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Section 8.5

Applications: Pendulums
and Mass-Spring Systems

In this section we will investigate two applications of our work in Section 8.4. First, we
will consider the motion of a pendulum, a problem originally mentioned in Section 2.2
in connection with the trigonometric functions. Second, we will discuss the motion of an
object vibrating at the end of a spring.

The motion of a pendulum
Consider a pendulum consisting of a bob of mass m at the end of a rigid rod of length
b. We will assume that the mass of the rod is negligible in comparison with the mass of
the bob. Let x(t) be the angle between the rod and the vertical at time t, with x(t) > 0
for angles measured in the counterclockwise direction and x(t) < 0 for angles measured
in the clockwise direction. See Figure 8.5.1. Suppose the bob is pulled through an angle
α and then released. That is, suppose our initial conditions are x(0) = α and ẋ(0) = 0.
If we view the motion of the pendulum in the complex plane, with the real axis vertical,
positive direction downward, and the imaginary axis horizontal, positive direction to the
right, then the position of the bob at time t is given by

z(t) = beix(t). (8.5.1)
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Figure 8.5.1 A pendulum

Then we have
ż = ibẋeix (8.5.2)

and
z̈ = −bẋ2eix + ibẍeix

= −bẋ2(cos(x) + i sin(x)) + ibẍ(cos(x) + i sin(x))

= (−bẋ2 cos(x)− bẍ sin(x)) + i(−bẋ2 sin(x) + bẍ cos(x)).

(8.5.3)
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Now z̈ is the acceleration of the pendulum, and so mz̈ must be equal to the force of gravity
acting on the bob, namely, a force of magnitude mg acting in the downward direction, the
direction of the positive real axis. Hence we must have g = z̈, that is,

g = (−bẋ2 cos(x)− bẍ sin(x)) + i(−bẋ2 sin(x) + bẍ cos(x)). (8.5.4)

Equating the real and imaginary parts of the two sides of (8.5.4) gives us

g = −bẋ2 cos(x)− bẍ sin(x) (8.5.5)

and
0 = −bẋ2 sin(x) + bẍ cos(x). (8.5.6)

Multiplying (8.5.5) by − sin(x) and (8.5.6) by cos(x) gives us

−g sin(x) = bẋ2 cos(x) sin(x) + bẍ sin2(x) (8.5.7)

and
0 = −bẋ2 sin(x) cos(x) + bẍ cos2(x). (8.5.8)

Adding (8.5.7) and (8.5.8) together yields

−g sin(x) = bẍ(sin2(x) + cos2(x)) = bẍ. (8.5.9)

Thus
ẍ = −g

b
sin(x). (8.5.10)

So we have reduced the problem of describing the motion of the pendulum to the
problem of solving the second order differential equation (8.5.10) subject to the initial
conditions x(0) = α and ẋ(0) = 0. Unfortunately, this equation is not linear. In fact, it is
not possible to find a closed form solution for this equation. In Section 8.6 we will discuss
how to study this equation using numerical approximations, but for now we will take a
different approach to finding an approximate solution. Since we know

sin(x) = x+ o(x) (8.5.11)

from our work on best affine approximations in Chapter 2, it is reasonable to replace sin(x)
by x for small values of x. Hence, if we restrict to the case where α is small, we may replace
(8.5.10) by the linear equation

ẍ = −g
b
x. (8.5.12)

Since this equation is homogeneous with constant coefficients, we may solve it using the
techniques of Section 8.4. Specifically, the characteristic equation for this equation is

k2 +
g

b
= 0, (8.5.13)
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Figure 8.5.2 Motion of a pendulum

which has roots

k1 = −i
√
g

b
(8.5.14)

and

k2 = i

√
g

g
(8.5.15).

Hence the general solution is

x = c1 cos
(√g

b
t
)

+ c2 sin
(√g

b
t
)
. (8.5.16)

Then

ẋ = −c1
√
g

b
sin
(√g

b
t
)

+ c2

√
g

b
cos
(√g

b
t
)
, (8.5.17)

and so x(0) = c1 and ẋ(0) = c2
√

g
b . Hence the initial conditions x(0) = α and ẋ(0) = 0

imply c1 = α and c2 = 0. Thus

x = α cos
(√g

b
t
)

(8.5.18).

