
Chapter Two

Complex Functions

2.1. Functions of a real variable. A function γ : I → C from a set I of reals into the complex
numbers C is actually a familiar concept from elementary calculus. It is simply a function from a
subset of the reals into the plane, what we sometimes call a vector-valued function. Assuming the
function γ is nice, it provides a vector, or parametric, description of a curve. Thus, the set of all
γt : γt = e it = cos t + i sin t = cos t, sin t, 0 ≤ t ≤ 2π is the circle of radius one, centered at
the origin.

We also already know about the derivatives of such functions. If γt = xt + iyt, then the
derivative of γ is simply γ ′t = x ′t + iy ′t, interpreted as a vector in the plane, it is tangent to
the curve described by γ at the point γt.

Example. Let γt = t + it2, −1 ≤ t ≤ 1. One easily sees that this function describes that part of
the curve y = x2 between x = −1 and x = 1:
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Another example. Suppose there is a body of mass M ”fixed” at the origin–perhaps the sun–and
there is a body of mass m which is free to move–perhaps a planet. Let the location of this second
body at time t be given by the complex-valued function zt. We assume the only force on this
mass is the gravitational force of the fixed body. This force f is thus

f = GMm
|zt|2

− zt
|zt|

where G is the universal gravitational constant. Sir Isaac Newton tells us that

mz ′′t = f = GMm
|zt|2

− zt
|zt|

Hence,

z ′′ = − GM
|z |3

z

Next, let’s write this in polar form, z = re iθ:

d2

dt2 re iθ  = − k
r2 e iθ

where we have written GM = k. Now, let’s see what we have.
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d
dt

re iθ  = r d
dt

e iθ + dr
dt

e iθ

Now,

d
dt

e iθ = d
dt

cosθ + i sinθ

= − sinθ + icosθ dθ
dt

= icosθ + i sinθ dθ
dt

= i dθ
dt

e iθ.

(Additional evidence that our notation e iθ = cosθ + i sinθ is reasonable.)
Thus,

d
dt

re iθ  = r d
dt

e iθ + dr
dt

e iθ

= r i dθ
dt

e iθ + dr
dt

e iθ

= dr
dt

+ ir dθ
dt

e iθ.

Now,

d2

dt2 re iθ  = d2r
dt2 + i dr

dt
dθ
dt

+ ir d2θ
dt2 e iθ +

dr
dt

+ ir dθ
dt

i dθ
dt

e iθ

= d2r
dt2 − r dθ

dt

2
+ i r d2θ

dt2 + 2 dr
dt

dθ
dt

e iθ

Now, the equation d2

dt2 re iθ  = − k
r2 e iθ becomes

d2r
dt2 − r dθ

dt

2
+ i r d2θ

dt2 + 2 dr
dt

dθ
dt

= − k
r2 .

This gives us the two equations

d2r
dt2 − r dθ

dt

2
= − k

r2 ,

and,

r d2θ
dt2 + 2 dr

dt
dθ
dt

= 0.

Multiply by r and this second equation becomes

d
dt

r2 dθ
dt

= 0.

This tells us that

α = r2 dθ
dt
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is a constant. (This constant α is called the angular momentum.) This result allows us to get rid
of dθ

dt
in the first of the two differential equations above:

d2r
dt2 − r α

r2

2
= − k

r2

or,

d2r
dt2 − α2

r3 = − k
r2 .

Although this now involves only the one unknown function r, as it stands it is tough to solve. Let’s
change variables and think of r as a function of θ. Let’s also write things in terms of the function
s = 1

r . Then,

d
dt

= dθ
dt

d
dθ

= α
r2

d
dθ

.

Hence,

dr
dt

= α
r2

dr
dθ

= −α ds
dθ

,

and so

d2r
dt2 = d

dt
−α ds

dθ
= αs2 d

dθ
−α ds

dθ

= −α2s2 d2s
dθ2 ,

and our differential equation looks like

d2r
dt2 − α2

r3 = −α2s2 d2s
dθ2 − α2s3 = −ks2,

or,

d2s
dθ2 + s = k

α2 .

