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Section 7.2

The Calculus of Complex
Functions

In this section we will discuss limits, continuity, differentiation, and Taylor series in the
context of functions which take on complex values. Moreover, we will introduce complex
extensions of a number of familiar functions. Since complex numbers behave algebraically
like real numbers, most of our results and definitions will look like the analogous results
for real-valued functions. We will avoid going into much detail; the complete story of the
calculus of complex-valued functions is best left to a course in complex analysis. However,
we will see enough of the story to enable us to make effective use of complex numbers in
elementary calculations.

We begin with a definition of the limit of a sequence of complex numbers.

Definition We say that the limit of a sequence of complex numbers {zn} is L, and write

lim
n→∞

zn = L,

if for every ε > 0 there exists an integer N such that

|zn − L| < ε

whenever n > N .

Notice that the only difference between this definition and the definition of the limit of
a sequence given in Section 1.2 is the use of the magnitude of a complex number in place of
the absolute value of a real number. Even here, the notation is the same. The point is the
same as it was in Chapter 1: the limit of the sequence {zn} is L if we can always ensure
that the values of the sequence are within a desired distance of L by going far enough out
in the sequence.

Now if zn = xn + yni and L = a+ bi, then lim
n→∞

zn = L if and only if

lim
n→∞

|zn − L| = lim
n→∞

√
(xn − a)2 + (yn − b)2 = 0,

the latter of which occurs if and only if lim
n→∞

xn = a and lim
n→∞

yn = b. Hence we have the
following useful result.

Proposition Let zn = xn + yni and L = a+ bi. Then

lim
n→∞

zn = L

1



2 The Calculus of Complex Functions Section 7.2

if and only if
lim
n→∞

xn = a and lim
n→∞

yn = b.

Thus to determine the limiting behavior of a sequence {zn} of complex numbers, we
need only consider the behavior of the two sequences of real numbers, {<(zn)} and {=(zn)}.

Example Suppose

zn =
3n− 1
2n+ 2

+
n+ 1
n− 1

i

for n = 1, 2, 3, . . .. Then

lim
n→∞

<(zn) = lim
n→∞

3n− 1
2n+ 2

= lim
n→∞

3− 1
n

2 + 2
n

=
3
2

and

lim
n→∞

=(zn) = lim
n→∞

n+ 1
n− 1

= lim
n→∞

1 + 1
n

1− 1
n

= 1,

so
lim
n→∞

zn =
3
2

+ i.

Example Suppose

zn =
1
n

(
cos
(nπ

3

)
+ sin

(nπ
3

)
i
)

for n = 1, 2, 3, . . .. Then

lim
n→∞

<(zn) = lim
n→∞

cos
(
nπ
3

)
n

= 0

and

lim
n→∞

=(zn) = lim
n→∞

sin
(
nπ
3

)
n

= 0,

so
lim
n→∞

zn = 0.

Geometrically, since |zn| = 1
n and arg(zn) = nπ

3 , the points in this sequence are converging
to 0 along a spiral path, as seen in Figure 7.2.1.

Having defined the limit of a sequence of complex numbers, we may define the limit of
a complex-valued function, as in Section 2.3, and then define continuity, as in Section 2.4.

Definition Suppose f : C → C, that is, f is a complex-valued function of a complex
variable. We say the limit of f(z) as z approaches a is L, written

lim
z→a

f(z) = L,

if whenever {zn} is a sequence of points with zn 6= a for all n and lim
n→∞

zn = a, then

lim
n→∞

f(zn) = L.
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Figure 7.2.1 Plot of the points zn = 1
n

(
cos
(
nπ
3

)
+ sin

(
nπ
3

)
i
)
, n = 1, 2, 3, . . . 20

Definition We say the function f : C→ C is continuous at a if lim
z→a

f(z) = f(a).

