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Section 1.4

Difference Equations

At this point almost all of our sequences have had explicit formulas for their terms. That
is, we have looked mainly at sequences for which we could write the nth term as an = f(n)
for some known function f . For example, if

an =
n+ 1
n2 + 3

,

then it is an easy matter to compute explicitly, say, a10 = 11
103 or a100 = 101

10003 . In such
cases we are able to compute any given term in the sequence without reference to any
other terms in the sequence. However, it is often the case in applications that we do not
begin with an explicit formula for the terms of a sequence; rather, we may know only
some relationship between the various terms. An equation which expresses a value of a
sequence as a function of the other terms in the sequence is called a difference equation.
In particular, an equation which expresses the value an of a sequence {an} as a function of
the term an−1 is called a first-order difference equation. If we can find a function f such
that an = f(n), n = 1, 2, 3, . . ., then we will have solved the difference equation. In this
section we will consider a class of difference equations that are solvable in this sense; in
the next section we will discuss an example where an explicit solution is not possible.

Example Suppose a certain population of owls is growing at the rate of 2% per year. If
we let x0 represent the size of the initial population of owls and xn the number of owls n
years later, then

xn+1 = xn + 0.02xn = 1.02xn (1.4.1)

for n = 0, 1, 2, . . .. That is, the number of owls in any given year is equal to the number
of owls in the previous year plus 2% of the number of owls in the previous year. Equation
(1.4.1) is an example of a first-order difference equation; it relates the number of owls in
a given year with the number of owls in the previous year. Hence we know the value of a
specific xn once we know the value of xn−1. To get the sequence started we have to know
the value of x0. For example, if initially we have a population of x0 = 100 owls and we
want to know what the population will be after 4 years, we may compute

x1 = 1.02x0 = (1.02)(100) = 102,
x2 = 1.02x1 = (1.02)(102) = 104.04,
x3 = 1.02x2 = (1.02)(104.04) = 106.1208,

and
x4 = 1.02x3 = (1.02)(106.1208) = 108.243216.

1



2 Difference Equations Section 1.4

20 40 60 80 100

100

200

300

400

500

600

700

Figure 1.4.1 Plot of (n, xn), n = 0, 1, 2, . . ., where x0 = 100 and xn+1 = 1.02xn

Thus we would expect about 108 owls in the population after 4 years. Note that although
it is not possible to have a fractional part of an owl, it is nevertheless important to keep
the fractional part in intermediary calculations.

We may work backwards to find x4 explicitly in terms of x0:

x4 = 1.02x3

= (1.02)(1.02)x2

= (1.02)(1.02)(102)x1

= (1.02)(1.02)(1.02)(1.02)x0

= (1.02)4x0.

This is interesting because it indicates that we can compute x4 without reference to the
values of x1, x2, and x3, provided, of course, that we know the value of x0. If we do this
in general, then we have solved the difference equation xn+1 = 1.02xn. Namely, we have,
for any n = 1, 2, 3, . . .,

xn = 1.02xn−1 = (1.02)2xn−2 = (1.02)3xn−3 = · · · = (1.02)nx0. (1.4.2)

For example, if x0 = 100 as above, then we can compute

x20 = (1.02)20(100) ≈ 149,

or even
x150 = (1.02)150(100) ≈ 1, 950,

without having to compute any intermediate values.
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For a geometric feeling of how the population is changing with time, Figure 1.4.1 shows
a plot of the points (n, xn) for n = 0, 1, 2, . . . 100. Of course, whether or not our model
will provide an accurate prediction of the owl population 100 or 200 years into the future
is an entirely different question. Frequently, a simple population model like this will be
valid only for a short span of time during which the rate of growth of population remains
stable.

By replacing 1.02 with an arbitrary constant α in (1.4.2), we arrive at the general
result that the solution of the difference equation

xn+1 = αxn, (1.4.3)

n = 0, 1, 2, . . ., is given by
xn = αnx0, (1.4.4)

n = 0, 1, 2, . . .. Note that this difference equation, and its solution, are useful whenever we
are interested in a sequence of numbers where the (n+ 1)st term is a constant proportion
of the nth term. Our first example, where a population was assumed to grow at a constant
rate, is a common example of this type of behavior. Another common example is when
a quantity decreases at a constant rate over time. This behavior is discussed in the next
example in the context of radioactive decay.