This one is easy. From high school differential equations class, we remember that

s = 1
r = Acosθ + ϕ + k

α2 ,

where A and ϕ are constants which depend on the initial conditions. At long last,
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r = α2/k
1 + cosθ + ϕ

,

where we have set  = Aα2/k. The graph of this equation is, of course, a conic section of
eccentricity .

Exercises

1. a)What curve is described by the function γt = 3t + 4 + it − 6, 0 ≤ t ≤ 1 ?
b)Suppose z and w are complex numbers. What is the curve described by

γt = 1 − tw + tz, 0 ≤ t ≤ 1 ?

2. Find a function γ that describes that part of the curve y = 4x3 + 1 between x = 0 and x = 10.

3. Find a function γ that describes the circle of radius 2 centered at z = 3 − 2i .

4. Note that in the discussion of the motion of a body in a central gravitational force field, it was
assumed that the angular momentum α is nonzero. Explain what happens in case α = 0.

2.2 Functions of a complex variable. The real excitement begins when we consider function
f : D → C in which the domain D is a subset of the complex numbers. In some sense, these two
are familiar to us from elementary calculus—they are simply functions from a subset of the plane
into the plane:

fz = fx,y = ux,y + ivx,y = ux,y,vx,y

Thus fz = z2 looks like fz = z2 = x + iy2 = x2 − y2 + 2xyi. In other words, ux,y = x2 − y2

and vx, y = 2xy. The complex perspective, as we shall see, generally provides richer and more
profitable insights into these functions.

The definition of the limit of a function f at a point z = z0 is essentially the same as that which we
learned in elementary calculus:

z→z0

lim fz = L

means that given an  > 0, there is a δ so that |fz − L | <  whenever 0 < |z − z0 | < δ. As you
could guess, we say that f is continuous at z0 if it is true that

z→z0

lim fz = fz0. If f is continuous at

each point of its domain, we say simply that f is continuous.
Suppose both

z→z0

lim fz and
z→z0

lim gz exist. Then the following properties are easy to establish:

z→z0

lim fz ± gz =
z→z0

lim fz ±
z→z0

lim gz
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z→z0

lim fzgz =
z→z0

lim fz
z→z0

lim gz

and,

z→z0

lim fz
gz

= z→z0

lim fz

z→z0

lim gz

provided, of course, that
z→z0

lim gz ≠ 0.

It now follows at once from these properties that the sum, difference, product, and quotient of two
functions continuous at z0 are also continuous at z0. (We must, as usual, except the dreaded 0 in
the denominator.)

It should not be too difficult to convince yourself that if z = x,y, z0 = x0,y0, and
fz = ux,y + ivx,y, then

z→z0

lim fz =
x,y→x0,y0

lim ux,y + i
x,y→x0,y0

lim vx,y

Thus f is continuous at z0 = x0,y0 precisely when u and v are.

Our next step is the definition of the derivative of a complex function f. It is the obvious thing.
Suppose f is a function and z0 is an interior point of the domain of f . The derivative f ′z0 of f is

f ′z0 =
z→z0

lim fz − fz0
z − z0

Example
Suppose fz = z2 . Then, letting Δz = z − z0, we have

z→z0

lim fz − fz0
z − z0

=
Δz→0
lim fz0 + Δz − fz0

Δz

=
Δz→0
lim

z0 + Δz2 − z0
2

Δz

=
Δz→0
lim 2z0Δz + Δz2

Δz

=
Δz→0
lim 2z0 + Δz

= 2z0

No surprise here–the function fz = z2 has a derivative at every z, and it’s simply 2z.

