is a monomorphism and where the �rst arrow

in the bottom line is compact. Thus S(U) �! S(U 0) is compact.

e) It is enough to check that S(U) �! S0(U) is continuous, and for this

we may assume that U = A \ V where V is a small neighborhood of a

given point x. Let G1; : : : ; Gp0 be generators of Sx, G
0
1; : : : ; G

0
p0

their images

in S0x. Complete these elements in order to obtain a system of generators

(G01; : : : ; G
0
q0
) of S0

x
. For V small enough, the map S(U) �! S0(U) is induced

by the inclusion Op0(V ) �! Op0(V )� f0g � Oq0(V ), hence continuous. �

4.D. Cartan-Serre Finiteness Theorem

The above results enable us to prove a �niteness theorem for cohomology

groups over compact analytic schemes.

(4.8) Theorem (Cartan-Serre). Let S be a coherent analytic sheaf over an

analytic scheme (X;OX). If X is compact, all cohomology groups Hk(X; S)

are �nite dimensional (and Hausdor� ).

Proof. There exist �nitely many strongly 1-complete open sets U 0
�
�� U�

such that each U� is contained in some S-distinguished patch and such thatS
U 0� = X. By Prop. 4.7 d), the restriction map on �Cech cochains

C�(U; S) �! C�(U0; S)

de�nes a compact morphism of complexes of Fr�echet spaces. As the coverings

U = (U�) and U
0 = (U 0

�
) are acyclic by 4.4, the induced map

�Hk(U; S) �! �Hk(U0; S)

is an isomorphism, both spaces being isomorphic to Hk(X; S). We conclude

by Schwartz' theorem 1.9. �

4.E. Local Approximation Theorem

We show that a local analogue of the approximation result 4.1 b) holds for a

sheaf S over an analytic scheme (X;OX).

(4.9) Lemma. Let A � 
 be a S-distinguished patch of X, and U 0 � U � A
open subsets such that U 0 is q-Runge complete in U . Then the restriction map
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Hq�1(U; S) �! Hq�1(U 0; S)

has a dense range.

Proof. Let L be an arbitrary compact subset of U 0. Proposition 2.16 applied

with Y = U embedded in some neighborhood in 
 shows that there is a

neighborhood V of U in 
 such that A \ V = U and a strongly q-convex

function  on V such that L � Ub �� U 0 for some Ub = A \ Vb. The proof
of Lemma 4.4 gives Hq(V;Z0) = Hq(Vb;Z

0) = 0 and the cohomology exact

sequences of 0 ! Z0 ! Op0 ! i?
A
S! 0 over V and Vb yield a commutative

diagram of continuous maps

Hq�1�V;Op0� �!Hq�1�V; i?
A
S
�
= Hq�1�U; S)?y ?y ?y

Hq�1�Vb;Op0��!Hq�1�Vb; i?AS�= Hq�1�Ub; S)
where the horizontal arrows are surjective. Since Vb is q-Runge complete in

V , the left vertical arrow has a dense range by Prop. 4.1 b). As U 0 is the
union of an increasing sequence of sets Ub� , we only have to show that the

range remains dense in the inverse limit Hq�1(U 0; S). For that, we apply

Property 1.11 d) on a suitable covering of U . Let W be a countable basis of

the topology of U , consisting of strongly 1-convex open subsets contained in

S-distinguished patches. We let W0 (resp. W�) be the subfamily of W 2 W
such thatW �� U 0 (resp.W �� Ub� ). ThenW; W0; W� are acyclic coverings

of U; U 0; Ub� and each restriction map C�(W; S) �! C�(W� ; S) is surjective.

Property 1.11 d) can thus be applied and the lemma follows. �

4.F. Statement and Proof of the Andreotti-Grauert Theorem

(4.10) Theorem (Andreotti-Grauert 1962). Let S be a coherent analytic

sheaf over a strongly q-convex analytic scheme (X;OX). Then

a) Hk(X; S) is Hausdor� and �nite dimensional for k � q.
Moreover, let U be a q-Runge open subset of X, q � 1. Then

b) the restriction map Hk(X; S)! Hk(U; S) is an isomorphism for k � q ;
c) the restriction map Hq�1(X; S)! Hq�1(U; S) has a dense range.

The compact case q = 0 of 4.10 a) is precisely the Cartan-Serre �niteness

theorem. For q � 1, the special case when X is strongly q-complete and U = ;
yields the following very important consequence.

(4.11) Corollary. If X is strongly q-complete, then

Hk(X; S) = 0 for k � q:
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Assume that q � 1 and let  be a smooth exhaustion onX that is strongly

q-convex on XrK. We �rst consider sublevel sets Xd � Xc � K, d > c, and

verify assertions 4.10 b), c) for all restriction maps

Hk(Xd; S) �! Hk(Xc; S); k � q � 1:

The basic idea, already contained in (Andreotti-Grauert 1962), is to deform

Xc into Xd through a sequence of strongly q-convex open sets (Gj) such that

Gj+1 is obtained from Gj by making a small bump.

(4.12) Lemma. There exist a sequence of strongly q-convex open sets

G0 � : : : � Gs and a sequence of strongly q-complete open sets U0; : : : ; Us�1
in X such that

a) G0 = Xc, Gs = Xd, Gj+1 = Gj [ Uj for 0 � j � s� 1 ;

b) Gj = fx 2 X ;  j(x) < cjg where  j is an exhaustion function on X that

is strongly q-convex on X rK ;

c) Uj is contained in a S-distinguished patch Aj � 
j of X ;

d) Gj \ Uj is strongly q-complete and q-Runge complete in Uj.

Proof. There exists a �nite covering of the compact set Xd r Xc by S-

distinguished patches Aj � 
j , 0 � j < s, where 
j � C Nj is a euclidean

ball and K \ Aj = ;. Let �j 2 D(X) be a family of functions such that

Supp �j � Aj, �j � 0,
P
�j � 1 and

P
�j = 1 on a neighborhood of XdrXc.

We can �nd "0 > 0 so small that

 j =  � "
X

0�k<j
�k

is still strongly q-convex on XrK for 0 � j � s and " � "0. We have  0 =  

and  s =  � " on Xd rXc, thus

Gj = fx 2 X ;  j(x) < cg; 0 � j � s
is an increasing sequence of strongly q-convex open sets such that G0 = Xc,

Gs = Xc+". Moreover, as  j+1 �  j = �"�j has support in Aj , we have
Gj+1 = Gj [ Uj where Uj = Gj+1 \Aj :

It follows that conditions a), b), c) are satis�ed with c+" instead of d. Finally,

the functions

'j = 1=(c�  j+1) + 1=(r2j � jz � zj j2); e'j = 1=(c�  j) + 1=(r2
j � jz � zj j2)

are strongly q-convex exhaustions on Uj and Gj \ Uj = Gj \ Aj. Let L be

an arbitrary compact subset of Gj \ Uj and a = supL  j < c. Select b 2]a; c[
and set
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 j;� =  j + �'j on Uj ; � > 0:

Then  j;� is an exhaustion of Uj . As 'j is bounded below, we have

L � f j;� < bg �� f j < cg \ Uj = Gj \ Uj
for � small enough. Moreover

(1� �) j + � j+1 =  � "
X

0�k<j
�k � �" �j

is strongly q-convex for all � 2 [0; 1] and " � "0 small enough, so Prop. 2.4

implies that  j;� is strongly q-convex. By de�nition, Gj \Uj is thus q-Runge
complete in Uj , and Lemma 4.12 is proved with Xc+" instead of Xd. In order

to achieve the proof, we consider an increasing sequence c = c0 < c1 < : : : <

cN = d with ck+1 � ck � "0 and perform the same construction for each pair

Xck
� Xck+1

, with c replaced by ck and " = ck+1 � ck. �

(4.13) Proposition. For every sublevel set Xc � K, the group Hk(Xc; S)

is Hausdor� and �nite dimensional when k � q. Moreover, for d > c, the

restriction map

Hk(Xd; S) �! Hk(Xc; S)

is an isomorphism when k � q and has a dense range when k = q � 1.

Proof. Thanks to Lemma 4.12, we are led to consider the restriction maps

(4:14) Hk(Gj+1; S) �! Hk(Gj ; S):

Let us apply the Mayer-Vietoris exact sequence IV-3.11 to Gj+1 = Gj [ Uj .
For k � q we have Hk(Uj ; S) = Hk(Gj \Uj ; S) = 0 by Lemma 4.4. Hence we

get an exact sequence

Hq�1(Gj+1; S)�! Hq�1(Gj ; S)�Hq�1(Uj; S)�! Hq�1(Gj \ Uj ; S) �!
Hk(Gj+1; S)�! Hk(Gj ; S) �! 0 �! � � � ; k � q:

In this sequence, all the arrows are induced by restriction maps, so they

de�ne continuous linear operators. We already infer that the map (4.14) is

bijective for k > q and surjective for k = q. There exist a S-acyclic covering

V = (V�) of Xd and a �nite family V0 = (V 0
�1
; : : : ; V 0

�p
) of open sets such that

V 0
�j
�� V�j and

S
V 0
�j
� Xc. Let W be a locally �nite S-acyclic covering of

Xc which re�nes V0 \Xc = (V 0
�j
\Xc). The re�nement map

C�(V; S) �! C�(V0 \Xc; S) �! C�(W; S)

is compact because the �rst arrow is, and it induces a surjective map

Hk(Xd; S) �! Hk(Xc; S) for k � q:
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By Schwartz' theorem 1.9, we conclude that Hk(Xc; S) is Hausdor� and �nite

dimensional for k � q. This is equally true for Hq(Gj ; S) because Gj is also

a global sublevel set fx 2 X ;  j(x) < cjg containing K. Now, the Mayer-

Vietoris exact sequence implies that the composite

Hq�1(Uj ; S) �! Hq�1(Gj \ Uj ; S) @�! Hq(Gj+1; S)

is equal to zero. However, the �rst arrow has a dense range by Lemma 4.9.

