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Section 4.6

Improper Integrals

In this section we will make two extensions to our definition of the definite integral. The
first will cover integrals of functions over intervals of the form [a,∞] and (−∞, b], where a
and b are fixed real numbers, as well as the interval (−∞,∞), while the second will cover
integrals of functions which have infinite discontinuities. An integral of either one of these
two types is called an improper integral.
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Figure 4.6.1 Area of Rb approaches area under y =
1
x2

as b increases

First, consider a function f defined on an interval [a,∞) with the property that f is
integrable on every interval [a, b] with a < b <∞. For example, the function

f(x) =
1
x2

is defined for all x in [1,∞) and, since it is continuous on [1,∞), is integrable on any
interval [1, b] with 1 < b <∞. If we let Rb be the region beneath the graph of f over the
interval [1, b] and we let R be the region beneath the graph of f over the interval [1,∞),
then we would expect that the area of Rb would approach the area of R in the limit as b
goes to infinity (see Figure 4.6.1). In terms of integrals, this is saying that it would seem
reasonable to define ∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx.

1
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That is, we should have ∫ ∞
1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx

= lim
b→∞

− 1
x

∣∣∣∣b
1

= lim
b→∞

(
−1
b

+ 1
)

= 1.

Geometrically, this result says that R has finite area, namely, 1, even though it has infinite
length.

We now state a general definition for this type of integral.

Definition If f is defined on [a,∞) and integrable on [a, b] for all a < b < ∞, then we
define ∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx, (4.6.1)

provided the limit exists. Similarly, if f is defined on (−∞, b] and integrable on [a, b] for
all −∞ < a < b, then we define∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx, (4.6.2)

provided the limit exists. Finally, if f is defined on (−∞,∞) and integrable on any finite
interval [a, b], then we define∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ ∞
0

f(x)dx, (4.6.3)

provided both of the integrals on the right exist. In each case where the appropriate limit
exists, we say the integral converges; otherwise, the integral is said to diverge.

Note that the use of 0 in (4.6.3) is not crucial; all that is important is that the integral
is broken into two pieces, the meaning of each of the pieces already having been covered
in the earlier parts of the definition.

Example The integral ∫ ∞
3

1
x3

dx

converges, since ∫ ∞
3

1
x3

dx = lim
b→∞

∫ b

3

1
x3

dx

= lim
b→∞

− 1
2x2

∣∣∣∣b
3
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Figure 4.6.2 Region beneath y =
1
x3

beginning at 3

= lim
b→∞

(
− 1

2b2
+

1
18

)
=

1
18
.

See Figure 4.6.2.

Example The integral ∫ ∞
2

1√
x
dx

diverges, since

lim
b→∞

∫ b

2

1√
x
dx = lim

b→∞
2
√
x
∣∣∣b
2

= lim
b→∞

(2
√
b− 2

√
2) =∞.

See Figure 4.6.3.
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Figure 4.6.4 Region above y =
2
x5

ending at −1

Example The integral ∫ −1

−∞

2
x5

dx

converges, since ∫ −1

−∞

2
x5

dx = lim
a→−∞

∫ −1

a

2
x5

dx

= lim
a→−∞

− 2
4x4

∣∣∣∣−1

a

= lim
a→−∞

(
−1

2
+

1
2a4

)
= −1

2
.

See Figure 4.6.4.

Example The integral ∫ ∞
−∞

x

(1 + x2)2
dx

converges, since∫ ∞
−∞

x

(1 + x2)2
dx =

∫ 0

−∞

x

(1 + x2)2
dx+

∫ ∞
0

x

(1 + x2)2
dx

= lim
a→−∞

∫ 0

a

x

(1 + x2)2
dx+ lim

b→∞

∫ b

0

x

(1 + x2)2
dx

= lim
a→−∞

− 1
2(1 + x2)

∣∣∣∣0
a

+ lim
b→∞

− 1
2(1 + x2)

∣∣∣∣b
0

= lim
a→−∞

(
−1

2
+

1
2(1 + a2)

)
+ lim
b→∞

(
− 1

2(1 + b2)
+

1
2

)



Section 4.6 Improper Integrals 5

-4 -2 2 4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 4.6.5 Region between y =
x

(1 + x2)2
and the x-axis

= −1
2

+
1
2

= 0.

Note that you could use the substitution u = 1 + x2 to help evaluate the integral in this
example. See Figure 4.6.5.

