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Prefae

Polynomials pervade mathematis, and muh that is beautiful in mathe-matis is related to polynomials. Virtually every branh of mathematis,from algebrai number theory and algebrai geometry to applied analy-sis, Fourier analysis, and omputer siene, has its orpus of theory arisingfrom the study of polynomials. Historially, questions relating to polyno-mials, for example, the solution of polynomial equations, gave rise to someof the most important problems of the day. The subjet is now muh toolarge to attempt an enylopedi overage.The body of material we hoose to explore onerns primarily polyno-mials as they arise in analysis, and the tehniques of the book are primarilyanalyti. While the onneting thread is the polynomial, this is an analysisbook. The polynomials and rational funtions we are onerned with arealmost exlusively of a single variable.We assume at most a senior undergraduate familiarity with real andomplex analysis (indeed in most plaes muh less is required). However,the material is often tersely presented, with muh mathematis exploredin the exerises, some of whih are quite hard, many of whih are suppliedwith opious hints, some with omplete proofs. Well over half the materialin the book is presented in the exerises. The reader is enouraged to atleast browse through these. We have been muh inuened by P�olya andSzeg}o's lassi \Problems and Theorems in Analysis" in our approah tothe exerises. (Though unlike P�olya and Szeg}o we hose to inorporate thehints with the exerises.)



viii PrefaeThe book is mostly self-ontained. The text, without the exerises, pro-vides an introdution to the material, but muh of the rihness is reservedfor the exerises. We have attempted to highlight the parts of the theoryand the tehniques we �nd most attrative. So, for example, M�untz's lovelyharaterization of when the span of a set of monomials is dense is exploredin some detail. This result epitomizes the best of the subjet: an attrativeand nontrivial result with several attrative and nontrivial proofs.There are exellent books on orthogonal polynomials, Chebyshev poly-nomials, Chebyshev systems, and the geometry of polynomials, to name buta few of the topis we over, and it is not our intent to rewrite any of these.Of neessity and taste, some of this material is presented, and we have at-tempted to provide some aess to these bodies of mathematis. Muh ofthe material in the later hapters is reent and annot be found in bookform elsewhere.Students who wish to study from this book are enouraged to samplewidely from the exerises. This is de�nitely \hands on" material. Thereis too muh material for a single semester graduate ourse, though suha ourse may be based on Setions 1.1 through 5.1, plus a seletion fromlater setions and appendies. Most of the material after Setion 5.1 maybe read independently.Not all objets labeled with \E" are exerises. Some are examples.Sometimes no question is asked beause none is intended. Oasionallyexerises inlude a statement like, \for a proof see : : : "; this is usually anindiation that the reader is not expeted to provide a proof.Some of the exerises are long beause they present a body of material.Examples of this inlude E.11 of Setion 2.1 on the trans�nite diameter ofa set and E.11 of Setion 2.3 on the solvability of the moment problem.Some of the exerises are quite tehnial. Some of the tehnial exerises,like E.4 of Setion 2.4, are inluded, in detail, beause they present resultsthat are hard to aess elsewhere.AknowledgmentsWe would like to thank Dik Askey, Weiyu Chen, Carl de Boor, KarlDilher, Jens Happe, Andr�as Kro�o, Doron Lubinsky, Gua-Hua Min, PaulNevai, Allan Pinkus, J�ozsef Szabados, Vilmos Totik, and Rihard Varga.Their thoughtful and helpful omments made this a better book. We wouldalso like to thank Judith Borwein, Maria Fe Elder, and Chiara Veronesi fortheir expert assistane with the preparation of the manusript.
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1Introdution and Basi Properties

OverviewThe most basi and important theorem onerning polynomials is the Fun-damental Theorem of Algebra. This theorem, whih tells us that everypolynomial fators ompletely over the omplex numbers, is the startingpoint for this book. Some of the intriate relationships between the loa-tion of the zeros of a polynomial and its oeÆients are explored in Setion2. The equally intriate relationships between the zeros of a polynomial andthe zeros of its derivative or integral are the subjet of Setion 1.3. Thishapter serves as a general introdution to the body of theory known as thegeometry of polynomials. Highlights of this hapter inlude the Fundamen-tal Theorem of Algebra, the Enestr�om-Kakeya theorem, Luas' theorem,and Walsh's two-irle theorem.1.1 Polynomials and Rational FuntionsThe fous for this book is the polynomial of a single variable. This is anextended notion of the polynomial, as we will see later, but the most im-portant examples are the algebrai and trigonometri polynomials, whihwe now de�ne. The omplex (n + 1)-dimensional vetor spae of algebraipolynomials of degree at most n with omplex oeÆients is denoted byPn.