Another Example

Let fz = zz. Then,
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Δz→0
lim fz0 + Δz − fz0

Δz =
Δz→0
lim z0 + Δzz0 + Δz − z0z0

Δz

=
Δz→0
lim z0Δz + z0Δz + ΔzΔz

Δz

=
Δz→0
lim z0 + Δz + z0

Δz
Δz

Suppose this limit exists, and choose Δz = Δx, 0. Then,

Δz→0
lim z0 + Δz + z0

Δz
Δz =

Δx→0
lim z0 + Δx + z0

Δx
Δx

= z0 + z0

Now, choose Δz = 0,Δy. Then,

Δz→0
lim z0 + Δz + z0

Δz
Δz =

Δy→0
lim z0 − Δy − z0

Δy
Δy

= z0 − z0

Thus, we must have z0 + z0 = z0 − z0, or z0 = 0. In other words, there is no chance of this limit’s
existing, except possibly at z0 = 0. So, this function does not have a derivative at most places.

Now, take another look at the first of these two examples. It looks exactly like what you did in
Mrs. Turner’s 3rd grade calculus class for plain old real-valued functions. Meditate on this and you
will be convinced that all the ”usual” results for real-valued functions also hold for these new
complex functions: the derivative of a constant is zero, the derivative of the sum of two functions is
the sum of the derivatives, the ”product” and ”quotient” rules for derivatives are valid, the chain
rule for the composition of functions holds, etc., etc. For proofs, you need only go back to your
elementary calculus book and change x’s to z’s.

A bit of jargon is in order. If f has a derivative at z0, we say that f is differentiable at z0. If f is
differentiable at every point of a neighborhood of z0, we say that f is analytic at z0. If f is analytic
at every point of some set S, we say that f is analytic on S. A function that is analytic on the set of
all complex numbers is said to be an entire function.

Exercises

5. Suppose fz = 3xy + ix − y2. Find
z→3+2i
lim fz, or explain carefully why it does not exist.

6. Prove that if f has a derivative at z, then f is continuous at z.

7. Find all points at which the valued function f defined by fz = z has a derivative.

8. Find all points at which the valued function f defined by
fz = 2 + iz3 − iz2 + 4z − 1 + 7i

has a derivative.
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9. Is the function f given by

fz =
z2

z , z ≠ 0

0 , z = 0

differentiable at z = 0? Explain.

2.3. Derivatives. Suppose the function f given by fz = ux,y + ivx,y has a derivative at
z = z0 = x0,y0. We know this means there is a number f ′z0 so that

f ′z0 =
Δz→0
lim fz0 + Δz − fz0

Δz .

Choose Δz = Δx, 0 = Δx. Then,

f ′z0 =
Δz→0
lim fz0 + Δz − fz0

Δz

=
Δx→0
lim ux0 + Δx,y0 + ivx0 + Δx,y0 − ux0,y0 − ivx0,y0

Δx

=
Δx→0
lim ux0 + Δx,y0 − ux0,y0

Δx + i vx0 + Δx,y0 − vx0,y0
Δx

= ∂u
∂x

x0,y0 + i ∂v
∂x

x0,y0

Next, choose Δz = 0,Δy = iΔy. Then,

f ′z0 =
Δz→0
lim fz0 + Δz − fz0

Δz

=
Δy→0
lim ux0,y0 + Δy + ivx0,y0 + Δy − ux0,y0 − ivx0,y0

iΔy

=
Δy→0
lim vx0,y0 + Δy − vx0,y0

Δy − i ux0,y0 + Δy − ux0,y0
Δy

= ∂v
∂y

x0,y0 − i ∂u
∂y

x0,y0

We have two different expressions for the derivative f ′z0, and so

∂u
∂x

x0,y0 + i ∂v
∂x

x0,y0 = ∂v
∂y

x0,y0 − i ∂u
∂y

x0,y0

or,
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∂u
∂x

x0,y0 = ∂v
∂y

x0,y0,

∂u
∂y

x0,y0 = − ∂v
∂x

x0,y0

These equations are called the Cauchy-Riemann Equations.