As with real-valued functions of a real variable, it is easy to show that algebraic
functions of a complex variable are continuous wherever they are defined. In particular,
complex polynomials, that is, functions P of the form

P (z) = anzn + an−1z
n−1 + · · ·+ a1z + a0,

where n is a nonnegative integer and the coefficients a0, a1, . . . , an are complex numbers,
are continuous at all points in the complex plane. Complex rational functions, that is,
functions R of the form

R(z) =
P (z)
Q(z)

,

where both P and Q are polynomials, are continuous at all points where they are defined.

Example Since f(z) = 3z2− iz+ 4− 5i is a polynomial, it is continuous at all points in
the complex plane. In particular,

lim
z→i

f(z) = lim
z→i

(3z2 − iz + 4− 5i) = 3i2 − (i)(i) + 4− 5i = 2− 5i.

Example Algebraic simplification may be useful in evaluating limits here as it was in
Section 2.3. For example,

lim
z→i

z − i
z2 + 1

= lim
z→i

z − i
(z − i)(z + i)

= lim
z→i

1
z + i

=
1
2i

=
1
2i
i

i
= −1

2
i.

Although this is not the time to go into any detail about the geometric meaning of the
derivative of a function f : C→ C, the algebraic definition and manipulation of derivatives
follows the pattern of the results for real-valued functions in Chapter 3.
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Definition If f : C→ C, then the derivative of f at a, denoted f ′(a), is given by

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

, (7.2.1)

provided the limit exists.

Note that h in this definition is, in general, a complex number, not just a real number.
Since the algebraic properties of the complex numbers are very similar to the algebraic
properties of the real numbers, much of what we learned about differentiation in Chapter
3 still holds true in our new situation. For example, if n is a nonzero rational number,
then

d

dz
zn = nzn−1. (7.2.2)

Moreover, all the techniques we learned for computing derivatives in Sections 3.3 and 3.4,
including the quotient, product, and chain rules, still hold.

Example If f(z) = 3z5 + iz3 − (3 + 2i)z, then

f ′(z) = 15z4 + 3iz2 − 3− 2i.

Example If

g(w) =
(3 + i)w2

2w − 1
,

then, using the quotient rule,

g′(w) =
(2w − 1)(6 + 2i)w − (3 + i)w2(2)

(2w − 1)2
=

(6 + 2i)(w2 − w)
(2w − 1)2

.

From this point it is possible to follow the pattern of Chapter 5 and develop the theory
of polynomial approximations using Taylor polynomials, defined in a manner analogous to
the definition in Section 5.1, as well as the theory of power series and Taylor series. In
particular, a power series

∞∑
n=0

an(z − a)n, (7.2.3)

where a0, a1, a2, . . . and a are complex numbers, is said to converge absolutely at those
points z for which the series

∞∑
n=0

|an||z − a|n (7.2.4)

converges. Since the latter series involves only real numbers, its convergence may be
determined using the tests developed in Chapter 5. As before, absolute convergence implies
convergence. Moreover, if the series (7.2.3) converges at points other than a, then there
exists an R, either a positive real number or ∞, such that the series converges absolutely
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for all z such that |z − a| < R and diverges for all z such that |z − a| > R. However, note
that in this case the set of all points in the complex plane such that |z − a| < R is a disk
of radius R centered at a, not an interval as it was in the real number case.

Example Consider the power series

∞∑
n=0

zn. (7.2.5)

Since the series
∞∑
n=0

|z|n

is a geometric series, it converges for all values of z for which |z| < 1. Hence

∞∑
n=0

zn

converges for all z for which |z| < 1, that is, for all z inside the unit circle centered at the
origin of the complex plane. Thus the radius of convergence of (7.2.5) is R = 1. Using the
same argument as we used in Section 1.3, we can show that

∞∑
n=0

zn =
1

1− z

for all z with |z| < 1. For example,

∞∑
n=0

(
i

2

)n
=

1
1− i

2

=
2

2− i
=

2(2 + i)
(2− i)(2 + i)

=
4
5

+
2
5
i.

