
Math 780: Elementary Number Theory(Instructor's Notes)*What Is It?:� Elementary Number Theory is the study of numbers, and in particular the study ofthe set of positive integers.� Does \elementary" mean \easy"? No.� Example. Consider a positive integer m < 105, and view it as a four digit number(with possible leading digit 0). Suppose all four digits are distinct. Let k be the numberobtained by putting the digits of m in increasing order, and let ` be the number obtainedby putting the digits in decreasing order. Let m0 = k� `. Now repeat the process with m0in place of m. Continue. What happens? How can this be explained?Rational and Irrational Numbers:� De�ne them.� Theorem 1. p2 is irrational.� Give typical proof.� Theorem 2. An irrational number to an irrational power can be rational.� Proof: Consider p2p2 and �p2p2�p2.� Theorem 3. e is irrational.� Proof: Assume e = a=b with a and b positive integers, and set(�) � = b!e� bXj=0 b!j! = 1Xj=b+1 b!j! :Then 0 < � < 1Xj=1 1(b+ 1)j = 1b � 1:On the other hand, the middle expression in (�) is an integer. Hence, we have a contra-diction and e is irrational.� Open Problem. Is �e irrational?� Open Problem. Is 1Xn=1 1n5 irrational?*These notes are from a course taught by Michael Filaseta in the Fall of 1997.1



2Homework:(1) Let I = R � Q denote the set of irrational numbers. Determine whether each of thefollowing is true or false. If it is true, simply state so. If it is false, state so and give acounterexample.(a) � 2 I and � 2 I implies �+ � 2 I(b) � 2 I and � 2 I implies �� 2 I(c) � 2 Q � f0g and � 2 I implies �+ � 2 I and �� 2 I(d) � 2 I and � 2 Q � f0g implies �� 2 I(e) � 2 Q � f1g and � 2 I implies �� 2 I(2) Prove that pn is irrational whenever n is a positive integer which is not a square.Give an argument similar to that given for p2. Clarify where you feel we are using certainproperties of the integers that we should have perhaps discussed �rst.(3) Prove that p2 +p3 is irrational.(4) Prove that p2 +p3 +p5 is irrational.(5) Prove that log2 3 is irrational.(6) Prove that e2 is irrational using an argument similar to that given above for e.Divisibility Basics:� De�nition. Let a and b be integers. Then a divides b (or a is a divisor of b or b isdivisible by a) if there is an integer c such that b = ac.� Notation. We write ajb if a divides b, and we write a - b if a does not divide b.� De�nition. An integer p is prime (or is a prime) if it is > 1 and divisible by noother positive integer other than 1 and itself. (In Algebra, the condition that p be > 1 isreplaced by jpj > 1.)� The division algorithm.Theorem 4. If a 6= 0 and b are any integers, then there exist unique integers q (called thequotient) and r (called the remainder) with 0 � r < jaj such that b = qa+ r.� Proof. Let r be the least non-negative integer in the double sequence: : : ; b� 2a; b� a; b; b+ a; b+ 2a; : : : :Let q be such that b� qa = r. Since (b� qa)� jaj is in the double sequence and < b� qa,we have (b� qa)� jaj < 0. Thus, r < jaj. Also, r � 0. This proves the existence of q andr as in the theorem.For j 2 f1; 2g, suppose qj and rj are integers such that b = qja + rj and 0 � rj < jaj.Then(�) (q1 � q2)a� (r1 � r2) = 0:This implies aj(r1 � r2). On the other hand, r1 � r2 2 (�jaj; jaj). Hence, r1 = r2. Now,(�) implies q1 = q2, establishing the uniqueness of q and r as in the theorem.



3� De�nition and Notation. Let n and m be integers with at least one non-zero. Thegreatest common divisor of n and m is the greatest integer dividing both n and m. Wedenote it by gcd(n;m) or (n;m).� Note that if n is a non-zero integer, then (0; n) = jnj.� Theorem 5. If a and b are integers with at least one non-zero, then there existintegers x0 and y0 such that ax0 + by0 = (a; b). Moreover,fax+ by : x; y 2 Zg= fk(a; b) : k 2 Zg:� Proof. Let S = fax+by : x; y 2 Zg. Let d denote the smallest positive integer in S.Let x0 and y0 be integers for which d = ax0 + by0. Theorem 5 follows from the followingclaims.Claim 1. fkd : k 2 Zg � S.Reason: Clear.Claim 2. S � fkd : k 2 Zg.Reason: Let u = ax0 + by0 2 S. By Theorem 4, we have integers q and r with u = dq+ rand 0 � r < d. On the other hand,r = u� dq = (ax0 + by0)� (ax0 + by0)q = a(x0 � x0q) + b(y0 � y0q) 2 S:It follows that r = 0 and u = qd.Claim 3. dja and djb.Reason: Use Claim 2 together with a 2 S and b 2 S.Claim 4. d = (a; b).Reason: Since ax0 + by0 = d, (a; b)jd so that (a; b) � d. Since dja and djb, d is a commondivisor of a and b. By the de�nition of greatest common divisor, d = (a; b).The Fundamental Theorem of Arithmetic (Unique Factorization):� Theorem 6. Every integer n > 1 can be written uniquely as a product of primes inthe form n = pe11 pe22 � � � perr ;where p1 < p2 < � � � < pr are distinct primes and e1; e2; : : : ; er and r are positive integers.� Comment: In other words, every positive integer n can be written uniquely as aproduct of primes except for the order in which the prime factors occur.� Lemma. If p is a prime and a and b are integers such that pjab, then either pja orpjb. � Proof of Lemma. Let k be an integer such that ab = kp, and suppose p - a. Wewish to show pjb. By Theorem 5, there are integers x and y such that ax+ py = 1. Hence,b = abx+ pby = p(kx+ by). Thus, pjb.



4 � Proof of Theorem 6. First, we prove that n is a product of primes by induction.The case n = 2 is clear. Suppose it is true for n less than some integer m > 2. If m isprime, then m is a product of primes. If m is not prime, then m = ab with a and b integersin (1;m). Since a and b are products of primes by the induction hypothesis, so is m.Now, we prove uniqueness by induction. Again, one checks n = 2 directly. Supposeuniqueness of the representation of n as a product of primes as in the theorem holds for n <m. Let p1; : : : ; pr (not necessarily distinct) and q1; : : : ; qt (not necessarily distinct) denoteprimes such that m = p1 � � � pr = q1 � � � qt. Observe that p1jq1 � � � qt. Hence, the lemmaimplies p1jq1 or p1jq2 � � � qt. This in turn implies p1jq1, p2jq2, or p1jq3 � � � qt. Continuing, wededuce that p1jqj for some j 2 f1; 2; : : : ; tg. As p1 and qj are primes, we obtain p1 = qj .Now, p2 � � � pr = m=p1 = q1 � � � qj�1qj+1 � � � qt and the induction hypothesis imply that theprimes p2; : : : ; pr are the same as the primes q1; : : : ; qj�1; qj+1; : : : ; qt in some order. Thisimplies the theorem.Homework:(1) Let a, b, c, and d denote positive integers. Prove each of the following:(a) ajb and bjc implies ajc(b) acjbc implies ajb(c) ajb and cjd implies acjbd(2) Prove that if n is an integer � 2 which is composite (i.e., not prime), then n has aprime divisor which is � pn.(3) Let S = flog10 p : p primeg. Prove that the elements of S are linearly independentover the rationals. (This is an example of an in�nite set of real numbers which is linearlyindependent over Q.)(4) Observe that n4 + 4n is prime if n = 1. Prove that n4 + 4n is composite if n is aninteger > 1.Euclidean Algorithm:� Review. In grade school, we learned to compute the greatest common divisor of twonumbers by factoring the numbers. For example, (77; 119) = (7 � 11; 7 � 17) = 7. Now,try (3073531; 304313) this way. What's the moral?� Theorem 7. (The Euclidean Algorithm) Let a and b be positive integers. Setr0 = a and r1 = b. De�ne r2; r3; : : : ; rn+1 and n by the equationsr0 = r1q1 + r2 with 0 < r2 < r1r1 = r2q2 + r3 with 0 < r3 < r2... ...rn�2 = rn�1qn�1 + rn with 0 < rn < rn�1rn�1 = rnqn + rn+1 with rn+1 = 0where each qj and rj is in Z. Then (a; b) = rn.



5� Back to examples. Compute (3073531; 304313) this way. Not to be misleading,compute (2117; 3219) using the Euclidean Algorithm.� Proof: Let d = (a; b). Then one obtains djrj for 0 � j � n+1 inductively, and hencedjrn. Thus, d � rn (since rn > 0). Similarly, one obtains rn divides rn�j for 1 � j � n. Itfollows that rn is a divisor of a and b. By the de�nition of (a; b), we deduce rn = (a; b).� Solutions to ax+ by = m. From Theorem 5, we need only consider m = k(a; b). Onecan �nd solutions when k = 1 by making use of the Euclidean Algorithm (backwards).Show how the complete set of solutions for general m can be obtained from this. Also,mention the connection with the simple continued fraction for a=b.� Example. Solve 3219x + 2117y = 29. The solutions are the (x; y) of the formx = 25� t� 211729 and y = �38 + t� 321929 for t 2 Z:� Theorem 8. Let a and b be positive integers. The Euclidean Algorithm for calcu-lating (a; b) takes � 2([log2 b] + 1) steps (i.e, divisions).� Proof: Let s = [log2 b] + 1. In the notation of Theorem 7, we want n � 2s. Assumen � 2s + 1. We show �rst that rj+2 < rj=2 for j 2 f1; 2; : : : ; n � 2g. If rj+1 � rj=2, thenrj+2 < rj+1 � rj=2. If rj+1 > rj=2, then rj = rj+1qj+1 + rj+2 where qj+1 = 1. Hence, inthis case, rj+2 = rj � rj+1 < rj=2. Hence, in either case, rj+2 < rj=2. We deduce that1 � rn < rn�22 < rn�44 < � � � < rn�2s2s � r12s = b2s :Therefore, s < log2 b. This contradicts that s = [log2 b] + 1 > log2 b.Homework:(1) For each of the following, calculate (a; b) and �nd a pair of integers x and y for whichax+ by = (a; b).(a) a = 289 and b = 1003(b) a = 3569 and b = 1333(2) Find the complete set of integer solutions in x and y to821x + 1997y = 24047:Modulo Arithmetic:� De�nition. Two integers a and b are congruent modulo an integer n if nj(a� b).� Notation. a � b (mod n).� Examples. What will be the time 1000 hours from now? On what day of the weekwill September 3 be in 1998?



6 � Theorem 9. Let a, b, c, and n be integers. Then each of the following holds.(i) If a � b (mod n) and b � c (mod n), then a � c (mod n).(ii) If a � b (mod n) and c � d (mod n), then a+ c � b+ d (mod n).(iii) If a � b (mod n) and c � d (mod n), then ac � bd (mod n).(iv) If a � b (mod n) and djn, then a � b (mod d).� Proof: Give the obvious proofs. In particular, in (iii), observe that a� b = kn andc� d = `n for some integers k and ` so thatac� bd = (a� b)c+ (c� d)b = (kc+ `b)n;and the result follows.� Comment: Note that (iii) implies that if a � b (mod n) and k is a positive integer,then ak � bk (mod n).� Theorem 10. Let m be a positive integer, and let a be an integer relatively primeto m. Then there is an integer x for which ax � 1 (mod m).� Proof: Use that there are integers x and y such that ax+my = 1.� Comments: The x in Theorem 10 is called the inverse of a modulo m. It is uniquemodulo m since (a;m) = 1 and ax � ay mod m implies x � y (mod m). Also, note thatif (a;m) 6= 1, then a does not have an inverse modulo m (since ax � 1 = mk would beimpossible).� Examples.(1) Explain the usual tests for divisibility by each of 2, 3, 4, 5, 6, 9, and 11.(2) What is the last digit of 71000?(3) Determine the last digits of the numbers in the sequence 23; 2323 ; 23(2323); : : : .(4) Is 3752743877345287574827904870128487127731 a sum of two squares?(5) Let Fn = 2(2n) + 1 (the nth Fermat number). Explain why 641jF5. Use that641 = 24 + 54 and 641 = 5� 27 + 1.� Comments: A regular n-gon is constructible with straight-edge and compass ifand only if n = 2kp1 � � � pr � 3 where k and r are non-negative integers and p1; : : : ; pr aredistinct Fermat primes. The only known Fermat primes are Fn for 0 � n � 4 (i.e., 3, 5,17, 257, and 65537), and it is believed that these are the only Fermat primes.Homework:(1) Prove that if n � 7 (mod 8); then n is not a sum of 3 squares.(2) Prove that for every non-constant polynomial f(x) with integer coe�cients, there isan integer m such that f(m) is composite.(3) A large furniture store sells 6 kinds of dining room suites, whose prices are $231,$273, $429, $600.60, $1001, and $1501.50, respectively. Once a South American buyercame, purchased some suites, paid the total amount due, $13519.90, and sailed for SouthAmerica. The manager lost the duplicate bill of sale and had no other memorandum ofeach kind of suite purchased. Help him by determining the exact number of suites of



7each kind the South American buyer bought. (Don't forget to show that your solution isunique.)(4) Find (with proof) the smallest integer > 1 dividing at least one number in the sequence31; 331; 3331; 33331; : : : .Fermat's Little Theorem:� Theorem 11. For any prime p and any integer a, ap � a is divisible by p.� Comments: In other words, with p and a as above, ap � a (mod p). The theoremis equivalent to: if p is a prime and a is an integer with (a; p) = 1 (in other words, with pnot dividing a), then ap�1 � 1 (mod p).� Proof 1: Use induction. The theorem holds with a = 1. If it holds for a, then(a+ 1)p = pXj=0�pj�aj � ap + 1 � a+ 1 (mod p):This proves the theorem for positive integers. Since every integer is congruent to a positiveinteger modulo p, the result follows.� Proof 2: Again, we may suppose a > 0. Fix a colors. The number of necklaceswith p beads, each bead colored with one of the a colors (allowing repetitions), having atleast two beads colored di�erently is (ap�a)=p. Here, we count necklaces as distinct if onecannot be obtained from the other by a rotation (we don't allow ipping necklaces over).Thus, (ap � a)=p 2 Z, and the result follows.� Fermat's Little Theorem can be used for determining that a given integer N iscomposite as follows:(i) Check N for small prime factors (this step isn't necessary but is reasonable).(ii) Write N in base 2, say N = Pkj=0 �j2j with �j 2 f0; 1g for each j and k =[logN= log 2] + 1.(iii) Compute 22j (mod N) by squaring.(iv) Calculate m 2 f0; 1; : : : ; N � 1g such thatm � kYj=0 2�j2j � 2N (mod N):(v) If m 6= 2, then N is composite. Otherwise the test is inconclusive.� Comments: The algorithm works for establishing that \most" composite numbersare composite (i.e., for most composite numbers, m 6= 2). If m = 2, then one can check if3N � 3 (mod N). Note that the algorithm takes on the order of logN steps so that thealgorithm is a polynomial time algorithm (it runs in time that is polynomial in the lengthof the input - elaborate on this). There are no polynomial time algorithms that determineconclusively whether an arbitrary integer is composite.