It is frequently important to know that an integral
∫∞
a
f(x)dx converges even if we

cannot compute its value exactly. For example, before trying to find numerical approxi-
mations for such an integral one should first check that it converges. We will first consider
the following situation: Suppose f and g are defined on [a,∞), integrable on [a, b] for all
a < b < ∞, and 0 ≤ f(x) ≤ g(x) for all x in [a,∞). Moreover, suppose we know that∫∞
a
g(x)dx converges. Let

M =
∫ ∞
a

g(x)dx, (4.6.4)

G(b) =
∫ b

a

g(x)dx, (4.6.5)

and

F (b) =
∫ b

a

f(x)dx (4.6.6)

for all b ≥ a. Now for any b ≥ a,

M =
∫ ∞
a

g(x)dx =
∫ b

a

g(x)dx+
∫ ∞
b

g(x)dx = G(b) +
∫ ∞
b

g(x)dx. (4.6.7)

Since g(x) ≥ 0 for all x ≥ a, ∫ ∞
b

g(x)dx ≥ 0. (4.6.8)
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Thus (4.6.7) implies that

G(b) = M −
∫ ∞
b

g(x)dx ≤M (4.6.9)

for all b ≥ a. Moreover, f(x) ≤ g(x) for all x ≥ a, so

F (b) =
∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx = G(b) (4.6.10)

for all b ≥ a. Putting (4.6.9) and (4.6.10) together, we have F (b) ≤ M for all b ≥ a .
Furthermore, for any c ≥ b ≥ a,

F (c) =
∫ c

a

f(x)dx =
∫ b

a

f(x)dx+
∫ c

b

f(x)dx ≥
∫ b

a

f(x)dx = F (b), (4.6.11)

where we know ∫ c

b

f(x)dx ≥ 0 (4.6.12)

because f(x) ≥ 0 for all x ≥ a. From (4.6.11) we conclude that F is a nondecreasing
function. Since we already know that F is bounded by M , it follows from our result about
bounded nondecreasing sequences in Section 1.2 that

lim
b→∞

F (b) = lim
b→∞

∫ b

a

f(x)dx (4.6.13)

exists. That is, ∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx (4.6.14)

converges. Moreover, since F (b) ≤M for all b ≥ a,∫ ∞
a

f(x)dx = lim
b→∞

F (b) ≤M =
∫ ∞
a

g(x)dx. (4.6.15)

On the other hand, suppose f and g are defined on [a,∞), integrable on [a, b] for all
a < b < ∞, 0 ≤ f(x) ≤ g(x) for all x in [a,∞), and

∫∞
a
f(x)dx diverges. If we define F

and G as above, then F (b) is nondecreasing and without a limit as b increases toward ∞.
Hence it follows, again from our results in Section 1.2, that we must have

lim
b→∞

F (b) =∞. (4.6.16)

Since, as above, G(b) ≥ F (b) for all b ≥ a, (4.6.16) implies that

lim
b→∞

∫ b

a

g(x)dx = lim
b→∞

G(b) =∞. (4.6.17)

In particular,
∫∞
a
g(x)dx diverges.
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We summarize the previous results in the next proposition.

Proposition Suppose f and g are defined on [a,∞), integrable on [a, b] for all a < b <∞,
and 0 ≤ f(x) ≤ g(x) for all x in [a,∞). If

∫∞
a
g(x)dx converges, then

∫∞
a
f(x)dx converges

and
0 ≤

∫ ∞
a

f(x)dx ≤
∫ ∞
a

g(x)dx. (4.6.18)

If
∫∞
a
f(x)dx diverges, then

∫∞
a
g(x)dx diverges.

Similar results hold for integrals on intervals of the form (−∞, b] and (−∞,∞).

Example At present we cannot use the Fundamental Theorem to evaluate∫ ∞
0

1
1 + x2

dx

because we do not know an antiderivative for

f(x) =
1

1 + x2

(although we will find one in Section 6.5). However, since x2 < 1 + x2 for all values of x,
we know that

0 <
1

1 + x2
<

1
x2

for all x > 0. Now we saw above that∫ ∞
1

1
x2

dx = 1,

so we know, by the previous proposition, that∫ ∞
1

1
1 + x2

dx

converges with ∫ ∞
1

1
1 + x2

dx ≤ 1. (4.6.19)

Moreover, 1 + x2 ≥ 1 for all x, so
1

1 + x2
≤ 1

for all x. Hence ∫ 1

0

1
1 + x2

dx ≤
∫ 1

0

dx = 1. (4.6.20)

Putting (4.6.19) and (4.6.20) together, we have∫ ∞
0

1
1 + x2

dx =
∫ 1

0

1
1 + x2

dx+
∫ ∞

1

1
1 + x2

dx ≤ 1 + 1 = 2.
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In the problems for Section 6.5, you will be asked to show that∫ ∞
0

1
1 + x2

dx =
π

2
.

Example Since
√
x− 1 <

√
x for all x ≥ 0, we see that

0 <
1√
x
<

1√
x− 1

for all x ≥ 1. Thus, by the previous proposition,∫ ∞
2

1√
x− 1

dx

diverges since we saw above that ∫ ∞
2

1√
x
dx

diverges.

