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Section 4.4

Using the Fundamental Theorem

As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces
the problem of evaluating a definite integral to the problem of finding an antiderivative.
Unfortunately, finding antiderivatives, even for relatively simple functions, cannot be done
as routinely as the computation of derivatives. For example, suppose we let f(x) = sin(x),
g(x) = x, and

h(x) =
f(x)
g(x)

=
sin(x)
x

.

Then, since we know the derivative of f and we know the derivative of g, it is a simple
matter to find the derivative of h using the quotient rule. However, knowing the an-
tiderivatives of f and g in no way helps us find the antiderivative of h. In fact, it has been
shown that the antiderivative of h is not expressible in terms of any finite combination of
algebraic and elementary transcendental functions. Because of results like this, many of
the definite integrals that are encountered in applications cannot be evaluated using the
Fundamental Theorem of Integral Calculus; instead, they must be approximated using nu-
merical techniques such as those we studied in Section 4.2. Of course, when antiderivatives
are available, the Fundamental Theorem is the best way to evaluate an integral. To this
end, we will investigate, in this section and in the next, techniques for evaluating definite
integrals by finding antiderivatives and applying the Fundamental Theorem.

Before we begin, we need to introduce some additional notation and terminology.
First of all, we will call the collection of all antiderivatives of a given function f the general
antiderivative of f . For example, if f(x) = 3x2, then the general antiderivative of f is
given by F (x) = x3 + c, where c is an arbitrary constant.

Second, since the Fundamental Theorem of Calculus draws a close connection between
antiderivatives and definite integrals, it is customary to borrow the notation for the general
antiderivative from the notation for the definite integral. Hence the general antiderivative
of a function f with respect to the variable x is denoted by∫

f(x)dx. (4.4.1)

This is usually referred to as the indefinite integral of f with respect to x. Thus the terms
indefinite integral and general antiderivative are synonymous, and from this point on we
will prefer the former to the latter.

Example In this notation, we write∫
3x2dx = x3 + c,

where c is assumed to be an arbitrary constant.

1



2 Using the Fundamental Theorem Section 4.4

Since finding an indefinite integral involves reversing the process of differentiation, we
can rewrite our basic results about derivatives in terms of indefinite integrals. Hence we
have the following list of integration formulas:∫

xndx =
xn+1

n+ 1
+ c (where n 6= −1 is a rational number), (4.4.2)∫

sin(x)dx = − cos(x) + c, (4.4.3)∫
cos(x)dx = sin(x) + c, (4.4.4)∫
sec2(x)dx = tan(x) + c, (4.4.5)∫
csc2(x)dx = − cot(x) + c, (4.4.6)∫
sec(x) tan(x)dx = sec(x) + c, (4.4.7)∫
csc(x) cot(x)dx = − csc(x) + c. (4.4.8)

Note that each one of these formulas may be verified by checking that the derivative
of the right-hand side is equal to the function inside the integral sign on the left-hand side.
Also notice that we have not used any special techniques to find these results; rather, we
know these formulas only because they are the inverses of differentiation formulas that we
learned in Chapter 3. Thus, for example, we know that∫

sec2(x)dx = tan(x) + c,

but we do not know, nor do we even know how to begin to find,
∫

sec(x)dx, which would
at first seem to be an easier problem.

The following proposition is a consequence of the corresponding basic properties of
differentiation.

Proposition If the indefinite integrals of f and g exist, then∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x)dx (4.4.9)

and ∫
(f(x)− g(x))dx =

∫
f(x)dx−

∫
g(x)dx. (4.4.10)

Moreover, for any constant k, ∫
kf(x)dx = k

∫
f(x)dx. (4.4.11)
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Example Using (4.4.2) with the results of the previous proposition, we have∫
(5x3 − 3x+ 2)dx = 5

∫
x3dx− 3

∫
xdx+ 2

∫
1dx =

5
4
x4 − 3

2
x2 + 2x+ c.

It is worth noting that
∫

1dx is typically denoted simply by
∫
dx.

Example Using (4.4.2),∫
1√
t
dt =

∫
t−

1
2 dt =

t
1
2

1
2

+ c = 2
√
t+ c.

Example Using (4.4.2), (4.4.4), and (4.4.9), we have∫ (
cos(x) +

4
x2

)
dx =

∫
cos(x)dx+ 4

∫
x−2dx

= sin(x)− 4x−1 + c

= sin(x)− 4
x

+ c.