2 1. Introdution and Basi PropertiesIf C denotes the set of omplex numbers, then(1:1:1) Pn := (p : p(z) = nXk=0 akzk; ak 2 C) :When we restrit our attention to polynomials with real oeÆients we willuse the notation(1:1:2) Pn := (p : p(z) = nXk=0 akzk; ak 2 R) ;where R is the set of real numbers. Rational funtions of type (m;n) withomplex oeÆients are then de�ned by(1:1:3) Rm;n := �pq : p 2 Pm; q 2 Pn� ;while their real ousins are denoted by(1:1:4) Rm;n := �pq : p 2 Pm; q 2 Pn� :The distintion between the real and omplex ases is partiularly impor-tant for rational funtions (see E.4).The set of trigonometri polynomials T n is de�ned by(1:1:5) T n := (t : t(�) := nXk=�n akeik� ; ak 2 C) :A real trigonometri polynomial of degree at most n is an element of T ntaking only real values on the real line. We denote by Tn the set of all realtrigonometri polynomials of degree at most n. Other haraterizations ofTn are given in E.9. Note that if z := ei�, then an arbitrary element of T nis of the form(1:1:6) z�n 2nXk=0 bkzk; bk 2 Cand so many properties of trigonometri polynomials redue to the studyof algebrai polynomials of twie the degree on the unit irle in C :The most basi theorem of this book, and arguably the most basinonelementary theorem of mathematis, is the Fundamental Theorem ofAlgebra. It says that a polynomial of exat degree n (that is, an element



1.1 Polynomials and Rational Funtions 3of PnnPn�1) has exatly n omplex zeros ounted aording to their mul-tipliities.Theorem 1.1.1 (Fundamental Theorem of Algebra). Ifp(z) := nXi=0 aizi; ai 2 C ; an 6= 0 ;then there exist �1; �2; : : : ; �n 2 C suh thatp(z) = an nYi=1 (z � �i) :Here the multipliity of the zero at �i is the number of times it isrepeated. So, for example, (z � 1)3(z + i)2is a polynomial of degree 5 with a zero of multipliity 3 at 1 and with azero of multipliity 2 at �i: The polynomialp(z) := nXi=0 aizi ; ai 2 C ; an 6= 0is alled moni if its leading oeÆient an equals 1. There are many proofsof the Fundamental Theorem of Algebra based on elementary propertiesof omplex funtions (see Theorem 1.2.1 and E.4 of Setion 1.2). We willexplore this theorem more substantially in the next setion of this hapter.Comments, Exerises, and Examples.The importane of the solution of polynomial equations in the history ofmathematis is hard to overestimate. The Greeks of the lassial period un-derstood quadrati equations (at least when both roots were positive) butould not solve ubis. The expliit solutions of the ubi and quarti equa-tions in the sixteenth entury were due to Niolo Tartaglia (a 1500{1557),Ludovio Ferrari (1522{1565), and Sipione del Ferro (a 1465{1526) andwere popularized by the publiation in 1545 of the \Ars Magna" of Giro-lamo Cardano (1501{1576). The exat priorities are not entirely lear, butdel Ferro probably has the strongest laim on the solution of the ubi.These disoveries gave western mathematis an enormous boost in partbeause they represented one of the �rst really major improvements onGreek mathematis. The impossibility of �nding the zeros of a polynomialof degree at least 5, in general, by a formula ontaining additions, subtra-tions, multipliations, divisions, and radials would await Niels Henrik Abel(1802{1829) and his 1824 publiation of \On the Algebrai Resolution ofEquations." Indeed, so muh algebra, inluding Galois theory, analysis, andpartiularly omplex analysis, is born out of these ideas that it is hard toimagine how the ow of mathematis might have proeeded without theseissues being raised. For further history, see Boyer [68℄.