Although we will not go into the details, the previous proposition may be generalized
as follows.

Proposition Suppose h(x) ≤ f(x) ≤ g(x) for all x in an interval [a,∞) and f , g, and
h are integrable on [a, b] for all a < b < ∞. If both

∫∞
a
h(x)dx and

∫∞
a
g(x)dx converge,

then
∫∞
a
f(x)dx converges as well. Moreover, in that case,∫ ∞

a

h(x)dx ≤
∫ ∞
a

f(x)dx ≤
∫ ∞
a

g(x)dx. (4.6.21)

Note that our previous proposition is a special case of this proposition with h(x) = 0
for all x ≥ a. As before, similar results hold for integrals on intervals of the form (−∞, b]
and (−∞,∞).

Example Since −1 ≤ sin(x) ≤ 1 for all x, it follows that

− 1
x2
≤ sin(x)

x2
≤ 1
x2

for all x ≥ 1. Moreover, ∫ ∞
1

1
x2

dx = 1

and ∫ ∞
1

− 1
x2

dx = −
∫ ∞

1

1
x2

dx = −1.
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Hence it follows that ∫ ∞
1

sin(x)
x2

dx

converges and

−1 ≤
∫ ∞

1

sin(x)
x2

dx ≤ 1.

After noticing that for any function f , −|f(x)| ≤ f(x) ≤ |f(x)| for all values of x, the
following proposition is a special case of the previous proposition.

Proposition If f is defined on [a,∞) and
∫∞
a
|f(x)|dx converges, then

∫∞
a
f(x)dx con-

verges.

Example Another way to see that

∫ ∞
1

sin(x)
x2

dx

converges is to note that ∫ ∞
1

∣∣∣∣ sin(x)
x2

∣∣∣∣ dx
converges since

0 ≤
∣∣∣∣ sin(x)
x2

∣∣∣∣ ≤ | sin(x)|
x2

≤ 1
x2

for all x ≥ 1.

Once again, similar results hold for integrals on intervals of the form (−∞, b] and
(−∞,∞).

We now consider another extension to our definition of the definite integral. Suppose
the function f is defined on the interval (a, b] with

lim
x→a+

|f(x)| =∞.

If f is integrable on every interval of the form [c, b] with a < c < b, then we may, analogous
to our earlier definitions, define

∫ b

a

f(x)dx = lim
c→a+

∫ b

c

f(x)dx, (4.6.22)

provided the limit exists. See Figure 4.6.6.
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bca

Figure 4.6.6 Area over (a, b] is the area over [c, b] as c approaches a

Definition If f is defined on the interval (a, b] with

lim
x→a+

|f(x)| =∞,

and is integrable on every interval of the form [c, b] with a < c < b, then we define∫ b

a

f(x)dx = lim
c→a+

∫ b

c

f(x)dx, (4.6.23)

provided the limit exists. Similarly, if f is defined on the interval [a, b) with

lim
x→b−

|f(x)| =∞,

and is integrable on every interval of the form [a, c] with a < c < b, then we define∫ b

a

f(x)dx = lim
c→b−

∫ c

a

f(x)dx, (4.6.24)

provided the limit exists. Finally, if f is defined on [a, d) and (d, b] with either

lim
x→d−

|f(x)| =∞,

or
lim
x→d+

|f(x)| =∞,

or both, and f is integrable on all intervals of the form [a, c] with a < c < d and of the
form [c, b] with d < c < b, then we define∫ b

a

f(x)dx =
∫ d

a

f(x)dx+
∫ b

d

f(x)dx, (4.6.25)

provided both the integrals on the right exist. In each case where the appropriate limit
exists, we say the integral converges; otherwise, the integral is said to diverge.
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Figure 4.6.7 Region beneath y =
1√
x

over [0, 1]

Example The integral ∫ 1

0

1√
x
dx

converges since∫ 1

0

1√
x

= lim
c→0+

∫ 1

c

1√
x
dx = lim

c→0+
2
√
x
∣∣∣1
c

= lim
c→0+

(2− 2
√
c) = 2.

See Figure 4.6.7.

Example The integral ∫ 1

0

1
x2

dx

diverges since∫ 1

0

1
x2

dx = lim
c→0+

∫ 1

c

1
x2

dx = lim
c→0+

− 1
x

∣∣∣∣1
c

= lim
c→0+

(
−1 +

1
c

)
=∞.

See Figure 4.6.8.