8 � De�nitions. A pseudo-prime is a composite number n > 1 satisfying 2n � 2 (mod n).A probable prime is an integer n > 1 satisfying 2n � 2 (mod n). (Explain the reasonsbehind these de�nitions.)� Examples. Explain why 341 = 11�31 is a pseudo-prime. Explain why Fn = 22n+1is a probable prime. (Note that for n > 5, Fn is really probably not a prime.)� De�nition. An absolute pseudo-prime (or a Carmichael number) is a compositenumber n > 1 such that an � a (mod n) for every integer a.� Example. Explain why 561 = 3� 11� 17 is an absolute pseudo-prime.� Comment: Alford, Granville, and Pomerance have shown that there exist in�nitelymany absolute pseudo-primes. The much easier result that there exist in�nitely manypseudo-primes is in the next list of homework problems.Euler's Theorem:� De�nition and Notation. For a positive integer n, we de�ne �(n) to be the numberof positive integers � n which are relatively prime to n. The function � is called Euler's�-function.� Examples. �(1) = 1, �(2) = 1, �(3) = 2, �(4) = 2, �(p) = p � 1 for every prime p,and �(pq) = (p� 1)(q � 1) for all primes p and q� Theorem 12. For every positive integer n and every integer a relatively prime ton, we have a�(n) � 1 (mod n).� Proof: If n = 1, the result is clear. We suppose as we may then that n > 1.Let a1; a2; : : : ; a�(n) be the �(n) positive integers � n relatively prime to n. Consider thenumbers(�) a1a; a2a; : : : ; a�(n)a:Note that no two numbers in (�) are congruent modulo n since (a; n) = 1 and aia � aja(mod n) implies ai � aj (mod n) so that i = j. Now, �x j 2 f1; 2; : : : ; �(n)g. There areintegers q and r such that aja = nq + r and 0 � r < n. Since (aja; n) = 1 and n > 1, weobtain r 6= 0 and (r; n) = 1. Thus, r = ak for some k 2 f1; 2; : : : ; �(n)g. Hence, for eachj 2 f1; 2; : : : ; �(n)g, there is a k 2 f1; 2; : : : ; �(n)g for which aja � ak (mod n). Sincethe numbers aja are distinct modulo n, we deduce that the numbers in (�) are preciselya1; a2; : : : ; a�(n) in some order. Therefore,a1a2 � � � a�(n) � (a1a)(a2a) � � � (a�(n)a) � a�(n)a1a2 � � � a�(n) (mod n):Since gcd(a1a2 � � � a�(n); n) = 1, we obtain a�(n) � 1 (mod n) as desired.Wilson's Theorem:� Theorem 13. For every prime p, (p� 1)! � �1 (mod p).� Proof: If p = 2, the result is clear. We consider now the case p > 2. Let S =f1; 2; : : : ; p � 1g. For every a 2 S, there is a unique a0 2 S satisfying a0a � 1 (mod p).



9If a = 1 or a = p � 1, then a0 = a. The converse statement also holds since a0 = aimplies (a � 1)(a + 1) = a2 � 1 is divisible by p so that a � 1 (mod p) or a � p � 1(mod p). The remaining elements of S can be grouped in (p � 3)=2 pairs (a; a0), say(a1; a01); : : : ; (a(p�3)=2; a0(p�3)=2), so that(p� 1)! � 1� (p� 1)� (a1a01) � � � (a(p�3)=2a0(p�3)=2) � 1� (p� 1) � �1 (mod p):� Comment: The converse of Wilson's Theorem also holds (see homework problem(4) below).Homework:(1) Prove that 1105 and 1729 are absolute pseudo-primes.(2) Prove that if n is a pseudo-prime, then 2n � 1 is a pseudo-prime. (Note that thisimplies that there are in�nitely many pseudo-primes.)(3) Find the smallest positive integer k such that ak � 1 (mod 756) for every integer awhich is relatively prime to 756.(4) Prove the converse of Wilson's Theorem. More speci�cally, prove that if n is an integer> 1 for which (n� 1)! � �1 (mod n); then n is a prime.(5) Let p and d be integers with p > 1 and d > 0: Prove that p and p+ d are both primeif and only if (p� 1)!�1p + (�1)dd!p+ d �+ 1p + 1p+ dis an integer.Public-Key Encryption:� Example. The following information is made public:If someone wishes to send me, Jim, a message, use the following. Let N = 49601 ands = 247. As your alphabet use 00 for a blank, 01 for \a", 02 for \b", 03 for \c", etc.(Eg. \No" would be represented \1415".) Suppose your message is M . LetE �Ms (mod N)where 0 � E < N . Then M is your actual message, and E is the encrypted message.Publish E in the personals tomorrow, and I alone will know your actual message M .Note: To do this properly, one needs N to be considerably larger. Here, only two letterwords can actually be sent (though a combination of two letter words including blanks canmake for a sentence).� The secret. The number N is a product of two large primes (su�ciently large soonly Jim knows how N factors). In the example above, N = 193 � 257. Since Jim knowshow N factors, he can also compute �(N). In this case,�(N) = �(193� 257) = 192� 256 = 49152:



10Using the Euclidean algorithm, for example, Jim also knows a positive integer t such thatst � 1 (mod �(N)):Here, t = 199. Thus, Jim (and only Jim) can calculateEt �Mst �Mk�(N)+1 �M (mod N):In other words, Jim can �gure out M given the value of E.� Comment: This approach makes for a good public-key encryption scheme becausethe value of �(N) cannot seemingly be computed without the knowledge of how N factors.To clarify, it is possible to compute �(N) without having the factorization of N , butthe fastest known methods at the time for computing �(N) when N is large involve �rstfactoring N .� Further example. Someone has sent the encrypted message E = 48791 to Jim. Whatshould he do (assuming he wants to know what the message says)? Note thatt = 199 = 27 + 26 + 22 + 2 + 1:By squaring, he computes E � 48791 (mod N)E2 � 11287 (mod N)E22 � 21001 (mod N)E23 � 39510 (mod N)E24 � 47029 (mod N)E25 � 18251 (mod N)E26 � 28286 (mod N)E27 � 33666 (mod N):Hence, M � Et � E27E26E22E2E1� (33666)(28286)(21001)(11287)(48791) � 809 (mod N):The message sent was, \Hi".Homework:(1) Someone wants to send Jim the message, \No". Compute the encrypted message Eand then verify your work by decoding E. (Show your work using steps similar to thatshown above.)



11Certi�ed Signatures:� The problem. Jim has two friends, Brian and Jason. Jim just got an encryptedmessage E in the personals. I won't specify what E was because it might upset Jim (sinceyou can now decode Jim's messages because you too know how N factors). The messageto Jim in the personals read:Jim, I really like your idea for having secret messages sent to you so that no one else canknow what's being said in the personals besides you. In fact, I liked it so much that Ithought I would send you a quick note to let you know what I think of you. Here it is:E. Sincerely, Brian.In the above message, E is actually some number. The problem is that when Jim decodedE, he was not very happy about what Brian had to say (and you wouldn't be either ifyou happened to be the one the message E was intended for). As a consequence, Jim andBrian never talked to each other again, and Jim's best friend became Jason. What Jimnever did �gure out though was that Jason actually wrote the message.� Solution. One can sign a message simply by adding ones name to the end of a messageM and then encrypting the whole message, name and all. Unfortunately, this is preciselywhat Jason did; he added Brian's name to the end of the message sent to Jim. When Jimread it, he actually thought that Brian must have sent it since no one else could possiblyhave encrypted Brian's name. He never realized that actually anyone could encrypt Brian'sname. There is however a proper way to certify a signature in an encrypted message. Let'ssuppose that Brian and Jason also decided to use the same encrypting scheme as Jim. Inparticular, Brian has some number N 0 that he alone knows how to factor and some numbers0, both of which he makes public. And suppose he has computed t0 (his secret exponent fordecoding messages sent to him) satisfying s0t0 � 1 (mod�(N 0)). Note that S = 0218090114represents Brian's name. Brian computes the value of T � St0 (mod N 0) with 0 � T < N 0.Since t0 is only known to Brian, T is something only Brian knows. If Brian wants to trulysign a message to Jim (so that Jim knows it is from him) he now simply adds T to theend of his message and then encrypts the entire message (with T ). When Jim receivesthe message, he decodes it. To verify the message is from Brian, he takes the value of thesignature T given at the end of the message and computes T s0 modulo N 0 (note that boths0 and N 0 are known to him). Since s0t0 � 1 (mod �(N 0)), Jim obtains S this way (i.e.,S � T s0 (mod N 0)). He then sees that the message is from Brian. The main point is thatsince t0 is only known to Brian, he alone could have computed the value of T given at theend of the message to Jim.� The rest of the story. Actually, Brian did have numbers N 0 and s0 that he madepublic, and Jason had such numbers as well. Jason sent a friendly message to Brian whichJason signed with a certi�ed signature. Brian responded with a message containing hisown certi�ed signature. It was then that Jason sent his message to Jim. At that point,Brian had given Jason the value of T (Brian's certi�ed signature), so Jason used Brian'scerti�ed signature in his message to Jim. So how might this problem be avoided? (Discusspossible answers.)



12The Chinese Remainder Theorem:� Theorem 14. Let m1; : : : ;mk be pairwise relatively prime positive integers. Letb1; : : : ; bk be arbitrary integers. Then the systemx � b1 (mod m1)...x � bk (mod mk)has a unique solution modulo m1 � � �mk.� Proof (Constructive): Let M = m1 � � �mk. For j 2 f1; 2; : : : ; kg, de�ne Mj =M=mj . If i and j are in f1; 2; : : : ; kg with i 6= j, then (mi;mj) = 1. It follows that foreach j 2 f1; 2; : : : ; kg, (Mj ;mj) = 1 so that there is an M 0j 2 Z such thatMjM 0j � 1 (mod mj):We set x =Pkj=1 bjMjM 0j . Thenx � bjMjM 0j � bj (mod mj) for j 2 f1; 2; : : : ; kg:This proves the existence of a solution to the system of congruences in the statement ofthe theorem.For uniqueness, suppose that y also satis�es y � bj (mod mj) for each j 2 f1; 2; : : : ; kg.Then y� x � 0 (mod mj) for each such j, and we deduce that each mj divides y� x. Asthe mj are relatively prime, we obtain M j(y�x). In other words, y � x (mod m1 � � �mk).� Examples.(1) Solve 17x � 3 (mod 210) by using the Chinese Remainder Theorem. Use that210 = 2 � 3 � 5 � 7 and observe that solving 17x � 3 (mod 210) is equivalent to solvingthe system x � 1 (mod 2), x � 0 (mod 3), x � �1 (mod 5), and x � 1 (mod 7). Thelatter is equivalent to x � 1 (mod 14) and x � 9 (mod 15). Therefore,x � 1� 15� 1 + 9� 14 � (�1) � �111 � 99 (mod 210):(2) If a and b are integers, then the point (a; b) is called a lattice point. A visiblelattice point is one for which gcd(a; b) = 1 (it is visible from the origin). Prove that thereare circles (or squares) in the plane which are arbitrarily large and have the property thateach lattice point in the circles (or squares) is not visible. (Use that there are in�nitelymany primes.)(3) Prove that there exists a positive integer k for which 2nk + 1 is composite forall positive integers n. (It is known that k = 78557 has this property and it is an openproblem to determine whether or not 78557 is the smallest such k.) We use the Fermat



13numbers Fn = 22n + 1. Recall that Fn is prime for 0 � n � 4 and F5 is composite with641 a \proper" divisor. Explain the following implications:n � 1 (mod 2) =) 2nk + 1 � 0 (mod 3) provided k � 1 (mod 3);n � 2 (mod 4) =) 2nk + 1 � 0 (mod 5) provided k � 1 (mod 5);n � 4 (mod 8) =) 2nk + 1 � 0 (mod 17) provided k � 1 (mod 17);n � 8 (mod 16) =) 2nk + 1 � 0 (mod 257) provided k � 1 (mod 257);n � 16 (mod 32) =) 2nk + 1 � 0 (mod 65537) provided k � 1 (mod 65537);n � 32 (mod 64) =) 2nk + 1 � 0 (mod 641) provided k � 1 (mod 641);n � 0 (mod 64) =) 2nk + 1 � 0 (mod F5=641) provided k � �1 (mod F5=641):By the Chinese Remainder Theorem, there are in�nitely many positive integers k satisfyingthe conditions on k on the right above (note that the last modulus is relatively prime tothe others). Also, every integer n can be seen to satisfy at least one of the congruencesinvolving n on the left. It follows that there are in�nitely many positive integers k suchthat for every positive integer n, the number 2nk + 1 is divisible by one of 3, 5, 17, 257,65537, 641, and F5=641. If k is su�ciently large with this property, then it will su�ce fora value of k for this example� Comments: If every integer n satis�es at least one of a set of congruences x �aj (mod mj), for j = 1; : : : ; k, then the congruences are said to form a covering of theintegers. It is unkown whether or not there is a covering consisting of distinct odd moduli> 1. Also, it is not known whether or not there is a constant C > 0 such that everycovering using distinct moduli contains a modulus < C.Homework:(1) Find the smallest positive integer n > 2 such that 2 divides n, 3 divides n + 1, 4divides n+ 2, 5 divides n+ 3, and 6 divides n+ 4. Prove your answer is the least such n.(2) A squarefree number is a positive integer n which is not divisible by a square > 1. Forexample, 1, 2, 3, 5, and 6 are squarefree but 4, 8, 9, and 12 are not. Let k be an arbitrarypositive integer. Prove that there is a positive integer m such that m+1;m+2; : : : ;m+kare each NOT squarefree. (Use that there are in�nitely many primes.)(3) Calculate the remainder when the number 123456789101112 : : : 19781979 is divided by1980.(4) Let a0 = a and a1 = b be positive integers, and let an+1 = 2an + an�1 for all positiveintegers n. Find relatively prime a and b such that every an, with n � 0, is composite.(Hint: I used the system of congruences n � 0 (mod 2), n � 1 (mod 3), n � 3 (mod 4),n � 5 (mod 6), and n � 9 (mod 12). You should convince yourselves that this systemforms a covering of the integers. The idea is to make each an divisible by a prime where theprime depends on which of these congruences n satis�es. For example, suppose I choose aand b so that a � 1 (mod 3) and b � �1 (mod 3). Then for n satis�ng n � 3 (mod 4),which is one of the congruences in the system above, we will have that an is divisible by