As the target space is Hausdor�, the second arrow must be zero; we obtain

therefore the injectivity of Hq(Gj+1; S) �! Hq(Gj ; S) and an exact sequence

Hq�1(Gj+1; S) �! Hq�1(Gj ; S)�Hq�1(Uj ; S)�! Hq�1(Gj \ Uj ; S) �! 0

g�u 7�! u�Gj\Uj � g�Gj\Uj :

The argument used in Rem. 1.10 shows that the surjective arrow is open.

Let g 2 Hq�1(Gj ; S) be given. By Lemma 4.9, we can approximate g�Gj\Uj
by a sequence u��Gj\Uj , u� 2 Hq�1(Uj ; S). Then w� = u��Gj\Uj � g�Gj\Uj
tends to zero. As the second map in the exact sequence is open, we can �nd

a sequence

g0
�
� u0

�
2 Hq�1(Gj ; S)�Hq�1(Uj ; S)

converging to zero which is mapped on w� . Then (g�g0�)�(u��u0�) is mapped

on zero, and there exists a sequence f� 2 Hq�1(Gj+1; S) which coincides with
g� g0

�
on Gj and with u� � u0� on Uj . In particular f��Gj

converges to g and

we have shown that

Hq�1(Gj+1; S) �! Hq�1(Gj ; S)

has a dense range. �

Proof of Andreotti-Grauert's Theorem 4.10. Let W be a countable basis of

the topology of X consisting of strongly 1-convex open sets W� contained

in S-distinguished patches of X. Let L � U be an arbitrary compact subset.

Select a smooth exhaustion function  on X such that  is strongly q-convex

on X r Xb and L � Xb �� U for some sublevel set Xb of  ; choose c > b

such that Xc �� U . For every d 2 R, we denote by Wd � W the collection

of sets W� 2W such that W� � Xd. Then Wd is a S-acyclic covering of Xd.

We consider the sequence of �Cech complexes

E�� = C�(Wc+� ; S); � 2 N
together with the surjective projection maps E��+1 �! E�� , and their inverse

limit E� = C�(W; S). Then we have Hk(E�) = Hk(X; S) and Hk(E�
�
) =

Hk(Xc+� ; S). Propositions 1.11 (a,b,c) and 4.13 imply that Hk(X; S) �!
Hk(Xc; S) is bijective for k � q and has a dense range for k = q � 1. It

already follows that Hk(X; S) is Hausdor� for k � q. Now, take an increasing

sequence of open sets Xc�
equal to sublevel sets of a sequence of exhaustions
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 � , such that U =
S
Xc�

. Then all groups Hk(Xc�
; S) are in bijection with

Hk(X; S) for k � q, and the image of Hq�1(Xc�+1
; S) inHq�1(Xc�

; S) is dense

because it contains the image of Hq�1(X; S). Proposition 1.11 (a,b,c) again

shows that Hk(U; S) �! Hk(Xc0
; S) is bijective for k � q, and d) shows that

Hq�1(X; S) �! Hq�1(U; S) has a dense range. The theorem follows. �

A combination of Andreotti-Grauert's theorem with Th. 3.6 yields the

following important consequence.

(4.15) Corollary. Let S be a coherent sheaf over an analytic scheme (X;OX)

with dimX � n.
a) We have Hk(X; S) = 0 for all k � n+ 1 ;

b) If X has no compact irreducible component of dimension n, then we have

Hn(X; S) = 0.

c) If X has only �nitely many n-dimensional compact irreducible compo-

nents, then Hn(X; S) is �nite dimensional. �

The special case of 4.15 b) when X is smooth and S locally free has been

�rst proved by (Malgrange 1955), and the general case is due to (Siu 1969).

Another consequence is the following approximation theorem for coherent

sheaves over manifolds, which results from Prop. 3.8.

(4.16) Proposition. Let S be a coherent sheaf over a non compact connected

complex manifold M with dimM = n. Let U � M be an open subset such

that the complement M r U has no compact connected component. Then the

restriction map Hn�1(M; S) �! Hn�1(U; S) has a dense range. �

5. Grauert's Direct Image Theorem

The goal of this section is to prove the following fundamental result on direct

images of coherent analytic sheaves, due to (Grauert 1960).

(5.1) Direct image theorem. Let X, Y be complex analytic schemes and

let F : X ! Y be a proper analytic morphism. If S is a coherent OX -module,

the direct images RqF?S are coherent OY -modules.

We give below a beautiful proof due to (Kiehl-Verdier 1971), which is

much simpler than Grauert's original proof; this proof rests on rather deep

properties of nuclear modules over nuclear Fr�echet algebras. We �rst intro-

duce the basic concept of topological tensor product. Our presentation owes

much to the seminar lectures by (Douady-Verdier 1973).
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5.A. Topological Tensor Products and Nuclear Spaces

The algebra of holomorphic functions on a product space X � Y is a com-

pletion O(X) b
 O(Y ) of the algebraic tensor product O(X)
 O(Y ). We are

going to describe the construction and the basic properties of the required

topological tensor products b
.
Let E, F be (real or complex) vector spaces equipped with semi-norms

p and q, respectively. Then E 
 F can be equipped with any one of the two

natural semi-norms p
� q, p
" q de�ned by

p
� q(t) = inf
n X

1�j�N
p(xj) q(yj) ; t =

X
1�j�N

xj 
 yj ; xj 2 E ; yj 2 F
o
;

p
" q(t) = sup
jj�jjp�1; jj�jjq�1

��� 
 �(t)��; � 2 E0; � 2 F 0 ;

the inequalities in the last line mean that �, � satisfy j�(x)j � p(x) and

j�(y)j � q(y) for all x 2 E, y 2 F . Then clearly p
" q � p
� q, for

p
" q
�X

xj 
 yj
�
�
X

p
" q(xj 
 yj) �
X

p(xj) q(yj):

Given x 2 E, y 2 F , the Hahn-Banach theorem implies that there exist

�, � such that jj�jjp = jj�jjq = 1 with �(x) = p(x) and �(y) = q(y), hence

p
" q(x
 y) � p(x) q(y). On the other hand p
� q(x
 y) � p(x) q(y), thus
p
" q(x
 y) = p
� q(x
 y) = p(x) q(y):

(5.2) De�nition. Let E, F be locally convex topological vector spaces. The

topological tensor product E b
� F (resp. E b
" F ) is the Hausdor� comple-

tion of E 
 F , equipped with the family of semi-norms p
� q (resp. p 
" q)
associated to fundamental families of semi-norms on E and F .

Since we may also write

p
� q(t) = inf
nX

j�j j ; t =
X

�j xj 
 yj ; p(xj) � 1 ; q(yj) � 1
o

where the �j 's are scalars, we see that the closed unit ball B(p b
� q) in

E b
� F is the closed convex hull of B(p)
 B(q). From this, we easily infer

that the topological dual space (E b
� F )0 is isomorphic to the space of

continuous bilinear forms on E � F . Another simple consequence of this

interpretation of B(p b
� q) is example a) below.

(5.3) Examples.

a) For all discrete spaces I, J , there is an isometry

`1(I) b
� `1(J) ' `1(I � J):
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b) For Banach spaces (E; p), (F; q), the closed unit ball in E b
" F is dual to

the unit ball B(p0 b
� q0) of E0 b
� F 0 through the natural pairing extending

the algebraic pairing of E 
 F and E0 
 F 0. If c0(I) denotes the space of

bounded sequences on I converging to zero at in�nity, we have c0(I)
0 = `1(I),

hence by duality c0(I) b
" c0(J) is isometric to c0(I � J).
c) If X, Y are compact topological spaces and if C(X), C(Y ) are their alge-

bras of continuous functions with the sup norm, then

C(X) b
" C(Y ) ' C(X � Y ):
Indeed, C(X)0 is the space of �nite Borel measures equipped with the mass

norm. Thus for f 2 C(X)
 C(Y ), the 
"-seminorm is given by

jjf jj" = sup
jj�jj�1; jj�jj�1

�
 �(f) = sup
X�Y

jf j ;

the last equality is obtained by taking Dirac measures Æx, Æy for �, � (the

inequality � is obvious). Now C(X) 
 C(Y ) is dense in C(X � Y ) by the

Stone-Weierstrass theorem, hence its completion is C(X�Y ), as desired. �

Let f : E1 ! E2 and g : F1 ! F2 be continuous morphisms. For all

semi-norms p2, q2 on E2, F2, there exist semi-norms p1, q1 on E1, F1 and

constants jjf jj = jjf jjp1;p2 , jjgjj = jjgjjq1;q2 such that p2 Æ f � jjf jj p1 and

q2 Æ g � jjgjj q1. Then we �nd

(p2 
� q2) Æ (f 
 g) � jjf jj jjgjj p1
� q1
and a similar formula with pj 
" qj . It follows that there are well de�ned

continuous maps

(5:40) f b
� g : E1 b
� F1 �! E2 b
� F2;
(5:400) f b
" g : E1 b
" F1 �! E2 b
" F2:
Another simple fact is that b
� preserves open morphisms:

(5.5) Proposition. If f : E1 ! E2 and g : F1 ! F2 are epimorphisms, then

f b
� g : E1 b
� F1 �! E2 b
� F2 is an epimorphism.

