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Section 5.9

Some Limit Calculations

In this section we will discuss the use of Taylor polynomials in computing certain types of
limits. Although this material could have been treated directly after Section 5.2, we have
saved it until now so as not to break into the development of Taylor series. To illustrate the
ideas of this section, we begin with two examples, the first of which is already well-known
to us.

Example Consider the problem of evaluating

lim
x→0

sin(x)
x

.

The reason this limit presents a problem is that, although the function in question is a
quotient of two continuous functions, both the numerator and the denominator approach
0 as x approaches 0. Now from our work on Taylor polynomials we know that

sin(x) = x+ o(x),

so
sin(x)
x

=
x+ o(x)

x
= 1 +

o(x)
x

.

But, by definition,

lim
x→0

o(x)
x

= 0.

Thus

lim
x→0

sin(x)
x

= lim
x→0

x+ o(x)
x

= lim
x→0

(
1 +

o(x)
x

)
= 1.

Example The limit

lim
x→0

1− cos(x)
x2

presents the same type of problem. Using the Taylor polynomial of order 2 for cos(x), we
know that

cos(x) = 1− x2

2
+ o(x2).
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Hence

lim
x→0

1− cos(x)
x2

= lim
x→0

1−
(

1− x2

2
+ o(x2)

)
x2

= lim
x→0

x2

2
− o(x2)

x2

= lim
x→0

(
1
2
− o(x2)

x2

)
=

1
2
.

The point in both of these examples was to use the fact that if f is n + 1 times
continuously differentiable on an interval about the point c, then, as we saw in Section 5.2,

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + o((x− c)n). (5.9.1)

Hence if f and g are both n + 1 times continuously differentiable on an interval about c,
f (n)(c) 6= 0, f (k)(c) = 0 for k = 0, 1, 2, . . . , n− 1, and g(k)(c) = 0 for k = 0, 1, 2, . . . , n− 1,
then

f(x) =
f (n)(c)
n!

(x− c)n + o((x− c)n) (5.9.2)

and

g(x) =
g(n)(c)
n!

(x− c)n + o((x− c)n). (5.9.3)

Hence

lim
x→c

g(x)
f(x)

= lim
x→c

g(n)(c)
n!

(x− c)n + o((x− c)n)

f (n)(c)
n!

(x− c)n + o((x− c)n)

= lim
x→c

g(n)(c)
n!

+
o((x− c)n)

(x− c)n
f (n)(c)
n!

+
o((x− c)n)

(x− c)n

=

g(n)(c)
n!

f (n)(c)
n!

=
g(n)(c)
f (n)(c)

. (5.9.4)
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That is, under the specified conditions, the value of the limit is equal to the ratio of the
nth derivatives of g and f evaluated at c. In addition, if it were the case that, for some
k < n, g(i)(c) = 0 for i = 1, 2, . . . , k − 1 and g(k)(c) 6= 0, then we would have

g(x)
f(x)

=

g(k)(c)
k!

(x− c)k + o((x− c)k)

f (n)(c)
n!

(x− c)n + o((x− c)n)

=

g(k)(c)
k!(x− c)n−k

+
o((x− c)k)

(x− c)n
f (n)(c)
n!

+
o((x− c)n)

(x− c)n

=

1
(x− c)n−k

(
g(k)(c)
k!

+
o((x− c)k)

(x− c)k

)
f (n)(c)
n!

+
o((x− c)n

(x− c)n

. (5.9.5)

Since the denominator of this last expression has a limit as x approaches c, but the numer-

ator does not, it follows that in this case
g(x)
f(x)

would not have a limit as x approaches c.

That is, in this case f(x) would approach 0 as x→ c at a rate faster than g(x), implying
that the limit of the ratio would not exist.

In practice, we do not use the conclusions of the preceding paragraph, but rather apply
the procedure outlined. That is, to evaluate

lim
x→c

g(x)
f(x)

,

where both
lim
x→c

g(x) = 0

and
lim
x→c

f(x) = 0,

we replace both f and g by their respective Taylor polynomial expansions about c, ex-
panded to the first nonzero term, and evaluate the limit as illustrated above.

Example To find

lim
x→0

sin(x2)
x tan(x)

,

we note that

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

implies

sin(x2) = x2 − x6

3!
+
x10

5!
− x14

7!
+ · · · ,
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so
sin(x2) = x2 + o(x2).