143. To see this consider the sequence an modulo 3 keeping in mind that a � 1 (mod 3) andb � �1 (mod 3). The main problem should be �guring out what primes to use.)Euler's Phi Function Revisited:� Recall �(n) is the number of positive integers � n that are relatively prime to n.� Lemma 1. For every prime p and every positive integer k, �(pk) = pk � pk�1.� Proof. The number of multiples of p which are � pk is pk�1. The result follows.� Lemma 2. For relatively prime positive integers m and n, �(mn) = �(m)�(n).� Proof. If m = 1 or n = 1, then the result is clear; so we suppose m > 1 and n > 1.Let a1; : : : ; a�(m) denote the positive integers � m which are relatively prime to m, andlet b1; : : : ; b�(n) denote the positive integers � n which are relatively prime to n. Supposenow that k 2 f1; 2; : : : ;mng and (k;mn) = 1. De�ne a and b byk � a (mod m); 0 � a < m; k � b (mod n); and 0 � b < n:Since k = a + tm for some integer t and since (k;m) = 1, we deduce that (a;m) = 1.Similarly, (b; n) = 1. Hence, there are i 2 f1; 2; : : : ; �(m)g and j 2 f1; 2; : : : ; �(n)g suchthat k � ai (mod m) and k � bj (mod n):Since there are �(m)�(n) choices of pairs (i; j) and k is uniquely determined by the abovecongruences (i.e., because of the Chinese Remainder Theorem), we get �(mn) � �(m)�(n).Now, �x a pair (i; j) with i 2 f1; 2; : : : ; �(m)g and j 2 f1; 2; : : : ; �(n)g, and consider theinteger k 2 f1; 2; : : : ;mng (that exists by the Chinese Remainder Theorem) which satis�esk � ai (mod m) and k � bj (mod n). There exists an integer t such that k = ai + tmso that, since (ai;m) = 1, we obtain (k;m) = 1. Also, (k; n) = 1. Hence, (k;mn) =1. Therefore, since each pair (i; j) corresponds to a di�erent k, �(mn) � �(m)�(n).Combining the inequalities, we get �(mn) = �(m)�(n).� Theorem 15. Suppose n = pe11 pe22 � � � perr , where e1; : : : ; er, and r are positiveintegers and p1; : : : ; pr are distinct primes. Then�(n) = rYj=1(pejj � pej�1j ) = nYpjn �1� 1p�:� Proof. The second equality is clear and the �rst follows from Lemma 1 and Lemma2 (using �(n) = �(pe11 ) � � ��(perr )).� Examples. Use the theorem to show that �(100) = 40 and �(140) = 48.� A \sieve" proof of Theorem 15 can be given that doesn't make use of the lemmas.Observe that a positive integer m is not relatively prime to n if and only if m is divisible bysome pj with j 2 f1; 2; : : : ; rg. For distinct j1; : : : ; jk in f1; 2; : : : ; rg, the number of positivemultiples of pj1 � � � pjk which are � n is n=(pj1 � � � pjk). The inclusion-exclusion principle



15implies that the number of positive integers � n which are not divisible by p1; : : : ; pr�1,or pr isn� rXj=1 npj + Xj1<j2�r npj1pj2 � Xj1<j2<j3�r npj1pj2pj3 + � � �+(�1)r np1p2 : : : pr = n rYj=1�1� 1pj �:The theorem follows.� Comments: An open problem due to Carmichael is to determine whether or notthere is a positive integer n such that if m is a positive integer di�erent from n then�(m) 6= �(n). If such an n exists, it is known that if must be > 101000 . Some result inthis direction can be obtained as follows. Observe that n � 0 (mod 2) since otherwise�(n) = �(2n). Now, n � 0 (mod 4) since otherwise �(n) = �(n=2). Now, n � 0 (mod 3)since otherwise �(n) = �(3n=2); and n � 0 (mod 9) since otherwise �(n) = �(2n=3). Thisapproach can be extended (apparently inde�nitely as long as one is willing to considerbranching o� into di�erent cases).Homework:(1) Calculate �(180) and �(1323).(2) Prove that if n is a positive integer as in the comment above, then n > 1030. (Hint:Eventually consider two cases depending on whether 13jn or 13 - n.)(3) During the year 1985, a convenience store, which was open 7 days a week, sold at leastone book each day, and a total of 600 books over the entire year. Must there have been aperiod of consecutive days when exactly 129 books were sold?Polynomial Basics:� Irreducible polynomials. A non-zero polynomial f(x) 2 Z[x] with f(x) 6� �1 isirreducible (over Z or in Z[x]) if f(x) = g(x)h(x) with g(x) and h(x) in Z[x] implies eitherg(x) � �1 or h(x) � �1. A non-zero polynomial f(x) 2 Z[x] with f(x) 6� �1 is reducibleif f(x) is not irreducible. A non-constant polynomial f(x) 2 Q[x] is irreducible over Q(or in Q[x]) if f(x) = g(x)h(x) with g(x) and h(x) in Q[x] implies either g(x) or h(x)is a constant. A non-constant polynomial f(x) 2 Q[x] is reducible over Q if f(x) is notirreducible over Q.� Examples. The polynomial x2+1 is irreducible over Zand over Q. The polynomial2x2 + 2 is reducible over Z and irreducible over Q.� Comment: Suppose f(x) 2 Z[x] and the greatest common divisor of the coe�cientsof f(x) is 1. Then f(x) is irreducible over the integers if and only if f(x) is irreducibleover the rationals.� Unique factorization in Z[x]. It exists.� Division algorithm for polynomials. Given f(x) and g(x) in Z[x] with g(x) 6� 0,there are unique polynomials q(x) and r(x) in Q[x] such that f(x) = q(x)g(x) + r(x) andeither r(x) � 0 or deg r(x) < deg g(x). In the case where g(x) is monic, the polynomialsq(x) and r(x) will be in Z[x].



16 � Examples. If f(x) = x3 + 2x + 1 and g(x) = x2 + 2, then q(x) = x and r(x) = 1.If f(x) = x4 + 4 and g(x) = 2x3 � 3x2 + 2, then q(x) = 12x+ 34 and r(x) = 94x2 � x+ 52 .� The Euclidean Algorithm. Illustrate by computing gcd(x9+1; x8+x4+1). Note thatthis example is not meant to be typical; in general the coe�cients might not be integral.If we want gcd(f(x); g(x)) to be monic, then division by a constant may be necessary afterperforming the Euclidean algorithm.� Given f(x) and g(x) in Z[x], not both � 0, there exist polynomials u(x) and v(x)in Q[x] such that f(x)u(x) + g(x)v(x) = gcd(f(x); g(x)):The Euclidean algorithm can be used to compute such u(x) and v(x).� The Remainder Theorem. The remainder when a polynomial f(x) is divided byx � a is f(a). Observe that the division algorithm for polynomials implies that there isa polynomial q(x) 2 Q[x] and a rational number r such that f(x) = (x � a)q(x) + r; theremainder theorem follows by letting x = a. As a corollary, we note that (x � a)jf(x) ifand only if f(a) = 0.� The Fundamental Theorem of Algebra. A non-zero polynomial f(x) 2 C [x] of degreen has exactly n complex roots when counted to their multiplicity. In other words, if f(x) =Pnj=0 ajxj 2 C [x] is a non-zero polynomial with roots (counted to their multiplicity)�1; �2; : : : ; �n, then f(x) = an(x� �1)(x� �2) � � � (x� �n):� Elementary Symmetric Functions. Expanding the above factorization of f(x) interms of its roots, we deduce thatf(x) = an�xn � �1xn�1 + �2xn�2 � � � � + (�1)n�n�where�1 = �1 + �2 + � � � + �n; �2 = �1�2 + �1�3 + � � � + �n�1�n; : : : ; �n = �1�2 � � � �n(in general, �j is the sum of the roots of f(x) taken j at a time). We deduce the formula�j = (�1)jan�j=an for each j 2 f1; 2; : : : ; ng. Any rational symmetric function of theroots �1; �2; : : : ; �n can be written in terms of the elementary symmetric functions �j .� Examples. Discuss the values of �j when f(x) = x2 � 3x + 2 = (x � 1)(x � 2).Also, given �1; �2; �3; �4 are the roots of f(x) = x4 + 2x3 � 3x + 5, compute the value of(1=�1) + (1=�2) + (1=�3) + (1=�4).� Congruences Modulo Polynomials. Is x18 � 3x15 + x6 � x4 + 2x3 � x2 � 2 divisibleby x2 + x+ 1? If not, what's the remainder? Discuss the answer(s).Homework:(1) Calculate gcd(x5 � 3x4 + 3x3 � 6x2 + 2x� 3; x4 � 3x3 + 2x2 � 3x+ 1):



17(2) Let �1; �2; and �3 be the roots of x3 + x+ 1 = 0: CalculateSk = 3Xj=1 �kj for k = 1; 2; : : : ; 10:(3) Determine whether x4 + 1 is a factor of x25 + 2x23 + x17 + x13 + x7 + x3 + 1 usingarithmetic modulo x4 + 1:(4) Consider all lines which meet the graph on y = 2x4 + 7x3 + 3x � 5 in four distinctpoints, say (xi; yi); i = 1; 2; 3; 4: Show that (x1+x2+x3+x4)=4 is independent of the lineand �nd its value.Polynomials Modulo Integers, Part I:� Theorem 16. Let p be an odd prime. The congruence x2 + 1 � 0 (mod p) has asolution if and only if p � 1 (mod 4).� Proof: First suppose p � 1 (mod 4). Then p = 4k + 1 for some positive integer k.Thus, (p� 1)=2 is even. By Wilson's Theorem, we obtain�1 � (p� 1)! � 1� 2� � � � � �p � 12 ���p+ 12 �� � � � � (p� 2)� (p� 1)� 1� 2� � � � � �p � 12 ���� p� 12 �� � � � � (�2)� (�1)� (�1)(p�1)=2�p � 12 �!�p � 12 �! (mod p):Thus, in this case, x2 + 1 � 0 (mod p) has the solution x = ((p� 1)=2)!.Now, suppose p � 3 (mod 4). Then (p� 1)=2 is odd. Assume there is an integer x suchthat x2 + 1 � 0 (mod p). Then x2 � �1 (mod p) implies (since (p� 1)=2 is odd) thatxp�1 � (x2)(p�1)=2 � (�1)(p�1)=2 � �1 (mod p):This contradicts Fermat's Little Theorem. Hence, the theorem follows.� Corollary. There exist in�nitely many primes � 1 (mod 4).� Before proving the corollary, we establishTheorem 17. There exist in�nitely many primes.Proof 1 (Euclid's). Assume there are only �nitely many primes, say p1; : : : ; pr . Thenthe number p1 � � � pr + 1 is not divisible by any of the primes p1; : : : ; pr, contradicting theFundamental Theorem of Arithmetic.Proof 2. The Fermat numbers Fn = 22n + 1 are odd numbers > 1 satisfyingFn+1 � 2 = nYj=0Fj :



18Hence, they are relatively prime, so there must exist in�nitely many primes.� Proof of Corollary. Consider the numbers n2 + 1 where n is an integer. ByTheorem 16, the only primes dividing any such number are 2 and primes � 1 (mod 4).Thus, it su�ces to show there exist in�nitely many primes dividing numbers of the formn2 +1. Assume otherwise. Let p1; : : : ; pr be the primes which divide numbers of the formn2 + 1. Since (p1 � � � pr)2 + 1 is not divisible by any of the primes p1; : : : ; pr, we obtain acontradiction.Homework:(1) Use an argument similar to Euclid's to prove there exist in�nitely many primes � 3(mod 4).(2) Let f(x) be a non-constant polynomial in Z[x]. Prove there exist in�nitely manyprimes dividing numbers of the form f(n) where n 2 Z.(3) Let q be an odd prime, and let k be a positive integer. Let Nk = 2qk � 1 = 2(qk) � 1.(a) Prove that q does not divide Nk.(b) Let p be a prime dividing Nk. Prove that p � 1 (mod q).(c) Explain why gcd �Nk; 2qk(q�1) + 2qk(q�2) + 2qk(q�3) + � � � + 2qk + 1� = 1.(d) Observe that xq � 1 = (x� 1)(xq�1 + xq�2 + xq�3 + � � � + x+ 1). Prove that thereis a prime dividing Nk+1 which does not divide Nk.(e) Prove there are in�nitely many primes p � 1 (mod q).(4) Let n be an integer � 3. Prove there exist in�nitely many primes p which are notcongruent to 1 modulo n.Lagrange's Theorem:� Theorem 18. Let f(x) 2 Z[x] with f(x) 6� 0. Let p be a prime, and let n = deg f .Then either the congruence(�) f(x) � 0 (mod p)has at most n incongruent roots modulo p or p divides each coe�cient of f(x).� Proof. The theorem is clearly true if n = 0. Let m be a positive integer, andsuppose the theorem holds for n < m. Consider f(x) 2 Z[x] with deg f = m. If (�)has no solutions, then the desired conclusion follows for f(x). Suppose then that (�) hasa solution, say a. Hence, there is an integer k such that f(a) = kp. This implies thatx � a is a factor of f(x) � kp (by the Remainder Theorem). In other words, there is ag(x) 2 Z[x] such that f(x) = (x � a)g(x) + kp. Clearly, deg g = m � 1. Observe thatf(x) � g(x)(x � a) (mod p). We deduce that f(b) � 0 (mod p) if and only if g(b) � 0(mod p) or b � a (mod p). Since deg g = m � 1, we deduce that either there are atmost m � 1 incongruent integers b modulo p that can satisfy g(b) � 0 (mod p) or everycoe�cient of g(x) is divisible by p. In either case, the theorem follows.� Comment: Theorem 18 is not true if the prime p is replaced by a composite numbern. For example, x2 � 1 � 0 (mod 8) has 4 incongruent solutions modulo 8. Also, 3x � 0(mod 9) has 3 incongruent solutions modulo 9.



