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Section 8.4

Second Order Linear
Differential Equations

To this point we have we have considered only first order differential equations. However,
many of the most interesting differential equations involve second derivatives. Indeed,
since acceleration is the second derivative of position, Newton’s second law of motion,
F = ma, is a second order differential equation. In general, if f is a known function of
three variables, then the equation

ẍ = f(ẋ, x, t) (8.4.1)

is called a second order differential equation. If we let y = ẋ, then (8.4.1) may be written
as a pair of first order differential equations

ẋ = y

ẏ = f(y, x, t).
(8.4.2)

Hence moving from the study of first order differential equations to the study of second
order differential equations is analogous to moving from the study of one algebraic equation
in one unknown to the study of two algebraic equations in two unknowns. We will make
use of this fact when we consider numerical approximations to solutions of second order
equations in Section 8.6.

As was the case with first order equations, the existence of a closed form solution to a
second order differential equation and our ability to find one when it exists depends very
much on the form of the function f in (8.4.1). We shall consider closed form solutions
for only one class of such equations, leaving other equations for either the numerical ap-
proximations of Section 8.6 or the infinite series techniques of Section 8.7. Here we are
concerned with equations of the form

ẍ+ bẋ+ cx = 0, (8.4.3)

which we call a second order homogeneous linear differential equation with constant coeffi-
cients, corresponding to

f(ẋ, x, t) = −bẋ− cx

in (8.4.1). The term homogeneous refers to the fact that the function x(0) = 0 for all t is
a solution of the equation and the phrase constant coefficients refers to the fact that b and
c are assumed to be constants.

To begin our study of these equations, suppose x1(t) and x2(t) are both solutions of
(8.4.3) and let x(t) = c1x1(t) + c2x2(t) for constants c1 and c2. Then
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ẍ+ bẋ+ cx = (c1ẍ1 + c2ẍ2) + b(c1ẋ+ c2ẋ2) + c(c1x1 + c2x2)
= c1(ẍ1 + bẋ1 + cx1) + c2(ẍ2 + bẋ2 + cx2)
= (c1)(0) + (c2)(0) = 0.

That is, x is also a solution of (8.4.3).

Proposition If x1 and x2 are both solutions of the equation

ẍ+ bẋ+ cx = 0,

then x = c1x1 + c2x2 is also a solution of this equation for any constants c1 and c2.

The next proposition is key to our method of solving equations of the form (8.4.3),
although we will leave its justification to a more advanced course. First we introduce a
definition which will make the proposition, as well as our later results, easier to state.

Definition If f and g are functions for which neither one is a constant multiple of the
other, then we say f and g are linearly independent.

Proposition Suppose x1 and x2 are linearly independent solutions of the equation

ẍ+ bẋ+ cx = 0.

Then for any solution x, there exist constants c1 and c2 such that

x = c1x1 + c2x2. (8.4.4)

The equation
ẍ+ bẋ+ cx = 0 (8.4.5)

will have a unique solution only when we place some restrictions on x. For example, if we
specify initial conditions for both x and ẋ, say, x(t0) = x0 and ẋ(t0) = y0, then (8.4.4) will
have a unique solution which satisfies these conditions. This statement is far from obvious,
but should appear reasonable in light of the observation, made above, that we could write
this equation as a pair of first order equations

ẋ = y

ẏ = −by − cx.
(8.4.6)

Hence our method of attack in solving (8.4.4) will be to first find two linearly independent
solutions, say, x1 and x2, and then find values for constants c1 and c2 such that x =
c1x1 + c2x2 satisfies the given initial conditions.

To find two linearly independent solutions of (8.4.4), we begin with the observation
that if x satisfies this equation, then ẍ is equal to a sum of constant multiples of x and
ẋ. Hence it would be reasonable to begin with x = ekt, for some constant k, as an initial
guess. In that case,

ẋ = kekt
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and
ẍ = k2ekt,

so x will be a solution of (8.4.4) if and only if

k2ekt + bkekt + cekt = ekt(k2 + bk + c) = 0 (8.4.7)

for all t. Since ekt 6= 0 for all t, this will happen if and only if

k2 + bk + c = 0. (8.4.8)

Hence x = ekt is a solution to (8.4.4) if and only if k is a root of (8.4.8).

Definition The equation
k2 + bk + c = 0 (8.4.9)

is called the characteristic equation of the differential equation

ẍ+ bẋ+ cx = 0.

Since the characteristic equation is quadratic in k, its roots are given by the quadratic
formula, namely,

k1 =
−b−

√
b2 − 4c

2
(8.4.10)

and

k2 =
−b+

√
b2 − 4c

2
. (8.4.11)

At this point, our search for solutions breaks into three cases, depending on whether k1

and k2 are (1) distinct real numbers (that is, b2 − 4c > 0), (2) distinct complex numbers
(that is, b2 − 4c < 0), or (3) real, but equal (that is, b2 − 4c = 0).