Example Consider the power series

∞∑
n=0

zn

n!
. (7.2.6)

To determine its radius of convergence, we apply the ratio test to the series

∞∑
n=0

∣∣∣∣znn!

∣∣∣∣ =
∞∑
n=0

|z|n

n!
, (7.2.7)

obtaining

ρ = lim
n→∞

|z|n+1

(n+ 1)!
|z|n

n!

= lim
n→∞

|z|
n+ 1

= 0
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for all values of z. Since ρ = 0 for any value of z, (7.2.7) converges for all z in the complex
plane. That is, the radius of convergence of (7.2.6) is R = ∞. Of course, we also know
that (7.2.7) converges for all z because, from our work in Section 6.1, it is equal to e|z|.

The power series in the last example is the extension to complex numbers of the series
we used to define the exponential function in Section 6.1. With it, we can define the
complex exponential function.

Definition The complex exponential function, with value at z denoted by exp(z), is
defined for all points in the complex plane by

exp(z) =
∞∑
n=0

zn

n!
. (7.2.8)

Of course, this definition agrees with our old definition when z is real.
In Chapter 6 we used the exponential function to give meaning to exponents which

were not rational numbers. Similarly, the complex exponential function may be used to
define complex exponents. However, we will only consider the case of raising e to a complex
power.

Definition If z is a complex number with =(z) 6= 0, then we define ez = exp(z).

With this definition we now have ez = exp(z) for all z in the complex plane, the case
when =(z) = 0, that is, when z is real, having been treated in Section 6.1. Although
we will not repeat them here, the arguments from Section 6.1 come over to establish the
following proposition.

Proposition For any complex numbers w and z,

ew+z = ewez (7.2.9)

and

ew−z =
ew

ez
. (7.2.10)

Also, as in Section 6.1, direct differentiation of (7.2.8) yields the following result.

Proposition
d

dz
ez = ez. (7.2.11)

Example Using the product and chain rules,

d

dz

(
z2e−z

2
)

= z2(−2z)e−z
2

+ 2ze−z
2

= 2z(1− z2)e−z
2
.
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r

θ

z = re

Figure 7.2.2 Plot of the point reiθ in the complex plane

The exponential of a pure imaginary number is particularly interesting. To see why,
let θ be a real number and consider

eiθ =
∞∑
n=0

(iθ)n

n!

= 1 + iθ +
(iθ)2

2!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− · · ·

=
(

1− θ2

2!
+
θ4

4!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
= cos(θ) + i sin(θ).

Proposition For any real number θ,

eiθ = cos(θ) + i sin(θ). (7.2.12)

As a consequence, if θ is a real number, then |eiθ| = 1 and arg(eiθ) = θ. That is, eiθ

is a point in the complex plane on the unit circle centered at the origin, a distance of θ
radians away, in a counterclockwise direction, along the circle from (1, 0). Moreover, if z
is a nonzero complex number with |z| = r and arg(z) = θ, then

z = r(cos(θ) + i sin(θ)) = reiθ. (7.2.13)

This exponential notation provides a compact way to display any nonzero complex number
in polar form. See Figure 7.2.2.

Example If z = 1− i, then |z| =
√

2 and Arg(z) = −π4 , so

z =
√

2e−i
π
4 .
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Moreover,
z̄ =
√

2ei
π
4

and
z2 = 2e−2iπ4 = 2e−i

π
2 = −2i.

Example If w = 3ei
π
3 and z = 5ei

π
8 , then

wz =
(
3ei

π
3
) (

5ei
π
8
)

= 15ei(
π
3 +π

8 ) = 15ei
11π
24

and
w

z
=

3ei
π
3

5ei
π
8

=
3
5
ei(

π
3−

π
8 ) =

3
5
ei

5π
24 .

Since for any real number θ,

eiθ = cos(θ) + i sin(θ),

it follows that
e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ).

