
Chapter Three

Elementary Functions

3.1. Introduction. Complex functions are, of course, quite easy to come by—they are simply
ordered pairs of real-valued functions of two variables. We have, however, already seen enough to
realize that it is those complex functions that are differentiable that are the most interesting. It was
important in our invention of the complex numbers that these new numbers in some sense included
the old real numbers—in other words, we extended the reals. We shall find it most useful and
profitable to do a similar thing with many of the familiar real functions. That is, we seek complex
functions such that when restricted to the reals are familiar real functions. As we have seen, the
extension of polynomials and rational functions to complex functions is easy; we simply change x’s
to z’s. Thus, for instance, the function f defined by

fz = z2 + z + 1
z + 1

has a derivative at each point of its domain, and for z = x + 0i, becomes a familiar real rational
function

fx = x2 + x + 1
x + 1

.

What happens with the trigonometric functions, exponentials, logarithms, etc., is not so obvious.
Let us begin.

3.2. The exponential function. Let the so-called exponential function exp be defined by

expz = excosy + i siny,

where, as usual, z = x + iy. From the Cauchy-Riemann equations, we see at once that this function
has a derivative every where—it is an entire function. Moreover,

d
dz

expz = expz.

Note next that if z = x + iy and w = u + iv, then

expz + w = ex+ucosy + v + i siny + v

= exeycosycosv − siny sinv + isinycosv + cosy sinv

= exeycosy + i sinycosv + i sinv

= expzexpw.
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We thus use the quite reasonable notation ez = expz and observe that we have extended the real
exponential ex to the complex numbers.

Example

Recall from elementary circuit analysis that the relation between the voltage drop V and the current
flow I through a resistor is V = RI, where R is the resistance. For an inductor, the relation is
V = L dI

dt
, where L is the inductance; and for a capacitor, C dV

dt
= I, where C is the capacitance.

(The variable t is, of course, time.) Note that if V is sinusoidal with a frequency ω, then so also is I.
Suppose then that V = A sinωt + ϕ. We can write this as V = ImAe iϕe iωt = ImBe iωt, where
B is complex. We know the current I will have this same form: I = ImCe iωt. The relations
between the voltage and the current are linear, and so we can consider complex voltages and
currents and use the fact that e iωt = cosωt + i sinωt. We thus assume a more or less fictional
complex voltage V , the imaginary part of which is the actual voltage, and then the actual current
will be the imaginary part of the resulting complex current.

What makes this a good idea is the fact that differentiation with respect to time t becomes simply
multiplication by iω: d

dt
Ae iωt = iωAe iωt. If I = be iωt, the above relations between current and

voltage become V = iωLI for an inductor, and iωVC = I, or V = I
iωC

for a capacitor. Calculus is
thereby turned into algebra. To illustrate, suppose we have a simple RLC circuit with a voltage
source V = a sinωt. We let E = ae iwt .

Then the fact that the voltage drop around a closed circuit must be zero (one of Kirchoff’s
celebrated laws) looks like

iωLI + I
iωC

+ RI = ae iωt, or

iωLb + b
iωC

+ Rb = a

Thus,
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b = a
R + i ωL − 1

ωC

.

In polar form,

b = a

R2 + ωL − 1
ωC

2
e iϕ,

where

tanϕ =
ωL − 1

ωC

R
. (R ≠ 0)

Hence,

I = Imbe iωt = Im a

R2 + ωL − 1
ωC

2
e iωt+ϕ

= a

R2 + ωL − 1
ωC

2
sinωt + ϕ

This result is well-known to all, but I hope you are convinced that this algebraic approach afforded
us by the use of complex numbers is far easier than solving the differential equation. You should
note that this method yields the steady state solution—the transient solution is not necessarily
sinusoidal.

Exercises

1. Show that expz + 2πi = expz.

2. Show that expz
expw

= expz − w.

3. Show that |expz| = ex, and argexpz = y + 2kπi for any argexpz and some integer k.

4. Find all z such that expz = −1, or explain why there are none.

5. Find all z such that expz = 1 + i, or explain why there are none.

6. For what complex numbers w does the equation expz = w have solutions? Explain.

7. Find the indicated mesh currents in the network:
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3.3 Trigonometric functions. Define the functions cosine and sine as follows:

cos z = e iz + e−iz

2
,

sinz = e iz − e−iz

2i
where we are using ez = expz.

First, let;’s verify that these are honest-to-goodness extensions of the familiar real functions, cosine
and sine–otherwise we have chosen very bad names for these complex functions. So, suppose
z = x + 0i = x. Then,

e ix = cosx + i sinx, and

e−ix = cosx − i sinx.

Thus,

cosx = e ix + e−ix

2
,

sinx = e ix − e−ix

2i
,

and everything is just fine.

Next, observe that the sine and cosine functions are entire–they are simply linear combinations of
the entire functions e iz and e−iz. Moreover, we see that

d
dz

sinz = cos z, and d
dz

= − sinz,

just as we would hope.

