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Section 8.7

Power Series Solutions

In this section we consider one more approach to finding solutions, or approximate so-
lutions, to differential equations. Although the method may be applied to first order
equations, our discussion will center on second order equations.

The idea is simple: Assuming that the equation

ẍ = f(x, ẋ, t) (8.7.1)

has a solution which is analytic on an interval about t = t0, we express x as a power series

x(t) =
∞∑
n=0

an(t− t0)n, (8.7.2)

compute ẋ and ẍ, substitute the results into the equation, solve for the coefficients a0, a1,
a2, . . . , and verify that the resulting series converges on an interval about t0. As we shall
see, in practice the difficult part is solving for the coefficients. This method will lead us to a
closed form solution for the equation only in the rare case that we are able to recognize the
resulting power series as the Taylor series of some known function. One advantage of this
technique over numerical methods, such as the Runge-Kutta method, is that we are able
to work with general solutions and equations involving unspecified parameters, whereas
with a numerical method every quantity must be specified as a number. The disadvantage
of this technique is that it is not as widely applicable, due to the difficulty of solving for
the coefficients, and, when numerical results are needed, one must still approximate the
infinite series which results when evaluating x at a point.

To illustrate the procedure, we will begin with an example which we know to be solvable
by the techniques of Section 8.4.

Example Consider the equation
ẍ = −x. (8.7.3)

This is a constant coefficient homogeneous linear equation with characteristic equation
k2 + 1 = 0. Since the roots of the characteristic equation are −i and i, we know from our
work in Section 8.4 that the general solution of this equation is

x = c1 cos(t) + c2 sin(t),

where c1 and c2 are arbitrary constants.
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2 Power Series Solutions Section 8.7

We may obtain the same result using power series. If we suppose that x is analytic on
an interval about t = 0, then we may write

x(t) =
∞∑
n=0

ant
n

for some constants a0, a1, a2, . . . . Differentiating, we have

ẋ(t) =
∞∑
n=1

nant
n−1 =

∞∑
n=0

(n+ 1)an+1t
n

and

ẍ(t) =
∞∑
n=2

n(n− 1)antn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n.

Substituting into (8.7.3) gives us

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n = −

∞∑
n=0

ant
n.

Since power series representations are unique, the coefficient of tn in the power series on
the left must equal the coefficient of tn in the power series on the right for all values of n.
That is, we must have

(n+ 2)(n+ 1)an+2 = −an

for n = 0, 1, 2, . . .. Hence the coefficients of the power series representation of x satisfy the
difference equation

an+2 = − an
(n+ 2)(n+ 1)

(8.7.4)

for n = 0, 1, 2, . . .. Note that (8.7.4) does not restrict either a0 or a1, but determines all of
the other coefficients once these values are specified. Thus, given any values for a0 and a1,

a2 = − a0

(2)(1)
= −a0

2
,

a3 = − a1

(3)(2)
= −a1

3!
,

a4 = − a2

(4)(3)
=

a0

(4)(3)(2)
=
a0

4!
,

a5 = − a3

(5)(4)
=

a1

(5)(4)(3)(2)
=
a1

5!
,

a6 = − a4

(6)(5)
= − a0

(6)(5)(4)(3)(2)
= −a0

6!
,

a7 = − a5

(7)(6)
= − a1

(7)(6)(5)(4)(3)(2)
= −a1

7!
,
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and so on. In fact, we see that for k = 0, 1, 2, . . .,

a2k =
(−1)ka0

(2k)!

and

a2k+1 =
(−1)ka1

(2k + 1)!
.

In most cases, this is as far as we can go; we would now check for the interval of convergence
of the resulting power series and conclude that x is a solution of (8.7.3) on that interval.
However, in this case we see that

x =
∞∑
n=0

ant
n

= a0 + a1t−
a0

2
t2 − a1

3!
t3 +

a0

4!
t4 +

a1

5!
t5 − a0

6!
t6 − a1

7!
t7 + · · ·

= a0

(
1− t2

2
+
t4

4!
− t6

6!
+ · · ·

)
+ a1

(
t− t3

3!
+
t5

5!
− t7

7!
+ · · ·

)
= a0 cos(t) + a1 sin(t),

the general solution that we noted above. Hence there is no need to check for the interval
of convergence since we recognize our power series representation of x as the Taylor series
of a familiar function.