Proof. Recall that when E is locally convex complete and F Hausdor�, a

morphism u : E ! F is open if and only if u(V ) is a neighborhood of 0

for every neighborhood of 0 (this can be checked essentially by the same

proof as 1.8 b)). Here, for any semi-norms p, q on E1, F1 the closure of

f b
� g�B(p b
� q)� contains the closed convex hull of f
�
B(p)

�
 g�B(q)� in
which f

�
B(p)

�
and g

�
B(q)

�
are neighborhoods of 0, so it is a neighborhood

of 0 in E b
� F . �

If E1 � E2 is a closed subspace, every continuous semi-norm p1 on E1

is the restriction of a continuous semi-norm on E2, and every linear form
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�1 2 E01 such that jj�1jjp1 � 1 can be extended to a linear form �2 2 E2 such

that jj�2jjp2 = jj�1jjp1 (Hahn-Banach theorem); similar properties hold for a

closed subspace F1 � F2. We infer that

(p2 
" q2)�E1
F1 = p1 
" q1 ;
thus E1 b
" F1 is a closed subspace of E2 b
" F2. In other words:

(5.6) Proposition. If f : E1 ! E2 and g : F1 ! F2 are monomorphisms,

then f b
" g : E1 b
" F1 �! E2 b
" F2 is a monomorphism. �

Unfortunately, 5.5 fails for b
" and 5.6 fails for b
�, even with Fr�echet

or Banach spaces. It follows that neither b
� nor b
" are exact functors in

the category of Fr�echet spaces. In order to circumvent this diÆculty, it is

necessary to work in a suitable subcategory.

(5.7) De�nition. A morphism f : E ! F of complete locally convex spaces

is said to be nuclear if f can be written as

f(x) =
X

�j �j(x) yj

where (�j) is a sequence of scalars with
P j�j j < +1, �j 2 E0 an equicon-

tinuous sequence of linear forms and yj 2 F a bounded sequence.

When E and F are Banach spaces, the space of nuclear morphisms is

isomorphic to E0 b
� F and the nuclear norm jjf jj� is de�ned to be the norm

in this space, namely

(5:8) jjf jj� = inf
nX

j�j j ; f =
X

�j �j 
 yj ; jj�jjj � 1; jjyj jj � 1
o
:

For general spaces E, F , the equicontinuity of (�j) means that there is a semi-

norm p on E and a constant C such that j�j(x)j � C p(x) for all j. Then the

de�nition shows that f : E ! F is nuclear if and only if f can be factorized

as E ! E1 ! F1 ! F where E1 ! F1 is a nuclear morphism of Banach

spaces: indeed we need only take E1 be equal to the Hausdor� completion bEp
of (E; p) and let F1 be the subspace of F generated by the closed balanced

convex hull of fyjg (= unit ball in F1) ; moreover, if u : S ! E and v : F ! T

are continuous, the nuclearity of f implies the nuclearity of vÆfÆu ; its nuclear
decomposition is then v Æ f Æ u =P�j (�j Æ u)
 v(yj).

(5.9) Remark. Every nuclear morphism is compact: indeed, we may assume

in Def. 5.7 that (yj) converges to 0 and
P j�j j � 1, otherwise we replace yj

by "jyj with "j converging to zero such that
P j�j="j j � 1 ; then, if U � F

is a neighborhood of 0 such that j�j(U)j � 1 for all j, the image f(U) is

contained in the closed convex hull of the compact set fyjg [ f0g, which is

compact.
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(5.10) Proposition. If E;F;G are Banach spaces and if f : E ! F is

nuclear, there is a continuous morphism

f b
 IdG : E b
" G �! F b
� G
extending f 
 IdG, such that jjf b
 IdG jj � jjf jj�.

Proof. If f =
P
�j �j 
 yj as in (5.8), then for any t 2 E 
G we have

(f 
 IdG)(t) =
X

�j
�
�j 
 IdG(t)

�
 yj
where (�j 
 IdG)(t) 2 G has norm

jj(�j 
 IdG)(t)jj = sup
�2G0; jj�jj�1

�����j 
 IdG(t)
��� = sup

�

���j 
 �(t)�� � jjtjj":
Therefore jjf 
 IdG(t)jj� �

P j�j j jjtjj", and the in�mum over all decomposi-

tions of f yields

jjf 
 IdG(t)jj� � jjf jj�jjtjj":
Proposition 5.10 follows. �

If E is a Fr�echet space and (pj) an increasing sequence of semi-norms on

E de�ning the topology of E, we have

E = lim �
bEpj ;

where bEpj is the Hausdor� completion of (E; pj) and bEpj+1 ! bEpj the canon-
ical morphism. Here bEpj is a Banach space for the induced norm bpj .
(5.11) De�nition. A Fr�echet space E is said to be nuclear if the topology of

E can be de�ned by an increasing sequence of semi-norms pj such that each

canonical morphismbEpj+1 �! bEpj
of Banach spaces is nuclear.

If E;F are arbitrary locally convex spaces, we always have a continuous

morphism E b
� F ! E b
" F , because p
" q � p
� q. If E, say, is nuclear,
this morphism yields in fact an isomorphism E b
" F ' E b
� F : indeed, by

Prop. 5.10, we have pj b
� q � Cj pj+1 b
" q where Cj is the nuclear norm ofbEpj+1 ! bEpj . Hence, when E or F is nuclear, we will identify E b
� F and

E b
" F and omit " or � in the notation E b
 F .
(5.12) Example. LetD =

Q
D(0; Rj) be a polydisk in C

n . For any t 2 ]0; 1[,

we equip O(D) with the semi-norm
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pt(f) = sup
tD

jf j:

The completion of
�
O(D); pt

�
is the Banach space Et of holomorphic functions

on tD which are continuous up to the boundary. We claim that for t0 < t < 1

the restriction map

�t;t0 : Et0 �! Et

is nuclear. In fact, for f 2 O(D), we have f(z) =P a�z
� where a� = a�(f)

satis�es the Cauchy inequalities ja�(f)j � pt0(f)=(t
0R)� for all � 2 Nn . The

formula f =
P
a�(f) e� with e�(z) = z� shows that

jj�t;t0 jj� �
X
jja�jjp

t0
jje�jjpt �

X
(t0R)��(tR)� = (1� t=t0)�n < +1:

We infer that O(D) is a nuclear Fr�echet space. It is also in a natural way a

fully nuclear Fr�echet algebra (see Def. 5.39 below). �

(5.13) Proposition. Let E be a nuclear space. A morphism f : E ! F

is nuclear if and only if f admits a factorization E ! M ! F through a

Banach space M .

Proof. By de�nition, a nuclear map f : E ! F always has a factorization

through a Banach space (even if E is not nuclear). Conversely, if E is nuclear,

any continuous linear map E !M into a Banach space M is continuous for

some semi-norm pj on E, so this map has a factorization

E ! bEpj+1 ! bEpj !M

in which the second arrow is nuclear. Hence any map E !M ! F is nuclear.

�

(5.14) Proposition.

a) If E, F are nuclear spaces, then E b
 F is nuclear.

b) Any closed subspace or quotient space of a nuclear space is nuclear.

c) Any countable product of nuclear spaces is nuclear.

d) Any countable inverse limit of nuclear spaces is nuclear.

Proof. a) If f : E1 ! F1 and g : E2 ! F2 are nuclear morphisms of Banach

spaces, it is easy to check that f b
� g and f b
" g are nuclear with jjf b
?

gjj� � jjf jj�jjgjj� in both cases. Property a) follows by applying this to the

canonical morphisms bEpj+1 ! bEpj and bFqj+1 ! bFqj .
c) Let Ek, k 2 N , be nuclear spaces and F =

Q
Ek. If (p

k

j
) is an increasing

family of semi-norms on Ek as in Def. 5.11, then the topology of F is de�ned

by the family of semi-norms
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qj(x) = max
0�k�j

pk
j
(xk); x = (xk) 2 F:

Then bFqj =L0�k�j
bE
k;p

k

j

and� bFqj+1 ! bFqj� = M
0�k�j

� bEk;pk
j+1
! bEk;pk

j

�� � bE
j+1;p

j+1

j+1

! f0g�
is easily seen to be nuclear.

b) If F � E is closed, then bFpj can be identi�ed to a closed subspace

of bEpj , the map bFpj+1 ! bFpj is the restriction of bEpj+1 ! bEpj and we

have dE=F
pj
' bEpj= bFpj . It is not true in general that the restriction or

quotient of a nuclear morphism is nuclear, but this is true for a binuclear

= (nuclear Æ nuclear) morphism, as shown by Lemma 5.15 b) below. HencebFp2j+2 ! bEp2j and dE=F p2j+2 ! dE=F
p2j

are nuclear, so (p2j) is a fundamental

family of semi-norms on F or E=F , as required in Def. 5.11.

d) follows immediately from b) and c), since lim �Ek is a closed subspace ofQ
Ek. �

(5.15) Lemma. Let E, F , G be Banach spaces.

a) If f : E ! F is nuclear, then f can be factorized through a Hilbert space

H as a morphism E ! H ! F .

b) Let g : F ! G be another nuclear morphism. If Im(g Æ f) is contained

in a closed subspace T of G, then g Æ f : E ! T is nuclear. If ker(g Æ f)
contains a closed subspace S of E, the induced map (g Æ f)� : E=S ! G

is nuclear.