19� Corollary. Let f(x) 2 Z[x] be a monic polynomial of degree n, and let p be a prime.Suppose f(x) � 0 (mod p) has n incongruent solutions modulo p, say a1; : : : ; an. Thenf(x) � (x� a1) � � � (x� an) (mod p):� Proof. Let g(x) = f(x)� (x� a1) � � � (x� an). Since f(x) is monic, deg g � n� 1.Also, g(x) � 0 (mod p) has the n incongruent solutions a1; : : : ; an modulo p. Lagrange'sTheorem implies that p divides each coe�cient of g(x).� Wilson's theorem can be established with the aid of Theorem 18. Let p be a prime.We want to prove (p � 1)! � �1 (mod p). Let f(x) = xp�1 � 1. By Fermat's LittleTheorem and the above Corollary, we deducef(x) � (x� 1)(x� 2) � � � (x� (p� 1)) (mod p):Letting x = 0, we obtain the desired result.Primitive Roots:� De�nition. Let a be an integer, and let n be a positive integer with gcd(a; n) = 1.The order of a modulo n is the least positive integer d such that ad � 1 (mod n).� Comment: With a and n as above, the order of a modulo n exists since a�(n) � 1(mod n). Furthermore, the order of a modulo n divides �(n). To see this, considerintegers x and y for which dx+ �(n)y = gcd(d; �(n)), where d is the order of a modulo n.Then it follows easily that agcd(d;�(n)) � 1 (mod n), and the de�nition of d implies thatd = gcd(d; �(n)). This in turn implies dj�(n) as claimed.� De�nition. If an integer a has order �(n) modulo a positive integer n, then we saythat a is a primitive root modulo n.� Comment: Given a positive integer n, it is not necessarily the case that there existsa primitive root modulo n. There exists a primitive root modulo n if and only if n is 2, 4,pr, or 2pr where p denotes an odd prime and r denotes a positive integer. The remainderof this section deals with the case where n is a prime, and in this case we establish theexistence of a primitive root.� Theorem 19. There is a primitive root modulo p for every prime p. Furthermore,there are exactly �(p� 1) incongruent primitive roots modulo p.� Lemma. Let n denote a positive integer. ThenXdjn �(d) = n;where the summation is over all positive divisors of n.� Proof of Lemma. Write n = pe11 pe22 � � � perr where the pj are distinct primes andthe ej are positive integers. Note thatXdjn �(d) = rYj=1 �1 + �(pj) + � � � + �(pejj )�:



20Since, 1 + �(pj) + � � � + �(pejj ) = 1 + (pj � 1)(1 + pj + � � � + pej�1j ) = pejj ;we deduce that Xdjn �(d) = rYj=1 pejj = n:� Theorem 19 is an apparent consequence of the next more general theorem.Theorem 20. Let p be a prime, and let d be a positive divisor of p � 1. Then thenumber of incongruent integers of order d modulo p is �(d).� Proof of Theorem 20. We �rst show that xd � 1 � 0 (mod p) has exactly dincongruent solutions modulo p. By Lagrange's Theorem, it su�ces to show that there isat least d incongruent solutions. Assume there are < d incongruent solutions. Observethat xp�1 � 1 = (xd � 1)g(x) for some g(x) 2 Z[x] for degree p � 1 � d. A number is aroot of xp�1 � 1 � 0 (mod p) if and only if it is a root of xd � 1 � 0 (mod p) or g(x) � 0(mod p). By Lagrange's Theorem, g(x) � 0 (mod p) has at most p � 1 � d incongruentsolutions modulo p. Hence, xp�1�1 � 0 (mod p) has < d+(p�1�d) = p�1 incongruentsolutions modulo p. This contradicts Fermat's Little Theorem. Hence, xd�1 � 0 (mod p)must have exactly d incongruent solutions modulo p.Next, suppose a has order d0 modulo p. We show that a is a root of xd� 1 � 0 (mod p)if and only if d0jd. If d0jd, then d = kd0 for some integer k so thatad � 1 � (ad0)k � 1 � 1� 1 � 0 (mod p):Hence, a is a root of xd � 1 � 0 (mod p). Now suppose we know a is a root of xd � 1 � 0(mod p) and we want to prove d0jd. There are integers q and r such that d = d0q+ r and0 � r < d. Since 1 � ad � ad0q+r � (ad0)qar � ar (mod p);we deduce that r = 0 and, hence, d0jd as desired.We proceed to prove the theorem by induction. If d = 1, then the theorem is clear.Suppose the theorem holds for d < D. Then using the above information (including theLemma), we haveD = jfa : aD � 1 � 0 (mod p); 0 � a < pgj= Xd0jD jfa : a has order d0; 0 � a < pgj= Xd0jDd0<D�(d0) + jfa : a has order D; 0 � a < pgj= Xd0jD �(d0)� �(D) + jfa : a has order D; 0 � a < pgj= D � �(D) + jfa : a has order D; 0 � a < pgj:



21The theorem follows.� Comment: If g is a primitive root modulo p, then the numbers 1; g; g2; : : : ; gp�2 areincongruent modulo p. It follows that the numbers 1; g; g2; : : : ; gp�2 are congruent modulop to the numbers 1; 2; : : : ; p � 1 in some order.� Corollary. For all odd primes p, there are exactly (p � 1)=2 non-zero incongruentsquares modulo p.� Proof. If x � a2 (mod p) for some integer a with a 6� 0 (mod p), then x(p�1)=2 �ap�1 � 1 (mod p). Hence, Lagrange's Theorem implies that there are � (p�1)=2 non-zeroincongruent squares modulo p. On the other hand, if g is a primitive root modulo p, thenthe numbers 1; g2; g4; : : : ; gp�3 form (p� 1)=2 non-zero incongruent squares modulo p.� Example. Illustrate the above by considering p = 7. Here, 3 is a primitive root,and the non-zero squares are 1, 2, and 4.� Comment: It is not known whether 2 is a primitive root modulo p for in�nitelymany primes p. On the other hand, it is known that at least one of 2, 3, and 5 is a primitiveroot modulo p for in�nitely many primes p.Homework:(1) (a) Using an argument similar to that given for the proof of the lemma to Theorem20, show that if n = pe11 pe22 � � � perr and �(n) =Pdjn d (i.e., �(n) is the sum of the positivedivisors of n), then �(n) = rYj=1 pej+1j � 1pj � 1 :(b) Let � (n) = Pdjn 1 (i.e., � (n) is the number of positive divisors of n). With n asabove and using a similar argument to the above, show that� (n) = (e1 + 1) (e2 + 1) � � � (er + 1) :(2) Let n be a positive integer. Given the notation in (1)(b) above, prove�Xdjn � (d)�2 =Xdjn � 3(d):(3) Let p be a prime, let g be a primitive root modulo p, and let k be an integer. Provethat gk is a primitive root modulo p if and only if gcd(k; p � 1) = 1.(4) (a) Prove that if p is a prime � 1 (mod 3), then there are exactly (p� 1)=3 non-zeroincongruent cubes modulo p.(b) Prove that if p is a prime 6� 1 (mod 3), then there are exactly p � 1 non-zeroincongruent cubes modulo p. (Hint: If gj doesn't look like a cube, maybe gj+(p�1) orgj+2(p�1) will.)



22 (c) Generalize parts (a) and (b) to kth powers modulo a prime. In other words, �nd aprecise description similar to the above for the number of kth powers modulo a prime.Euler's Criterion:� Theorem 21. Let p be an odd prime, and let a be an integer not divisible by p. Ifa is a square modulo p, then a(p�1)=2 � 1 (mod p). If a is not a square modulo p, thena(p�1)=2 � �1 (mod p).� Proof: In the �rst line of the proof of the Corollary to Theorem 20, we saw thatnon-zero squares modulo p are roots of xp�1 � 1 � 0 (mod p). This is the �rst half ofTheorem 21. It remains to prove now that if a is not a square modulo p, then a is a rootof x(p�1)=2 + 1 � 0 (mod p). Observe that every integer in f1; 2; : : : ; p� 1g satis�es(x(p�1)=2 � 1)(x(p�1)=2 + 1) � xp�1 � 1 � 0 (mod p)so that if a 2 f1; 2; : : : ; p � 1g, then a is a root of either x(p�1)=2 � 1 � 0 (mod p) orx(p�1)=2 + 1 � 0 (mod p) (and not both). By Lagrange's Theorem, x(p�1)=2 � 1 � 0(mod p) can have at most (p � 1)=2 incongruent roots. By the �rst part of the proof,these roots are the non-zero squares modulo p. It follows that the remaining integers inf1; 2; : : : ; p � 1g must satisfy x(p�1)=2 + 1 � 0 (mod p), completing the proof.� Example. Determine if 3 is a square modulo 31. Use that 33 � �4 (mod 31) =)36 � 16 (mod 31) =) 39 � �2 (mod 31) =) 315 � �1 (mod 31). By Euler's criterion,3 is not a square modulo 31.Quadratic Residues:� De�nition. Let p be a prime, and let a be an integer not divisible by p. If a is asquare modulo p, then a is said to be a quadratic residue modulo p. Otherwise, we saythat a is a quadratic nonresidue modulo p.� De�nition. Let p be a prime, and let a be an integer. The Legendre symbol �ap� isde�ned by �ap� = 8><>: 1 if a is a quadratic residue mod p0 if a � 0 (mod p)�1 otherwise:� Comment. For p an odd prime and a an integer, Euler's criterion is equivalent to�ap� � a(p�1)=2 (mod p).� Theorem 22. Let a and b be integers, and let p be a prime. Then the followinghold.(i) If a � b (mod p), then �ap� = � bp�.(ii) If a 6� 0 (mod p), then �a2p � = 1.



23(iii) �abp � = �ap�� bp�.(iv) If p is odd, then Pp�1a=1�ap� = 0.� Proof. The de�nition of the Legendre symbol immediately implies (i) and (ii).Euler's criterion implies (iii) (deal with p = 2 separately). Finally, (iv) follows from thefact that if p is odd, then there are (p � 1)=2 quadratic residues and (p � 1)=2 quadraticnonresidues in the sum (see the Corollary to Theorem 20).� Evaluating the Legendre symbol. One can evaluate the Legendre symbol directlyfrom the de�nition or with the aid of Euler's criterion. The latter done correctly is quitee�cient. Another method which works somewhat better (especially by hand) is to makeuse of the following three theorems.Theorem 23. For p an odd prime, ��1p � = � 1 if p � 1 (mod 4)�1 if p � �1 (mod 4):Theorem 24. For p an odd prime, �2p� = � 1 if p � �1 (mod 8)�1 if p � �3 (mod 8):Theorem 25. If p and q are odd primes, then�pq� = 8>><>>: �qp� if p � 1 (mod 4) or q � 1 (mod 4)��qp� if p � q � �1 (mod 4):� Comment. In some sense, only Theorem 25 is needed here as it can be shown thatTheorem 23 and Theorem 24 follow as a consequence of Theorem 25.� Theorem 23 is an immediate consequence of previous material. Euler's criterionimplies ��1p � = (�1)(p�1)=2 = � 1 if p � 1 (mod 4)�1 if p � �1 (mod 4):Theorem 23 is also equivalent to Theorem 16.� Examples. Show that ��1779 � = 1 using the above results. Hence, �17 is aquadratic residue modulo 79. Also, discuss whether x2 � x � 1 factors modulo 7 andmodulo 11. Describe the primes p for which x2 � x� 1 factors modulo p.� A further example. Here we show that there are no integers x and y satisfying theDiophantine equation(�) y2 = x3 + 11:Assume integers x and y exist satisfying (�). By considering (�) modulo 4, we deduce thatx � 1 (mod 4) (i.e., since 0 and 1 are the only squares modulo 4). Observe that (�) impliesy2 + 16 = x3 + 27 = (x+ 3)(x2 � 3x+ 9):



24Since x � 1 (mod 4), we deduce x2 � 3x + 9 � 3 (mod 4). This implies that there is aprime p � 3 (mod 4) dividing x2�3x+9 and, hence, y2+16. This implies �y�4�1�2 � �1(mod p). This contradicts Theorem 23. Hence, (�) has no integer solutions.Homework:(1) Calculate the Legendre symbols �3071� and ��56103 �.(2) Let p denote a prime. Prove that there is a solution to x2� 3x+3 � 0 (mod p) if andonly if p = 3 or p � 1 (mod 3).(3) Prove that for every prime p, there is an a 2 f1; 2; : : : ; 9g such that both a and a+ 1are squares modulo p.(4) Prove that there are no integers x and y such that y2 = x3 + 7.(5) (a) For every odd prime p, prove either ��1p � = 1, �2p� = 1, or ��2p � = 1.(b) Prove that x4 + 1 is reducible modulo p for every prime p.(6) Prove that for every positive integer N , there is an integer a such that a is not asquare modulo p for every odd prime p � N . (Hint: Use a major theorem from earlier inthis course.)(7) Note that 107 and (107 � 1)=2 = 53 are primes.(a) Calculate the Legendre symbol � 15107�.(b) The value of 1553 is either 1 or �1 modulo 107. Use Euler's criterion togetherwith part (a) to determine (with explanation) whether 1553 � 1 (mod 107) or 1553 � �1(mod 107).(c) Using part (b), explain why 15 is a primitive root modulo 107.Gauss' Lemma and the Proof of Theorem 24:� Theorem 26. Let p be an odd prime, and let a be an integer not divisible by p. Letn denote the number of integers in the set S = fa; 2a; 3a; : : : ; ((p � 1)=2)ag which have aremainder > p=2 when divided by p. Then�ap� = (�1)n:� Comment: Observe that Theorem 23 is a consequence of Theorem 26.� Before proving Theorem 26, we explain its connection to Theorem 24.Proof of Theorem 24 assuming Theorem 26. Here a = 2 and S = f2; 4; 6; : : : ; p�1g.If p � 1 (mod 4), then the elements of S which have a remainder > p=2 when divided byp are ((p� 1)=2) + 2k for k = 1; 2; : : : ; (p � 1)=4. Hence, n = (p� 1)=4 and we obtain�2p� = (�1)(p�1)=4 = � 1 if p � 1 (mod 8)�1 if p � �3 (mod 8):



25If p � 3 (mod 4), then the elements of S which have a remainder > p=2 when divided byp are ((p� 1)=2) + 2k � 1 for k = 1; 2; : : : ; (p + 1)=4. Thus, n = (p+ 1)=4 and we obtain�2p� = (�1)(p+1)=4 = � 1 if p � �1 (mod 8)�1 if p � 3 (mod 8):This completes the proof.� Proof of Theorem 26. Let a1; : : : ; an be the elements of S which have a remainder> p=2 when divided by p. Let b1; : : : ; bm be the remaining elements of S. Let a0j (for1 � j � n) and b0j (for 1 � j � m) be de�ned bya0j � aj (mod p); 0 � a0j < p; b0j � bj (mod p); and 0 � b0j < p:Let T = fp� a0j : 1 � j � ng [ fb0j : 1 � j � mg.We begin by showing that T = f1; 2; : : : ; (p� 1)=2g. Note that T � f1; 2; : : : ; (p� 1)=2gand that n + m = (p � 1)=2. Hence, it su�ces to show the n + m elments de�ning Tare distinct. If u and v are in f1; 2; : : : ; (p � 1)=2g and ua � va (mod p), then u � v(mod p). It follows that the n values of p � a0j are distinct and the m values of b0j aredistinct. Assume k 2 f1; 2; : : : ; ng and ` 2 f1; 2; : : : ;mg are such that p � a0k = b0̀ . Thenthere are u and v in f1; 2; : : : ; (p � 1)=2g such that p � ua � va (mod p). This implies(u+ v)a � 0 (mod p) which contradicts that p - a and 2 � u+ v � p� 1. We deduce thatT = f1; 2; : : : ; (p� 1)=2g.From T = f1; 2; : : : ; (p � 1)=2g, we obtain�p� 12 �! � (p� a01) � � � (p� a0n)b01 � � � b0m � (�1)na01 � � � a0nb01 � � � b0m� (�1)na(2a)(3a) � � ���p� 12 �a� � (�1)na(p�1)=2�p� 12 �! (mod p):Therefore, by Euler's criterion,�ap� � a(p�1)=2 � (�1)n (mod p);and Theorem 26 follows.The Quadratic Reciprocity Law:� Lemma. If p is an odd prime and a is an odd integer with p not dividing a, then�ap� = (�1)(p�1)=2Xk=1 [ka=p]where [ ] denotes the greatest integer function.