In general, if

x =
∞∑
n=0

an(t− t0)n, (8.7.5)

then x(t0) = a0 and ẋ(t0) = a1. Hence if we are seeking the solution of a differential
equation in this form, then the values of a0 and a1 are determined by any initial conditions
which specify x(t0) and ẋ(t0). Thus we shall see that all of our examples will be of the
general form of the previous example. Namely, after substituting x, ẋ, and ẍ into the
equation, we will find a difference equation which determines the coefficients, a2, a3, a4,
. . . , in terms of a0 and a1. However, unlike the first example, our remaining examples
will not result in closed form expressions for our solutions. Nevertheless, we will find
power series representations for the solutions which may be used to approximate a specific
solution to any desired order on some interval of convergence.

Example Consider the equation

ẍ− tx = 0. (8.7.6)

Suppose x is analytic on an interval about t = 0 and write

x =
∞∑
n=0

ant
n
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for some constants a0, a1, a2, . . . . Then, as in the previous example,

ẋ =
∞∑
n=1

nant
n−1 =

∞∑
n=0

(n+ 1)an+1t
n

and

ẍ =
∞∑
n=2

n(n− 1)antn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n.

Substituting into (8.7.6) gives us

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n − t

∞∑
n=0

ant
n = 0,

from which it follows that

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n =

∞∑
n=0

ant
n+1.

Since the powers of t in the series on the left begin with 0 while that the powers of t in
the series on the right begin with 1, we will move the constant term of the series on the
left out of the summation and adjust the index of the sum on the right so that it agrees
with the index of the sum on the left. We then have

2a2 +
∞∑
n=1

(n+ 2)(n+ 1)an+2t
n =

∞∑
n=1

an−1t
n.

We can now use the uniqueness of power series representations to equate the coefficients
on the two sides of this equation, giving us

2a2 = 0

and, for n = 1, 2, 3, . . .,
(n+ 2)(n+ 1)an+2 = an−1.

Hence the coefficients of the power series for x are specified by

a2 = 0

and the difference equation

an+2 =
an−1

(n+ 2)(n+ 1)
(8.7.7)
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for n = 1, 2, 3, . . .. As in the previous example, these equations do not restrict the values
of a0 and a1. However, after specifying a0 and a1 by the initial conditions x(0) = a0 and
ẋ(0) = a1, we may compute

a2 = 0,

a3 =
a0

(3)(2)
=
a0

6
,

a4 =
a1

(4)(3)
=
a1

12
,

a5 =
a2

(5)(4)
= 0,

a6 =
a3

(6)(5)
=

a0

180
,

a7 =
a4

(7)(6)
=

a1

504
,

and so on for as many terms as are desired. We then have

x = a0 + a1t+
a0

6
t3 +

a1

12
t4 +

a0

180
t6 +

a1

504
t7 + · · ·

= a0

(
1 +

t3

6
+

t6

180
+ · · ·

)
+ a1

(
t+

t4

12
+

t7

504
+ · · ·

)
.

To find the interval of convergence for x, we look at the two series on the right individually.
Applying the ratio test to the first series, and making use of the difference equation (8.7.7)
to find a3n+3 in terms of a3n, we have, for any value of t,

ρ = lim
n→∞

∣∣∣∣a3n+3t
3n+3

a3nt3n

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣
a3n

(3n+ 3)(3n+ 2)
a3n

∣∣∣∣∣∣∣ |t|3 = lim
n→∞

|t|3

(3n+ 3)(3n+ 2)
= 0.

Hence ρ < 1 for all t and the series converges on (−∞,∞). Similarly, for the second series
we have, for any value of t,

ρ = lim
n→∞

∣∣∣∣a3n+4t
3n+4

a3n+1t3n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣
a3n+1

(3n+ 4)(3n+ 3)
a3n+1

∣∣∣∣∣∣∣ |t|3 = lim
n→∞

|t|3

(3n+ 4)(3n+ 3)
= 0.