The graph of x for the case b = 1 meter and α = 0.1 radians, in which case we use g = 9.8
meters per second per second, is shown in Figure 8.5.2.

One consequence of (8.5.18) is that the period of the motion, that is, the time it takes
the bob to make one complete oscillation, is

2π√
g

b

= 2π

√
b

g
, (8.5.19)

independent of the value of α. Of course, we are working under the approximation
sin(x) ≈ x, so (8.5.19) is actually only an approximation of the period. Nevertheless,
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the approximation is very good for small oscillations and is the reason pendulums were
used to measure time in early clocks.

Vibrations in mechanical systems: mass-spring systems
In this example we consider the motion of an object of mass m suspended on a spring, as
shown in Figure 8.5.3. We will measure the position of the object along a vertical axis,
with the equilibrium position at 0 and the positive direction downward. Let x(t) denote
the position of the object at time t and suppose the object is released from rest at position
x0. That is, we suppose that x(0) = x0 and ẋ(0) = 0. If we ignore any damping forces,
such as resistance to the motion due to the surrounding medium, such as air or oil, then
the only forces acting on the object are the force of gravity, contributing a term of mg, and
the restorative force of the spring, given, according to Hooke’s law, by k` for some constant
k > 0, where ` is the amount the spring is stretched or compressed from its natural length.
If we let ∆` be the amount the spring is stretched when the object is at the equilibrium
position, that is, when x = 0, then at any time the spring is stretched or compressed by
x+ ∆`. Thus at any time t the force acting on the object is

F = mg − k(x+ ∆`). (8.5.20)
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Figure 8.5.3 Mass on a spring at equilibrium

In particular, if the object is at rest at its equilibrium position, then both x = 0 and F = 0.
Hence

0 = mg − k∆`, (8.5.21)

and so
mg = k∆`. (8.5.22)

Thus (8.5.20) simplifies to F = −kx. Applying Newton’s second law of motion, we have

mẍ = −kx, (8.5.23)

from which we obtain
ẍ = − k

m
x. (8.5.24)
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Figure 8.5.4 Motion of a mass-spring system without damping

This equation is of the same form as the equation derived above for approximating the
motion of a pendulum. Hence, using the same reasoning, the solution is

x = x0 cos
(√ k

m
t
)
. (8.5.25)

The graph of x for k = 10, m = 5, and x0 = 2 is shown in Figure 8.5.4.
Notice that the period of the motion is

T =
2π√
k

m

= 2π
√
m

k
. (8.5.26)

The frequency of the motion, that is, the number of complete oscillations in one unit of
time, is

f =
1
T

=
1

2π

√
k

m
. (8.5.27)

Hence for a fixed mass, increasing the spring constant, that is, increasing the stiffness of
the spring, decreases the period and increases the frequency; for a fixed spring constant,
increasing the mass increases the period and decreases the frequency.

Now suppose there is a damping force, a force resisting the motion of the object, which
is proportional to the velocity. This adds an additional term of −cẋ, where c is a positive
constant, to the force acting on the object, giving us F = −kx− cẋ. Thus

mẍ = −kx− cẋ, (8.5.28)

and so

ẍ+
c

m
ẋ+

k

m
x = 0 (8.5.29)
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replaces (8.5.24) as the equation describing the motion of the object. To simplify the
notation, we will let

b =
c

2m

and

a =

√
k

m
.

Then our differential equation becomes

ẍ+ 2bẋ+ a2x = 0, (8.5.30)

with characteristic equation (using s for the variable)

s2 + 2bs+ a2 = 0. (8.5.31)

Hence the roots of the characteristic equation are

s1 =
−2b−

√
4b2 − 4a2

2
= −b−

√
b2 − a2 (8.5.32)

and

s2 =
−2b+

√
4b2 − 4a2

2
= −b+

√
b2 − a2. (8.5.33)

Thus the behavior of the system depends on whether b2−a2 > 0, b2−a2 = 0, or b2−a2 < 0.
Equivalently, since

b2 − a2 =
c2

4m2
− k

m
,

the behavior of the system depends on whether c2 > 4mk, c2 = 4mk, or c2 < 4mk. In the
first case the system is said to be overdamped, in the second it is critically damped, and in
the third it is underdamped.