Example Radium is a radioactive element which decays at a rate of 1% every 25 years.
This means that the amount left at the beginning of any given 25 year period is equal
to the amount at the beginning of the previous 25 year period minus 1% of that amount.
That is, if x0 is the initial amount of radium and xn is the amount of radium still remaining
after 25n years, then

xn+1 = xn − 0.01xn = 0.99xn (1.4.5)

for n = 0, 1, 2, . . .. Since this is a difference equation of the form of (1.4.3) with α = 0.99 ,
we know that the solution is of the form (1.4.4). Namely,

xn = (0.99)nx0

for n = 0, 1, 2, . . .. For example, the amount left after 100 years is given by

x4 = (0.99)4x0 = 0.9606x0,

where we have rounded the answer to four decimal places. That is, approximately 96% of
the initial amount of radium will be left after 100 years. A plot of the amount of radium
left versus number of years, assuming an initial amount of 500 grams, is given in Figure
1.4.2.

The half-life of a radioactive element is the number of years required for one-half of
an initial amount to decay. Suppose that, for this example, N is the smallest integer for
which xN is less than one-half of the initial amount of radium. This would mean that

1
2
x0 ≥ (0.99)Nx0,
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Figure 1.4.2 Plot of amount of radium versus number of years

which implies that
1
2
≥ (0.99)N .

Taking logarithms, we have

log10

(
1
2

)
≥ log10

(
(0.99)N

)
,

which implies that

log10

(
1
2

)
≥ N log10(0.99).

Solving for N , and remembering that log10(0.99) < 0, we have

N ≥
log10

(
1
2

)
log10(0.99)

= 68.98,

rounding to two decimal places. Hence, since N must be an integer, we have N = 69.
Recalling that we are working with 25 year units of time, this shows that the half-life of
radium is approximately (25)(69) = 1725 years. For example, this means that if we started
with an initial amount of 100 grams of radium, after 1725 years we would still have 50
grams left. It would then take an additional 1725 years until the remaining amount would
be reduced to 25 grams.
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Although we have stated the results of the preceding example in discrete time units,
namely, units of 25 years each, later we will see that the results hold for continuous time
as well. In other words, although the difference equation (1.4.5) has been set up for
nonnegative integer values of n, the solution (1.4.6) is valid for arbitrary nonnegative values
of n. We will hold off discussion of these ideas until we consider differential equations, the
continuous time versions of difference equations, in Chapter 6.

It is interesting to compare the plots in Figures 1.4.1 and 1.4.2. The first is an example
of exponential growth, whereas the second is an example of exponential decay. In the first,
the steepness of the graph increases with time; in the second, the graph flattens out over
time. The difference equation (1.4.3) will always lead to the first behavior when α > 1 and
to the second when 0 < α < 1.

First-order linear difference equations
Given constants α and β, a difference equation of the form

xn+1 = αxn + β, (1.4.6)

n = 0, 1, 2, . . ., is called a first-order linear difference equation. Note that the difference
equation (1.4.3) is of this form with β = 0. A procedure analogous to the method we used
to solve (1.4.3) will enable us to solve this equation as well. Namely,

xn = αxn−1 + β

= α(αxn−2 + β) + β

= α2xn−2 + β(α+ 1)

= α2(αxn−3 + β) + β(α+ 1)

= α3xn−3 + β(α2 + α+ 1)
...

= αnx0 + β(αn−1 + αn−2 + · · ·+ α2 + α+ 1).

Note that if α = 1, this gives us
xn = x0 + nβ, (1.4.7)

n = 0, 1, 2, . . ., as the solution of the difference equation xn+1 = xn+β. If α 6= 1, we know
from Section 1.3 that

αn−1 + αn−2 + · · ·+ α2 + α+ 1 =
1− αn

1− α
.

Hence

xn = αnx0 + β

(
1− αn

1− α

)
, (1.4.8)

n = 0, 1, 2, . . ., is the solution of the first-order linear difference equation xn+1 = αxn + β
when α 6= 1.
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We have seen examples of first-order linear equations in the population growth and
radioactive decay examples above. Another interesting example arises in modeling the
change in temperature of an object placed in an environment held at some constant tem-
perature, such as a cup of tea cooling to room temperature or a glass of lemonade warming
to room temperature. If T0 represents the initial temperature of the object, S the constant
temperature of the surrounding environment, and Tn the temperature of the object after
n units of time, then the change in temperature over one unit of time is given by

Tn+1 − Tn = k(Tn − S), (1.4.9)

n = 0, 1, 2, . . ., where k is a constant which depends upon the object. This difference equa-
tion is known as Newton’s law of cooling. The equation says that the change in temperature
over a fixed unit of time is proportional to the difference between the temperature of the
object and the temperature of the surrounding environment. That is, large temperature
differences result in a faster rate of cooling (or warming) than do small temperature differ-
ences. If S is known and enough information is given to determine k, then this equation
may be rewritten in the form of a first order-linear difference equation and, hence, solved
explicitly. The next example shows how this may be done.