4 1. Introdution and Basi PropertiesE.1 Expliit Solutions.a℄ Quadrati Equations. Verify that the quadrati polynomial x2+ bx+ has zeros at �b�pb2 � 42 ; �b+pb2 � 42 :b℄ Cubi Equations. Verify that the ubi polynomial x3 + bx +  haszeros at� + � ; ���+ �2 � + ip3��� �2 � ; ���+ �2 � � ip3��� �2 � ;where � = 3s�2 +r24 + b327and � = 3s�2 �r24 + b327 :℄ Show that an arbitrary ubi polynomial, x3 + ax2 + bx + ; an betransformed into a ubi polynomial as in part b℄ by a transformation x 7!ex+ f .d℄ Observe that if the polynomial x3+ bx+  has three distint real zeros,then � and � are neessarily nonreal and hene 4b3 + 272 is negative. So,in this simplest of ases one is fored to deal with omplex numbers (whihwas a serious tehnial problem in the sixteenth entury).e℄ Quarti Equations. The quarti polynomial x4 + ax3 + bx2 + x + dhas zeros at �a4 + R2 � �2 ; �a4 + R2 � �2 ;where R =ra24 � b+ y ;y is any root of the resolvent ubiy3 � by2 + (a+ 4d)y � a2d+ 4bd� 2 ;and �; � =r3a24 �R2 � 2b� 4ab� 8� a34R ; R 6= 0 ;while �; � =r3a24 � 2b� 2py2 � 4d ; R = 0 :These unwieldy equations are quite useful in onjuntion with any symbolimanipulation pakage.



1.1 Polynomials and Rational Funtions 5E.2 Newton's Identities. Write(x� �1)(x� �2) � � � (x � �n) = xn � 1xn�1 + 2xn�2 � � � �+ (�1)nn :The oeÆients k are, by de�nition, the elementary symmetri funtionsin the variables �1; : : : ; �n:a℄ For positive integers k, letsk := �k1 + �k2 + � � �+ �kn :Prove thatsk = (�1)k+1kk + (�1)k k�1Xj=1 (�1)jk�jsj ; k � nand sk = (�1)k+1 k�1Xj=k�n (�1)jk�jsj ; k > n :Here, and in what follows, an empty sum is understood to be 0.A polynomial of n variables is a funtion that is a polynomial in eahof its variables. A symmetri polynomial of n variables is a polynomial ofn variables that is invariant under any permutation of the variables.b℄ Show by indution that any symmetri polynomial in n variables (withinteger oeÆients) may be written uniquely as a polynomial (with integeroeÆients) in the elementary symmetri funtions f1; f2; : : : ; fn.Hint: For a symmetri polynomial f in n variables, let�(f) := (�1; �2; : : : ; �n) ; �1 � �2 � � � � � �n � 0if f(x1; x2; : : : ; xn) = �1X�1=0 �2X�2=0 � � � �nX�n=0 �1;�2;::: ;�nx�11 x�22 � � �x�nnand �1;�2;::: ;�n 6= 0. If�(f) = (�1; �2; : : : ; �n) and �(g) = (e�1; e�2; : : : ; e�n) ;then let �(f) < �(g) if �j � e�j for eah j with a strit inequality for at leastone index. This gives a (partial) well ordering of symmetri polynomials inn variables, that is, every set of symmetri polynomials in n variables hasa minimal element. Now use indution on �(f). ut



6 1. Introdution and Basi Properties℄ Show that �1 +p52 �k ! 0 (mod 1) :(By onvergene to zero (mod 1) we mean that the quantity approahesintegral values.)Hint: Consider the integers sk := �k1 + �k2 ;where �1 := 12 (1 +p5) and �2 := 12 (1�p5). utd℄ Find another algebrai integer � with the property that�k ! 0 (mod 1) :Suh numbers are alled Salem numbers (see Salem [63℄). It is an openproblem whether any nonalgebrai numbers � > 1 satisfy �k ! 0 (mod 1).E.3 Norms on Pn. Pn is a vetor spae of dimension n+1 over R: HenePn equipped with any norm is isomorphi to the Eulidean vetor spaeRn+1 , and these norms are equivalent to eah other. Similarly, Pn is avetor spae of dimension n+1 over C : Hene Pn equipped with any normis isomorphi to the Eulidean vetor spae C n+1 , so these norms are alsoequivalent to eah other. Letpn(x) := nXk=0 akxk; ak 2 R :Some ommon norms on Pn and Pn arekpkA := supx2A jp(x)j supremum norm:=kpkL1(A) L1 normkpkLp(A) :=�ZA jp(t)jp dt�1=p Lp norm; p � 1kpkl1 :=maxk fjakjg l1 normkpklp :=� nXk=0 jakjp�1=p lp norm; p � 1 :In the �rst ase A must ontain n+1 distint points. In the seond ase Amust have positive measure.