First consider the overdamped case b2−a2 > 0. In this case the characteristic equation
has distinct real roots, so the general solution is

x = c1e
s1t + c2e

s2t. (8.5.34)

Now
ẋ = c1s1e

s1t + c2s2e
s2t, (8.5.35)

so x(0) = c1 + c2 and ẋ(0) = c1s1 + c2s2. Hence the initial conditions, x(0) = x0 and
ẋ(0) = 0, give us

x0 = c1 + c2

and
0 = c1s1 + c2s2.
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Figure 8.5.5 Motion of an overdamped mass-spring system

Multiplying the first equation by s1 and subtracting from the second gives us

−x0s1 = c2(s2 − s1).

Hence
c2 = − x0s1

s2 − s1

and

c1 = x0 − c2 =
x0(s2 − s1)
s2 − s1

+
x0s1

s2 − s1
=

x0s2

s2 − s1
.

Thus
x =

x0

s2 − s1
(s2e

s1t − s1e
s2t). (8.5.36)

Now b > 0 and b >
√
b2 − a2, so

s2 = −b+
√
b2 − a2 < 0.

Hence
s1 < s2 < 0. (8.5.37)

It follows that es2t > es1t, s2 − s1 > 0, and

s2e
s1t − s1e

s2t > s2e
s2t − s1e

s2t = es2t(s2 − s1) > 0

for all t ≥ 0. Hence if x0 < 0, then x(t) < 0 for all t ≥ 0, and if x0 > 0, then x(t) > 0 for
all t > 0 . Combining this with

lim
t→∞

x(t) = 0, (8.5.38)

we see that in this case the system does not oscillate at all. After release, the object simply
returns to the equilibrium position. Figure 8.5.5 shows this behavior for k = 10, m = 5,
c = 20, and x0 = 2.
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Figure 8.5.6 Motion of a critically damped mass-spring system

Next consider the case when b2 − a2 = 0. In this case the characteristic equation has
only one real root, s1 = s2 = −b, so the general solution is

x = c1e
−bt + c2te

−bt. (8.5.39)

Then
ẋ = −bc1e−bt − bc2te−bt + c2e

−bt, (8.5.40)

so x(0) = c1 and ẋ(0) = −bc1 + c2. Hence the initial conditions, x(0) = x0 and ẋ(0) = 0,
give us c1 = x0 and c2 = bx0. Thus

x = x0e
−bt + bx0e

−bt = x0e
−bt(1 + bt). (8.5.41)

Equivalently, since b = c
2m ,

x = x0e
− c

2m t
(

1 +
c

2m
t
)
. (8.5.42)

Now for any t ≥ 0,
1 +

c

2m
t > 0.

Hence, as in the overdamped case, the system does not oscillate. Once released, the object
moves back to the equilibrium position without ever crossing it. Figure 8.5.6 shows this
behavior for k = 10, m = 5, c = 10

√
2, and x0 = 2. This motion is said to be critically

damped because any increase in c results in overdamped motion, while any decrease in c
results in underdamped motion, which we consider next.

Finally, consider the case when b2 − a2 < 0. The roots of the characteristic equation
are now

s1 = −b−
√
b2 − a2 = −b− i

√
a2 − b2 (8.5.43)

and
s2 = −b+

√
b2 − a2 = −b+ i

√
a2 − b2 (8.5.44)
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If we let α =
√
a2 − b2, then the general solution is

x = e−bt(c1 cos(αt) + c2 sin(αt)). (8.5.45)

Then

ẋ = e−bt(−αc1 sin(αt) + αc2 cos(αt))− be−bt(c1 cos(αt) + c2 sin(αt)), (8.5.46)

so x(0) = c1 and ẋ(0) = αc2 − bc1. Hence the initial conditions, x(0) = x0 and ẋ(0) = 0,
imply that c1 = x0 and

c2 =
bx0

α
.