Proof. a) Write f =
P
j2I �j 
 yj 2 E0 b
� F with

P jj�jjj jjyjjj < +1.

Without loss of generality, we may suppose jj�jjj = jjyjjj. Then f is the

composition

E �! `2(I) �! F; x 7�! ��j(x)�; (�j) 7�!
X

�jyj:

b) Decompose g into g = v Æ u as in a) and write g Æ f as the composition

E
f�! F

u�! H
v�! G

where H is a Hilbert space. If Im(g Æ f) � T and if T � G is closed, then

H1 = v�1(T ) is a closed subspace of H containing Im(u Æ f). Therefore
g Æ f : E ! T is the composition

E
f�! F

u�! H
pr?�! H1

v�H1�! T

where f is nuclear and g Æ f : E �! T is nuclear. Similar proof for (g Æ f)� :

E=S ! G by using decompositions f = v Æ u : E ! H ! F and
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(g Æ f)� : E=S
eu�! H=H1 ' H?1

v
�H?

1�! F
g�! G

where H1 = u(S) satis�es H1 � ker(g Æ v) � H. �

(5.16) Corollary. Let E be a nuclear space and let E ! F be a nuclear

morphism.

a) If f(E) is contained in a closed subspace T of F , then the morphism

f1 : E ! T induced by f is nuclear.

b) If ker f contains a closed subspace S of E, then ef : E=S ! F is nuclear.

Proof. Let E
u�! M

v�! F be a factorization of f through a Banach

space M . In case a), resp. b), M1 = v�1(T ) is a closed subspace of M ,

resp. M=u(S) is a Banach space, and we have factorizations

f1 : E
u1�!M1

v1�! T; ef : E=S
eu�!M=u(S)

ev�! F

where u1, eu are induced by u and v1, ev by v. Hence f1 and ef are nuclear. �

(5.17) Proposition. Let 0 ! E1 ! E2 ! E3 ! 0 be an exact sequence of

Fr�echet spaces and let F be a Fr�echet space. If E2 or F is nuclear, there is

an exact sequence

0 �! E1 b
 F �! E2 b
 F �! E3 b
 F �! 0:

Proof. If E2 is nuclear, then so are E1 and E3 by Prop. 5.14 b). Hence E1 b

F ! E2 b
 F is a monomorphism and E2 b
 F ! E3 b
 F an epimorphism

by Prop. 5.6 and 5.5. It only remains to show that

Im
�
E1 b
 F �! E2 b
 F � = ker

�
E2 b
 F �! E3 b
 F �

and for this, we need only show that the left hand side is dense in the right

hand side (we already know it is closed). Let ' 2 (E2 b
 F )0 be a linear form,

viewed as a continuous bilinear form on E2 � F . If ' vanishes on the image

of E1 b
 F , then ' induces a continuous bilinear form on E3 � F by passing

to the quotient. Hence ' must vanish on the kernel of E2 b
 F ! E3 b
 F ,

and our density statement follows by the Hahn-Banach theorem. �

5.B. K�unneth Formula for Coherent Sheaves

As an application of the above general concepts, we now show how topo-

logical tensor products can be used to compute holomorphic functions and

cohomology of coherent sheaves on product spaces.

(5.18) Proposition. Let F be a coherent analytic sheaf on a complex analytic

scheme (X;OX). Then F(X) is a nuclear space.
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Proof. Let A � 
 � C N be an open patch of X such that the image sheaf

(iA)?F�A on 
 has a resolution

O
p1



�! O

p0



�! (iA)?F�A �! 0

and let D �� 
 be a polydisk. As D is Stein, we get an exact sequence

(5:19) Op1(D) �! Op0(D) �! F(A\D) �! 0:

Hence F(A \D) is a quotient of the nuclear space Op0(D) and so F(A\D)
is nuclear by (5.14 b). Let (U�) be a countable covering of X by open sets of

the form A \D. Then F(X) is a closed subspace of
Q
F(U�), thus F(X) is

nuclear by (5.14 b,c). �

(5.20) Proposition. Let F, G be coherent sheaves on complex analytic

schemes X, Y respectively. Then there is a canonical isomorphism

F�G(X � Y ) ' F(X) b
 G(Y ):
Proof. We show the proposition in several steps of increasing generality.

a) X = D � C n , Y = D0 � C p are polydisks, F = OX , G = OY .

Let pt(f) = sup
tD
jf j, p0

t
(f) = sup

tD0
jf j and qt(f) = sup

t(D�D0) jf j be the
semi-norms de�ning the topology of O(D), O(D0) and O(D�D0), respectively.
Then bEpt is a closed subspace of the space C(tD) of continuous functions on

tD with the sup norm, and we have pt 
" p0t = qt by example (5.3 c). Now,

O(D) 
 O(D0) is dense in O(D � D0), hence its completion with respect to

the family (qt) is O(D) b
" O(D0) = O(D �D0).

b) X is embedded in a polydisk D � C n , X = A \D i

,�! D,

i?F is the cokernel of a morphism O
p1

D
�! O

p0

D
,

Y = D0 � C p is a polydisk and G = OY .

By taking the external tensor product with OY , we get an exact sequence

(5:21) O
p1

D�Y �! O
p0

D�Y �! i?F�OY �! 0:

Then we �nd a commutative diagram

Op1(D)b
 O(Y )�! Op0(D)b
 O(Y )�! F(X)b
 O(Y ) �! 0?y ' ?y ' ?y
Op1(D�Y ) �! Op0(D�Y ) �! F�OY (X � Y )�! 0

in which the �rst line is exact as the image of (5.19) by the exact functor

� b
 O(Y ), and the second line is exact because the exact sequence of sheaves

(5.21) gives an exact sequence of spaces of sections on the Stein space D�Y ;

note that i?F�OY (D�Y ) = F�OY (X�Y ). As the �rst two vertical arrows
are isomorphisms by a), the third one is also an isomorphism.
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c) X, F are as in b),

Y is embedded in a polydisk D0 � C p , Y = A0 \D0 j

,�! D0

and j?G is the cokernel of O
q1

D0
�! O

q0

D0
.

Taking the external tensor product with F, we get an exact sequence

F�Oq1
D0
�! F�Oq0

D0
�! F�j?G �! 0

and with the same arguments as above we obtain a commutative diagram

F(X)b
 Oq1(D0)�! F(X)b
 Oq0(D0)�! F(X)b
 G(Y ) �! 0?y ' ?y ' ?y
F�Oq1

D0
(X �D0) �! F�Oq0

D0
(X �D0) �! F�G(X � Y )�! 0:

d) X, F are as in b),c) and Y , G are arbitrary.

Then Y can be covered by open sets U� = A�\D� embedded in polydisks

D�, on which the image of G admits a two-step resolution. We have F�G(X�
U�) ' F(X) b
 G(U�) by c), and the same is true over the intersections

X � U�� because U�� = U� \ U� can be embedded by the cross product

embedding j� � j� : U�� ! D� �D� . We have an exact sequence

0 �! G(Y ) �!
Y
�

G(U�) �!
Y
�;�

G(U��)

where the last arrow is (c�) 7! (c� � c�), and a commutative diagram with

exact lines

0 �! F(X)b
 G(Y )�! Q
F(X)b
 G(U�)�!Q F(X)b
 G(U��)?y ?y ' ?y '

0 �! F�G(X � Y )�!QF�G(X � U�)�!
Q
F�G(X � U��):

Therefore the �rst vertical arrow is an isomorphism.

e) X, F, Y , G are arbitrary.

This case is treated exactly in the same way as d) by reversing the roles of

F, G and by using d) to get the isomorphism in the last two vertical arrows.