Example The integral ∫ 2

0

1
(x− 1)

2
3
dx

is improper since

lim
x→1−

1
(x− 1)

2
3

=∞

and
lim
x→1+

1
(x− 1)

2
3

=∞.
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Figure 4.6.8 Region beneath y =
1
x2

over [0, 1]

Moreover, the integral converges since∫ 1

0

1
(x− 1)

2
3
dx = lim

c→1−

∫ c

0

1
(x− 1)

2
3
dx

= lim
c→1−

3(x− 1)
1
3

∣∣∣∣c
0

= lim
c→1−

(
3(c− 1)

1
3 + 3

)
= 3

and ∫ 2

1

1
(x− 1)

2
3
dx = lim

c→1+

∫ 2

c

1
(x− 1)

2
3
dx

= lim
c→1+

3(x− 1)
1
3

∣∣∣∣2
c

= lim
c→1+

(
3− 3(c− 1)

1
3

)
= 3,

which together imply that∫ 2

0

1
(x− 1)

2
3
dx =

∫ 1

0

1
(x− 1)

2
3
dx+

∫ 2

1

1
(x− 1)

2
3
dx.

See Figure 4.6.9.
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Problems

1. Evaluate the following integrals.

(a)
∫ ∞

1

1
x3

dx (b)
∫ ∞

4

3
x7

dx

(c)
∫ ∞

10

1
5x4

dx (d)
∫ ∞

0

1√
x+ 1

dx

(e)
∫ ∞

0

3
(2x+ 3)2

dx (f)
∫ ∞

0

sin(x)dx

2. Evaluate the following integrals.

(a)
∫ −2

−∞

3
x2

dx (b)
∫ ∞
−∞

x

(x2 + 4)4
dx

(c)
∫ 0

−∞

3√
1− x

dx (d)
∫ ∞
−∞

5t√
t2 + 1

dt

3. For each of the following, decide, without evaluating, whether the integral converges
or diverges.

(a)
∫ ∞

1

1
x3 + 2

dx (b)
∫ ∞
−∞

1
x2 + 5

dx

(c)
∫ ∞

2

1
(z2 − 2)1/3

dz (d)
∫ ∞

0

1√
t4 + 1

dt

(e)
∫ ∞

1

sin3(t)
t2

dt (f)
∫ ∞
π

cos(z)
z5

dz
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4. Evaluate the following integrals.

(a)
∫ 8

0

1
x

1
3
dx (b)

∫ 1

0

3
x4

dx

(c)
∫ 1

0

1√
1− x

dx (d)
∫ 5

0

5
(t− 2)

2
5
dt

(e)
∫ 0

−2

6
(z + 2)2

dz (f)
∫ 2

−1

3
x

1
3
dx

5. (a) Show that ∫ ∞
1

1
xp

dx

converges for p > 1. Find its value.
(b) Show that ∫ ∞

1

1
xp

dx

diverges for p < 1.

6. (a) Show that ∫ 1

0

1
xp

dx

converges for p < 1. Find its value.
(b) Show that ∫ 1

0

1
xp

dx

diverges for p > 1.

7. Let
sn = 1 +

1
2

+
1
3

+ · · ·+ 1
n

for n = 1, 2, 3, . . .. That is, sn is the nth partial sum of the harmonic series (see Section
1.3).

(a) Show that

sn ≤ 1 +
∫ n

1

1
x
dx

for n = 1, 2, 3, . . .. (Hint: Use the right-hand rule to approximate the integral.)
(b) Show that ∫ ∞

1

1
x
dx

diverges.
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(c) Use a geometric argument to conclude that∫ 1

0

1
x
dx

also diverges.

8. For constants σ > 0 and α > 0, the function

p(x) =
ασα

xα+1
,

where x ≥ σ, is called a Pareto distribution. It is often used in modeling the distribution
of incomes or wealth in a population. In the income interpretation, the function

P (x) =
∫ ∞
x

p(t)dt,

x ≥ σ, gives the proportion of the population whose income exceeds x. Here σ repre-
sents the minimum income of any person in the population and α controls how rapidly
the income distribution diminishes as x increases.

(a) Find P (x).
(b) If α > 1, the average income of a population described by this model is

A =
∫ ∞
σ

xp(x)dx.

Find A.
(c) Why is the condition α > 1 needed in (b)?
(d) Suppose σ = 10, 000 and α = 1.2. Find A, P (A), and P (2A). Interpret the

meaning of these values.
(e) Find the general expression for P (A) as a function of α and graph it. Use this

graph to interpret the fairness of the income distribution for different values of α.

9. If f is integrable on [−b, b] for all b > 0 and

lim
b→∞

∫ b

−b
f(x)dx

exists, then we call

I(f) = lim
b→∞

∫ b

−b
f(x)dx

the Cauchy integral of f .

(a) Show that if
∫∞
−∞ f(x)dx converges, then

I(f) =
∫ ∞
−∞

f(x)dx.

(b) Find I(f) and I(g) for f(x) = x and g(x) = sin(x).
(c) Show that the Cauchy integral of f may exist even though

∫∞
−∞ f(x)dx diverges.