Thus

x = e−bt(x0 cos(αt) +
bx0

α
sin(αt)) =

x0

α
e−bt(α cos(αt) + b sin(αt)). (8.5.47)

This expression simplifies somewhat if we introduce the angle

θ = tan−1
( b
α

)
. (8.5.48)

Then
cos(θ) =

α√
α2 + b2

and
sin(θ) =

b√
α2 + b2

.

Moreover, since α =
√
a2 − b2,

√
α2 + b2 =

√
(a2 − b2) + b2 = a =

√
k

m
.

Hence

x =
x0

√
α2 + b2

α
e−bt

(
α√

α2 + b2
cos(αt) +

b√
α2 + b2

sin(αt)
)

=
x0

α

√
k

m
(cos(θ) cos(αt) + sin(θ) sin(αt)).

Using the angle subtraction formula for cosine, this becomes

x =
x0

α

√
k

m
e−bt cos(αt− θ). (8.5.49)

The presence of the cosine factor in this expression shows us that, even though we still
have

lim
t→∞

x(t) = 0,
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Figure 8.5.7 Motion of an underdamped mass-spring system

the underdamped mass-spring system will oscillate about the equilibrium position with a
decreasing amplitude of

x0

α

√
k

m
e−bt. (8.5.50)

Figure 8.5.7 shows this behavior for k = 10, m = 5, c = 5, and x0 = 2.

Problems

1. In an experiment to determine g, a pendulum of length 50 centimeters is observed to
have a period of oscillation of 1.42 seconds. Approximate g based on this observation.

2. The period of oscillation of a pendulum of length b given in (8.5.19) is, as mentioned,
only an approximation of the true period. It can be shown that the true period of a
pendulum released from an angle α is given by

T = 4

√
b

g

∫ π
2

0

1√
1− k2 sin2(φ)

dφ,

where 0 < α < π and k = sin
(
α
2

)
.

(a) Find the period of oscillation for a pendulum of length 50 centimeters for α = π
4 ,

α = π
6 , α = π

50 , and α = π
100 . Compare these results with the approximation given

in (8.5.19).
(b) Graph T as a function of α for −π4 ≤ α ≤ π

4 . For comparison, also plot the
horizontal line

T = 2π

√
b

g
.

3. Consider a mass-spring system with x0 = 10, ẋ(0) = 0, k = 10, and m = 10. Plot
x(t) for c = 0, c = 5, c = 10, c = 20, c = 25, and c = 30. Identify each motion as
overdamped, critically damped, underdamped, or undamped.
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4. Consider a mass-spring system with x0 = 10, ẋ(0) = 0, m = 10, and c = 20. Plot x(t)
for k = 2, k = 5, k = 10, and k = 15. Identify each motion as overdamped, critically
damped, underdamped, or undamped.

5. Consider the underdamped motion of a mass-spring system expressed in (8.5.46).

(a) Show that the maximum values of x(t) occur at t = 0, T, 2T, . . ., where

T =
2π√

k

m
− c2

4m2

.

Note that when c = 0, T reduces to the period of the motion for the mass-spring
system without damping.

(b) Show that if x1 and x2 are two successive maximum values of x(t), then

x1

x2
= e

cT
2m .

6. Inside the earth, the force of gravity acting on an object is proportional to the distance
between the object and the center of the earth.

(a) Suppose a hole is drilled through the earth from pole to pole and a rock is dropped
into the hole. If x(t) is the distance from the object to the center of the earth at
time t, show that, ignoring any resistive forces,

x = R cos
(√ g

R
t
)
,

where R is the radius of the earth.
(b) How long, in minutes, does it take for the rock to make one complete trip from

pole to pole and back? Use R = 3950 miles.
(c) What is the velocity of the rock, in miles per hour, when it reaches the center of

the earth?