�

(5.22) Corollary. Let F, G be coherent sheaves over complex analytic

schemes X, Y and let � : X � Y ! X be the projection. Suppose that

H�(Y;G) is Hausdor�.

a) If X is Stein, then Hq(X � Y;F�G) ' F(X) b
 Hq(Y;G).

b) In general, for every open set U � X,�
Rq�?(F�G)

�
(U) = F(U) b
 Hq(Y;G):

c) If Hq(Y;G) is �nite dimensional, then

Rq�?(F�G) = F
Hq(Y;G):
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Proof. a) Let V = (V�) be a countable Stein covering of Y . By the Leray

theorem, H�(Y;G) is equal to the cohomology of the �Cech complex C�(V;G).
Similarly X � V = (X � V�) is a Stein covering of X � Y and we have

Hq(X � Y;F�G) = Hq
�
C�(X � V;F�G)�:

However, Prop. 5.20 shows that C�(X � V;F�G) = F(X) b
 C�(V;G). Our
assumption that C�(V;G) has Hausdor� cohomology implies that the cocycle

and coboundary groups are (nuclear) Fr�echet spaces, and that each coho-

mology group can be computed by means of short exact sequences in this

category. By Prop. 5.17, we thus get the desired equality

Hq
�
C�(X � V;F�G)� = F(X) b
 Hq

�
C�(V;G)

�
:

b) The presheaf U 7! F(U) b
 Hq(Y;G) is in fact a sheaf, because the ten-

sor product with the nuclear space Hq(Y;G) preserves the exactness of all

sequences

0 �! F(U) �!
Y

F(U�) �!
Y

F(U��)

associated to arbitrary coverings (U�) of U . Property b) thus follows from

a) and from the fact that Rq�?(F�G) is the sheaf associated to the presheaf

U 7! Hq(U � Y;F�G).
c) is an immediate consequence of b), since the �nite dimensionality of

Hq(Y;G) implies that this space is Hausdor�. �

(5.23) K�unneth formula. Let F, G be coherent sheaves over complex an-

alytic schemes X, Y and suppose that the cohomology spaces H�(X;F) and
H�(Y;G) are Hausdor�. Then there is an isomorphismM

p+q=k

Hp(X;F) b
 Hq(Y;G)
'�! Hk(X � Y;F�G)

M
�p 
 �q 7�!

X
�p ` �q:

Proof. Consider the Leray spectral sequence associated to the coherent sheaf

S = F�G and to the projection � : X � Y ! X. By Cor. 5.22 b) and a use

of �Cech cohomology, we �nd

E
p;q

2 = Hp(X;Rq�?F�G) = Hp(X;F) b
 Hq(Y;G):

It remains to show that the Leray spectral sequence degenerates in E2. For

this, we argue as in the proof of Th. IV-15.9. In that proof, we de�ned a

morphism of the double complex Cp;q = F[p](X) 
 G[q](Y ) into the double

complex that de�nes the Leray spectral sequence (in IV-15.9, we only consid-

ered the sheaf theoretic external tensor product F�G, but there is an obvious
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morphism of that one into the analytic tensor product). We get a morphism

of spectral sequences which induces at the E2-level the obvious morphism

Hp(X;F)
Hq(Y;G) �! Hp(X;F) b
 Hq(Y;G):

It follows that the Leray spectral sequence Ep;q
r

is obtained for r � 2 by

taking the completion of the spectral sequence of C�;�. Since this spectral

sequence degenerates in E2 by the algebraic K�unneth theorem, the Leray

spectral sequence also satis�es dr = 0 for r � 2. �

(5.24) Remark. If X or Y is compact, the K�unneth formula holds with 

instead of b
, and the assumption that both cohomology spaces are Hausdor�

is unnecessary. The proof is exactly the same, except that we use (5.22 c)

instead of (5.22 b).

5.C. Modules over Nuclear Fr�echet Algebras

Throughout this subsection, we work in the category of nuclear Fr�echet

spaces. Recall that a topological algebra (commutative, with unit element 1)

is an algebra A together with a topological vector space structure such that

the multiplication A�A! A is continuous. A is said to be a Fr�echet (resp.

nuclear) algebra if it is Fr�echet (resp. nuclear) as a topological vector space.

(5.25) De�nition. A (Fr�echet, resp. nuclear) A-module E is a (Fr�echet,

resp. nuclear) space E with a A-module structure such that the multiplication

A� E ! E is continuous. The module E is said to be nuclearly free if E is

of the form A b
 V where V is a nuclear Fr�echet space.

Assume that A is nuclear and let E be a nuclear A-module. A nuclearly

free resolution L� of E is an exact sequence of A-modules and continuous

A-linear morphisms

(5:26) � � � �! Lq
dq�! Lq�1 �! � � � �! L0 �! E �! 0

in which each Lq is a nuclearly free A-module. Such a resolution is said to be

direct if each map dq is direct, i.e. if Imdq has a topological supplementary

space in Lq�1 (as a vector space over R or C , not necessarily as a A-module).

(5.27) Proposition. Every nuclear A-module E admits a direct nuclearly

free resolution.

Proof. We de�ne the \standard resolution" of E to be

Lq = A b
 : : : b
 A b
 E
where A is repeated (q + 1) times; the A-module structure of Lq is chosen to

be the one given by the �rst factor and we set d0(a0 
 x) = a0x,
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dq(a0 
 : : :
 aq 
 x) =
X

0�i<q
(�1)ia0 
 : : :
 aiai+1 
 : : :
 aq 
 x

+ (�1)qa0 
 : : :
 aq�1 
 aqx:
Then there is a homotopy operator hq : Lq ! Lq+1 given by hq(t) = 1 
 t
for all q (hq, however, is not A-linear). This implies easily that L� is a direct
nuclearly free resolution. �

If E and F are two nuclear A-modules, we de�ne E b
A F to be

E b
A F = coker
�
E b
 A b
 F d�! E b
 F � where(5:28)

d(x
 a
 y) = ax
 y � x
 ay:
Then E b
A F is a A-module which it is not necessarily Hausdor�. If E b
A F
is Hausdor�, it is in fact a nuclear A-module by Prop. 5.14. If E is nuclearly

free, say E = A b
 V ' V b
 A, we have E b
A F = V b
 F (which is thus

Hausdor�): indeed, there is an exact sequence

V b
 A b
 A b
 F �! V b
 A b
 F �! V b
 F �! 0;

v 
 a0 
 a1 
 x 7�! v 
 a0a1 
 x� v 
 a0 
 a1x; v 
 a
 x 7�! v 
 ax;

obtained by tensoring the standard resolution of F with V b
 ; observe that

the tensor product b
 with a nuclear space preserves exact sequences thanks

to Prop. 5.17. We further de�ne TôrA
q
(E;F ) to be

(5:29) TôrA
q
(E;F ) = Hq(E b
A L�);

where L� is the standard resolution of F . There is in fact an isomorphism

E b
A L� '�! E b
 A b
 � � � b
 A b
 F
x
A (a0 
 a1 
 : : :
 aq 
 y) 7�! a0x
 a1 
 : : :
 aq 
 y

where A is repeated q times in the target space. In this isomorphism, the

di�erential becomes

dq(x
 a1 
 : : :
 aq 
 y) = a1x
 a2 
 : : :
 aq 
 y
+
X

1�i<q
(�1)ix
 a1 
 : : :
 aiai+1 
 : : :
 aq 
 y

+ (�1)qx
 a1 
 : : :
 aq�1 
 aqy:

In particular, we get TôrA0 (E;F ) = E b
A F . Moreover, if we exchange the

roles of E and F , we obtain a complex which is isomorphic to the above

one up to the sign of dq, hence Tôr
A

q
(E;F ) ' TôrA

q
(F;E). If E = A b
 V is

nuclearly free, the complex E b
A L� = V b
 L� is exact, thus
E or F nuclearly free =) TôrA

q
(E;F ) = 0 for q � 1.
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(5.30) Proposition. For any exact sequence 0 ! E1 ! E2 ! E3 ! 0 of

nuclear A-modules and any nuclear A-module F , there is an (algebraic) exact

sequence

� � �TôrA
q
(E1; F )�! TôrA

q
(E2; F )�! TôrA

q
(E3; F )�! TôrA

q�1(E1; F ) � � �
�! E1 b
A F �! E2 b
A F �! E3 b
A F �! 0:

Proof. As the standard resolution L� ! F is nuclearly free, Lq = A b
 Vq say,
then Ej b
A L� = Ej b
 V� for j = 1; 2; 3, so we have a short exact sequence

of complexes

0 �! E1 b
A L� �! E2 b
A L� �! E3 b
A L� �! 0: �

(5.31) Corollary. For any nuclearly free (possibly non direct) resolution L�
of F , there is a canonical isomorphism

TôrAq (E;F ) ' Hq(E b
A L�):
Proof. Set Bq = Im(Lq+1 ! Lq) for all q � 0 and B�1 = F . Then apply

(5.30) to the short exact sequences 0! Bq ! Lq ! Bq�1 ! 0 and the fact

that Lq is nuclearly free to get

TôrAk (E;Bq�1) '
�
TôrAk�1(E;Bq) for k > 1,

ker(E b
A Bq ! E b
A Lq) for k = 1.

Hence we obtain inductively

TôrA
q
(E;F ) = TôrA

q
(E;B�1) ' : : : ' TôrA1 (E;Bq�2)

' ker(E b
A Bq�1 ! E b
A Lq�1)
and a commutative diagram

E b
A Lq+1 �! E b
A Lq �! E b
A Bq�1 �! 0

& %
E b
A Bq

in which the horizontal line is exact (thanks to the surjectivity of the left

oblique arrow and the exactness of the sequence with E b
A Bq as �rst term).

Therefore ker(E b
A Bq�1 ! E b
A Lq�1) can be interpreted as the kernel

of E b
A Lq ! E b
A Lq�1 modulo the image of E b
A Lq+1 ! E b
A Lq,

and this is is precisely the de�nition of Hq(E b
A L�). �

Now, we are ready to introduce the crucial concept of transversality.
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(5.32) De�nition.We say that two nuclear A-modules E, F are transverse

if E b
A F is Hausdor� and if TôrA
q
(E;F ) = 0 for q � 1.

For example, a nuclearly free A-module E = A b
 V is transverse to any

nuclear A-module F . Before proving further general properties, we give a

fundamental example.