Sometimes the indefinite integral of a function, although not itself in the list (4.4.2)
through (4.4.8), may be found with the use of some intelligent guessing. For example,
F (x) = sin(2x) is not an antiderivative of f(x) = cos(2x) since F ′(x) = 2 cos(2x). However,
since F ′ and f differ only by a factor of 2, we can correct for this by dividing F by 2. That
is, ∫

cos(2x)dx =
1
2

sin(2x) + c.

Again, as with all indefinite integrals, you may verify this result by differentiation.

Example To find
∫

3 sin(4x)dx, we might begin with a guess using F (x) = −3 cos(4x).
However, F ′(x) = 12 sin(3x), which differs from the function we are integrating by a factor
of 4. Thus, dividing our initial guess by 4, we have∫

3 sin(4x)dx = −3
4

cos(4x) + c.

Example To find
∫ √

2t+ 3 dt, we might begin with a guess using

F (t) =
(2t+ 3)

3
2

3
2

=
2
3

(2t+ 3)
3
2 .

However,

F ′(t) =
√

2t+ 3
d

dt
(2t+ 3) = 2

√
2t+ 3,
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so we need to divide our guess by 2. Hence∫ √
2t+ 3 dt =

1
3

(2t+ 3)
3
2 + c.

Example To find ∫
1√

3z + 1
dz,

we might start with an initial guess of

F (z) =
(3z + 1)

1
2

1
2

= 2
√

3z + 1.

Since
F ′(z) =

3√
3z + 1

,

we find that ∫
1√

3z + 1
dz =

2
3
√

3z + 1 + c.

Thus, for example, ∫ 5

0

1√
3z + 1

dz =
2
3
√

3z + 1
∣∣∣∣5
0

=
8
3
− 2

3
= 2.

The common thread in the previous examples is the need to modify an initial guess
because of the chain rule. For example, F (x) = sin(2x) is not an antiderivative of f(x) =
cos(2x) because the chain rule comes into play when differentiating F , resulting in an
extra factor of 2. This process of reversing the chain rule can be taken a step further to
help evaluate integrals in even more complicated situations. For example, consider the
indefinite integral ∫

2x
√

1 + x2 dx.

The key to evaluating this integral is recognizing that the factor 2x is the derivative of the
function inside the square root. That is, if we let

f(u) =
√
u

and
g(x) = 1 + x2,

then ∫
2x
√

1 + x2 dx =
∫
f(g(x))g′(x)dx.
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Thus we are trying to find an antiderivative of a function which is in the form of the result
from a chain rule differentiation. Now if F is an antiderivative of f , then, using the chain
rule,

d

dx
F (g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x).

Hence, thinking of u as 1 + x2, we really only need to find the antiderivative of f with
respect to u. Now ∫

f(u)du =
∫ √

u du =
2
3
u

3
2 + c,

so, substituting 1 + x2 back in for u, we should have∫
2x
√

1 + x2 dx =
2
3

(1 + x2)
3
2 + c.

You should check this result by differentiation, noting in particular that the factor of 2x
comes from the use of the chain rule.

In general, if F is an antiderivative of f and u = g(x) is some differentiable function
of x, then, by the chain rule,

d

dx
F (u) = F ′(u)

du

dx
= f(u)

du

dx
. (4.4.12)

Writing this as an integration formula, we have∫
f(u)

du

dx
dx = F (u) + c =

∫
f(u)du. (4.4.13)

This technique to help find indefinite integrals is called integration by substitution.

Example To find ∫
2x sin(x2)dx,

we should let u = x2. Then
du

dx
= 2x,

so, using (4.4.13) with f(u) = sin(u),∫
2x sin(x2)dx =

∫
sin(u)

du

dx
dx

=
∫

sin(u)du

= − cos(u) + c

= − cos(x2) + c.

We summarize this technique as follows.
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Integration by substitution To evaluate an indefinite integral of the form∫
f(g(x))g′(x)dx, (4.4.14)

we may make the substitution u = g(x). We then have∫
f(g(x))g′(x)dx =

∫
f(u)

du

dx
dx =

∫
f(u)du. (4.4.15)

Of course, this technique will work only if we know an antiderivative for f . Indeed, all
we have done is replace one indefinite integral with another, with the hope that the new
integral will be simpler than the original. In our notation, we can think of the transition
from ∫

f(g(x))g′(x)dx

to ∫
f(u)du

as replacing g(x) by u and g′(x)dx by du. Thus in practice we often denote the process of
substitution by writing

u = g(x)
du = g′(x)dx

(4.4.16)

and directly substituting into the integral∫
f(g(x))g′(x)dx

to obtain the integral ∫
f(u)du.