Example Suppose a cup of tea, initially at a temperature of 180◦F, is placed in a room
which is held at a constant temperature of 80◦F. Moreover, suppose that after one minute
the tea has cooled to 175◦F. What will the temperature be after 20 minutes?

If we let Tn be the temperature of the tea after n minutes and we let S be the temper-
ature of the room, then we have T0 = 180, T1 = 175, and S = 80. Newton’s law of cooling
states that

Tn+1 − Tn = k(Tn − 80), (1.4.10)

n = 0, 1, 2, . . ., where k is a constant which we will have to determine. To do so, we make
use of the information given about the change in the temperature of the tea during the
first minute. Namely, applying (1.4.10) with n = 0, we must have

T1 − T0 = k(T0 − 80).

That is,
175− 180 = k(180− 80).

Hence
−5 = 100k,

and so
k = − 5

100
= −0.05.

Thus (1.4.10) becomes

Tn+1 − Tn = −0.05(Tn − 80) = −0.05Tn + 4.

Hence
Tn+1 = Tn − 0.05Tn + 4 = 0.95Tn + 4 (1.4.11)
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Figure 1.4.3 Tea temperature decreases asymptotically toward room temperature

for n = 0, 1, 2, . . .. Now (1.4.11) is in the standard form of a first-order linear difference
equation, so from (1.4.8) we know that the solution is

Tn = (0.95)n(180) + 4
(

1− (0.95)n

1− 0.95

)
= 180(0.95)n + 80(1− (0.95)n)
= 80 + 100(0.95)n

for n = 0, 1, 2, . . .. In particular,

T20 = 80 + 100(0.95)20 = 115.85,

where we have rounded the answer to two decimal places. Hence after 20 minutes the tea
has cooled to just under 116◦F. Also, since

lim
n→∞

(0.95)n = 0,

we see that
lim
n→∞

Tn = lim
n→∞

(80 + 100(0.95)n) = 80. (1.4.12)

That is, as we would expect, the temperature of the tea will approach an equilibrium
temperature of 80◦F, the room temperature. In Figure 1.4.3 we have plotted temperature
Tn versus time n for n = 0, 1, 2, . . . , 60, along with the horizontal line T = 80. As indicated
by (1.4.12), we can see that Tn decreases asymptotically toward 80◦F as n increases.
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Problems

1. Compute the next five terms of each of the following sequences from the given infor-
mation.

(a) x0 = 10, xn+1 = xn + 4 (b) y0 = −1, yn+1 =
1
yn

(c) x0 = 40, xn+1 = 2xn − 20 (d) z0 = 2, zn+1 = z2
n − zn

(e) x0 = 2, x1 = 3, xn+2 = xn+1 + xn (f) x0 = 15, xn =
1
3
xn−1 + 2

2. Solve the following difference equations with the given initial condition. Use your
solution to find x10.

(a) xn+1 = 2xn, x0 = 5 (b) xn+1 =
3
4
xn, x0 = 100

(c) xn+1 = 1.8xn + 10, x0 = 20 (d) 4xn+1 − 2xn = 12, x0 = 6

(e) xn+1 − xn = 3xn + 4, x0 = 2 (f) 5xn+1 − 3xn = 2xn+1 − xn, x0 = 100

3. A population of weasels is growing at rate of 3% per year. Let wn be the number of
weasels n years from now and suppose that there are currently 350 weasels.

(a) Write a difference equation which describes how the population changes from year
to year.

(b) Solve the difference equation of part (a). If the population growth continues at the
rate of 3%, how many weasels will there be 15 years from now?

(c) Plot wn versus n for n = 0, 1, 2, . . . , 100.

(d) How many years will it take for the population to double?

(e) Find lim
n→∞

wn. What does this say about the long-term size of the population?
Will this really happen?

4. If the rate of growth of the weasel population in Problem 3 was 5% instead of 3%, how
many years would it take for the population to double?

5. Suppose that the weasel population of Problem 3 would grow at a rate of 3% a year if
left to itself, but poachers kill 6 weasels every year for their fur.

(a) Write a difference equation which describes how the population changes from year
to year.

(b) Solve the difference equation of part (a). How many weasels will there be in 15
years?

(c) Find lim
n→∞

wn. What does this say about the long-term size of the population?

(d) Will the population eventually double? If so, how long will this take?

(e) Plot wn versus n for n = 0, 1, 2, . . . , 100.
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6. Suppose that the weasel population of Problem 3 would grow at a rate of 3% a year if
left to itself, but poachers kill 15 weasels every year for their fur.

(a) Write a difference equation which describes how the population changes from year
to year.