Case 1: Distinct real roots
Suppose k1 and k2 are distinct real roots of the characteristic equation. In that case,
x1 = ek1t and x2 = ek2t are linearly independent solutions of

ẍ+ bẋ+ cx = 0

and all that remains is to find constants c1 and c2 such that

x = c1e
k1t + c2e

k2t (8.4.12)

satisfies the given initial conditions.

Example Consider the equation

ẍ+ ẋ− 6x = 0
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Figure 8.4.1 Solution of ẍ+ ẋ− 6x = 0 with x(0) = 0 and ẋ(0) = 1

with initial conditions x(0) = 0 and ẋ(0) = 1. For the characteristic equation we have

0 = k2 + k − 6 = (k + 3)(k − 2).

Hence the roots of the characteristic equation are k1 = −3 and k2 = 2. Thus we must have

x = c1e
−3t + c2e

2t

for some constants c1 and c2. Now

ẋ = −3c1e−3t + 2c2e2t,

so
x(0) = c1 + c2

and
ẋ(0) = −3c1 + 2c2.

Hence the initial conditions imply that

c1 + c2 = 0
−3c1 + 2c2 = 1.

The first equation implies c1 = −c2. Substituting into the second equation, we have

1 = 3c2 + 2c2 = 5c2.

Hence
c2 =

1
5

and
c1 = −1

5
.

Thus
x = −1

5
e−3t +

1
5
e2t.

The graph of x is shown in Figure 8.4.1
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Case 2: Complex roots

Suppose k1 and k2 are distinct complex roots of the characteristic equation. As before,
ek1t and ek2t are linearly independent solutions of

ẍ+ bẋ+ cx = 0.

However, these are complex-valued functions and for most applications we are looking for
real-valued solutions. Now if we let

p = − b
2

(8.4.13)

and

q =
√

4c− b2
2

, (8.4.14)

then k1 = p− qi and k2 = p+ qi. Hence

ek1t = e(p−qi)t = epte−iqt = ept(cos(qt)− i sin(qt)) (8.4.15)

and
ek2t = e(p+qi)t = epteiqt = ept(cos(qt) + i sin(qt)). (8.4.16)

Since these are both solutions, we know that

x1 =
1
2
ek1t +

1
2
ek2t = ept cos(qt) (8.4.17)

and
x2 =

1
2i
ek2t − 1

2i
ek1t = ept sin(qt) (8.4.18)

are also solutions. Then x1 and x2 are linearly independent real-valued solutions, so any
real-valued solution must be of the form

x = c1x1 + c2x2 = ept(c1 cos(qt) + c2 sin(qt)) (8.4.19)

for some constants c1 and c2 .

Example Consider the equation

ẍ+ 2ẋ+ 5x = 0

with initial conditions x(0) = 2 and ẋ(0) = 0. The characteristic equation is

k2 + 2k + 5 = 0,

which has roots
−2±

√
4− 20

2
= −1± 2i.
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Figure 8.4.2 Solution of ẍ+ 2ẋ+ 5x = 0 with x(0) = 2 and ẋ(0) = 0

Hence, by (8.4.19), we must have

x = e−t(c1 cos(2t) + c2 sin(2t))

for some constants c1 and c2. Now

ẋ = e−t(−2c1 sin(2t) + 2c2 cos(2t))− e−t(c1 cos(2t) + c2 sin(2t)),

so
x(0) = c1

and
ẋ(0) = 2c2 − c1.

Hence the initial conditions x(0) = 2 and ẋ(0) = 0 imply that c1 = 2 and

0 = 2c2 − 2.

Thus c2 = 1 and we have
x = e−t(2 cos(2t) + sin(2t)).

The graph of x is shown in Figure 8.4.2.

Case 3: Single real root
Suppose the characteristic equation has a single real root. In this case,

k1 = k2 = − b
2
. (8.4.20)

For simplicity, let us call this common value k. Then x1 = ekt is a solution of the equation

ẍ+ bẋ+ cx = 0,
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but in order to specify all possible solutions we need to find another solution which is
linearly independent of x1. We will show that, in this case, x2 = tekt is such a solution.
Now

ẋ2 = ktekt + ekt = (1 + kt)ekt (8.4.21)

and
ẍ2 = (1 + kt)kekt + kekt = (2k + k2t)ekt. (8.4.22)

Hence, remembering that k is a root of the characteristic equation (that is, k2 +bk+c = 0)
and k = − b

2 , we have

ẍ2 + bẋ2 + cx2 = (2k + k2t)ekt + b(1 + kt)ekt + ctekt

= ekt(2k + k2t+ b+ bkt+ ct)

= ekt((k2 + bk + c)t+ 2k + b)

= ekt(2k + b)

= ekt
(
− 2b

2
+ b
)