We will illustrate this in the next examples.

Example To evaluate the indefinite integral∫
2x√

2 + x2
dx,

we may let u = 2 + x2. Then
du

dx
= 2x,

which we write in the form
du = 2xdx.



Section 4.4 Using the Fundamental Theorem 7

Substituting, we have∫
2x√

2 + x2
dx =

∫
1√
u
du = 2

√
u+ c = 2

√
2 + x2 + c. (4.4.17)

Example From (4.4.17), it is easy to see, after dividing through by 2, that∫
x√

2 + x2
dx =

√
2 + x2 + c.

We could also see this directly when making the substitution. Namely, if we let u = 2+x2,
then du = 2xdx may be written as

1
2
du = xdx.

Hence, if we substitute 2 + x2 for u and 1
2du for xdx, we obtain∫

2x√
2 + x2

dx =
∫ 1

2√
u
du =

1
2

∫
1√
u
du =

1
2

(2
√
u) + c =

√
2 + x2 + c.

Example To evaluate the indefinite integral∫
5x cos(x2)dx,

we may make the substitution
u = x2

du = 2xdx.

Then
1
2
du = xdx,

so we have ∫
5x cos(x2)dx =

5
2

∫
cos(u)du =

5
2

sin(u) + c =
5
2

sin(x2) + c.

Example To evaluate the indefinite integral∫
tan(3x) sec2(3x)dx,

we may make the substitution
u = tan(3x)

du = 3 sec2(3x)dx.
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Then
1
3
du = sec2(3x)dx,

so we have ∫
tan(3x) sec2(3x)dx =

1
3

∫
udu =

1
6
u2 + c =

1
6

tan2(3x) + c.

Now suppose we want to evaluate the definite integral∫ b

a

f(g(x))g′(x)dx.

If F is an antiderivative of f , then we know that∫
f(g(x))g′(x)dx = F (g(x)) + c. (4.4.18)

Hence ∫ b

a

f(g(x))g′(x)dx = F (g(x))
∣∣∣b
a

= F (g(b))− F (g(a)). (4.4.19)

Now we also have ∫ g(b)

g(a)

f(u)du = F (u)
∣∣∣g(b)
g(a)

= F (g(b))− F (g(b)). (4.4.20)

Putting (4.4.19) and (4.4.20) together, we see that

∫ b

a

f(g(x))g′(x)dx =
∫ g(b)

g(a)

f(u)du. (4.4.21)

That is, similar to our work with indefinite integrals, we may evaluate the definite integral∫ b

a

f(g(x))g′(x)dx

by making a substitution
u = g(x)
du = g′(x)dx,

(4.4.22)

the only difference being that in the definite integral we must also change the limits of
integration. Note that the new limits of integration correspond to the range of values for
u given that x is ranging from a to b.
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Example To evaluate ∫ 1

0

x2

(1 + x3)2
dx,

we may make the substitution
u = 1 + x3

du = 3x2.

Then
1
3
du = x2dx

and u varies from
1 + 03 = 1

to
1 + 13 = 2

as x varies from 0 to 1, so∫ 1

0

x2

(1 + x3)2
dx =

1
3

∫ 2

1

1
u2

du = −1
3

1
u

∣∣∣∣2
1

= −1
6

+
1
3

=
1
6
.

Example To evaluate ∫ π
2

0

sin2(x) cos(x)dx,

we may make the substitution
u = sin(x)
du = cos(x)dx.

Then u varies from 0 to 1 as x varies from 0 to π
2 , so∫ π

2

0

sin2(x) cos(x)dx =
∫ 1

0

u2du =
1
2
u3

∣∣∣∣1
0

=
1
3
.

Example To evaluate ∫ π
2

0

cos3(x) sin(x)dx,

we may make the substitution
u = cos(x)
du = − sin(x)dx.

Then −du = − sin(x)dx and u varies from 1 to 0 as x varies from 0 to π
2 , so∫ π

2

0

cos3(x) sin(x)dx = −
∫ 0

1

u3du =
∫ 1

0

u3du =
1
4
u4

∣∣∣∣1
0

=
1
4
.
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Example So far all of our examples of substitution have involved reversing the results
of the chain rule. However, substitutions can be useful in other situations as well. For
example, to evaluate ∫ 3

0

x
√

1 + x dx,

the substitution
u = 1 + x

du = dx

turns out to be useful for rearranging the integral into a form which can be evaluated.
Namely, since u = 1 + x implies that x = u− 1, we may substitute to obtain∫ 3

0

x
√

1 + x dx =
∫ 4

1

(u− 1)
√
u du

=
∫ 4

1

(u
3
2 − u 1

2 )du

=
2
5
u

5
2

∣∣∣∣4
1

− 2
3
u

3
2

∣∣∣∣4
1

=
(

64
5
− 2

5

)
−
(

16
3
− 2

3

)
=

116
15

.