26 � Proof. We use the notation given in the proof of Theorem 26. For each k 2f1; 2; : : : ; (p � 1)=2g, we haveka = qkp+ tk with 1 � tk � p� 1;where if tk > p=2 then tk is some a0j and if tk < p=2 then tk is some b0j . Observe thatqk = [ka=p]. Thus,(�) (p�1)=2Xk=1 ka = (p�1)=2Xk=1 �kap �p+ nXj=1 a0j + mXj=1 b0j:Recall that fp � a0j : 1 � j � ng [ fb0j : 1 � j � mg = f1; 2; : : : ; (p� 1)=2g:Hence, (p�1)=2Xk=1 k = nXj=1(p� a0j) + mXj=1 b0j:Combining this with (�) gives(a+ 1) (p�1)=2Xk=1 k = (p�1)=2Xk=1 �kap �p+ pn+ 2 mXj=1 b0j:Since a and p are odd, we obtain (p�1)=2Xk=1 �kap � � n (mod 2). The result now follows fromTheorem 26.� Proof of Theorem 25. If p = q, then the result is clear. So suppose p 6= q. It su�cesto prove in this case that �pq��qp� = (�1)p� 12 �q � 12 :Consider the rectangle R in the xy-plane with vertices (0; 0), (p=2; 0), (p=2; q=2), and(0; q=2). The number of lattice points strictly inside R is p � 12 � q � 12 . We now countthese points in a di�erent way. LetD denote the diagonal joining (0; 0) to (p=2; q=2). Thus,D is a segment of the line py = qx. If (x0; y0) is a lattice point on this line, then pjx0.Therefore, (x0; y0) is not strictly inside R. It follows that the number of lattice pointsstrictly inside R is the number of such points below D plus the number of such points



27above D. The number of such lattice points below D is (p�1)=2Xk=1 �kqp �, and the number ofsuch lattice points above D is (q�1)=2Xk=1 �kpq �. We deduce that(p�1)=2Xk=1 �kqp �+ (q�1)=2Xk=1 �kpq � = p � 12 � q � 12 :The lemma now implies�pq��qp� = (�1)(p�1)=2Xk=1 �kqp �+ (q�1)=2Xk=1 �kpq � = (�1)p� 12 �q � 12 ;completing the proof.Homework:(1) Let !(n) denote the number of incongruent solutions to x2 � 1 (mod 2n). Observethat !(1) = 1, !(2) = 2, and !(3) = 4. Prove that !(n) = 4 for all n � 3. (Indicateclearly where you use that n � 3.)Sums of Two Squares:� Theorem 27. A positive integer n is a sum of two squares if and only if everyprime p � 3 (mod 4) satis�es pejjn for some even number e.� Proof. First, we show that if n is a sum of two squares and p2k+1jjn for some non-negative integer k, then either p = 2 or p � 1 (mod 4). Write n = p2k+1m for some integerm not divisible by p. Let a and b be such that n = a2 + b2. Let ` be the non-negativeinteger satisfying p`jja, and write a = p`a0 so that a0 2 Z and p - a0. If ` � k + 1, thenb2 = n� a2 = p2k+1m� p2`(a0)2 = p2k+1(m� p2`�2k�1(a0)2):This is impossible since p does not divide m � p2`�2k�1(a0)2 and p2k+1jb2 =) p2k+2jb2.Thus, ` � k and p2`jj(n� a2). In other words, b = p`b0 where b0 is an integer not divisibleby p. From n = a2 + b2 and p2k+1jn, we deduce (a0)2 + (b0)2 � 0 (mod p). Hence,(a0(b0)�1)2 � �1 (mod p). By Theorem 23, we conclude as desired that either p = 2 orp � 1 (mod 4).Now, suppose that every prime p � 3 (mod 4) satis�es pejjn for some even number e.Observe that 2 = 12 + 12 (i.e., 2 is a sum of two squares). We want to show that n is asum of two squares. It su�ces to show (i) if k and ` are both sums of two squares, then sois k`, (ii) if p � 3 (mod 4), then p2 is the sum of two squares, and (iii) if p � 1 (mod 4),then p is the sum of two squares. To prove (i), let a, b, a0, and b0 be integers such that



28k = a2 + b2 and ` = (a0)2 + (b0)2. Then k = (a+ bi)(a� bi) and ` = (a0 + b0i)(a0 � b0i) sothatk` = (a+ bi)(a0 + b0i)(a� bi)(a0 � b0i)= ((aa0 � bb0) + (ab0 + a0b)i)((aa0 � bb0)� (ab0 + a0b)i) = (aa0 � bb0)2 + (ab0 + a0b)2:To prove (ii), simply observe that p2 = 02 + p2 is the sum of two squares. We now turn toestablishing (iii). Since p � 1 (mod 4), there is an integer x0 such that x20 � �1 (mod p).Letm = [pp]+1 so thatpp < m < pp+1. In particular, m2 > p which impliesm2 � p+1.Let S1 = fk 2 Z : jkj � m� 1g. Since jS1j = 2m� 1 and 2m� 1+m(m� 2) = m2� 1 � p,we can �nd m� 2 sets S2; : : : ; Sm�1 satisfyingS1 [ S2 [ � � � [ Sm�1 = f�(m� 1);�(m � 2); : : : ;�1; 0; 1; : : : ; p �m� 1; p�mgwith each Sj consisting of � m consecutive integers and with every two Si and Sj with1 � i < j � m � 1 being disjoint. Observe that for every integer t there is a uniquej 2 f1; 2; : : : ;m� 1g such t is congruent modulo p to some element of Sj. Consider the mnumbers sx0 where 0 � s � m � 1. By the pigeonhole principal, some two of these, sayux0 and vx0, are congruent modulo p to elements in the same Sj . Fix such u, v, and j. Ifj = 1 and uv 6= 0, then reassign the value of u so that u = 0. It follows that (v � u)x0 iscongruent modulo p to some element in S1. Let k = jv � uj so that k 2 f1; 2; : : : ;m � 1gand kx0 is congruent modulo p to some element in S1. Let a � kx0 (mod p) with a 2 S1,and set b = k. Then a2 + b2 � k2(x20 + 1) � 0 (mod p):Also, ja2 + b2j � (m� 1)2 + (m� 1)2 < (pp)2 + (pp)2 = 2p:Since b = k � 1, we obtain a2 + b2 2 (0; 2p). Since a2 + b2 is divisible by p, we deducea2+ b2 = p. This completes the argument for (iii) and completes the proof of the theorem.Polynomial Congruences Modulo Composite Numbers:� Reduction to prime powers. We have dealt with solving quadratic polynomialsmodulo primes; we deal now with the general congruence f(x) � 0 (mod m) where f(x) 2Z[x] and m = pe11 � � � perr with the pj denoting distinct primes and the ej denoting positiveintegers. Given an integer x0, it is easy to see that f(x0) � 0 (mod m) if and only iff(x0) � 0 (mod pejj ) for every j 2 f1; 2; : : : ; rg. In other words, solving the congruencef(x) � 0 (mod m) is the same as solving the system of congruences f(x) � 0 (mod pejj )with j 2 f1; 2; : : : ; rg. We discuss an approach to solving f(x) � 0 (mod pe). Once thiscongruence can be solved, we can piece together the solution with di�erent prime powersby using the Chinese Remainder Theorem. The third example below illustrates how thisis done.� Solving congruences modulo prime powers. Let f(x) 2 Z[x], and let p be a prime. To�nd the roots of f(x) modulo a power of p, we �rst �nd the solutions to f(x) � 0 (mod p)



29and inductively increase the exponent of p in the modulus. For this purpose, supposethat e is an integer � 2, we know the solutions to the congruence f(x) � 0 (mod pe�1),and we want to know the solutions to f(x) � 0 (mod pe). We begin with an integer x0satisfying f(x0) � 0 (mod pe�1) and determine the integers u � x0 (mod pe�1) for whichf(u) � 0 (mod pe). All integers u satisfying f(u) � 0 (mod pe) can be obtained this wayas such u also satisfy f(u) � 0 (mod pe�1). Since u � x0 (mod pe�1), there is an integerk such that u = x0 + kpe�1. We may further suppose that k 2 f0; 1; : : : ; p � 1g sincef(u) � 0 (mod pe) holds if and only if f(u+ `pe) � 0 (mod pe) holds for every integer `.From Calculus, we can writef(x+ kpe�1) = f(x) + f 0(x)kpe�1 + f 00(x)2! (kpe�1)2 + � � � :Observe that there are a �nite number of terms on the right-hand side above and thatf (`)(x)=`! 2 Z[x] for every positive integer `. Note that e � 2 implies 2(e� 1) � e. Hence,(�) 0 � f(x0 + kpe�1) � f(x0) + f 0(x0)kpe�1 (mod pe):If f 0(x0) � 0 (mod p) and f(x0) � 0 (mod pe), then (�) is true for all integers k. Iff 0(x0) � 0 (mod p) and f(x0) 6� 0 (mod pe), then (�) is not true regardless of k. Iff 0(x0) 6� 0 (mod p), then f 0(x0) has an inverse modulo p. Also, f(x0) � 0 (mod pe�1) sope�1jf(x0). In this case, (�) has the unique solution k 2 f0; 1; : : : ; p � 1g given by(��) k � �f(x0)pe�1 f 0(x0)�1 (mod p):Summarizing, we have that for a given solution x0 of f(x) � 0 (mod pe�1), one of thefollowing occurs:(i) f 0(x0) � 0 (mod p) and f(x0) � 0 (mod pe) and there are p incongruent solutionsu modulo pe to f(x) � 0 (mod pe) with u � x0 (mod pe�1) and they are given by u =x0 + kpe�1 where k 2 f0; 1; : : : ; p� 1g,(ii) f 0(x0) � 0 (mod p) and f(x0) 6� 0 (mod pe) and there do not exist solutions u tof(x) � 0 (mod pe) with u � x0 (mod pe�1), or(iii) f 0(x0) 6� 0 (mod p) and there is exactly one solution u modulo pe to f(x) �0 (mod pe) with u � x0 (mod pe�1) and it is given by u = x0 + kpe�1 with k satisfying(��).� Two examples. Let f(x) = x2 + x+ 1 and p = 3. Then f(1) � 0 (mod 3). In fact,every integer satisfying f(x) � 0 (mod 3) is congruent to 1 modulo 3. Since f 0(x) = 2x+1,we deduce that f 0(1) � 0 (mod 3) and f(1) � 3 6� 0 (mod 32). By (ii), f(x) � 0 (mod 32)has no solutions and so neither does f(x) � 0 (mod 3e) for each e � 2.Now, suppose f(x) = x2 + 4x + 4 and p = 3. Note that modulo 3, f(x) is the samehere as in the previous problem. Again, all solutions to f(x) � 0 (mod 3) are 1 modulo 3.Also, f 0(1) � 0 (mod 3) and f(1) � 0 (mod 32). Thus, by (i), there are three incongruentsolutions to f(x) � 0 (mod 32) given by 1, 4, and 7. Observe that if x0 represents any oneof these three solutions, then f 0(x0) � f 0(1) � 0 (mod 3). Also, f(1) � 9 6� 0 (mod 33),



30f(4) � 36 6� 0 (mod 33), and f(7) � 81 � 0 (mod 33). By (i) and (ii), there exist exactlythree incongruent solutions to f(x) � 0 (mod 33) given by 7, 16, and 25. Observe thatsolving f(x) � 0 (mod 3e) is actually easy since f(x) = (x+ 2)2. If k is the least integergreater than or equal to e=2, then f(x) � 0 (mod 3e) if and only if x + 2 � 0 (mod 3k).It follows that f(x) � 0 (mod 3e) has exactly 3e�k solutions given by 3k` � 2 where` 2 f1; 2; : : : ; 3e�kg.� A third example. Here we calculate all incongruent solutions modulo 175 tox3 + 2x2 + 2x� 6 � 0 (mod 175):Since 175 = 52 � 7, we consider f(x) � 0 (mod 25) and f(x) � 0 (mod 7) where f(x) =x3 + 2x2 + 2x � 6. Since f(x) � (x � 3)(x2 + 2) (mod 5) and ��25 � = �1, the onlysolutions of f(x) � 0 (mod 5) are 3 modulo 5. Since f 0(3) � 41 � 1 6� 0 (mod 5) andf(3) = 45, we obtain from (iii) that the all solutions to f(x) � 0 (mod 25) are congruentto 3 + 5(�9) � 8 modulo 25. One checks directly that the incongruent solutions modulo7 to f(x) � 0 (mod 7) are 2, 4, and 6. It follows that there are exactly three incongruentsolutions modulo 175, say x1, x2, and x3, satisfyingx1 � 8 (mod 25); x2 � 8 (mod 25); x3 � 8 (mod 25)x1 � 2 (mod 7); x2 � 4 (mod 7); x3 � 6 (mod 7):By the proof of the Chinese Remainder Theorem,x1 � 8� 7� (�7) + 2� 25� 2 � �392 + 100 � �292 � 58 (mod 175);x2 � 8� 7� (�7) + 4� 25� 2 � x1 + 100 � 158 (mod 175); andx3 � 8� 7� (�7) + 6� 25� 2 � x2 + 100 � 83 (mod 175):Thus, f(x) � 0 (mod 175) has exactly three incongruent solutions modulo 175 given by58, 83, and 158.Homework:(1) Find all the incongruent solutions modulo 135 to x5 + x3 + 5x + 15 � 0 (mod 135).Do this in the method described above showing your work as in the third example.Tossing Coins Over The Phone:� Two people A and B agree over the phone to get together at either A's house orB's house, but each is too lazy to volunteer going over to the other's house. Since B isthinking rather quickly, he says, \I'll toss a coin and you call heads or tails. If you areright, I'll come over to your house. If you are wrong, you have to come over here." It sohappens that A is thinking even better, and she suggests the following fair way to toss acoin over the phone.