(5.33) Proposition. Let X, Y be Stein spaces and let U 0 � U �� X,

V �� Y be Stein open subsets. If F is a coherent sheaf over X � Y , then
O(U 0) and F(U � V ) are transverse over O(U). Moreover

O(U 0) b
O(U) F(U � V ) = F(U 0 � V ):

Proof. Let L� ! F be a free resolution of F over U � V ; such a resolution

exists by Cartan's theorem A. Then L�(U � V ) is a resolution of F(U � V )
which is nuclearly free over O(U), for O(U�V ) = O(U) b
 O(V ) ; in particular,
we get

O(U 0) b
O(U) O(U � V ) = O(U 0) b
 O(V ) = O(U 0 � V );
O(U 0) b
O(U) L�(U � V ) = L�(U

0 � V ):
But L�(U 0 � V ) is a resolution of F(U 0 � V ), so

TôrO(U)
q

�
O(U 0);F(U � V )� = �F(U 0 � V ) for q = 0,

0 for q � 1.
�

(5.34) Properties.

a) If 0 ! E1 ! E2 ! E3 ! 0 is an exact sequence of nuclear A-modules

and if E2, E3 are transverse to F , then E1 is transverse to F .

b) Let A! A1 ! A2 be homomorphisms of nuclear algebras and let E be a

nuclear A-module. if A1 and A2 are transverse to E over A, then A2 is

tranverse to A1 b
A E over A1.

c) Let E� be a complex of nuclear A-modules, bounded on the right side, and

letM be a nuclear A-module which is transverse to all En. If E� is acyclic
in degrees � k, then M b
A E� is also acyclic in degrees � k.

d) Let E�, F � be complexes of nuclear A-modules, bounded on the right side.

Let f� : E� ! F � be a A-linear morphism and let M be a nuclear A-

module which is transverse to all Eq and F q. If f� induces an isomorphism
Hq(f�) : Hq(E�) ! Hq(F �) in degrees q � k and an epimorphism in

degree q = k � 1, then

IdM b
A f� :M b
A E� !M b
A F �
has the same property.
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Proof. a) is an immediate consequence of the Tôr exact sequence.

To prove b), we need only check that if A1 is transverse to E over A, then

TôrA1

q
(A2; A1 b
A E) = TôrA

q
(A2; E); 8n � 0:

Indeed, if L� = A b
 V� is a nuclearly free resolution of E over A, then

A1 b
A L� = A1 b
 V� is a nuclearly free resolution of A1 b
A E over A1, since

Hq(A1 b
A L�) = TôrA
q
(A1; E) = 0 for q � 1. Hence

TôrA1

q
(A2; A1 b
AE) = Hq

�
A2 b
A1

(A1 b
A L�)� = Hq

�
A2 b
A1

(A1 b
 V�)�
= Hq(A2 b
 V�) = Hq(A2 b
A L�) = TôrAq (A2; E):

c) The short exact sequences 0 ! Zq(E�) ,�! Eq
d
q

�! Zq+1(E�)! 0 show

by backward induction on q that M is transverse to Zq(E�) for q � k � 1.

Hence for q � k � 1 we obtain an exact sequence

0 �!M b
A Zq(E�) ,�!M b
A Eq d
q

�!M b
A Zq+1(E�) �! 0;

which gives in particular Zq(M b
A E�) = Bq(M b
A E�) = M b
A Zq(E�)
for q � k, as desired.
d) is obtained by applying c) to the mapping cylinder C(f�), as de�ned in

the following lemma (the proof is straightforward and left to the reader). �

(5.35) Lemma. If f� : E� ! F � is a morphism of complexes, the map-

ping cylinder C� = C(f�) is the complex de�ned by Cq = Eq � F q�1 with

di�erential�
d
q

E
0

�fq d
q�1
F

�
: Eq � F q�1 �! Eq+1 � F q:

Then there is a short exact sequence 0 ! F ��1 ! C� ! E� ! 0 and

the associated connecting homomorphism @q : Hq(E�) ! Hq(F �) is equal

to Hq(f�) ; in particular, C� is acyclic in degree q if and only if Hq(f�) is
injective and Hq�1(f�) is surjective. �

5.D. A-Subnuclear Morphisms and Perturbations

We now introduce a notion of nuclearity relatively to an algebra A. This

notion is needed for example to describe the properties of the O(S)-linear

restriction map O(S � U)! O(S � U 0) when U 0 �� U .

(5.36) De�nition. Let E and F be Fr�echet A-modules over a Fr�echet algebra

A and let f : E ! F be a A-linear map. We say that
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a) f is A-nuclear if there exist a scalar sequence (�j) with
P j�j j < +1,

an equicontinuous family of A-linears maps �j : E ! A and a bounded

sequence yj in F such that for all x 2 E

f(x) =
X

�j �j(x)yj :

b) f is A-subnuclear if there exists a Fr�echet A-module M and an epimor-

phism p : M ! E such that f Æ p is A-nuclear; if E is nuclear, we also

require M to be nuclear.

If f : E ! F is A-nuclear and if u : S ! E and v : F ! T are continuous

A-linear maps then v Æ f Æ u is A-nuclear; the same is true for A-subnuclear

maps. If V and W are nuclear spaces and if u : V ! W is C -nuclear, then

IdA b
 u : A b
 V ! A b
W is A-nuclear. From this we infer:

(5.37) Proposition. Let S, Z be Stein spaces and let U 0 �� U �� Z be Stein

open subsets. Then the restriction � : O(S�U)! O(S�U 0) is O(S)-nuclear.
If F is a coherent sheaf over Y � Z with Y Stein and S �� Y , then the

restriction map � : F(S � U)! F(S � U 0) is O(S)-subnuclear.

Proof. As O(S � U) = O(S) b
 O(U) and O(U) ! O(U 0) is C -nuclear, only
the second statement needs a proof. By Cartan's theorem A, there exists a

free resolution L� ! F over S � U . Then there is a commutative diagram

L0(S�U) �! F(S�U)
�
?y ?y�

L0(S�U 0)�! F(S�U 0)
in which the top horizontal arrow is an O(S)-epimorphism and the left vertical

arrow is an O(S)-nuclear map; its composition with the bottom horizontal

arrow is thus also O(S)-nuclear. �

Let f : E ! F be a A-linear morphism of Fr�echet A-modules. Suppose

that f(E) � F1 where F1 is a closed A-submodule of F and let f1 : E ! F1
be the map induced by f . If f is A-nuclear, it is not true in general that f1
is A-nuclear or A-subnuclear, even if A, E, F are nuclear. However:

(5.38) Proposition. With the above notations, suppose A, E, F nuclear.

Let B be a nuclear Fr�echet algebra and let � : A ! B be a C -nuclear

homomorphism. Suppose that B is transverse to E, F and F=F1 over A.

If f : E ! F is A-subnuclear, then IdB b
A f1 : B b
A E ! B b
A F1 is

B-subnuclear.

Proof. We �rst show that � b
A f1 : E = A b
A E ! B b
A F1 is C -nuclear.

Since a quotient of a C -nuclear map is C -nuclear by Cor. 5.16 b), we may

suppose for this that f is A-nuclear. Write
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f(x) =
X

�j �j(x)yj; �j : E ! A;
X
j�j j < +1; yj 2 F;

�(t) =
X

�k �k(t)bk; �k : A! C ;
X
j�kj < +1; bk 2 B

as in the de�nition of (A-)nuclearity. Then � b
A f : E �! B b
A F is

C -nuclear: for any x 2 E, we have �(�j(x)) = �j(x)�(1) in the A-module

structure of B, hence

� b
A f(x) = �
 f(1
 x) =
X

�j �(�j(x)) b
A yj
=
X

�j�k (�k Æ �j)(x) bk b
A yj :
By our transversality assumptions, B b
A F1 is a closed subspace of B b
A F .
As Im(� b
A f) � B b
A F1, the induced map � b
A f1 : E ! B b
A F1 is

C -nuclear by Cor. 5.16 a). Finally, there is a commutative diagram

Bb
 E IdBb
(�b
Af1)���������! B b
 (B b
A F1)?y ?y
Bb
A E IdBb
Af1���������! Bb
A F1

in which the vertical arrows are B-linear epimorphisms. The top horizontal

arrow is B-nuclear by the C -nuclearity of � b
A f1, hence IdB b
A f1 is

B-subnuclear. �

Example 5.12 suggests the following de�nition (which is somewhat less

general than some other in current use, but suÆcient for our purposes).

(5.39) De�nition. We say that a Fr�echet algebra A is fully nuclear if the

topology of A is de�ned by an increasing family (pt)t2]0;1[ of multiplicative
semi-norms

�
that is, pt(xy) � pt(x) pt(y)

�
, such that the Banach algebra

homomorphism bAp
t0
! bApt is nuclear for all t < t0 < 1.