We will continue the discussion of techniques for using the Fundamental Theorem of
Integral Calculus in Section 4.5.

Problems

1. Evaluate the following indefinite integrals.

(a)
∫

(x3 + 3x− 6)dx (b)
∫

(3t2 − 4t+ 5)dt

(c)
∫

1
x4

dx (d)
∫ (

3z − 4
z2

)
dz

(e)
∫

12√
t
dt (f)

∫
3√

2 + x
dx

(g)
∫

7
√
x+ 5 dx (h)

∫
(sin(θ)− 2 cos(θ))dθ

2. Evaluate the following indefinite integrals.

(a)
∫

sin(3x)dx (b)
∫

cos(4x)dx

(c)
∫ √

3t− 1 dt (d)
∫

4√
1 + 5z

dz
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(e)
∫

7 sec2(2x)dx (f)
∫

3 sec(4x) tan(4x)dx

(g)
∫

2 csc2(7x)dx (h)
∫

sin(4x+ 1)dx

3. Evaluate the following indefinite integrals.

(a)
∫

6x
√

1 + 3x2 dx (b)
∫

4x3 cos(x4)dx

(c)
∫
x2(3 + x3)10dx (d)

∫
7x√

4 + 3x2
dx

(e)
∫

4t sin(t2)dt (f)
∫

7z cos(3z2 + 1)dz

(g)
∫

sin3(t) cos(t)dt (h)
∫

4 cos4(3t) sin(3t)dt

4. Evaluate the following indefinite integrals.

(a)
∫

sin(
√
x)√
x

dx (b)
∫

sec2(x) tan2(x)dx

(c)
∫

sec3(4x) tan(4x)dx (d)
∫

sin(θ) cos(θ)dθ

(e)
∫

sin(x)
cos2(x)

dx (f)
∫

cos(3t)√
1 + sin(3t)

dt

(g)
∫
t
√
t− 2 dt (h)

∫
z√
z + 1

dz

5. Evaluate the following definite integrals.

(a)
∫ 1

0

(4x2 − 3x− 5)dx (b)
∫ 1

0

1√
3x+ 1

dx

(c)
∫ π

4

0

3 sin(2x)dx (d)
∫ 5

1

√
2t− 1 dt

(e)
∫ 0

− π
12

6 sec(3t) tan(3t)dt (f)
∫ 2

0

1
(7z + 6)2

dz

(g)
∫ 2

0

x
√
x2 + 1 dx (h)

∫ π

0

sin4(t) cos(t)dt

6. Evaluate the following definite integrals.

(a)
∫ 1

−1

5x2

(x3 + 2)2
dx (b)

∫ 2

0

3x√
x2 + 1

dx

(c)
∫ √π

0

3x sin(x2)dx (d)
∫ 0

−π2
cos2(t) sin(t)dt

(e)
∫ π

2

0

sin3(2t) cos(2t)dt (f)
∫ 1

0

5x(2 + x2)10dx



12 Using the Fundamental Theorem Section 4.4

(g)
∫ 1

−1

x(1 + x2)25dx (h)
∫ π

3

−π4
sec2(u) tan(u)du

7. Evaluate the following definite integrals.

(a)
∫ 3

0

x√
x+ 1

dx (b)
∫ 1

0

x3
√
x2 + 1 dx

(c)
∫ π

24

− π
12

tan4(4x) sec2(4x)dx (d)
∫ π

2

π
6

cot(t) csc2(t)dt

(e)
∫ 1

0

4x(1 + x)25dx (f)
∫ π

3

0

sin(2θ)
cos3(2θ)

dθ

(g)
∫ 5

1

5u
√

2u− 1 du (h)
∫ π

0

sin5(w) cos(w)dw

8. Find the area beneath one arch of the curve y = 4 sin(6t).

9. (a) Plot the graph of y = sin2(x) cos(x) over the interval [0, π].
(b) Find the area of the region beneath the graph of y = sin2(x) cos(x) over the interval[

0, π2
]
.

(c) Verify that ∫ π

0

sin2(x) cos(x)dx = 0

and justify your result geometrically.


