Chapter Five

M or e Dimensions

5.1 The Space R"
We are now prepared to move on to spaces of dimension greater than three. These
spaces are a straightforward generalization of our Euclidean space of three dimensions. Let

n be apositiveinteger. The n-dimensional Euclidean space R" issimply the set of
al ordered n-tuples of real numbers x = (X,,X,,...,X,). Thus R* is simply the rea
numbers, R? isthe plane, and R?® is Euclidean three-space. These ordered n-tuples are
caled points, or vectors. This definition does not contradict our previous definition of a
vector in case n =3 in that we identified each vector with an ordered triple (x,X,,%;) and
spoke of the triple as being a vector.

We now define various arithmetic operationson R" in the obvious way. If we
have vectors X = (X, X,,...,X,) and y = (y,,¥,,...,¥,) in R", thesum X+ y is defined
by

X+Y=(X + Y%+ Yo, Xt Y,),

and multiplication of the vector x by ascalar ais defined by
ax = (ax,, ax, ,...,ax, ) .
Itiseasy to verify that a(x + y) =ax+ay and (a+b)x =ax +bx.
Again we see that these definitions are entirely consistent with what we have done

indimensions 1, 2, and 3-there is nothing to unlearn. Continuing, we define the length,
or norm of avector x in the obvious manner

|X|= \/xf + XS+ AXE

Thescalar product of x andy is
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X XY= XY, + XY, +. XY, = 51 XY, .
It isagain easy to verify the nice properties:
|X|? =xxx3 0,
|ax|=[al|x],
XXy=yx,
XXYy+2z)=xxy+xx,and

(ax)xy = a(xxy).

The geometric language of the three dimensional setting is retained in higher
dimensions; thus we speak of the “length” of an n-tuple of numbers. In fact, we aso speak

of d(x,y) =|x- y| asthedistance between x and y. We can, of course, no longer rely

on our vast knowledge of Euclidean geometry in our reasoning about R" whenn> 3.
Thusfor n£ 3, thefactthat |[x+y| £ |x| + |y] for any vectors x and y wasasimple

consequence of the fact that the sum of the lengths of two sides of atriangleis at least as
big as the length of the third side. Thisinequality remains true in higher dimensions, and,
in fact, is called the triangle inequality, but requires an essentially agebraic proof.
Let'sseeif we can proveit.

Let X = (X, X,,...,X,) and y =(Y;,Y,,...,Y,). Thenif aisascalar, we have

lax + yf = (ax + y)x(ax + y) 3 0.
Thus,
(ax +y)qax +y) = a’xxx +2ax xy +y xy3 0,

Thisisaquadratic function in aand is never negative; it must therefore be true that
Axxy)? - 4(xx)(yxy) £0, or

IX>xylEXIY-

Thislast inequality isthe celebrated Cauchy-Schwarz-Buniakowsky inequality. It
is exactly the ingredient we need to prove the triangle inequality.
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X+ yF = (X+y) (X +Yy) = XXX+2X Xy +yxy.
Applying the C-S-B inequality, we have
|x + yP £1x*+2x || y+[yI* = (IxI+y]) *, or
Ix+yl £ [x] + ]yl.

Corresponding to the coordinate vectors i, j, and k, the coordinate vectors
e.,e,,...,e, aedefinedin R" by

e =(10,00....,0
e, =(0100....,0
e, = (0010,...,0),
e =(0,00.,...,01)

Thus each vector X = (X, X,,...,X,) may bewritten in terms of these coordinate vectors:

n

X=gq xe.

i=1

Exercises

1. Let x and y betwo vectorsin R". Prove that |x +yf =|xf+y)* if and only if

x xy = 0. (Adopting more geometric language from three space, we say that x and y
areperpendicular or orthogonal if xxy =0.)

2. Letx andy betwo vectorsin R". Prove
Q|x +yf-|x- yP=4axxy.
b)[x +yF+x - yF = Z|xF+|y*].
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3. Letx andy betwo vectorsin R". Provethat | |X| - |y| |EIXH Y-

4. Let PI R* betheset of dl vectors x = (X, X,,Xs,X,) such that
3X, +5X, - 2X; +X, =15.

Find vectorsn andasuchthat P ={x1 R*nxx- a) =0} .

5. Letn andabevectorsin R", andlet P={xT R™nxx- a) =0.
a)Find an equationin X, X,,..., and x_ such that x = (X,,X,,...,x.) 1 P if and only if
the coordinates of x satisfy the equation.

b)Describe the set P bein casen = 3. Describeit in casen =2.
[ThesetPiscaled ahyperplane through a.]

5.2 Functions

We now consider functions F:R" ® RP . Notethat whenn=p =1, we have the
usual grammar school calculus functions, andwhen n =1 and p = 2 or 3, we have the
vector valued functions of the previous chapter. Note also that except for very special
circumstances, graphs of functions will not play a big rolein our understanding. The set of

points (x, F(x)) residesin R™P since x I R" and F(x)T RP ;thisisdifficult to “see’
unless n+ p£3.
We begin with avery special kind of functions, the so-called linear functions. A

function F:R" ® RP issaidto bealinear function if

NF(x+y)=F(x)+F(y) fordl x,yl R", and
ii)F (ax) = aF (x) for al scdlarsaand x T R" .

Example
Letn=p=1, and defineF by F(x) =3x. Then
F(x+y)=3(x+y)=3+3y=F(x)+ F(y)ad
F (ax) = 3(ax) = a3x =aF (X).
ThisF isalinear function.
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Another Example
Let F:R® R® bedefinedby F(t) =ti +2tj - 7tk = (t,2t,-7t). Then
Ft+s)=(t+9i+2(t+s)j- 7(t +9)k

=[ti +2tj - 7tk] +[si + 25} - 7sK]

=F () +F(s)
Also,

F(at) = ati +2atj - 7atk
=a[ti +2tj - 7tk] = aF (t)

We see yet another linear function.

One More Example

Let F:R®*® R* bedefined by

F((Xl,Xz,Xs)) :(in' X2+3X3’ X1+4X2 - 5X31 - X1+2X2 +X3' X1+X3)-

Itiseasy to verify that F isindeed alinear function.

A translation isafunction T:RP ® RP suchthat T(x) =a+ x, where aisa

fixed vector in R". A function that is the composition of alinear function followed by a
trandation is cadled an affine function. An affine function F thus has the form
F(x) =a+ L(x), where L isalinear function.

Example
Let F:R® R® bedefinedby F(t) =(2+t, 4t- 3 t). Then Fisaffine. Let
a=(240) and L(t) =(t, 4t, t). Clearly F(t) =a+ L(t) .

Exer cises
6. Which of the following functions are linear? Explain your answers.

a)f(x) =-7x b)g(x) =2x- 5
C)F (X, %X,) = (2X, + %, X; - Xy, 3%, 5X, - 2X,, X;)
d) G(X,, Xy, X3) = X X, + X, eF({)=(tt 0 -2t)
A h(x,,%;,%3,%,) = (1, 0, 0) g) f(x) =sinx
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7. a)Describe the graph of alinear function from R to R.
b)Describe the graph of an affine function from R to R.
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