1.1 Polynomials and Rational Funtions 7a℄ Conlude that there exist onstants C1, C2, and C3 depending only onn so that kp0k[�1;1℄ � C1kpk[�1;1℄ ;nXi=0 jaij � C2kpk[�1;1℄ ;kpk[�1;1℄ � C3kpkL2[�1;1℄for every p 2 Pn, and, in partiular, for every p 2 Pn.These inequalities will be revisited in detail in later hapters, wherepreise estimates are given in terms of n.b℄ Show that there exist extremal polynomials for eah of the above in-equalities. That is, for example,sup06=p2Pn kp0k[�1;1℄kpk[�1;1℄is ahieved.E.4 On Rn;m.a℄ Rn;m is not a vetor spae beause it is not losed under addition.b℄ Partial Fration Deomposition. Let rn;m 2 Rn;m be of the formp(x)Qm0k=1(x� �k)mk ; p 2 Pn ; �k distint ; p(�k) 6= 0 :Then there is a unique representation of the formrn;m(x) = q(x) + m0Xk=1 mkXj=1 ak;j(x � �k)j ; q 2 Pn�m ; ak;j 2 C(if m > n; then Pn�m is meant to be f0g).Hint: Consider the type and dimension of expressions of the above form. ut℄ Show that if rn;m 2 Rn;m ;then Re(rn;m(�)) 2 Rn+m;2m :This is an important observation beause in some problems a rational fun-tion in Rn;n an behave more like an element of R2n;2n than Rn;n.



8 1. Introdution and Basi PropertiesE.5 Horner's Rule.a℄ We havenXi=0 aixi = (� � � ((anx+ an�1)x+ an�2)x+ � � �+ a1)x+ a0 :So every polynomial of degree n an be evaluated by using at most n ad-ditions and n multipliations. (The onverse is learly not true; onsiderx2n .)b℄ Show that every rational funtion of type (n � 1; n) an be put in aform so that it an be evaluated by using n divisions and n additions.E.6 Lagrange Interpolation. Let zi and yi be arbitrary omplex numbersexept that the zi must be distint (zi 6= zj ; for i 6= j). Letlk(z) := Qni=0;i6=k(z � zi)Qni=0;i6=k(zk � zi) ; k = 0; 1; : : : ; n :a℄ Show that there exists a unique p 2 Pn that takes n+1 spei�ed valuesat n+ 1 spei�ed points, that is,p(zi) = yi ; i = 0; 1; : : : ; n :This p 2 Pn is of the form p(z) = nXk=0 yklk(z)and is alled the Lagrange interpolation polynomial.If all the zi and yi are real, then this unique interpolation polynomialis in Pn:b℄ Let !(z) := nYi=0 (z � zi) :Show that lk is of the formlk(z) = !(z)(z � zk)!0(zk)and p(z) = nXk=0 yk!(z)(z � zk)!0(zk) :



1.1 Polynomials and Rational Funtions 9℄ An Error Estimate. Assume that the points zi 2 [a; b℄; i = 0; 1; : : : ; n;are distint and f 2 Cn+1[a; b℄ (that is, f is an n + 1 times ontinuouslydi�erentiable real-valued funtion on [a; b℄). Let p 2 Pn be the Lagrangeinterpolation polynomial satisfyingp(zi) = f(zi) ; i = 0; 1; : : : ; n :Show that for every x 2 [a; b℄ there is a point � 2 (a; b) so thatf(x)� p(x) = 1(n+ 1)! f (n+1)(�)!(x) :Hene kf � pk[a;b℄ � 1(n+ 1)! kf (n+1)k[a;b℄ k!k[a;b℄ :Hint: Choose � so that ' := f � p� �w vanishes at x; that is,� := (f(x)� p(x))=!(x) :Then repeated appliations of Rolle's theorem yield that'(n+1) = f (n+1) � �(n+ 1)!has a zero � in (a; b): utE.7 Hermite Interpolation.a℄ Let zi 2 C ; i = 1; 2; : : : k, be distint. Letmi; i = 1; 2; : : : ; k, be positiveintegers with n+ 1 :=Pki=1mi, and letyi;j 2 C ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1be �xed. Show that there is a unique p 2 Pn, alled the Hermite interpola-tion polynomial, so thatp(j)(zi) = yi;j ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1 :If all the zi and yi;j are real, then this unique interpolation polynomial isin Pn�1.Hint: Use indution on n. utb℄ Assume that the points zi 2 [a; b℄ are distint and f 2 Cn[a; b℄. Letp 2 Pn�1 be the Hermite interpolation polynomial satisfyingp(zi) = f (j)(zi) ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1 :Show that for every x 2 [a; b℄ there is a point � 2 (a; b) so that