If A is fully nuclear and t 2 ]0; 1], we de�ne At to be the completion of

A equipped with the family of semi-norms p�t, � 2 ]0; 1[. Then At is again a

fully nuclear algebra, and for all t < t0 < 1 the canonical map At0 ! At is

nuclear: indeed, for t � u < u0 < t0, there is a factorization

At0 �! bAp
u0
�! bApu �! At:

If E is a nuclear A-module, we say that E is fully A-transverse if E is trans-

verse to all At over A. Then by 5.34 b), each nuclear space

(5:40) Et = At b
A E
is a fully At-transverse At-module. If f : E ! F is a morphism of fully

A-transverse nuclear modules, there is an induced map



506 Chapter IX Finiteness Theorems for q-Convex Spaces and Stein Spaces

(5:400) ft = IdAt b
A f : Et �! Ft; 8t 2 ]0; 1]:

(5.41) Example. Let X be a closed analytic subscheme of an open set 
 �
C N , D = D(a;R) �� 
 a polydisk and U = D\X. We have an epimorphism

O(D)! O(U). Denote by ept the quotient semi-norm of pt(f) = sup
D(a;tR) jf j

on O(U). Then O(U) equipped with (ept)t2]0;1[ is a fully nuclear algebra, and

O(U)t = O
�
D(a; tR) \X�.

Now, let Y be a Stein space, V �� Y a Stein open subset and F a coherent

sheaf over X �Y . Then Prop. 5.33 shows that F(U �V ) is a fully transverse

nuclear O(U)-module.

(5.42) Subnuclear perturbation theorem. Let A be a fully nuclear al-

gebra, let E and F be two fully A-transverse nuclear A-modules and let

f; u : E ! F be A-linear maps. Suppose that u is A-subnuclear and that

f is an epimorphism. Then for every t < 1, the cokernel of

ft � ut : Et �! Ft

is a �nitely generated At-module (as an algebraic module; we do not assert

that the cokernel is Hausdor�).

Proof. We argue in several steps. The �rst step is the following special case.

(5.43) Lemma. Let B be a Banach algebra, S a Fr�echet B-module and

v : S ! S a B-nuclear morphism. Then Coker(IdS �v) is a �nitely generated
B-module.

Proof. Let v(x) =
P
�j �j(x)yj be a B-nuclear decomposition of v. We have

a factorization

v = � Æ � : S
��! `1(B)

��! S

where �(x) =
�
�j�j(x)

�
and �(tj) =

P
tjyj. Set w = � Æ � : `1(B)! `1(B).

As � is B-nuclear, so is w, and �, � induce isomorphisms

Coker(IdS �v)
e���! ��e� Coker

�
Id`1(B)�w

�
:

We are thus reduced to the case when S is a Banach module. Then we write

v = v0 + v00 with

v0(x) =
X

1�j�N
�j �j(x)yj; v00(x) =

X
j>N

�j �j(x)yj :

For N large enough, we have jjv00jj < 1, hence IdS �v00 is an automorphism

and Coker(IdS �v0 � v00) is generated by the classes of y1; : : : ; yN . �
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Proof of Theorem 5.42. a) We may suppose that E is nuclearly free and

that u is A-nuclear, otherwise we replace f , u by their composition with

A b
M �!M
p�! E, whereM is nuclear and p :M ! E is an epimorphism

such that u Æ p is A-nuclear.
b) As in (5.9), there is a A-nuclear decomposition u(x) =

P
�j �j(x)yj where

(yj) converges to 0 in F . Since f is an epimorphism, we can �nd a sequence

(xj) converging to 0 in E such that f(xj) = yj. Hence we have u = f Æv where
v(x) =

P
�j �j(x)xj is a A-nuclear endomorphism of E, and the cokernel of

f � u is the image by f of the cokernel of IdE �v.
c) By a), b) we may suppose that F = E = A b
M , f = IdE and that u is A-

nuclear. Let B be the Banach algebra B = bApt . Then B b
A E = B b
M
is a Fr�echet B-module and IdB b
A u is B-nuclear. By Lemma 5.42,

IdB b
A IdE � IdB b
A u has a �nitely generated cokernel over B. Now, there

is an obvious morphism B ! At, hence by taking the tensor product with

At b
B � we get
At b
B (B b
A E) = At b
B (B b
M) = At b
M = At b
A E = Et

and we see that

IdEt �ut = IdAt b
A IdE � IdAt b
A u
has a �nitely generated cokernel over At. �

5.E. Proof of the Direct Image Theorem

We �rst prove a functional analytic version of the result, which appears as a

relative version of Schwartz' theorem 1.9.

(5.44) Theorem. Let A be a fully nuclear algebra, E� and F � complexes of
fully A-transverse nuclear A-modules. Let f� : E� ! F � be a morphism of

complexes such that each fq is A-subnuclear. Suppose that E� and F � are

bounded on the right and that Hq(f�) is an isomorphism for each q. Then

for every t < 1, there is a complex L� of �nitely generated free At-modules

and a complex morphism h� : L� ! E�
t
which induces an isomorphism on

cohomology.

Proof. a) We �rst show the following statement:

Suppose that E�
t
and F �

t
are acyclic in degrees > q. Then for every

t0 < t, the cohomology space Hq(E�
t0
) ' Hq(F �

t0
) is a �nitely generated

At0-module.

Indeed, the exact sequences 0 ! Zk(E�t ) ! Ekt ! Zk+1(E�t ) ! 0

show by backward induction on k that Zk(E�
t
) is fully At-transverse for

k � q. The same is true for Zk(F �t ). Then f
q

t is a At-subnuclear map from
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Zq(E�
t
) into F

q

t
, and its image is contained in the closed subspace Zq(F �

t
).

By Prop. 5.38, for all t00 < t, the map f
q

t00
= IdA

t00
b
At fqt is a At00-subnuclear

map Zq(E�
t00
)! Zq(F �

t00
). By Prop. 5.34 d), H�(f�

t00
) is an isomorphism in all

degrees, hence

d
q

t00
� fq

t00
: F

q�1
t00
� Zq(E�

t00
) �! Zq(F �

t00
)

is surjective. By the subnuclear perturbation theorem, the map

d
q

t0
� 0 = IdA

t0
b
A

t00

�
(d
q

t00
� fq

t00
)� (0� fq

t00
)
�

has a �nitely generated At0-cokernel for t
0 < t00 < t, as desired.

b) Let N be an index such that Ek = F k = 0 for k > N . Fix a sequence

t < : : : < tq < tq+1 < : : : < tN < 1. To prove the theorem, we construct by

backward induction on q a �nitely generated free module Lq over Atq and

morphisms dq : Lq ! L
q+1
tq

, hq : Lq ! E
q

tq
such that

i) L�
�q; tq

: 0! Lq ! L
q+1
tq
! � � � ! LN

tq
! 0 is a complex and

h�
�q; tq

: L�
�q; tq

! E�tq is a complex morphism.

ii) The mapping cylinder M�q = C(h�
�q; tq

) de�ned by

Mk

q
=
L

k2Z
�
Lk
�q; tq

� Ek�1tq

�
is acyclic in degrees k > q.

Suppose that Lk has been constructed for k � q. Consider the mapping

cylinder N�q = C(f�tq Æ h��q; tq ) and the complex morphism

M�
q
�! N�

q
; Lk

�q; tq
� Ek�1

tq
�! Lk

�q; tq
� F k�1

tq

given by Id�fk�1tq
. This morphism is Atq -subnuclear in each degree and

induces an isomorphism in cohomology (compare the cohomology of the

short exact sequences associated to each mapping cylinder, with the obvi-

ous morphism between them). Moreover, M�
q
and N�

q
are acyclic in degrees

k > q. By step a), the cohomology space Hq(M�q; tq�1) is a �nitely generated

Atq�1-module. Therefore, we can �nd a �nitely generated free Atq�1-module

Lq�1 and a morphism

dq�1 � hq�1 : Lq�1 !Mq

q; tq�1
= Lq

tq�1
� Eq�1

tq�1

such that the image is contained in Zq(M�
q; tq�1

) and generates the cohomol-

ogy space Hq(M�
q; tq�1

). As M
q�1
q; tq�1

= E
q�2
tq�1

, this means that M�
q�1 is also

acyclic in degree q. Thus Lq�1, together with the maps (dq�1; hq�1) satis�es
the induction hypotheses for q � 1, and L�

t
together with the induced map

h�t : L
�
t ! E�t is the required morphism of complexes. �

Proof of theorem 5.1. Let X, Y be complex analytic schemes, let F : X ! Y

be a proper analytic morphism and let S be a coherent sheaf over X. Fix a

point y0 2 Y , a neighborhood of y0 which is isomorphic to a closed analytic

subscheme of a Stein open setW � C n and a polydiskD0 = D(y0; R0) �� W .
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The compact set K = F�1(D
0 \ Y ) can be covered by �nitely many open

subsets U0
�
�� X which possess embeddings as closed analytic subschemes

of Stein open sets 
0
�
� C N� . Let 
0

�
�� 
� �� 
0

�
be Stein open subsets

such that U� = U0
�
\
� and U 0

�
= U0

�
\
0

�
still cover K. Let i� : U0

�
! 
0

�

and j : Y \ D0 ! D0 be the embeddings and S� =
�
i� � (j Æ F )�

?
S the

image sheaf of S on 
0
�
�D0. Let D �� D0 be a concentric polydisk. Then

S
�
U�\F�1(D)

�
= S�(
��D) is a fully transverse O(D)-module by Ex. 5.41,

and so is S
�
U 0
�
\ F�1(D)� = S�(


0
�
�D). Moreover, the restriction map

S
�
U� \ F�1(D)

� �! S
�
U 0
�
\ F�1(D)�

is O(D)-subnuclear by Prop. 5.37 applied to F = S�. For every Stein open

set V � D, Prop. 5.33 shows that
O(V ) b
O(D) S

�
U� \ F�1(D)