31Step 1: A forms a number n = pq where p and q are distinct large primes congruent to3 modulo 4. The primes are small enough that they can pass current primality tests andlarge enough so that n cannot be factored using current factoring methods. A tells B whatthe value of n is.Step 2: B chooses k 2 f1; 2; : : : ; n�1g, computes ` � k2 (mod n) with ` 2 f1; 2; : : : ; n�1g,and tells A what ` is. (We suppose that gcd(k; pq) = 1; since p and q are large, this is verylikely. In any case, the coin toss is not perfect because of this assumption.)Step 3: A tries to �gure out what k is. She knows ` � k2 (mod p) and ` � k2 (mod q).Note that p � 3 (mod 4) so that (p + 1)=4 2 Z. The value of �k modulo p can bedetermined by computing k1 � `(p+1)=4 (mod p). To see this, observe thatk21 � �`(p+1)=4�2 � `(p+1)=2 � `(p�1)=2` � kp�1` � ` (mod p):Note that Lagrange's Theorem implies the incongruent solutions of x2 � ` (mod p) areprecisely �k modulo p. Hence, k1 � �k (mod p). Also, A computes k2 � `(q+1)=4 (mod q)so that k2 � �k (mod q). Observe that the solutions modulo n of x2 � ` (mod n) aregiven by (i) x � k1 (mod p) and x � k2 (mod q)(ii) x � �k1 (mod p) and x � �k2 (mod q)(iii) x � k1 (mod p) and x � �k2 (mod q)(iv) x � �k1 (mod p) and x � k2 (mod q)A computes u 2 f1; 2; : : : ; n � 1g satisfying (i) and v 2 f1; 2; : : : ; n � 1g satisfying (iii).Then the solution to (ii) is x � �u (mod n) and the solution to (v) is x � �v (mod n).Note that v 6� �u (mod n) as u + v is not divisible by p and u � v is not divisible by q.Since k2 � ` (mod n), we deduce that either k � �u (mod n) or k � �v (mod n) butnot both. A selects one of u or v, say w, and tells B that she is guessing that k is one ofw and n� w.Step 4: B checks if k is one of w and n � w. If it is, then B admits it (so he has to goover to her place). If k is not one of w and n�w, then B tells A that she was incorrect. Inthis event the conversation continues as B must convince A that he is not lying. To provethat B is telling the truth, B tells A how n factors. B determines this as follows. Supposew = u (in the case that w = v, the factorization of n is determined in a similar way) sothat k � �v (mod n). From the de�nition of u and v, it follows that w + k is divisibleby exactly one of p and q. Hence, B can determine p or q by computing gcd(n;w + k).(Observe that B does not know which of the two numbers u and n � u given to him isw, but either one can be used since gcd(n; n � w + k) is also either p or q.) This easilyenables B to factor n. Thus, in the event that B claims that A's guess of w or n� w fork is incorrect, B veri�es that A is incorrect by giving A the factorization of n.



32De�nitions and Notations for Analytic Estimates:� Let f and g be real-valued functions with domain containing an interval [c;1) forsome real number c. We say that f(x) is big oh of g(x) and write f(x) = O(g(x)) if thereis a constant C > 0 such that jf(x)j � Cg(x) for all x su�ciently large. We say f(x) is lessthan less than g(x) and write f(x) � g(x) if f(x) = O(g(x)), and we say f(x) is greaterthan greater than g(x) and write f(x) � g(x) if g(x) = O(f(x)). We say the asymptoticorder of f(x) is g(x) and write f(x) � g(x) (or f(x)�� g(x)) if g(x)� f(x)� g(x). Wesay that f(x) is little oh of g(x) and write f(x) = o(g(x)) if limx!1 f(x)g(x) = 0. We say thatf(x) is aymptotic to g(x) and write f(x) � g(x) if limx!1 f(x)g(x) = 1. Analogous de�nitionsexist if the domain is in the set of positive integers.� Examples. Discuss each of the following:nXk=1 k � n2; nXk=1 k � n22 ; px+ 1�px� 1px; log�1 + 1x� = O(1=x):� Comment: The expression O(g(x)) in an equation represents a function f(x) =O(g(x)). To clarify, the last equation inXp�x �xp � =Xp�x xp +O�Xp�x 1� =Xp�x xp +O(x)does not assert that a function is O�Xp�x 1� if and only if it is O(x) but rather there is afunction f(x) that satis�es f(x) = O�Xp�x 1� and f(x) = O(x). Indeed, in the equationabove, the big oh expressions both represent the same function f(x) =Xp�x��xp�� xp�.� An estimate using integrals. Explain why Xk�x 1k � log x.Homework:(1) Let f : R+ ! R+ and g : R+ ! R+. Find all possible implications between thefollowing. In each case, give a proof or a counterexample.(a) f(x) � g(x)(b) f(x) = g(x) +O(1)(c) f(x)� g(x) � 1(d) f(x) = g(x) + o(g(x))(2) (a) Prove that Xk�x 1k � 1 + log x for all x � 1.



33(b) Prove that Xk�x 1k � log x.(c) Prove that Xk�x 1k = log x+O(1).(3) (a) How many positive integers � 210 are not divisible by each of the primes 2, 3, 5,and 7? For example, 11 would be such an integer but 39 would not be.(b) Let A(x) = jfn � x : each of 2; 3; 5; and 7 does not divide ngj. Prove that A(x) �cx for some constant c and determine the value of c.(4) Let a be a real number. Suppose f : [a;1) ! R has the property that for every t � a,there exists an M(t) such that jf(x)j � M(t) for all x 2 [a; t]. Suppose g : [a;1) ! R+has the property that for every t � a, there exists an "(t) > 0 such that g(x) � "(t) for allx 2 [a; t]. Finally, suppose that f(x) � g(x). Prove that there is a constant C > 0 suchthat jf(x)j � Cg(x) for all x � a.(5) Let f : R+ ! R and g : R+ ! R+ be Riemann integrable functions. Suppose thatf(t) = O(g(t)). Prove or disprove thatZ x1 f(t) dt = O�Z x1 g(t) dt�:Sums and Products Involving Primes:� Lemma. Yp�x�1� 1p� � 1log x for all x > 1.� Proof. The lemma follows fromYp�x�1� 1p��1 = Yp�x�1 + 1p + 1p2 + � � �� �Xk�x 1k � log x:� Comment: Observe that the lemma gives another proof that there are in�nitelymany primes.� Theorem 28. The series Xp prime 1p diverges. In fact, Xp�x 1p � log log x.� Proof. For x > 1, the lemma implies� logYp�x�1� 1p� � log log x:On the other hand,logYp�x�1� 1p� =Xp�x log�1� 1p� = �Xp�x�1p + 12p2 + 13p3 + � � ��� �Xp�x�1p + 1p2 + 1p3 + � � �� = �Xp�x 1p + C(x);



34where jC(x)j = �����Xp�x 1p(p� 1) ���� � 1Xn=2 1n(n� 1) = 1:Hence, Xp�x 1p � � logYp�x�1� 1p�� 1 � log log x� 1� log log x:� Comment: The sum of the reciprocals of every prime ever written down is < 4.� Theorem 29. Xp�x log pp � log x.� Proof. Observe that Xn�x log n � x log x since the sum consists of [x] terms each� log x. Therefore,x log x �Xn�x log n �Xn�xXpjn log p =Xp�xXn�xpjn log p =Xp�x �xp � log p= x�Xp�x log pp �+O�Xp�x log p� = x�Xp�x log pp �+O�x log x�:The result follows.� Theorem 30. Yp�x�1� 1p��� 1log x .� Proof. The lemma implies the � part of the asymptotic relation. We begin in amanner similar to the proof of the lemma. We use thatYp�x�1� 1p��1 = Yp�x�1 + 1p + 1p2 + � � �� �Xk�y 1k + S;where y is an arbitrary number > 1 and whereS = Xk>yqjk =) q�x 1k � Xk>yqjk =) q�x log kk log y= 1log y Xk>yqjk =) q�x 1k Xpejk log p = 1log yXp�x log pXe�1 Xk>y;pejkqjk =) q�x 1k� 1log y Xp�xXe�1 log ppe Xk�1qjk =) q�x 1k = 1log y Xp�xXe�1 log ppe Yq�x�1� 1q��1:



35By Theorem 29, there is a constant c > 0 such thatXp�xXe�1 log ppe =Xp�x log pp� 1 � 2Xp�x log pp � c log x:Setting P = Yp�x�1� 1p��1 and using the previous homework problem (2)(a), we deducethat P � 1 + log y + c(log x)Plog y =) �1� c log xlog y �P � 1 + log y:Taking y = x4c, we obtain (3=4)P � 1 + 4c log x from which P � log x follows. Thisimplies the � part of the asymptotic relation in the statement of the theorem.� Theorem 31. Xp�x 1p = log log x+O(1).� Proof. From the proof of Theorem 28,logYp�x�1� 1p� = �Xp�x 1p +C(x) where jC(x)j � 1:By Theorem 30, there exist constants c1 > 0 and c2 > 0 (and we may in fact take c2 = 1)such that c1log x < Yp�x�1� 1p� < c2log xprovided x is su�ciently large (but note that problem (3) in the previous homework impliesx � 2 will do). Hence, for x su�ciently large, it follows thatlogYp�x�1� 1p� = � log log x+O(1):We deduce then thatXp�x 1p = � logYp�x�1� 1p�+ C(x) = log log x+O(1):Homework:(1) (a) Prove that (log x)k = o(x") for every " > 0 and every k > 0.(b) Part (a) implies that log x to any power grows slower than x" for every " > 0. Finda function which grows slower than x" for every " > 0 and also grows faster than log x toany power. In other words, �nd an explicit function f(x) such that f(x) = o(x") for every



36" > 0 and (log x)k = o(f(x)) for every k > 0. Justify your answer. (Hint: Try f(x) = eu(x)for some appropriate u(x).)(c) Prove that (log log x)k = o((log x)") for every " > 0 and every k > 0.(d) Find with proof a function f : R+ ! R+ such that x log x = o(f(x)) and 1Xn=1 1f(n)diverges.(2) Let pn denote the nth prime. It is known that pn � cn logn for some constant c.Using this information and Theorem 31, prove that c = 1.The Number of Prime Divisors of n:� Notation. The number of distinct prime divisors of n is denoted by !(n).� De�nition. Let f : Z+ ! R+ and g : Z+ ! R+. Then f(n) is said to have normalorder g(n) if for every " > 0, the number of positive integers n � x satisfying(1� ")g(n) < f(n) < (1 + ")g(n)is asymptotic to x (i.e., for almost all positive integers n, f(n) 2 ((1�")g(n); (1+")g(n))).� Theorem 32. !(n) has normal order log logn.� Lemma. Xn�x �!(n)� log log x�2 � x log log x.� Proof. We examine each term on the right-hand side of the equationXn�x �!(n)� log log x�2 =Xn�x!(n)2 � 2�Xn�x!(n)� log log x+Xn�x(log log x)2:For the third term, we easily obtainXn�x(log log x)2 = x(log log x)2 +O((log log x)2):For the second term, we use thatXn�x!(n) =Xn�xXpjn 1 =Xp�x Xn�xn�0 (mod p) 1 =Xp�x �xp �=Xp�x xp +O(x) = x(log log x+O(1)) +O(x) = x log log x+O(x):For the �rst term, we take advantage of the estimate we just made to obtainXn�x!(n)2 =Xn�x�Xpjn 1�2 =Xn�xXpjn Xqjn 1=Xn�xXp6=qpqjn 1 +Xn�xXpjn 1 = Xn�xXp6=qpqjn 1 + x log log x+O(x):



37We proceed by observing thatXn�xXp6=qpqjn 1 = Xp6=qpq�xXn�xpqjn 1 = Xp6=qpq�x � xpq� = Xp6=qpq�x xpq +O(x) = Xpq�x xpq � Xp�px xp2 +O(x):Theorem 31 imlies that each of the sums Xp�px(1=p) andXp�x(1=p) is log log x+O(1) so that(log log x)2+O(log log x) = � Xp�px 1p�2� Xpq�x 1pq � �Xp�x 1p�2= (log log x)2+O(log log x):Also, Xp�px(1=p2) = O(1) since Xp (1=p2) converges (by comparison with 1Xn=1(1=n2)). Wededuce that Xn�x!(n)2 = x(log log x)2 +O(x log log x):Combining the above information, we obtainXn�x �!(n)� log log x�2 = O(x(log log x)):� Proof of Theorem 32. Assume !(n) does not have normal order log log n. Thenthere exist " > 0 and � > 0 such that there are arbitrarily large values of x for which thenumber of positive integers n � x satisfying(�) j!(n) � log log nj � " log log nis > �x. If x1=e < n � x, thenlog log x � log log n > log log(x1=e) = log log x� 1:If, in addition, n satis�es (�), thenj!(n)� log log xj > j!(n) � log log nj � 1 � " log log n� 1 > " log log x� (1 + "):We consider x satisfying (�) for > �x positive integers n � x with x su�ciently large sothat "2 log log x > 1 + " and x1=e < �2x:In particular, " log log x� (1 + ") > "2 log log x:



38We deduce that there are > �x� x1=e > (�=2)x positive integers n 2 (x1=e; x] for whichj!(n) � log log xj > "2 log log x:Hence, Xn�x �!(n)� log log x�2 � �2x�"2 log log x�2 � �"28 x(log log x)2:Observe that we can �nd x arbitrarily large satisfying this inequality. We obtain a contra-diction to the lemma since it implies that there is a constant C > 0 for whichXn�x �!(n)� log log x�2 � Cx log log xfor all x su�ciently large.Homework:(1) Prove that for every " > 0, there is a constant C(") > 0 such that the number ofpositive integers n � x for which(1� ") log log n < !(n) < (1 + ") log log ndoes not hold is � C(")x= log log x for all x su�ciently large.(2) Let f : Z+! R+; and suppose that f(n) has normal order log log n. Prove or disprovethat the average value of f(n) for n � x is asymptotic to log log x. More speci�cally, proveor disprove that 1x Xn�x f(n) � log log x:(Comment: In the proof of the lemma in this section, we showed a result that is evenstronger than this in the case that f(n) = !(n).)Chebyshev's Theorem:� Background. Let �(x) denote the number of primes � x. Chebyshev's Theoremasserts that for all x su�ciently large0:92� xlog x� < �(x) < 1:11� xlog x�:He used his result to give the �rst proof of Bertrand's Hypothesis that for every x � 1there is a prime in the interval (x; 2x]. More speci�cally, the above implies that there isan x0 such that if x � x0, then�(2x)� �(x) > 0:92� 2xlog(2x)�� 1:11� xlog x� > 0:



39Combining such an estimate with knowledge of a speci�c x0 and computations verifyingBertrand's Hypothesis for x < x0, a proof of Bertrand's Hypothesis follows. Similar workby others has been obtained. In particular, Ramanujan gave an argument for Bertrand'sHypothesis and noted that there are at least 5 primes in (x; 2x] for x � 20:5. Our nexttheorem is a variation of Chebyshev's Theorem. The proof below is due to Erd}os.� Theorem 33. If n is a su�ciently large positive integer, then16� nlog n� < �(n) < 3� nlog n�:� Proof. Let m be a positive integer. We begin with the inequalities2m � �2mm � < 4m:The �rst of these inequalities follows from noting that one can choose m objects from acollection of 2m objects by �rst randomly deciding whether each of the �rst m objects isto be included in the choice or not. The second inequality follows from4m = (1 + 1)2m = 2mXj=0�2mj � > �2mm �:From the above inequalities, we deduce that(�) m log 2 � log((2m)!)� 2 log(m!) < m log 4:We use that if p is a prime and prjjk!, then r = [k=p] + [k=p2] + � � � . Therefore,(��) log((2m)!)� 2 log(m!) =Xp 1Xj=1��2mpj �� 2�mpj �� log p:It is easy to verify that [2x] � 2[x] 2 f0; 1g for every real number x. Hence, (�) and (��)imply m log 2 � Xp�2m� X1�j�log(2m)= log p 1� log p � Xp�2m log(2m) = �(2m) log(2m):Thus, if n = 2m, then �(n) � log 22 � nlog n� > 14� nlog n�:Also, if n = 2m+ 1, then�(n) � �(2m) > 14� 2mlog(2m)� � 14� 2m2m+ 1� 2m + 1log(2m+ 1) � 16� nlog n�:



40This establishes the lower bound in the theorem (for all positive integers n).For the upper bound, we use that if m < p � 2m, then [2m=p]� 2[m=p] = 1. Thus, (�)and (��) implym log 4 � Xm<p�2m��2mp �� 2�mp �� log p� Xm<p�2m log p � Xm<p�2m logm = ��(2m)� �(m)� logm:Hence, �(2m)� �(m) � (log 4) mlogm:We consider positive integers r and s satisfying 2r � n < 2r+1 and 2s � n19=20 < 2s+1.Observe that s tends to in�nity with n. Taking m = 2j above, we deduce�(2j+1)� �(2j) � (log 4) 2jlog(2j) � (log 4) 2jlog(2s) for j 2 fs; s+ 1; : : : ; rg:Summing over j, we obtain�(n)���n19=20� � ��2r+1� � ��2s� � log 4log(2s)�2s + 2s+1 + � � � + 2r�� (log 4)2r+1log(2s) � 2(log 4)ns log 2 = 2(log 4)n�s+ 1s � 1(s+ 1) log 2� 2(log 4)n�s+ 1s � 1log �n19=20� = 40 log 419 �s+ 1s � nlog n < 2:92�s+ 1s � nlog n:For n and, hence, s su�ciently large, we deduce�(n) < 2:95 nlog n + ��n19=20� � 2:95 nlog n + n19=20 = �2:95 + log nn1=20� nlog n < 3� nlog n�;completing the proof.The Prime Number Theorem and Its Generalizations:� The Prime Number Theorem asserts that �(x) � x= log x. Observe that this isstronger than Chebyshev's theorem. In this section, we mention some theorems withoutproving them. The �rst two are variations of the Prime Number Theorem.� Theorem 34. �(x) = xlog x +O� xlog2 x�.� De�nition and Notation. We de�ne the logarithmic integral of x by Li(x) = Z x2 dtlog t .This varies slightly (by a constant) from historic de�nitions of the logarithmic integral, butthe results below will not be a�ected by this change.



41� Theorem 35. For every k > 0, we have �(x) = Li(x) + O� xlogk x� where theimplied constant depends on k.� Theorem 35 implies Theorem 34 and more. Using integration by parts and theestimate(�) Z x2 dtlog4 t � xlog4 x;explain why Theorem 35 implies�(x) = xlog x + xlog2 x + 2xlog3 x +O� xlog4 x� :� Dirichlet's Theorem asserts that if a and b are positive relatively prime integers,then there are in�nitely many primes of the form a+ bn. Set�(x; b; a) = jfp � x : p � a (mod b)gj:Then a strong variation of Dirichlet's Theorem is the following.Theorem 36. If a and b are positive relatively prime integers and k > 0, then�(x; b; a) = 1�(b)Li(x) +O� xlogk x�where the implied constant depends only on k and b.Homework:(1) Prove (�).(2) There is a constant A such that �����(x)� x(log x) +A ����� xlog3 x . Determine with proofthe value of A.(3) (a) Let � and � be positive real numbers. Prove that X�<n�� 1n = log(�=�) +O(1=�).(b) Let S = fm1;m2; : : : g where m1;m2; : : : are integers satisfying 0 < m1 < m2 < � � � .De�ne S(x) = jfm � x : m 2 Sgj (so S(x) is the number of elements in S which are � x).Suppose that 1Xj=1 1mj converges. Prove that almost all integers are not in S. In otherwords, show that limx!1 S(x)x = 0:(c) Use Theorem 33 to show that Xx<p�20x 1p � 1log x . (Alternatively, one can useTheorem 31, but Theorem 33 is simpler.)



42 (d) Let T = fp1; p2; : : : g where p1; p2; : : : are primes satisfying p1 < p2 < � � � . De�neT (x) = jfp � x : p 2 Tgj. Suppose that 1Xj=1 1pj converges. Is it necessarily true thatlimx!1 T (x)�(x) = 0(i.e., that almost all primes are not in T )?Riemann-Stieltjes Integrals:� De�nitions and Notations. Suppose f : [a; b] 7! R. Let P = fx0; x1; : : : ; xng denote apartition of [a; b] with a = x0 < x1 < � � � < xn�1 < xn = b. LetM(P) = max1�k�nfxk�xk�1g.Let tk 2 [xk�1; xk] for k 2 f1; 2; : : : ; ng. ConsiderS(P; f; ftkg) = nXk=1 f(tk)(xk � xk�1):If S(P; f; ftkg) tends to a limit A (independent of the tk) as M(P) tends to zero, then wewrite Z ba f(x) dx = Aand say that the Riemann integral of f(x) on [a; b] exists and equals A. Let g : [a; b] 7! R.With the notations above, we setS(P; f; g; ftkg) = nXk=1 f(tk)�g(xk)� g(xk�1)�:If S(P; f; g; ftkg) tends to a limit A (independent of the tk) as M(P) tends to zero, thenwe write Z ba f(x) dg(x) = Aand say that the Riemann-Stieltjes integral of f(x) with respect to g(x) on [a; b] exists andequals A.� Comments: The properties of Riemann integrals and Riemann-Stieltjes integralsare very similar. Note in fact that if g(x) = x, then the de�nitions coincide. If g(x) isdi�erentiable on [a; b], then one can showZ ba f(x) dg(x) = Z ba f(x)g0(x) dx:We will mainly be interested in the case when g(x) is a step function.



43� Example: Z x1 1t d[t] = [x]Xn=2 1n .� We will make use of an integration by parts formula for Riemann-Stieltjes integrals.For a proof of this and other properties of Riemann-Stieltjes integrals (de�ned somewhatdi�erently), see the instructor's notes at:http://www.math.sc.edu/~filaseta/courses/Math555/Math555.htmlLemma: If Z ba g(x) df(x) exists, then so does Z ba f(x) dg(x) andZ ba f(x) dg(x) = f(x)g(x)��ba � Z ba g(x) df(x) = f(b)g(b)� f(a)g(a)� Z ba g(x) df(x):� Example: We apply integration by parts to the integral in the previous example.We obtainZ x1 1t d[t] = [x]x � [1]1 � Z x1 [t] d(1=t) = Z x1 [t]t2 dt+O(1=x)= Z x1 1t dt� Z x1 t� [t]t2 dt+O(1=x) = log x� Z x1 ftgt2 dt+O(1=x):Observe that Z x1 ftgt2 dt � Z x1 1t2 dt = 1� 1x . It follows that Z 11 ftgt2 dt exists. Also,Z 1x ftgt2 dt � Z 1x 1t2 dt = 1x:Combining the above, we deduceZ x1 1t d[t] = log x� Z 11 1t2 dt+ Z 1x 1t2 dt+O(1=x) = log x� Z 11 1t2 dt+O(1=x):From the previous example, we obtainXn�x 1n = log x+  +O(1=x) where  = 1� Z 11 1t2 dt = 0:5772157 : : : :More precisely, the analysis above givesXn�x 1n = log x+  +E(x) where E(x) = �fxgx + Z 1x ftgt2 dt:Recall that this last integral is � 1=x so that we can deduce jE(x)j � 1=x. Thus, for exam-ple, Xn�106 1=n can be computed to within 10�6 by considering log �106�+ = 14:392726 : : : .



44 � Comment: The constant  is called Euler's constant. It is unknown whether ornot  is irrational.Sums and Products of Primes Revisited:� We combine the lemma from the previous section with the Prime Number Theoremto arrive at improvements to some earlier results.Theorem 37: There exist constants C1, C2, and C3 such that(i) Xp�x 1p = log log x+ C1 +O� 1log x�,(ii) Xp�x log pp = log x+C2 +O� 1log x�, and(iii) Yp�x�1� 1p� � C3log x .� Proof of parts (i) and (iii): For (i), we use integration by parts and Chebyshev'sTheorem to obtainXp�x 1p = Z x1 1t d�(t) = �(x)x + Z x1 �(t)t2 dt = O� 1log x�+ Z x2 1t log t dt+C1(x)where C1(x) = Z x2 1t2��(t)� tlog t� dt:By a previous homework problem and Theorem 34,Z x2 1t2 �����(t)� tlog t ���� dt� Z x2 1t log2 t dt� 1:It follows that Z 12 1t2��(t)� tlog t� dt = limx!1C1(x)exists. Also, observe thatZ 1x 1t2 �����(t)� tlog t ���� dt� Z 1x 1t log2 t dt� 1log x:Hence, C1(x) = Z 12 1t2��(t)� tlog t� dt� Z 1x 1t2��(t)� tlog t�dt= Z 12 1t2��(t)� tlog t� dt+O� 1log x�:



45Since Z x2 1t log t dt = log log x� log log 2;we obtain (i) with C1 = Z 12 1t2��(t)� tlog t� dt� log log 2:For (iii), we argue along the lines of the proofs of Theorem 28 and 31. Note thatlogYp�x�1� 1p� =Xp�x log�1� 1p� = �Xp�x 1Xk=1 1kpk = �Xp�x 1p � C3(x);where C3(x) =Xp�x 1Xk=2 1kpk �Xp�x 1Xk=2 1pk =Xp�x 1p(p� 1) � X2�n�x 1n(n� 1) � 1:We deduce that limx!1C3(x) exists. Also,Xp>x 1Xk=2 1kpk �Xn>x 1n(n� 1) = 1[x] � 1 � 1x:It follows that C3(x) =Xp 1Xk=2 1kpk �Xp>x 1Xk=2 1kpk =Xp 1Xk=2 1kpk +O� 1x�:We deduce from (i) thatlogYp�x�1� 1p� = � log log x�C1�Xp 1Xk=2 1kpk +O� 1log x� = � log log x�C+O� 1log x�where C = C1 +Xp 1Xk=2 1kpk . We obtainYp�x�1� 1p� = e�C+O(1= log x)log x � C3log xwhere C3 = e�C .� Comments: The proof of (ii) is omitted (but note the related problem in the nexthomework). The constants in Theorem 37 areC1 = 0:261497212847643 : : : ; C2 = �1:33258 : : : ; and C3 = 0:561459 : : : :



46Also, the number C in the argument above can be shown to be Euler's constant. Ignoringthe big-oh term in (i), it is not hard to see that if one could print a million primes persecond, then it would take over 1000 years to print enough primes (assumed distinct) tomake the sum of their reciprocals exceed 4. A more rigorous estimate is possible (wherethe error term is not ignored).Homework:For the problems below, you are to make use of Theorems 34, 35, and 36 as well asRiemann-Stieltjes integrals.(1) Prove that Xp�x log pp = log x+O(1).(2) Prove that Xp�x log p = x+O� xlog x� :(3) Let a and b be positive integers with gcd(a; b) = 1: Prove thatXp�xp�a (mod b) 1p � 1�(b) log log x:(4) Let pn denote the nth prime. Prove that pn � n log n:(5) Prove that there are in�nitely many primes which begin and end with the digit 9.More speci�cally, show that there are in�nitely many primes which can be written in theform rXk=0 dk10k where dr = d0 = 9 and dk 2 f0; 1; 2; : : : ; 9g for each k.Integers With Large Prime Factors:� De�nitions. Let P (x) denote the number of positive integers � x having a propertyP . Then we say that a positive proportion of the positive integers satis�es P if there isa constant C > 0 such that P (x) > Cx for all su�ciently large x. If there is a constantC � 0 for which P (x) � Cx, then we say the proportion of positive integers satisfying Pis C. If this proportion is 1, then we say that almost all positive integers satisfy P .� Examples. Almost all positive integers are composite. It follows as a consequenceof our next result that the proportion of positive integers n having a prime factor > pn islog 2.� Theorem 38. The number of positive integers n � x having a prime factor > pnis (log 2)x+O� xlog x�.



47� Proof. The desired quantity isXn�x Xpn<p�npjn 1 =Xp�x Xn�x;n<p2pjn 1 = Xp�px Xn<p2pjn 1� Xpx<p�xXn�xpjn 1= Xp�px(p� 1)� Xpx<p�x �xp � = O�px�(px)�+ Xpx<p�x xp +O(�(x)):Chebyshev's Theorem implies that the error terms (the big-oh terms) are both O(x= log x).Theorem 37 (i) impliesXpx<p�x 1p = log log x� log logpx+O� 1log x� = log 2 +O� 1log x�:The theorem follows.The Sieve of Eratosthenes:� We begin by illustrating the approach with an easy consequence of Theorem 33. Itshould be noted that some similarities exist with the argument below and the sieve proofgiven for Theorem 15.� Theorem 39. �(x) = o(x).� Proof. The number of positive integers � x divisible by a product of primesp1p2 : : : pr is [x=(p1p2 : : : pr)]. The inclusion-exclusion principal implies that the numberof positive integers n � x with each prime factor of n being greater than z is[x] �Xp�z�xp �+ Xp1<p2�z � xp1p2 �� Xp1<p2<p3�z � xp1p2p3 �+ � � �= x�Xp�z xp + Xp1<p2�z xp1p2 � � � � +O�1 +Xp�z 1 + Xp1<p2�z 1 + � � ��= xYp�z�1� 1p�+O���(z)0 �+��(z)1 �+ ��(z)2 �+ � � ��:The big-oh term is � 2�(z) � 2z . We take z = log x and use Theorem 37 (iii) to deducethat xYp�z�1� 1p�� xlog log x:Also, this choice of z gives 2z = xlog 2. We obtain that the number of positive integersn � x with each prime factor of n being greater than log x is o(x). This accounts for allthe primes � x except those which are � log x. There are clearly o(x) such primes andthe result follows.