10 1. Introdution and Basi Propertiesf(x)� p(x) = 1n! f (n)(�)!(x)with !(x) := kYi=1(x� xi)mi�1 :Hene kf � pk[a;b℄ � 1n! kf (n)k[a;b℄ k!k[a;b℄ :Hint: Follow the hint given for E.6 ℄. utPolynomial interpolation and related topis are studied thoroughly inDavis [75℄; Lorentz, Jetter, and Riemenshneider [83℄; and Szabados andV�ertesi [92℄.E.8 On the Zeros of a p 2 Pn. Show that if p 2 Pn, then the nonrealzeros of p form onjugate pairs (that is, if z is a zero of p; then so is z).E.9 Fatorization of Trigonometri Polynomials.a℄ Show that t 2 Tn (or t 2 T n ) if and only if t is of the formt(z) = a0 + nXk=1(ak os kz + bk sin kz) ; ak; bk 2 R (or C ) :b℄ Show that if t 2 TnnTn�1; then there are numbers z1; z2; : : : ; z2n and0 6=  2 C suh that t(z) =  2nYj=1 sin z � zj2 :Show also that the nonreal zeros zj of t form onjugate pairs.E.10 Newton Interpolation and Integer-Valued Polynomials. Let�kf(x)be de�ned indutively by�0f(x) := f(x) ; �f(x) = �1f(x) := f(x+ 1)� f(x)and �k+1f(x) := �(�kf(x)) ; k = 1; 2; : : : :Let �xk� := x(x� 1) � � � (x� k + 1)k! :a℄ Show that �xk� is a polynomial of degree k that takes integer values atall integers.



1.2 The Fundamental Theorem of Algebra 11b℄ Let f be an m times di�erentiable funtion on [a; a + m℄. Show thatthere is a � 2 (a; a+m) suh that�mf(a) = f (m)(�) :℄ Show that if p 2 Pn; thenp(x) = nXk=0�kp(0)�xk� :d℄ Suppose p 2 Pn is integer-valued at all integers. Show thatp(x) = nXk=0 ak�xk�for some integers a0; a1; : : : ; an: Note that this haraterizes suh polyno-mials.e℄ Show that if p 2 Pn takes integer values at n + 1 onseutive integers,then p takes integer values at every integer.f ℄ Suppose  2 R and n is an integer for every n 2 N: Use part b℄ to showthat  is a nonnegative integer.1.2 The Fundamental Theorem of AlgebraThe following theorem is a quantitative version of the Fundamental Theo-rem of Algebra due to Cauhy [1829℄. We o�er a proof that does not assumethe Fundamental Theorem of Algebra, but does require some elementaryomplex analysis.Theorem 1.2.1. The polynomialp(z) := anzn + an�1zn�1 + � � �+ a0 2 Pn ; an 6= 0has exatly n zeros. These all lie in the open disk of radius r entered atthe origin, where r := 1 + max0�k�n�1 jakjjanj :Proof. We may suppose that a0 6= 0, or we may �rst divide by zk for somek. Now observe that



12 1. Introdution and Basi Propertiesg(x) := ja0j+ ja1jx+ � � �+ jan�1jxn�1 � janjxnsatis�es g(0) > 0 and limx!1 g(x) = �1. So by the intermediate value the-orem, g has a zero in (0;1) (whih is, on onsidering (g(x)=xn)0, in fatunique). Let s be this zero. Then for jzj > s;(1:2:1) jp(z)� anznj � ja0j+ ja1zj+ � � �+ jan�1zn�1j < janznj :This, by Rouh�e's theorem (see E.1), shows that p(z) and anzn have exatlythe same number of zeros, namely, n, in any disk of radius greater than s.It remains to observe that if x � r; then g(x) < 0 so s < r. Indeed,g(x) � janjxn �1 +� maxk=0;::: ;n�1 jakjjanj� n�1Xk=0 xk�n!< janjxn ��1 +� maxk=0;::: ;n�1 jakjjanj� 1x� 1�� 0for x � 1 + maxk=0;::: ;n�1 jakjjanj : utThe exat relationship between the oeÆients of a polynomial and theloation of its zeros is very ompliated. Of ourse, the more informationwe have about the oeÆients, the better the results we an hope for. Thefollowing pretty theorem emphasizes this:Theorem 1.2.2 (Enestr�om-Kakeya). Ifp(z) := anzn + an�1zn�1 + � � �+ a0with a0 � a1 � � � � � an > 0 ;then all the zeros of p lie outside the open unit disk.Proof. Consider(1� z)p(z) = a0 + (a1 � a0)z + � � �+ (an � an�1)zn � anzn+1 :Thenj(1� z)p(z)j � a0 � [(a0 � a1)jzj+ � � �+ (an�1 � an)jzjn + anjzjn+1℄ :Sine ak � ak+1 � 0, the right-hand expression above dereases as jzj in-reases. Thus, for jzj < 1,j(1� z)p(z)j > a0 � [(a0 � a1) + � � �+ (an�1 � an) + an℄ = 0 ;and the result follows. ut