Again, ρ < 1 for all t and this series also converges on (−∞,∞). Thus we have found a
solution for (8.7.6) which is analytic on (−∞,∞).

The computation of the interval of convergence of a solution found in the manner of the
last example can be very involved. Although the justification of the following proposition
is itself too involved for us to go into at this point, we will make use of it in our final two
examples.
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Proposition Suppose p(t) and q(t) are analytic on the interval (t0−R, t0 +R). Then for
any two constants a0 and a1, there is a unique function x(t), analytic on (t0 −R, t0 +R),
which satisfies the differential equation

ẍ+ p(t)ẋ+ q(t)x = 0 (8.7.8)

with initial conditions x(t0) = a0 and ẋ(t0) = a1.

In our previous example, we have, in the notation of the proposition, p(t) = 0 and
q(t) = −t, both of which are analytic on (−∞,∞). Hence it follows from the proposition,
as we saw by direct computation, that our power series solution converges on (−∞,∞).

Note that this proposition also tells us the we analytic solutions to an equation of the
form (8.7.8) will exist provided p and q are both analytic. Equation (8.7.8) is similar to
the equations we studied in Section 8.4, the difference being that (8.7.8) does not require
the coefficients of ẋ and x to be constants.

Example Consider the equation

(1− t)ẍ+ x = 0. (8.7.9)

Suppose x is analytic on an interval about t = 0 and write

x =
∞∑
n=0

ant
n

for some constants a0, a1, a2, . . . . Then, as before,

ẋ =
∞∑
n=1

nant
n−1 =

∞∑
n=0

(n+ 1)an+1t
n

and

ẍ =
∞∑
n=2

n(n− 1)antn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n.

Substituting into (8.7.9) gives us

(1− t)
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n +

∞∑
n=0

ant
n = 0.

Expanding the first term, we have

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n −

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n+1 +

∞∑
n=0

ant
n = 0.
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To adjust for the fact that the powers of t begin with 1 in the middle series, but with 0
for the other series, we move the constant terms of the latter series out of the summation
and adjust the index of the middle series to obtain

2a2 +
∞∑
n=1

(n+ 2)(n+ 1)an+2t
n −

∞∑
n=1

(n+ 1)nan+1t
n + a0 +

∞∑
n=1

ant
n = 0,

from which we obtain

a0 + 2a2 +
∞∑
n=1

((n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + an)tn = 0.

Using the uniqueness of power series representations, we conclude that all the coefficients
on the left-hand side of this equation must be 0. Hence

a0 + 2a2 = 0

and, for n = 1, 2, 3, . . .,

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + an = 0.

Thus
a2 = −a0

2
(8.7.10)

and

an+2 =
(n+ 1)nan+1 − an

(n+ 2)(n+ 1)
(8.7.11)

for n = 1, 2, 3, . . . . Since (8.7.11) becomes (8.7.10) when n = 0, we may combine them
into a single difference equation,

an+2 =
(n+ 1)nan+1 − an

(n+ 2)(n+ 1)
(8.7.12)

for n = 0, 1, 2, . . .. As always, a0 and a1 are determined by the initial conditions and a2,
a3, a4, . . .may be computed from (8.7.12). For example,

a2 = −a0

2
,

a3 =
2a2 − a1

(3)(2)
= −a0 + a1

6
,

a4 =
(3)(2)a3 − a2

(4)(3)
=
−(a0 + a1) +

a0

2
12

= −a0 + 2a1

24
,

and

a5 =
(4)(3)a4 − a3

(5)(4)
=
−1

2
(a0 + 2a1) +

1
6

(a0 + a1)

20
= −2a0 + 5a1

120
.
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Hence

x = a0 + a1t−
a0

2
t2 − (a0 + a1)

6
t3 − (a0 + 2a1)

24
t4 − (2a0 + 5a1)

120
t5 + · · ·

= a0

(
1− t2

2
− t3

6
− t4

24
− t5

60
− · · ·

)
+ a1

(
t− t3

6
− t4

12
− t5

24
− · · ·

)
.

Finally, if we rewrite (8.7.9) as

ẍ+
1

1− t
x = 0,

then, in the notation of the previous proposition,

p(t) = 0

and
q(t) =

1
1− t

.