Moreover, using the first degree Taylor polynomial for tan(x) we have

tan(x) = x+ o(x).

Thus

lim
x→0

sin(x2)
x tan(x)

= lim
x→0

x2 + o(x2)
x(x+ o(x))

= lim
x→0

1 +
o(x2)
x2

1 +
o(x)
x

=
1 + 0
1 + 0

= 1.

Example To evaluate

lim
x→0

x− sin(x)
x(1− cos(x))

,

we first note that

sin(x) = x− x3

3!
+ o(x3)

and

cos(x) = 1− x2

2
+ o(x2).

Then

x− sin(x) = x−
(
x− x3

3!
+ o(x3)

)
=
x3

3!
− o(x3)

and

x(1− cos(x)) = x

(
1−

(
1− x2

2
+ o(x2)

))
=
x3

2
− xo(x2).

Thus

lim
x→0

x− sin(x)
x(1− cos(x))

= lim
x→0

x3

3!
− o(x3)

x3

2
− xo(x2)

= lim
x→0

1
6
− o(x3)

x3

1
2
− o(x2)

x2

=

1
6
− 0

1
2
− 0

=
1
3
.

Example To evaluate

lim
x→0

sin(x2)
x4

,

we first note that, as above,
sin(x2) = x2 + o(x2).

Hence

lim
x→0

sin(x2)
x4

= lim
x→0

x2 + o(x2)
x4

= lim
x→0

(
1
x2

+
o(x2)
x4

)
= lim
x→0

1
x2

(
1 +

o(x2)
x2

)
=∞,
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where the final equality follows after noting that

lim
x→0

(
1 +

o(x2)
x2

)
= 1,

while

lim
x→0

1
x2

=∞.

The essence of (5.9.4) is also captured in the following statement, known as l’Hôpital’s
rule.

l’Hôpital’s rule If f and g are twice continuously differentiable on an interval about
the point c and both g(c) = 0 and f(c) = 0, then

lim
x→c

g(x)
f(x)

= lim
x→c

g′(x)
f ′(x)

. (5.9.6)

This is equivalent to our previous result, assuming the conditions specified at that
time, because repeated applications of l’Hôpital’s rule yield

lim
x→c

g(x)
f(x)

= lim
x→c

g′(x)
f ′(x)

= lim
x→c

g′′(x)
f ′′(x)

= · · · = lim
x→c

g(n)(x)
f (n)(x)

=
g(n)(c)
f (n)(c)

, (5.9.7)

which is (5.9.4). As before, if or some k < n, g(i)(c) = 0 for i = 0, 1, 2, . . . , k − 1 and
g(k)(c) 6= 0, then

lim
x→c

g(k)(x)
f (k)(x)

does not exist and
g(x)
f(x)

does not have a limit as x approaches c.

Example We will illustrate l’Hôpital’s rule first with another well-known limit. Namely,

lim
x→0

1− cos(x)
x

= lim
x→0

d

dx
(1− cos(x))

d

dx
x

= lim
x→0

sin(x)
1

= 0.
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Example As an illustration of how it may be necessary to apply l’Hôpital’s rule more
than once, we have

lim
x→0

sin(x)− x
x3

= lim
x→0

d

dx
(sin(x)− x)

d

dx
x3

= lim
x→0

(cos(x)− 1)
3x2

= lim
x→0

d

dx
(cos(x)− 1)

d

dx
3x2

= lim
x→0

− sin(x)
6x

= −1
6

lim
x→0

sin(x)
x

= −1
6
.

Note that this particular problem could have been done more quickly using the fact that

sin(x)− x = −x
3

6
+ o(x3).

Although we will not do so here, it is possible to demonstrate that l’Hôpital’s rule is
more widely applicable than what we have indicated so far. In particular, we may also
apply l’Hôpital’s rule to one-sided limits and to limits as x approaches ∞ or x approaches
−∞, provided, of course, that both g(x) and f(x) are approaching 0 and are twice contin-
uously differentiable on the appropriate intervals. The following examples illustrate these
applications.