�
= S
�
U� \ F�1(V )

�
:

Denote by U \ F�1(D) the collection
�
U� \ F�1(D)

�
and use a similar

notation with U0 = (U 0�). As U\F�1(D), U0\F�1(D) are Stein coverings of

F�1(D), the Leray theorem applied to the alternate �Cech complex of S over

U \ F�1(D) and U0 \ F�1(D) gives an isomorphism

H�
�
AC�(U \ F�1(D); S)� = H�

�
AC�(U0 \ F�1(D); S)� = H�

�
F�1(D); S

�
:

By the above discussion, AC�(U\ F�1(D); S) and AC�(U0 \ F�1(D); S) are
�nite complexes of fully transverse nuclear O(D)-modules, the restriction map

AC�(U \ F�1(D); S) �! AC�(U0 \ F�1(D); S)
is O(D)-subnuclear and induces an isomorphism on cohomology groups. Set

D = D(y0; R) and Dt = D(y0; tR). Theorem 5.44 shows that for every t < 1

there is a complex of �nitely generated free O-modules L� and a O(Dt)-linear

morphism of complexes

L�(Dt)! AC�(U \ F�1(Dt); S)
which induces an isomorphism on cohomology. Let V � Dt be an arbitrary

Stein open set. By Prop. 5.34 d) applied with M = O(V ), we conclude that

L�(V ) ! AC�(U \ F�1(V ); S) induces an isomorphism on cohomology. If

we take the direct limit as V runs over all Stein neighborhoods of a point

y 2 Y \Dt, we see that Hq(L�) ' RqF?S over Y \Dt, hence RqF?S is OY -

coherent near y0. �
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vexes, Tôhoku Math. J. 49 (1942) 15-52

Oka, K. (1950) Sur les fonctions de plusieurs variables VII, Sur quelques notions
arithm�etiques, Bull. Soc. Math. France 78 (1950) 1-27

Oka, K. (1953) Sur les fonctions de plusieurs variables IX, Domaines �nis sans point
critique int�erieur, Jap. J. Math. 23 (1953) 97-155

Peternell, Th., Le Potier, J., Schneider, M. (1987a) Vanishing theorems, linear and
quadratic normality, Invent. Math. 87 (1987) 573-586

Peternell, Th., Le Potier, J., Schneider, M. (1987b) Direct images of sheaves of
di�erentials and the Atiyah class, Math. Zeit. 196 (1987) 75-85

Ramanujam, C.P. (1974) Remarks on the Kodaira vanishing theorem, J. Indian
Math. Soc. 36 (1972) 41-50 ; 38 (1974) 121-124

Remmert, R. (1956) Projectionen analytischer Mengen, Math. Ann. 130 (1956)
410-441

Remmert, R. (1957) Holomorphe und meromorphe Abbildungen komplexer R�aume,
Math. Ann. 133 (1957) 328-370

Remmert, R., Stein, K. (1953) �Uber die wesentlichen Singularit�aten analytischer
Mengen, Math. Ann. 126 (1953) 263-306

Richberg, R. (1968) Stetige streng pseudokonvexe Funktionen, Math. Ann. 175
(1968) 257-286

Rothstein, W. (1955) Zur Theorie der Analytischen Mannigfaltigkeiten im Raume
von n komplexen Ver�anderlichen, Math. Ann. 129 (1955) 96-138

Rudin, W. (1966) Real and complex analysis, McGraw-Hill, New York (1966)
Schneider, M. (1974) Ein einfacher Beweis des Verschwindungssatzes f�ur positive
holomorphe Vektorraumb�undel, Manuscripta Math. 11 (1974) 95-101

Schwartz, L. (1953) Homomorphismes et applications compl�etement continues,
C. R. Acad. Sci 236 (1953) 2472-2473

Serre, J.P. (1954) Fonctions automorphes: quelques majorations dans le cas o�u X=G
est compact, S�em. Cartan (1953-54) 2-1 �a 2-9

Serre, J.P. (1955a) Un th�eor�eme de dualit�e, Comment. Math. Helv. 29 (1955) 9-26
Serre, J.P. (1955b) Faisceaux alg�ebriques coh�erents, Ann. of Math. 61 (1955)
197-278



References 517

Serre, J.P. (1956) G�eom�etrie alg�ebrique et g�eom�etrie analytique, Ann. Inst. Fourier
(Grenoble) 6 (1956) 1-42

Shi�man, B., Sommese, A.J. (1985) Vanishing theorems on complex manifolds,
Progress in Math. no 56, Birkh�auser (1985)

Sibony, N. (1985) Quelques probl�emes de prolongement de courants en analyse
complexe, Duke Math. J. 52 (1985) 157-197

Siegel, C.L. (1955) Meromorphic Funktionen auf kompakten Mannigfaltigkeiten,
Nachrichten der Akademie der Wissenschaften in G�ottingen, Math.-Phys. Klasse
4 (1955) 71-77

Siu, Y.T. (1969) Analytic sheaf cohomology groups of dimension n of n-dimensional
complex spaces, Trans. Amer. Math. Soc. 143 (1969) 77-94

Siu, Y.T. (1974) Analyticity of sets associated to Lelong numbers and the extension
of closed positive currents, Invent. Math. 27 (1974) 53-156

Siu, Y.T. (1976) Every Stein subvariety has a Stein neighborhood, Invent. Math.
38 (1976) 89-100

Siu, Y.T. (1984) A vanishing theorem for semi-positive line bundles over non-K�ahler
manifolds, J. Di�erential Geom. 19 (1984) 431-452

Siu, Y.T. (1985) Some recent results in complex manifold theory related to vanishing
theorems for the semi-positive case, Proceedings of the Bonn Arbeitstagung 1984,
Lecture Notes in Math. no 1111, Springer (1985) 169-192

Siu, Y.T. (1986) Asymptotic Morse inequalities for analytic sheaf cohomology, S�em.
Bourbaki, expos�e no 666, juin 1986, 16 p

Siu, Y.T. (1990) Calculus inequalities derived from holomorphic Morse inequalities,
Math. Ann. 286 (1990) 549-558

Skoda, H. (1972a) Sous-ensembles analytiques d'ordre �ni ou in�ni dans C n , Bull.
Soc. Math. France 100 (1972) 353-408

Skoda, H. (1972b) Application des techniques L2 �a l'�etude des id�eaux d'une alg�ebre
de fonctions holomorphes avec poids, Ann. Sci. Ecole Norm. Sup. 5 (1972)
545-579

Skoda, H. (1976) Estimations L2 pour l'op�erateur @ et applications arithm�etiques,
S�eminaire P. Lelong (Analyse), ann�ee 1975/76, Lecture Notes in Math. no 538,
Springer-Verlag, Berlin (1977) 314-323

Skoda, H. (1978) Morphismes surjectifs de �br�es vectoriels semi-positifs, Ann. Sci.
Ecole Norm. Sup. 11 (1978) 577-611

Skoda, H. (1982) Prolongement des courants positifs ferm�es de masse �nie, Invent.
Math. 66 (1982) 361-376

Sommese, A.J. (1978) Submanifolds of abelian varieties, Math. Ann. 233 (1978)
229-256

Spanier, E.H. (1966) Algebraic topology, McGraw-Hill, New York (1966)
Stein, K. (1951) Analytische Funktionen mehrerer komplexer Ver�anderlichen und
das zweite Cousin'sche Problem, Math. Ann. 123 (1951) 201-222

Stoll, W. (1966) The multiplicity of a holomorphic map, Invent. Math. 2 (1966)
15-58

Thie, P. (1967) The Lelong number of a point of a complex analytic set, Math.
Ann. 172 (1967) 269-312

Umemura, H. (1973) Some results in the theory of vector bundles, Nagoya Math.
J. 52 (1973) 97-128

Viehweg, E. (1982) Vanishing theorems, J. Reine Angew. Math. 335 (1982) 1-8
Waldschmidt, M. (1976) Propri�et�es arithm�etiques des fonctions de plusieurs vari-
ables II, S�eminaire P. Lelong (Analyse), ann�ee 1975-76, Lecture Notes in Math.
no 538, Springer-Verlag (1977) 108-135

Waldschmidt, M. (1978) Nombres transcendants et groupes alg�ebriques, Ast�erisque
no 69-70 (1979)



518 References

Warner, F. (1971), Foundations of di�erentiable manifolds and Lie groups, Aca-
demic Press, New York (1971)

Weil, A. (1952) Sur les th�eor�emes de De Rham, Comment. Math. Helv. 26 (1952)
119-145

Weil, A. (1957) Vari�et�es k�ahl�eriennes, Hermann, Paris (1957)
Wells, R.O. (1980) Di�erential analysis on complex manifolds, Graduate Texts in
Math. 65, 2nd edition, Springer-Verlag, Berlin (1980)

Weyl, H. (1913) Die Idee der Riemannschen Fl�ache, Teubner, Leipzig, (1913), 3. Au-
age, 1955

Witten, E. (1982) Supersymmetry and Morse theory, J. Di�erential Geom. 17
(1982) 661-692

Witten, E. (1984) Holomorphic Morse inequalities, Taubner-Texte zur Math. 70,
Algebraic and Di�erential Topology, Ed. G.M. Rassias (1984) 318-333


