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Section 5.8

Taylor Series

In this section we will put together much of the work of Sections 5.1-5.7 in the context of
a discussion of Taylor series. We begin with two definitions.

Definition If f is a function such that f (n) is continuous on an open interval (a, b) for
n = 0, 1, 2, . . ., then we say f is C∞ on (a, b).

Definition If f is C∞ on an interval (a, b) and c is a point in (a, b), then the power
series

∞∑
n=0

f (n)(c)
n!

(x− c)n = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)
3!

(x− c)3 + · · · (5.8.1)

is called the Taylor series for f about c.

A Taylor series is a power series constructed from a given function in the same manner
as a Taylor polynomial. As with any power series about c, the Taylor series for a function
f about c converges at x = c, but does not necessarily converge at any other points. If it
does converge for other values of x, it will converge absolutely on an interval (c−R, c+R),
where R is the radius of convergence. However, even if the series converges at x 6= c, it
need not converge to f(x). That is, a function may be C∞ without being analytic. (See
Problem 12 of Section 6.1 for an example.) If the Taylor series does converge to f(x) for
all x in the interval of convergence, then it is the unique power series representation for f
on this interval.

If Pn is the nth order Taylor polynomial for f at c, then Pn is a partial sum of the
Taylor series for f about c. Hence to show that the Taylor series converges to f at x, we
need to show that

f(x) = lim
n→∞

Pn(x). (5.8.2)

Equivalently, we need to show that

lim
n→∞

rn(x) = 0, (5.8.3)

where
rn(x) = f(x)− Pn(x). (5.8.4)

In this regard, the error bounds for rn(x) developed in Section 5.2 can be very useful.
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2 Taylor Series Section 5.8

Example For any n = 0, 1, 2, . . ., if P2n+1 is the Taylor polynomial of order 2n + 1 for
f(x) = sin(x) at 0, then

P2n+1(x) =
n∑
k=0

(−1)kx2k+1

(2k + 1)!
.

In Section 5.2 we saw that if

r2n+1(x) = sin(x)− P2n+1(x),

then

|r2n+1(x)| ≤ |x|2n+3

(2n+ 3)!

for any value of x. In Section 5.7 we saw that, for any x,

lim
n→∞

|x|2n+3

(2n+ 3)!
= 0,

so
lim
n→∞

|r2n+1(x)| = 0.

Hence
sin(x) = lim

n→∞
P2n+1(x)

for all x. That is,

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · (5.8.5)

for all x. Thus the Taylor series for sin(x) about 0 provides a power series representation
for sin(x) on the interval (−∞,∞). Note that this example is essentially a restatement of
our second example in Section 5.7.

In many cases showing
lim
n→∞

rn(x) = 0 (5.8.6)

is difficult. However, since power series representations are unique, if we are able to find
a power series representation for a given function by manipulating some other known
representation, then we know that this series is the Taylor series for that function. This is
in fact the way many Taylor series representations are found in practice.

Example Since
1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·

for −1 < x < 1, it follows that

1
1 + x

=
1

1− (−x)
=
∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn = 1− x+ x2 − x3 + · · ·
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for −1 < −x < 1, that is, −1 < x < 1. Hence we have found a Taylor series representation
for

f(x) =
1

1 + x

on (−1, 1).

Example Similar to the previous example, we have

1
1 + x2

=
1

1− (−x2)
=
∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · ·

for −1 < x2 < 1, that is, −1 < x < 1. Thus we have found a Taylor series representation
for

f(x) =
1

1 + x2

on (−1, 1).

Example In Section 5.7 we saw how the relationship

cos(x) = 1−
∫ x

0

sin(t)dt

combined with the Taylor series representation

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

yields

cos(x) =
∞∑
n=1

(−1)nx2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · (5.8.7)

for all values of x. Thus (5.8.7) is the Taylor series representation for cos(x) about 0 on
(−∞,∞).