Example Using l’Hôpital’s rule, we have

lim
x→π+

sin(x)√
x− π

= lim
x→π+

d

dx
sin(x)

d

dx

√
x− π

= lim
x→π+

cos(x)
1

2
√
x− π

= lim
x→π+

2 cos(x)
√
x− π

= 0.
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Example Using l’Hôpital’s rule, we have

lim
x→∞

x sin
(

1
x

)
= lim
x→∞

sin
(

1
x

)
1
x

= lim
x→∞

d

dx
sin
(

1
x

)
d

dx

1
x

= lim
x→∞

− 1
x2

cos
(

1
x

)
− 1
x2

= lim
x→∞

cos
(

1
x

)
= 1.

Notice we could have computed this limit by substituting h =
1
x

, thus obtaining

lim
x→∞

x sin
(

1
x

)
= lim
h→0+

sin(h)
h

= 1.

Finally, it is also possible to demonstrate that l’Hôpital’s rule applies when both the
numerator and the denominator are approaching ∞. That is, if f and g are twice contin-
uously differentiable at c and both

lim
x→c

f(x) =∞

and

lim
x→c

g(x) =∞,

then

lim
x→c

g(x)
f(x)

= lim
x→c

g′(x)
f ′(x)

. (5.9.8)

As before, this also applies for one-sided limits and for limits as x approaches ∞ or −∞.
Moreover, one or both of g(x) and f(x) may be approaching −∞.
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Example Using l’Hôpital’s rule,

lim
x→∞

3x+ 1√
x2 + 4

= lim
x→∞

d

dx
(3x+ 1)

d

dx

√
x2 + 4

= lim
x→∞

3
x√

x2 + 4

= lim
x→∞

3
√
x2 + 4
x

= lim
x→∞

3

√
x2 + 4
x2

= lim
x→∞

3

√
1 +

4
x2

= 3.

Of course, we could have also computed this limit by dividing both the numerator and
denominator by x to obtain

lim
x→∞

3x+ 1√
x2 + 4

= lim
x→∞

3 +
1
x√

x2 + 4
x

= lim
x→∞

3 +
1
x√

x2 + 4
x2

= lim
x→∞

3 +
1
x√

1 +
4
x2

= 3.

Problems

1. Use Taylor polynomials to find the following limits.

(a) lim
x→0

sin(3x)
x

(b) lim
t→0

t− sin(t)
t2

(c) lim
x→0

cos(x)− 1 +
x2

2
x4

(d) lim
x→0

sin(x2)
sin2(x)

(e) lim
u→0

tan(u)
sin(u)

(f) lim
t→0

sin(t)− t
t3

(g) lim
y→0

tan(3y)
tan(5y)

(h) lim
x→0

tan(x2)
sin(x2)

(i) lim
x→0

√
1 + x− 1

3x
(j) lim

t→0

√
1 + t− 1− t

2
3t2
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2. Use l’Hôpital’s rule to evaluate the following limits.

(a) lim
x→0

sin(5x)
3x

(b) lim
t→0

1− cos(3t)
t2

(c) lim
x→0

1− sec(x)
x

(d) lim
t→π

4

1− tan(t)
cos(2t)

(e) lim
x→0+

sin(2x)√
x

(f) lim
x→0

1− cos(x)
sin(x)

(g) lim
x→∞

x sin
(

1
x2

)
(h) lim

x→0

3x2

sin2(x)

3. Evaluate the following limits using any method you prefer.

(a) lim
x→∞

3x2 − 2x+ 1
16x2 + 2

(b) lim
x→0

tan(x2)
sin2(x)

(c) lim
x→0

1− sin(x)
x

3x2
(d) lim

x→0

(1 + x)
1
3 − 1

x

(e) lim
x→0

(1 + x)
1
3 − 1− x

3
x2

(f) lim
t→0

1− cos(t)
t sin(2t)

(g) lim
x→1

√
x− 1
x− 1

(h) lim
x→π

cos(x) + 1
x− π

(i) lim
t→0

cos(t)− 1 +
t2

2
t2 sin(t2)

(j) lim
u→0

sin(u2)− u2

u4(1− cos(u))

4. Let g(x) =

x2 sin
(

1
x

)
, if x 6= 0,

0, if x = 0.

(a) Show that g′(0) = 0, and hence that g(x) = o(x).
(b) Use the preceding result and the fact that tan(x) = x+ o(x) to show that

lim
x→0

x2 sin
(

1
x

)
tan(x)

= 0.

(c) Letting f(x) = tan(x), show that

lim
x→0

g(x)
f(x)

6= lim
x→0

g′(x)
f ′(x)

.

Which condition in the statement of l’Hôpital’s rule does not hold for this example?