It may not have been clear to you back in elementary calculus what the so-called hyperbolic sine
and cosine functions had to do with the ordinary sine and cosine functions. Now perhaps it will be
evident. Recall that for real t,
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sinh t = e t − e−t

2
, and cosh t = e t + e−t

2
.

Thus,

sinit = e iit − e−iit

2i
= i e t − e−t

2
= i sinh t.

Similarly,

cosit = cosh t.

How nice!

Most of the identities you learned in the 3rd grade for the real sine and cosine functions are also
valid in the general complex case. Let’s look at some.

sin2z + cos2z = 1
4
−e iz − e−iz2 + e iz + e−iz2 

= 1
4
−e2iz + 2e ize−iz − e−2iz + e2iz + 2e ize−iz + e−2iz 

= 1
4
2 + 2 = 1

It is also relative straight-forward and easy to show that:

sinz ± w = sinz cosw ± cos z sinw, and

cosz ± w = cos z cosw ∓ sinz sinw

Other familiar ones follow from these in the usual elementary school trigonometry fashion.

Let’s find the real and imaginary parts of these functions:

sinz = sinx + iy = sinxcosiy + cosx siniy

= sinxcoshy + icosx sinhy.

In the same way, we get cos z = cosxcoshy − i sinx sinhy.

Exercises

8. Show that for all z,
a)sinz + 2π = sinz; b)cosz + 2π = cos z; c)sin z + π

2 = cos z.

9. Show that |sinz |2 = sin2x + sinh2y and |cos z |2 = cos2x + sinh2y.
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10. Find all z such that sinz = 0.

11. Find all z such that cos z = 2, or explain why there are none.

3.4. Logarithms and complex exponents. In the case of real functions, the logarithm function
was simply the inverse of the exponential function. Life is more complicated in the complex
case—as we have see, the complex exponential function is not invertible. There are many
solutions to the equation ez = w.

If z ≠ 0, we define logz by

logz = ln|z | + iarg z.

There are thus many logz’s; one for each argument of z. The difference between any two of these
is thus an integral multiple of 2πi. First, for any value of logz we have

e logz = e ln |z|+i argz = e ln |z|e i argz = z.

This is familiar. But next there is a slight complication:

logez = lnex + argez = x + y + 2kπi

= z + 2kπi,

where k is an integer. We also have

logzw = ln|z||w| + iargzw

= ln |z| + iarg z + ln |w| + iargw + 2kπi

= logz + logw + 2kπi

for some integer k.

There is defined a function, called the principal logarithm, or principal branch of the logarithm,
function, given by

Log z = lnx + iArg z,

where Arg z is the principal argument of z. Observe that for any logz, it is true that logz =Log
z + 2kπi for some integer k. This new function is an extension of the real logarithm function:

Log x = lnx + iArg x = lnx.
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This function is analytic at a lot of places. First, note that it is not defined at z = 0, and is not
continuous anywhere on the negative real axis (z = x + 0i, where x < 0.). So, let’s suppose
z0 = x0 + iy0, where x0 > 0, and see about a derivative of Log z :

z→z0

lim
Log z − Log z0

z − z0
=

z→z0

lim
Log z − Log z0

eLog z − eLog z0
.

Now if we let w =Log z and w0 =Log z0, and notice that w → w0 as z → z0, this becomes

z→z0

lim
Log z − Log z0

z − z0
=

w→w0

lim w − w0

ew − ew0

= 1
ew0

= 1
z0

Thus, Log is differentiable at z0 , and its derivative is 1
z0

.

We are now ready to give meaning to zc, where c is a complex number. We do the obvious and
define

zc = ec logz.

There are many values of logz, and so there can be many values of zc. As one might guess, ecLog z

is called the principal value of zc.

Note that we are faced with two different definitions of zc in case c is an integer. Let’s see if we
have anything to unlearn. Suppose c is simply an integer, c = n. Then

zn = en logz = ekLog z+2kπi

= enLog ze2knπi = enLog z

There is thus just one value of zn, and it is exactly what it should be: enLog z = |z|ne in argz. It is easy
to verify that in case c is a rational number, zc is also exactly what it should be.

Far more serious is the fact that we are faced with conflicting definitions of zc in case z = e. In the
above discussion, we have assumed that ez stands for expz. Now we have a definition for ez that
implies that ez can have many values. For instance, if someone runs at you in the night and hands
you a note with e1/2 written on it, how to you know whether this means exp1/2 or the two values

e and − e ? Strictly speaking, you do not know. This ambiguity could be avoided, of course, by
always using the notation expz for exe iy, but almost everybody in the world uses ez with the
understanding that this is expz, or equivalently, the principal value of ez. This will be our
practice.
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Exercises

12. Is the collection of all values of logi1/2 the same as the collection of all values of 1
2 log i ?

Explain.

13. Is the collection of all values of logi2 the same as the collection of all values of 2 log i ?
Explain.

14. Find all values of logz1/2. (in rectangular form)

15. At what points is the function given by Log z2 + 1 analytic? Explain.

16. Find the principal value of
a) ii. b) 1 − i4i

17. a)Find all values of |ii |.
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