Hence
eiθ − e−iθ = cos(θ) + i sin(θ)− (cos(θ)− i sin(θ)) = 2i sin(θ). (7.2.14)

Solving (7.2.14) for sin(θ), we have

sin(θ) =
1
2i

(eiθ − e−iθ).

Similarly,
eiθ + e−iθ = cos(θ) + i sin(θ) + cos(θ)− i sin(θ) = 2 cos(θ), (7.2.15)

from which we obtain
cos(θ) =

1
2

(eiθ + e−iθ).

Proposition For any real number θ,

sin(θ) =
1
2i

(eiθ − e−iθ) (7.2.16)

and
cos(θ) =

1
2

(eiθ + e−iθ). (7.2.17)

These formulas are very similar to the formulas we used to define the hyperbolic sine
and cosine functions in Section 6.7. We will now use these formulas to define the complex
sine and cosine functions; at the same time, we will extend the definitions of the hyperbolic
sine and cosine functions. In doing so, we will see just how closely related the circular and
hyperbolic trigonometric functions really are.
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Definition The complex sine function, with value at z denoted by sin(z), and the
complex cosine function, with value at z denoted by cos(z), are defined for all z in the
complex plane by

sin(z) =
1
2i

(eiz − e−iz) (7.2.18)

and

cos(z) =
1
2

(eiz + e−iz). (7.2.19)

The complex hyperbolic sine function, with value at z denoted by sinh(z), and the complex
hyperbolic cosine function, with value at z denoted by cosh(z), are defined for all z in the
complex plane by

sinh(z) =
1
2

(ez − e−z) (7.2.20)

and

cosh(z) =
1
2

(ez + e−z). (7.2.21)

Note that these functions are defined so that they agree with their original versions
when evaluated at real numbers.

With these definitions it is a simple matter to prove that

d

dz
sin(z) = cos(z), (7.2.22)

d

dz
cos(z) = − sin(z), (7.2.23)

d

dz
sinh(z) = cosh(z), (7.2.24)

and
d

dz
cosh(z) = sinh(z). (7.2.25)

For example,
d

dz
cos(z) =

d

dz

(
1
2

(eiz + e−iz)
)

=
1
2

(ieiz − ie−iz)

=
i

2
(eiz − e−iz)

=
i2

2i
(eiz − e−iz)

= −1
2

(eiz − e−iz)

= − sin(z).
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Example Note that

sin(i) =
1
2i

(ei
2
− e−i

2
)

=
1
2i

(e−1 − e1)

= −1
i

sinh(1)

= − i

i2
sinh(1)

= i sinh(1).

Example Using the product and chain rules, we have

d

dz
sin(2z) cos(3z) = sin(2z)(− sin(3z))(3) + cos(3z) cos(2z)(2)

= 3 sin(2z) sin(3z) + 2 cos(2z) cos(3z).

The final complex-valued function we will define is the complex logarithm function.
Analogous to our other definitions in this section, we would like this function to share the
basic characteristic properties of the ordinary logarithm function and to agree with that
function when evaluated at a positive real number. In particular, if we let Log(z) denote
the complex logarithm of a complex number z and log(r) denote the real logarithm of a
positive real number r, then for a nonzero complex number z with |z| = r and Arg(z) = θ
we would like to have

Log(z) = Log(reiθ) = Log(r) + Log(eiθ) = log(r) + iθ. (7.2.26)

Moreover, using (7.2.26) to define the complex logarithm function will guarantee that
our new function agrees with the ordinary logarithm function when evaluated at positive
real numbers, for if z is a positive real number, then |z| = z and Arg(z) = 0, giving us
Log(z) = log(z).

Definition The complex logarithm function, with value at z denoted by Log(z), is defined
for all nonzero complex numbers z with |z| = r and Arg(z) = θ by

Log(z) = log(r) + iθ, (7.2.27)

where log(r) is the ordinary real-valued logarithm of r.