48 � A closer look at the argument. We estimated �(x) using the inequality�(x) � z +A(z; x) where A(z; x) = jfn � x : pjn =) p > zgj(so that A(z; x) denotes the number of positive integers � x having each of its primedivisors > z). We used thatA(z; x) = [x]�Xp�z �xp �+ Xp1<p2�z � xp1p2 �� Xp1<p2<p3�z � xp1p2p3 �+ � � � :This last identity can be justi�ed as follows. For n a positive integer, de�ne�(n) = 1�Xp�zpjn 1 + Xp1<p2�zp1p2jn 1� Xp1<p2<p3�zp1p2p3jn 1 + � � � :Write n in the form n = qe11 qe22 � � � qerr m where r is a non-negative integer, q1; : : : ; qr aredistinct primes � z, m; e1; : : : ; er are positive integers, and every prime divisor of m is > z.If r = 0, then clearly �(n) = 1. If r > 0, then�(n) = 1� �r1�+ �r2�� � � � � �rr� = (1� 1)r = 0:Thus, we deduce that�(n) = � 1 if every prime divisor of n is > z0 otherwise:Hence, A(z; x) =Xn�x�(n) =Xn�x�1�Xp�zpjn 1 + Xp1<p2�zp1p2jn 1� � � ��=Xn�x 1�Xp�zXn�xpjn 1 + Xp1<p2�z Xn�xp1p2jn 1� � � �= [x]�Xp�z �xp �+ Xp1<p2�z � xp1p2 �� Xp1<p2<p3�z � xp1p2p3 �+ � � � :We will modify our choice for �(n) slightly for other applications. The basic approach weused to estimate A(z; x) is called the sieve of Eratosthenes. We give two more examples.� Theorem 40. The number of squarefree numbers � x is asymptotic to (6=�2)x.� Proof. We make use of the identity(�) Yp �1� 1p2� = 6�2 :



49One can obtain (�) fromYp �1� 1p2��1 =Yp �1 + 1p2 + 1p4 + � � �� = 1Xn=1 1n2 = �26 :Denote by A1(z; x) the number of n � x that are not divisible by p2 for every p � z. LetA2(z; x) denote the number of such n that are not squarefree. In other words,A1(z; x) = jfn � x : p2jn =) p > zgjand A2(z; x) = jfn � x : p2jn =) p > z;9p such that p2jngj:By the sieve of Eratosthenes,A1(z; x) = Xn�x�1�Xp�zp2jn 1 + Xp1<p2�zp21p22jn 1� � � ��= [x]�Xp�z � xp2 �+ Xp1<p2�z � xp21p22 �� � � � = xYp�z�1� 1p2�+O�2�(z)�:Taking z = log x, we obtainA1(z; x) = x Yp�log x�1� 1p2�+O�2log x� = x Yp�log x�1� 1p2�+ o�x�:Thus, A1(z; x) � (6=�2)x (with z = log x). Since the number of squarefree numbers � xis A1(z; x)�A2(z; x), it su�ces to show A2(z; x) = o(x). We use thatA2(z; x) �Xn�xXp>zp2jn 1 =Xp>zXn�xp2jn 1 =Xp>z � xp2 � � x�Xp>z 1p2�:The series Xp 1p2 converges by comparison with 1Xn=1 1n2 . Since z = log x and Xp>z 1p2is the tail end of a convergent series, we deduce that Xp>z 1p2 = o(1). It follows thatA2(z; x) = o(x), completing the proof.� Comment: Let �(k) = 1Xk=1 1nk . An argument similar to the above shows that forevery integer k > 1, the number of k-free numbers � x is asymptotic to x=�(k).� Theorem 41. Let T be a set of positive integers with the property that for every oddprime p, every su�ciently large multiple of p is in T . In other words, T is such that if p is



50an odd prime, then there is a k0(p) for which kp 2 T for every positive integer k � k0(p).De�ne T (x) as the number of elements of T that are � x. Then T (x) � x.� Comments. It will follow from the proof that the existence of k0(p) only needsto hold for a set of primes P having the property that Xp2P(1=p) diverges. Theorem 41 isconnected to Fermat's Last Theorem. Explain this connection.� Proof. Fix " > 0. It su�ces to show that there is an x0(") such that if x � x0("),then 1� " � T (x)x � 1:The upper bound is obvious. For z > 0, de�ne K = K(z) = maxfk0(p) : 2 < p � zg. Thenfor each prime p � z and each integer k � K, we have kp 2 T . Let S = fn 2 Z+ : n 62 Tg,and de�ne S(x) = jfn � x : n 2 Sgj. Thus,S(x) = [x] � T (x):For each z > 0 and each odd prime p � z, there are � K = K(z) multiples of p in S. Theremaining elements of S are not multiples of any odd prime p � z. In other words, theremaining elements of S have all their odd prime factors > z. Thus,S(x) �Xp�zK +A(z; x) where A(z; x) = jfn � x : pjn =) p = 2 or p > zgj:Now,A(z; x) = Xn�x�1� X2<p�zpjn 1 + X2<p1<p2�zp1p2jn 1� � � �� = [x]� X2<p�z �xp �+ X2<p1<p2�z � xp1p2 �� � � �= x Y2<p�z�1� 1p�+O�2�(z)� = 2xYp�z�1� 1p�+O�2z�:Taking z = e4=" and using the lemma to Theorem 28, we deduce thatS(x) � K�(z) +A(z; x) � Kz + 2xlog z +O�2z� � Ke4=" + "2x+O�2e4="� = "2x+O(1)where the implied constant depends on " and K (but note that K only depends on "). Forx su�ciently large, we obtain S(x) � "x� 1 so thatT (x) = [x] � S(x) � x� 1� ("x� 1) = (1� ")x:This completes the proof.



51Homework:(1) (a) Let P be a set of primes for which Xp2P(1=p) diverges. Explain why Xp2P log�1� 1p�diverges.(b) Given the set P in (a), explain why limz!1 Yp�z;p2P�1� 1p� = 0.(c) Justify the �rst comment made after the statement of Theorem 41.(2) (a) For z > 1, de�ne�(n) = 1� Xp�zp�3 (mod 4)pjn 1 + Xp1<p2�zp1�p2�3 (mod 4)p1p2jn 1� Xp1<p2<p3�zp1�p2�p3�3 (mod 4)p1p2p3jn 1 + � � � :Prove that �(n) = 1 if x2+1 � 0 (mod n) has a solution and that �(n) � 0 for all positiveintegers n.(b) Use a sieve argument to show that for almost all positive integers n, x2 + 1 � 0(mod n) does not have a solution. In other words, show that the number of n � x forwhich x2 + 1 � 0 (mod n) has a solution is o(x).The Pure Brun Sieve:� The idea. The sieve of Eratosthenes was based on estimating Xn�x�(n) where �(n)is something like (depending on the application)�(n) = 1�Xp�zpjn 1 + Xp1<p2�zp1p2jn 1� Xp1<p2<p3�zp1p2p3jn 1 + � � � :One major goal of sieve methods is to take z as large as possible without causing theerror terms that arise to exceed what one expects the main term to be. In the sieve ofEratosthenes, we took z = log x which caused the error term O�2z� not to be too large.The choice of �(n) above has the property that�(n) = � 1 if every prime divisor of n is > z0 otherwiseso that jfn � x : pjn =) p > zgj =Pn�x �(n). We �x a positive integer k and de�ne anew quantity �0(n) = 1�Xp�zpjn 1 + Xp1<p2�zp1p2jn 1� � � � + Xp1<p2<���<p2k�zp1p2���p2kjn 1:We will show that(�) jfn � x : pjn =) p > zgj �Xn�x�0(n):



52The advantage of using �0(n) over �(n) can be seen as follows. Recall that in using�(n), we were led to considering sums of expressions of the form [x=(p1p2 � � � pr)] wherethe pj denoted primes satisfying p1 < p2 < � � � < pr � z. In that approach, we thenreplaced this expression with x=(p1p2 � � � pr) +O(1). We can see immediately that this istoo wasteful if r (and, hence, z) is large. For example, if z = (log x)2 and r = �(z) arelarge, then p1p2 � � � pr = Yp�z p � ez=2 = x(log x)=2 is so large that [x=(p1p2 � � � pr)] = 0 and[x=(p1p2 � � � pr)] is very close to the value of x=(p1p2 � � � pr). Our method used an error ofO(1) when in fact the true error was much smaller. By limiting the number of primes oneconsiders as in the de�nition of �0(n), one can better control the lost made by omittingthe greatest integer function. This in turn allows us to choose z larger than before. Inparticular, in the application we describe shortly, we will take z = x1=(24 log log x).� Comments: A lower bound similar to the upper bound given in (�) can be ob-tained by considering 2k + 1 instead of 2k primes in the de�nition of �0(n). Further sievemethods, due independently to Brun and Selberg, allow one to take z even larger thanthat mentioned above. Typically, one can z = xc where c is a positive constant dependingon the application.� A property of �0(n). We show that �0(n) = 1 if every prime divisor of n is > zand that �0(n) � 0 for all n. Observe that (�) follows as a consequence. The �rst part isobvious for if every prime factor of n is > z, then all the sums in the de�nition of �0(n) areempty and only the term 1 is non-zero in this de�nition. Now, suppose n = qe11 qe22 � � � qerr mwhere the qj are distinct primes � z, each of r; e1; : : : ; er are positive integers, and everyprime factor of m is > z. It follows that(��) �0(n) = 1��r1�+ �r2�� � � � +� r2k�;where we interpret �ab� as 0 is b > a. To show that �0(n) � 0, consider three cases: (i)r � 2k, (ii) 2k < r � 4k, and (iii) r > 4k. Case (i) is dealt with by using (1� 1)r = 0 toshow �0(n) = 0. For Case (ii), use (1� 1)r = 0 to obtain�0(n) = � r2k + 1�� � r2k + 2�+ � � � � �rr�� �� r2k + 1�� � r2k + 2��+ �� r2k + 3��� r2k + 4��+ � � � � 0:For Case (iii), use (��) directly to show that �0(n) � 1 (by again grouping the binomialcoe�cients in pairs).� An estimate concerning twin primes. A twin prime is a prime p for which p � 2 orp+2 is also prime. Thus, 3, 5, 7, 11, 13, 17, 19, 29, and 31 are all twin primes. We denotethe number of twin primes � x by �2(x). We will showTheorem 42. �2(x)� xlog2 x (log log x)2.



53More generally, we denote by �a(x) the number of primes p � x for which p � a or p + ais also prime. We prove our next theorem from which Theorem 42 follows.Theorem 43. Let a be a positive integer. Then �a(x) � xlog2 x (log log x)2 where theimplied constant depends on a.� Proof. We de�neA0(z; x) = jfn � x : pjn(n+ a) =) p > zgj:Observe that for z su�ciently large (eg., z � 2a + 2 so that �(z) + a � z), we have�a(x) � 2A0(z; x) + z. We seek a good estimate for A0(z; x). We use thatA0(z; x) �Xn�x�0(n(n+ a))=Xn�x 1�Xp�z Xn�xpjn(n+a) 1 + Xp1<p2�z Xn�xp1p2jn(n+a) 1� � � � + Xp1<p2<���<p2k�z Xn�xp1p2���p2kjn(n+a) 1:We �x momentarily z � a so that if pja, then p � z. For a given p � z, we consider twopossibilities, pja and p - a. If pja, then the number of n � x for which pjn(n + a) is [x=p],which is within 1 of x=p. If p - a, then the number of n � x for which pjn(n+ a) is within2 of 2x=p. In general, if p1; : : : ; pu are distinct primes dividing a and pu+1; : : : ; pu+v aredistinct primes not dividing a, then the number of n � x for which n(n + a) is divisibleby p1p2 � � � pu+v is within 2v of 2vx=�p1p2 � � � pu+v� (this can be seen by using the ChineseRemainder Theorem and considering the number of such n in a complete system of residuesmodulo p1p2 � � � pu+v). It follows thatA0(z; x) � x�Xp�zpja xp �Xp�zp-a 2xp + Xp1<p2�zp1p2ja xp1p2+ Xp1<p2�zp1ja;p2-a 2xp1p2 + Xp1<p2�zp1-a;p2ja 2xp1p2 + Xp1<p2�zp1-a;p2-a 4xp1p2� � � � + Xp1<p2<���<p2k�zp1-a;:::;p2k-a 22kxp1 � � � p2k + E1=Ypja �1� 1p�Yp�zp-a �1� 2p�x+E1 +E2;



54where E1 � 1 + 2��(z)1 �+ 4��(z)2 �+ � � � + 22k��(z)2k �� �(z)2k�1 + 2 + 222! + � � � + 22k(2k)!� � e2�(z)2kand E2 � Xp1<p2<���<p2k+1�z 22k+1xp1p2 � � � p2k+1 + Xp1<p2<���<p2k+2�z 22k+2xp1p2 � � � p2k+2 + � � �� x 1Xu=2k+1 1u!�Xp�z 2p�u � x 1Xu=2k+1 1u!�2 log log z + 2C1�u;where C1 is some appropriate constant. Using eu = P1j=0 uj=j! � uu=u! and choosingk = [6 log log z], we obtainE2 � x 1Xu=2k+1�2e log log z + 2eC1u �u � x 1Xu=2k+1�12�u = x22k < x(log z)6for z su�ciently large. We also haveE1 � e2�(z)2k � z12 log log zfor z su�ciently large. We now choose z = x1=(24 log log x) and consider x su�ciently largeto deduce that A0(z; x) �Ypja �1� 1p�Yp�zp-a �1� 2p�x+ E;where jEj � x=(log x)5. Observe that, for some constants C2 and C3 depending on a,Ypja �1� 1p�Yp�zp-a �1� 2p�x � C2x Yp�z�1� 1p�!2 � C3 x(log x)2 (log log x)2:Theorem 43 follows.� Brun's Theorem. Brun introduced his pure sieve and used it to establishTheorem 44. Xp a twin prime(1=p) converges.� Proof. We use Riemann-Stieltjes integrals to obtainXp�xp a twin prime 1p = Z x1 1t d�2(t) = �2(x)x + Z x2 �2(t)t2 dt:



55Clearly, �2(x)=x � 1. Also, Theorem 43 implies�2(t)t2 � (log log t)2t(log t)2 � 1t(log t)3=2so that Z x2 �2(t)t2 dt� Z x2 1t(log t)3=2 dt� 1:Thus, Xp a twin prime 1p is a bounded in�nite series with positive terms. The theorem follows.Homework:(1) Let pn denote the nth prime.(a) Explain why the Prime Number Theorem implies that lim supn!1 (pn+1 � pn) =1.(b) Use Theorem 43 to prove that for every positive integer k,lim supn!1 �minfpn+1 � pn; pn+2 � pn+1; : : : ; pn+k � pn+k�1g� =1:(Note that this would follow from part (a) if \min" were replaced by \max"; the problemis to �gure out how to handle the \min" situation.)