Example Since

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

for all values of x, it follows that

sin(x)
x

=
∞∑
n=0

(−1)nx2n

(2n+ 1)!
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

for all x 6= 0. In fact, if we define

f(x) =


sin(x)
x

, if x 6= 0,

1, if x = 0,
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then the Taylor series representation for f about 0 on (−∞,∞) is given by

f(x) =
∞∑
n=0

(−1)nx2n

(2n+ 1)!
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · · (5.8.8)

Example Since
1

1− x
=
∞∑
n=0

xn

for −1 < x < 1,

d

dx

(
1

1− x

)
=

d

dx

∞∑
n=0

xn =
∞∑
n=0

d

dx
xn =

∞∑
n=1

nxn−1

for −1 < x < 1. But
d

dx

(
1

1− x

)
=

1
(1− x)2

,

so we have the Taylor series representation

1
(1− x)2

=
∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · ·

for all x in (−1, 1).

The final two examples of this section will illustrate the use of Taylor series in solving
problems that we could not handle before.

Example Define

f(x) =


sin(x)
x

, if x 6= 0,

1, if x = 0.

Then, as we saw above,

f(x) =
∞∑
n=0

(−1)nx2n

(2n+ 1)!
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

is the Taylor series representation for f about 0 on (−∞,∞). Now f is continuous on
(−∞,∞) and so has an antiderivative on (−∞,∞), but, as we have mentioned before, this
antiderivative is not expressible in terms of the elementary functions of calculus. However,
by the Fundamental Theorem of Calculus, the function

Si(x) =
∫ x

0

f(t)dt, (5.8.9)
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called the sine integral function, is an antiderivative of f . Moreover, even though we
cannot express this integral in terms of the elementary functions, we can find its Taylor
series representation. That is,

Si(x) =
∫ x

0

( ∞∑
n=0

(−1)nt2n

(2n+ 1)!

)
dt

=
∞∑
n=0

∫ x

0

(−1)nt2n

(2n+ 1)!
dt

=
∞∑
n=0

(−1)nt2n+1

(2n+ 1)(2n+ 1)!

∣∣∣∣x
0

=
∞∑
n=0

(−1)nx2n+1

(2n+ 1)(2n+ 1)!

= x− x3

3 · 3!
+

x5

5 · 5!
− x7

7 · 7!
+ · · · (5.8.10)

for all values of x. In particular,

Si(1) =
∫ 1

0

sin(x)
x

dx =
∞∑
n=0

(−1)n

(2n+ 1)(2n+ 1)!
= 1− 1

3 · 3!
+

1
5 · 5!

− 1
7 · 7!

+ · · · .

Since this is an alternating series which satisfies the conditions of Leibniz’s theorem, if

sn =
n∑
k=0

(−1)k

(2k + 1)(2k + 1)!
,

then
|Si(1)− sn| ≤

1
(2n+ 3)(2n+ 3)!

.

For example, if we want to approximate Si(1) with an error of no more than 0.0001, we
note that for n = 1 we have, to 6 decimal places,

1
(2n+ 3)(2n+ 3)!

=
1

5 · 5!
=

1
600

= 0.001667,

while for n = 2 we have

1
(2n+ 3)(2n+ 3)!

=
1

7 · 7!
=

1
35, 280

= 0.000028.

Thus
s2 = 1− 1

3 · 3!
+

1
5 · 5!

= 0.946111
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Figure 5.8.1 Taylor polynomial approximation to the graph of y = Si(x)

differs from Si(1) by no more than 0.000028. In fact, since the next term in the series is
negative, Si(1) must lie between 0.946111 and

0.946111− 0.000028 = .946083.