Note that we have used the principal value of arg(z), that is, Arg(z), in the definition
of Log(z) in order to give Log(z) a unique value. Moreover, note that this definition gives
meaning to the logarithm of a negative real number, although it still does not define the
logarithm of 0.

Example Since |2− 2i| =
√

8 and Arg(2− 2i) = −π4 , we have

Log(2− 2i) = log(
√

8)− π

4
i =

1
2

log(8)− π

4
i =

3
2

log(2)− π

4
i.
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Example Since | − 4| = 4 and Arg(−4) = π, we have

Log(−4) = log(4) + πi = 2 log(2) + πi.

Problems

1. For each of the following, find lim
n→∞

zn. Also, plot z1, z2, z3, . . . , z15 in the complex
plane.

(a) zn =
3− n
n

+
n+ 1
2n+ 3

i (b)
2− n
n2

−
(

4 +
6
n

)
i

(c) zn = 3ei
π
n (d) zn = ei

π(n−1)
n

2. Evaluate each of the following limits.

(a) lim
z→i

(4z3 − 6z + 3) (b) lim
z→1−i

(z2 − 3z)

(c) lim
w→3i

z2 + 9
z − 3i

(d) lim
z→i

z4 − 1
z2 + 1

3. Find the derivative of each of the following functions.

(a) f(z) = 3z2 − 6z5 + 18i (b) g(w) =
13w − 6i+ 3

w + i

(c) f(z) = (z − 4i)e−z
2

(d) h(s) = (s2 + 1) exp(3s2 − si)

4. (a) Show that
1

1 + z2
=
∞∑
n=0

(−1)nz2n

for all z with |z| < 1.
(b) How does (a) help explain why, for real values of x, the Taylor series

1
1 + x2

=
∞∑
n=0

(−1)nx2n

converges only on the interval (−1, 1)?

5. (a) If z = x+ yi, show that
<(ez) = ex cos(y)

and
=(ez) = ex sin(y).

(b) If z = x+ yi, find |ez| and arg(ez).

6. Show that eiπ + 1 = 0.
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7. Verify the differentiation formulas for sin(z), sinh(z), and cosh(z).

8. (a) Show that ∫ −1

−2

1
x
dx = − log(2).

(b) Some computer algebra systems evaluate the integral in (a) as∫ −1

−2

1
x
dx = Log(−1)− Log(−2).

Reconcile this answer with the answer in (a).

9. Let z and w be complex numbers. Verify the following two properties of the complex
logarithm.

(a) Log(wz) = Log(w) + Log(z)
(b) Log

(
w
z

)
= Log(w)− Log(z)

10. For a positive integer n, an nth root of unity is a complex number z with the property
that zn = 1. Show that for m = 0, 1, . . . , n− 1,

zm = ei
2mπ
n

is an nth root of unity. Plot these points in the complex plane for n = 10.

11. (a) Use the fact that

sin(z) =
1
2i

(eiz − e−iz)

to find the complex power series representation for sin(z).
(b) Use the fact that

cos(z) =
1
2

(eiz + e−iz)

to find the complex power series representation for cos(z).

12. Define a complex version of the tangent function and show that

tan(z) =
1
i

(
eiz − e−iz

eiz + e−iz

)
.

13. (a) Show that sin(ix) = i sinh(x) for every real number x.
(b) Show that cos(ix) = cosh(x) for every real number x.

14. Let z = x+ yi.
(a) Show that

<(sin(z)) = sin(x) cosh(y)
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and
=(sin(z)) = cos(x) sinh(y).

(b) Show that
<(cos(z)) = cos(x) cosh(y)

and
=(sin(z)) = − sin(x) sinh(y).

15. (a) Show that for any nonzero complex number z, eLog(z) = z.
(b) If z is a nonzero complex number, does it necessarily follow that Log(ez) = z?