(b) Solve the difference equation of part (a). How many weasels will there be in 15
years?

(c) Find lim
n→∞

wn. What does this say about the long-term size of the population?

(d) Will the population eventually double? If so, how long will this take
(e) Will the population eventually die out? If so, how long will this take?
(f) Plot wn versus n for n = 0, 1, 2, . . . , 100.

7. A radioactive element is known to decay at the rate of 2% every 20 years.

(a) If initially you had 165 grams of this element, how much would you have in 60
years?

(b) What is the half-life of this element?
(c) Suppose that the bones of a certain animal maintain a constant level of this element

while the animal is living, but the element begins to decay as soon as the animal
dies. If a bone of this animal is found and is determined to have only 10% of its
original level of this element, how old is the bone?

8. Repeat Problem 7 if the element decays at the rate of 3% every 10 years.

9. A cup of coffee has an initial temperature of 165◦F, but cools to 155◦F in one minute
when placed in a room with a temperature of 70◦F. Let Tn be the temperature of the
coffee after n minutes.

(a) Write a difference equation, in standard first order linear form, which describes the
change in temperature of the coffee from minute to minute.

(b) Solve the difference equation from part (a).
(c) Find the temperature of the coffee after 25 minutes.
(d) Find lim

n→∞
Tn.

(e) Plot Tn versus n for n = 0, 1, 2, . . . 120.
(f) Does the temperature ever reach 70◦F?

10. A glass of lemonade, initially at a temperature of 42◦F, is placed in a room with
a temperature of 78◦F. If the lemonade warms to 45◦F in 30 seconds, what will its
temperature be in 10 minutes?

11. An iron ingot, heated to a temperature of 300◦C, is placed in a liquid bath held at a
constant temperature of 90◦C. If the ingot cools to 250◦C in two minutes, what will
its temperature be in 20 minutes?

12. A glass of ginger ale is left in a room. Initially, the ginger ale has a temperature
of 45◦F, but after one minute the temperature has increased to 50◦F and after two
minutes it has increased to 54◦F. What is the temperature of the room?
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13. In his book Liber Abaci (Book of the Abacus), Leonardo of Pisa, also know as Fibonacci,
posed the following question: How many pairs of rabbits will be produced in a year,
beginning with a single pair, if in every month each pair bears a new pair which
becomes productive from the second month on? (See A History of Mathematics by
Carl B. Boyer, Princeton University Press, 1985, page 281).

(a) Let fn be the number of pairs of rabbits in the nth month. Explain why f1 = 1
and f2 = 1.

(b) Explain why fn+2 = fn+1 + fn for n = 1, 2, 3, . . ..
(c) Compute fn for n = 3, 4, 5, 6, 7, 8 by hand.
(d) Compute fn for n = 1, 2, 3, . . . , 100.
(e) What is lim

n→∞
fn?

(f) Compute

rn =
fn
fn+1

for n = 1, 2, 3, . . . , 100. Do you think lim
n→∞

rn exists? If so, what is a good approx-
imation for this limit to five decimal places?

(g) Show that

rn+1 =
1

1 + rn
.

(h) Using (g) and assuming that lim
n→∞

rn exists, show that

lim
n→∞

rn =
√

5− 1
2

,

the golden section ratio.

14. Given x0 = 0 and x10 = 20, show that xn = 2n satisfies the difference equation

xn =
xn−1 + xn+1

2

for n = 1, 2, 3, . . . , 9. This difference equation is a discrete model for the equilib-
rium heat distribution along a a straight piece of wire running from 0 to 10 with the
temperature at 0 held at 0◦ and the temperature at 10 held at 20◦.

15. How would the solution to Problem 14 change if we changed the boundary conditions
to x0 = 10 and x10 = 50?

16. An approximate solution of a two-dimensional version of the model in Problem 14 may
be found using a spreadsheet. For example, you might set cells A1-A20 and H1-H20
equal to 10 and cells B1-G1 and B20-G20 equal to 0. This would represent a flat
rectangular piece of metal with the temperature along the vertical sides held fixed at
10◦ and the temperature along the horizontal sides held fixed at 0◦. Now set the value
of every cell inside the rectangle to be equal to the average of the values of its four
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neighboring cells. For example, you would put the formula (A2+C2+B1+B3)/4 in cell
B2 and then copy this cell to all the cells in the block from B2 to G19. Now have
the spreadsheet repeatedly compute the values of the cells until they stabilize (that
is, until they no longer change values when you recompute). If you format the cell
values so that they are all integers, this should not take too long. What you have now
is the equilibrium heat distribution for the metal plate. Now try different boundary
conditions to obtain different equilibrium heat distributions.