= 0

for all t. Hence x2 is another solution, clearly linearly independent of x1. Thus for any
solution x, there exist constants c1 and c2 such that

x = c1x1 + c2x2 = c1e
kt + c2te

kt. (8.4.23)

Example Consider the equation

ẍ+ 2ẋ+ x = 0

with initial conditions x(0) = 10 and ẋ(0) = −20. The characteristic equation is

0 = k2 + 2k + 1 = (k + 1)2

which has the single root k = −1. Hence

x = c1e
−t + c2te

−t

for some constants c1 and c2. Now

ẋ = −c1e−t − c2te−t + c2e
−t,

so x(0) = c1 and ẋ(0) = −c1 + c2. Hence the initial conditions x(0) = 10 and ẋ(0) = −20
imply that c1 = 10 and

−20 = −10 + c2.
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Figure 8.4.3 Solution of ẍ+ 2ẋ+ x = 0 with x(0) = 10 and ẋ(0) = −20

Thus c2 = −10 and we have

x = 10e−t − 10te−t = 10(1− t)e−t.

The graph of x is shown in Figure 8.4.3.

Summary
If x1 and x2 are linearly independent solutions of the equation

ẍ+ bẋ+ cx = 0, (8.4.24)

then any solution of (8.4.24) is of the form x = c1x1 + c2x2 for some constants c1 and c2.
The family of all solutions x = c1x1 + c2x2 is called the general solution of (8.4.24). A
solution with specified values for c1 and c2 is called a particular solution.

Let k1 and k2 be the roots of the characteristic equation

k2 + bk + c = 0. (8.4.25)

If k1 and k2 are real numbers with k1 6= k2, then the general solution of (8.4.24) is

x = c1e
k1t + c2e

k2t. (8.4.26)

If k1 and k2 are complex numbers with k1 = p − qi and k2 = p + qi, then the general
solution of (8.4.24) is

x = ept(c1 cos(qt) + c2 sin(qt)). (8.4.27)

Finally, if k = k1 = k2, then the general solution of (8.4.24) is

x = c1e
kt + c2te

kt. (8.4.28)

In the next section we will discuss the motion of a pendulum and the motion of a mass
vibrating at the end of a spring as applications of the equations considered in this section.
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Problems

1. Solve each of the following differential equations and plot the solution.

(a) ẍ+ ẋ− 2x = 0, x(0) = 0, ẋ(0) = 2
(b) ẍ = −x, x(0) = 10, ẋ(0) = 5
(c) ẍ+ 3ẋ+ 2x = 0, x(0) = 1, ẋ(0) = 0
(d) ẍ− 4̇x+ 4x = 0, x(0) = 5, ẋ(0) = 0
(e) ẍ− 2ẋ+ 2x = 0, x(0) = 10, ẋ(0) = 4
(f) −ẍ+ 2ẋ− 4x = 0, x(0) = 1, ẋ(0) = 0
(g) ẍ+ 4ẋ+ 20x = 0, x(0) = 0, ẋ(0) = 3
(h) 2ẍ+ 3ẋ− 2x = 0, x(0) = 0, ẋ(0) = −2
(i) ẍ+ 6ẋ+ 9x = 0, x(0) = −6, ẋ(0) = 4

2. Consider the equation ẍ+ 2ẋ− 3x = 0.

(a) If ẋ(0) = 1, plot the solutions for x(0) = 0, x(0) = −5, and x(0) = 5. How do
these solutions compare?

(b) If x(0) = 0, plot the solutions for ẋ(0) = 0, ẋ(0) = −2, and ẋ(0) = 2. How do
these solutions compare?

3. Consider the equation ẍ+ 2ẋ+ 10x = 0.

(a) If ẋ(0) = 1, plot the solutions for x(0) = 0, x(0) = −10, and x(0) = 10. How do
these solutions compare?

(b) If x(0) = 10, plot the solutions for ẋ(0) = 0, ẋ(0) = −5, and ẋ(0) = 5. How do
these solutions compare?

4. Consider the equation ẍ+ 4ẋ+ 4x = 0.

(a) If ẋ(0) = −15, plot the solutions for x(0) = 0, x(0) = −5, and x(0) = 5. How do
these solutions compare?

(b) If x(0) = 10, plot the solutions for ẋ(0) = 0, ẋ(0) = −20, and ẋ(0) = 20. How do
these solutions compare?

5. The techniques developed in this section may be used to solve higher order homoge-
neous linear differential equations with constant coefficients. Generalize the methods
of this section to find the general solution for each of the following equations.

(a)
d3x

dt3
+ 2

d2x

dt2
− dx

dt
− 2x = 0

(b)
d3x

dt3
+ 3

d2x

dt2
+ 3

dx

dt
+ x = 0

6. Show that if b and c are both positive and x is a solution of

ẍ+ bẋ+ cx = 0,

then lim
t→∞

x(t) = 0.