We have shown that if f has a derivative at a point z0, then its real and imaginary parts satisfy these
equations. Even more exciting is the fact that if the real and imaginary parts of f satisfy these
equations and if in addition, they have continuous first partial derivatives, then the function f has a
derivative. Specifically, suppose ux,y and vx,y have partial derivatives in a neighborhood of
z0 = x0,y0, suppose these derivatives are continuous at z0, and suppose

∂u
∂x

x0,y0 = ∂v
∂y

x0,y0,

∂u
∂y

x0,y0 = − ∂v
∂x

x0,y0.

We shall see that f is differentiable at z0.

fz0 + Δz − fz0
Δz

=
ux0 + Δx,y0 + Δy − ux0,y0 + ivx0 + Δx,y0 + Δy − vx0,y0

Δx + iΔy
.

Observe that

ux0 + Δx,y0 + Δy − ux0,y0 = ux0 + Δx,y0 + Δy − ux0,y0 + Δy +

ux0,y0 + Δy − ux0,y0.

Thus,

ux0 + Δx,y0 + Δy − ux0,y0 + Δy = Δx ∂u
∂x

ξ,y0 + Δy,

and,

∂u
∂x

ξ,y0 + Δy = ∂u
∂x

x0,y0 + 1,

where,

Δz→0
lim 1 = 0.

Thus,

ux0 + Δx,y0 + Δy − ux0,y0 + Δy = Δx ∂u
∂x

x0,y0 + 1 .

Proceeding similarly, we get
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fz0 + Δz − fz0
Δz

=
ux0 + Δx,y0 + Δy − ux0,y0 + ivx0 + Δx,y0 + Δy − vx0,y0

Δx + iΔy

=
Δx ∂u

∂x
x0,y0 + 1 + i ∂v

∂x
x0,y0 + i 2 + Δy ∂u

∂y
x0,y0 + 3 + i ∂v

∂y
x0,y0 + i 4

Δx + iΔy
, .

where  i → 0 as Δz → 0. Now, unleash the Cauchy-Riemann equations on this quotient and obtain,

fz0 + Δz − fz0
Δz

=
Δx ∂u

∂x
+ i ∂v

∂x
+ iΔy ∂u

∂x
+ i ∂v

∂x

Δx + iΔy
+ stuff

Δx + iΔy

= ∂u
∂x

+ i ∂v
∂x

+ stuff
Δx + iΔy

.

Here,

stuff = Δx1 + i 2 + Δy3 + i 4.

It’s easy to show that

Δz→0
lim stuff

Δz = 0,

and so,

Δz→0
lim fz0 + Δz − fz0

Δz = ∂u
∂x

+ i ∂v
∂x

.

In particular we have, as promised, shown that f is differentiable at z0.

Example

Let’s find all points at which the function f given by fz = x3 + i1 − y3 is differentiable.
Here we have u = x3 and v = 1 − y3. The Cauchy-Riemann equations thus look like

3x2 = 31 − y2, and

0 = 0.

The partial derivatives of u and v are nice and continuous everywhere, so f will be differentiable
everywhere the C-R equations are satisfied. That is, everywhere

x2 = 1 − y2; that is, where

x = 1 − y, or x = −1 + y.

This is simply the set of all points on the cross formed by the two straight lines
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Exercises

10. At what points is the function f given by fz = x3 + i1 − y3 analytic? Explain.

11. Do the real and imaginary parts of the function f in Exercise 9 satisfy the Cauchy-Riemann
equations at z = 0? What do you make of your answer?

12. Find all points at which fz = 2y − ix is differentiable.

13. Suppose f is analytic on a connected open set D, and f ′z = 0 for all zεD. Prove that f is
constant.

14. Find all points at which

fz = x
x2 + y2 − i y

x2 + y2

is differentiable. At what points is f analytic? Explain.
15. Suppose f is analytic on the set D, and suppose Re f is constant on D. Is f necessarily constant
on D? Explain.

16. Suppose f is analytic on the set D, and suppose |fz| is constant on D. Is f necessarily constant
on D? Explain.
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