In particular, we know that
Si(1) = 0.9461

to 4 decimal places. Of course, this particular result could also be obtained using numerical
integration. However, the point is that (5.8.10) gives us much more; it not only gives us
an easy method to evaluate Si(x) for any value of x to any desired level of accuracy, but
it also gives us an algebraic representation of the sine integral function which can be used
in applications in much the same way that polynomials are used. In Figure 5.8.1 we have
used the Taylor polynomial

P11(x) = x− x3

3 · 3!
+

x5

5 · 5!
− x7

7 · 7!
+

x9

9 · 9!
− x11

11 · 11!

to approximate the graph of Si(x) on the interval [−5, 5]. Note that on this interval

|Si(x)− P11(x)| ≤ 513

13 · 13!
= 0.0151

to 4 decimal places, certainly accurate enough for the purposes of our graph.

Example Using
1
x

=
1

1− (1− x)

and
1

1− x
=
∞∑
n−0

xn
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for −1 < x < 1, we have

1
x

=
∞∑
n=0

(1− x)n =
∞∑
n=0

(−1)n(x− 1)n (5.8.11)

for −1 < 1−x < 1, that is, 0 < x < 2. Hence (5.8.11) gives the Taylor series representation
for

f(x) =
1
x

about 1. Similar to our work in the previous example, we may now find an antiderivative
for f on (0, 2) by integration. Namely,

∫ x

1

1
t
dt =

∫ x

1

( ∞∑
n=0

(−1)n(t− 1)n
)
dt

=
∞∑
n=0

∫ x

1

(−1)n(t− 1)ndt

=
∞∑
n=0

(−1)n(t− 1)n+1

n+ 1

∣∣∣∣x
1

=
∞∑
n=0

(−1)n(x− 1)n+1

n+ 1

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · ·

provides a Taylor series representation for an antiderivative of f on the interval (0, 2).
In Chapter 6 we will call this function the natural logarithm function, denoted log(x),
although there we will use other means in order to define it on the interval (0,∞). In
particular, note that this series converges at x = 2 as well, giving us, with this definition
of log(x),

log(2) =
∞∑
n=0

(−1)n

n+ 1
=
∞∑
n=1

(−1)n+1

n
.

Hence log(2) is the sum of the alternating harmonic series, a number for which we found
an approximation in Section 5.6.

Problems

1. Show directly that

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!

for all x in (−∞,∞).
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2. Using any method, find Taylor series representations about 0 for the following func-
tions. State the interval on which the representation is valid. Also, write out the first
five nonzero terms of each series.

(a) cos(x2) (b) sin(2x)

(c)
1

1− t2
(d)

1
2x− 1

(e)
1

(1 + t)2
(f)

1
1 + 4x2

(g) f(x) =


1− cos(x)

x
, if x 6= 0,

0, if x = 0

3. (a) Use the identity

cos2(x) =
1 + cos(2x)

2
to find the Taylor series representation for cos2(x) about 0. On what interval is
this representation valid?

(b) What is the Taylor polynomial of order 8 for cos2(x) at 0?

4. (a) Use Problem 3 and the identity

sin2(x) = 1− cos2(x)

to find the Taylor series representation for sin2(x) about 0. On what interval is
this representation valid?

(b) What is the Taylor polynomial of order 8 for sin2(x) at 0?

5. (a) Use the Taylor series representation about 0 for sin(x) to find the Taylor series
representation for sin(x2) about 0. On what interval is this representation valid?

(b) What is the Taylor polynomial of order 10 for sin(x2) at 0?
(c) Find the Taylor series representation about 0 for

S(x) =
∫ x

0

sin(t2)dt.

On what interval is this representation valid?
(d) What is the Taylor polynomial of order 11 for S(x) at 0?
(e) Approximate S(1) with an error of less than 0.00001.

6. Let Pn be the Taylor polynomial of order n at 0 for

f(x) =
1

1 + x2
.

Plot f , P2, P4, and P10 together over the interval [−1.5, 1.5]. Why do the Taylor
polynomials not give a good approximation to f(x) when |x| > 1?

7. Find
d9

dx9
Si(x)

∣∣∣∣
x=0

.