Now p is analytic on (−∞,∞), but, considering intervals about 0, q is analytic on only
(−1, 1). Thus the proposition guarantees only that our solution will be analytic on (−1, 1).
That is, we know that the two power series in the expression for x converge at least on
(−1, 1).

Example For an example involving an unspecified parameter, consider the equation

ẍ− 2tẋ+ 2rx = 0, (8.7.13)

where r is a constant. Known as Hermite’s equation, the solutions to this equation are
important in certain areas of mathematics and quantum mechanics. As usual, we suppose
x is analytic on an interval about t = 0, write

x =
∞∑
n=0

ant
n

for some constants a0, a1, a2, . . . , and compute

ẋ =
∞∑
n=1

nant
n−1 =

∞∑
n=0

(n+ 1)an+1t
n

and

ẍ =
∞∑
n=2

n(n− 1)antn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n.

Substituting into (8.7.13), we have

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n − 2t

∞∑
n=0

(n+ 1)an+1t
n + 2r

∞∑
n=0

ant
n = 0.
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Thus
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n −

∞∑
n=0

2(n+ 1)an+1t
n+1 +

∞∑
n=0

2rantn = 0.

Adjusting all these series to start with t raised to the first power gives us

2a2 +
∞∑
n=1

(n+ 2)(n+ 1)an+2t
n −

∞∑
n=1

2nantn + 2ra0 +
∞∑
n=1

2rantn = 0.

Hence

2ra0 + 2a2 +
∞∑
n=1

((n+ 2)(n+ 1)an+2 + 2(r − n)an)tn = 0.

Therefore, by the uniqueness of power series representations, we must have

2ra0 + 2a2 = 0

and, for n = 1, 2, 3, . . .,

(n+ 2)(n+ 1)an+2 + 2(r − n)an = 0.

Thus
a2 = −ra0 (8.7.14)

and

an+2 = − 2(r − n)an
(n+ 2)(n+ 1)

(8.7.15)

for n = 1, 2, 3, . . .. Since (8.7.15) becomes (8.7.14) when n = 0, we see that, after a0 and
a1, the coefficients of the solution are determined by the difference equation

an+2 = − 2(r − n)an
(n+ 2)(n+ 1)

, (8.7.16)

n = 0, 1, 2, . . .. For example, we have

a2 = −ra0,

a3 = −2(r − 1)a1

(3)(2)
= −2(r − 1)a1

3!
,

a4 = −2(r − 2)a2

(4)(3)
=

22r(r − 2)a0

4!
,

a5 = −2(r − 3)a3

(5)(4)
=

22(r − 1)(r − 3)a1

5!
,

a6 = −2(r − 4)a4

(6)(5)
= −23r(r − 2)(r − 4)a0

6!
,
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and

a7 = −2(r − 5)a5

(7)(6)
= −23(r − 1)(r − 3)(r − 5)a1

7!
.

Thus

x = a0 + a1t− ra0t
2 − 2(r − 1)a1

3!
t3 +

22r(r − 2)a0

4!
t4 +

22(r − 1)(r − 3)a1

5!
t5

− 23r(r − 2)(r − 4)a0

6!
t6 − 23(r − 1)(r − 3)(r − 5)a1

7!
t7 + · · ·

= a0

(
1− rt2 +

22r(r − 2)
4!

t4 − 23r(r − 2)(r − 4)
6!

t6 + · · ·
)

+ a1

(
t− 2(r − 1)

3!
t3 +

22(r − 1)(r − 3)
5!

t5 − 23(r − 1)(r − 3)(r − 5)
7!

t7 + · · ·
)
.

In the notation of the previous proposition, we have p(t) = 2t and q(t) = 2r, both of which
are analytic on (−∞,∞). Hence it follows that the two series in our solution converge for
all values of t.

Moreover, note that if we let

x1(t) = 1− rt2 +
22r(r − 2)

4!
t4 − 23r(r − 2)(r − 4)

6!
t6 + · · ·

and

x2(t) = t− 2(r − 1)
3!

t3 +
22(r − 1)(r − 3)

5!
t5 − 23(r − 1)(r − 3)(r − 5)

7!
t7 + · · · ,

so that
x(t) = a0x1(t) + a1x2(t),

then x1 is a polynomial when r is an nonnegative even integer and x2 is a polynomial when
r is a positive odd integer. That is, when r is a nonnegative integer, Hermite’s equation
will have a polynomial solution. When suitably normalized, as described in Problem 6
below, these polynomials are called Hermite polynomials.

Our final example shows the strength of the power series method of solving differential
equations. Through one computation we have found analytic solutions to an entire family
of equations parametrized by the real number r. As an added consequence, we have
discovered that the equation has polynomial solutions for certain values of the parameter
r. If we were only interested in numerical values of a solution of Hermite’s equation for
one value of r and one set of initial conditions, then using a numerical method, such as
the Runge-Kutta method of Section 8.6, would be the proper approach; however, we can
see that the power series approach leads to a much richer understanding of the solutions
to the general form of the equation.
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Problems

1. Solve the following first order differential equations using power series with the initial
condition x(0) = a0. Verify your answer by finding a closed form solution for the
equation using the techniques of Sections 8.2 and 8.3

(a) ẋ = 3x (b) ẋ = 2tx
(c) ẋ = x− 1 (d) ẋ = −x

2. Solve the following second order differential equations using power series with the
initial conditions x(0) = a0 and ẋ(0) = a1. Write the solution out through the first six
nonzero terms and give an interval of convergence for each solution.

(a) ẍ+ tx = 0 (b) ẍ+ ẋ− tx = 0
(c) ẍ+ tẋ+ x = 0 (d) ẍ− (1 + t2)x = 0
(e) (1− t2)ẍ− 2tẋ− x = 0 (f) (1 + t)ẍ− x = 0

3. (a) Use power series to show that the solution of

ẍ = x

satisfying x(0) = a0 and ẋ(0) = a1 is given by x = a0 cosh(t) + a1 sinh(t).
(b) Solve the equation in (a) using the techniques of Section 8.4 and show that your

answer agrees with the answer in (a).

4. Use the ratio test to verify that the solutions x1 and x2 of Hermite’s equation found
in the last example of this section converge for all t in (−∞,∞).

5. Find polynomial solutions of Hermite’s equation for r = 0, r = 1, r = 2, r = 3, r = 4,
and r = 5.

6. A polynomial solution of Hermite’s equation with highest degree term of the form 2ntn

is called a Hermite polynomial and is denoted Hn(t).

(a) Show that H0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2, and H3(t) = 8t3 − 12t.
(b) Find H4(t) and H5(t).

7. The equation
(1− t2)ẍ− 2tẋ+ r(r + 1)x = 0,

where r is a constant, is known as Legendre’s equation.

(a) Show that the general solution to Legendre’s equation may be written as

x(t) = a0x1(t) + a1x2(t),

where

x1(t) = 1− r(r + 1)
2!

t2 +
r(r − 2)(r + 1)(r + 3)

4!
t4

− r(r − 2)(r − 4)(r + 1)(r + 3)(r + 5)
6!

t6 + · · ·
,
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x2(t) = t− (r − 1)(r + 2)
3!

t3 +
(r − 1)(r − 3)(r + 2)(r + 4)

5!
t5

− (r − 1)(r − 3)(r − 5)(r + 2)(r + 4)(r + 6)
7!

t7 + · · · ,

and a0 and a1 are constants.
(b) Explain why the radius of convergence of each of these series is at least 1.
(c) Note that if r is a nonnegative even integer, then x1 is a polynomial, and if r is a

positive odd integer, then x2 is a polynomial. If r is an even nonnegative integer,
let

Pr(t) =
x1(t)
x1(1)

and if r is a positive odd integer let

Pr(t) =
x2(t)
x2(1)

.

Then Pr(t), r = 0, 1, 2, . . . , is a polynomial solution of Legendre’s equation, known
as a Legendre polynomial, normalized so that Pr(1) = 1. Find P0(t), P1(t), P2(t),
P3(t), P4(t), and P5(t) and plot their graphs on the interval [−1, 1].

8. Discuss all the interconnections we have seen between difference equations and differ-
ential equations.