1.2 The Fundamental Theorem of Algebra 13Corollary 1.2.3. Supposep(z) := anzn + an�1zn�1 + � � �+ a0with ak > 0 for eah k. Then all the zeros of p lie in the annulusr1 := mink=0;::: ;n�1 akak+1 � jzj � maxk=0;::: ;n�1 akak+1 =: r2 :Proof. Apply Theorem 1.2.2 to p(r1z) and znp(r2=z). utThis is a theme with many variations, some of whih are explored inthe exerises.Theorem 1.2.4. Suppose p > 1; q > 1, and p�1 + q�1 = 1. Then the poly-nomial h 2 Pn of the formh(z) = anzn + an�1zn�1 + � � �+ a0 ; an 6= 0has all its zeros in the disk fz 2 C : jzj � rg, wherer :=8<:1 + n�1Xj=0 jaj jpjanjp!q=p9=;1=q :Proof. See E.6. utComments, Exerises, and Examples.The Fundamental Theorem of Algebra appears to have been given its nameby Gauss, although the result was familiar long before; it resisted rigorousproof by d'Alembert (1740), Euler (1749), and Lagrange (1772). It was moreommonly formulated as a real theorem, namely: every real polynomial fa-tors ompletely into real linear or quadrati fators. (This is an essentialresult for the integration of rational funtions.) Girard has a laim to pri-ority of formulation. In his \Invention Nouvelle en L'Alg�ebra" of 1629 hewrote \every equation of degree n has as many solutions as the exponentof the highest term." Gauss gave the �rst satisfatory proof in 1799 in hisdotoral dissertation, and he gave three more proofs during his lifetime. His�rst proof, while titled \A new proof that every rational integral funtion ofone variable an be resolved into real fators of the �rst or seond degree,"was in fat the �rst more-or-less satisfatory proof. Gauss' �rst proof is ageometri argument that the real and imaginary parts of a polynomial, uand v, have the property that the urves u = 0 and v = 0 interset, and bymodern standards has some topologial problems. His third proof of 1816amounts to showing that



14 1. Introdution and Basi PropertiesZjzj=r p0(z)p(z) dzmust vanish if p has no roots, whih leads to a ontradition and is agenuinely analyti proof (see Boyer [68℄, Burton [85℄, and Gauss [1866℄).An almost purely algebrai proof using Galois theory, but based onideas of Legendre, may be found in Stewart [73℄.The \geometry of polynomials" is extensively studied in Marden [66℄and Walsh [50℄, where most of the results of the setion and muh moremay be aessed. See also Barbeau [89℄ and P�olya and Szeg}o [76℄.Theorem 1.2.2 is due to Kakeya [12℄. It is a speial ase of Corollary1.2.3, due to Enestr�om [1893℄. The Enestr�om-Kakeya theorem and relatedmatters are studied thoroughly in Anderson, Sa�, and Varga [79℄ and [81℄and in Varga and Wu Wen-da [85℄, and a number of interesting propertiesare explored. For example, it is shown in the �rst of the above papers thatthe zeros of all p satisfying the assumption of Corollary 1.2.3 are dense inthe annulus fz 2 C : r1 � jzj � r2g.E.1 Basi Theorems in Complex Analysis. We ollet a few of the basitheorems of omplex analysis that we need. (Proofs may be found in anyomplex variables text suh as Ahlfors [53℄ or Ash [71℄.)a℄ Cauhy's Integral Formula. Let Dr := fz 2 C : jzj < rg. Suppose fis analyti on Dr and ontinuous on the losure Dr of Dr: Let �Dr denotethe boundary of Dr: Then0 = Z�Dr f(t) dt ;f(z) = 12�i Z�Dr f(t)t� z dt ; z 2 Dr ;and f (n)(z) = n!2�i Z�Dr f(t)(t� z)n+1 dt ; z 2 Dr :Unless otherwise spei�ed, integration on a simple losed urve is takenantilokwise. (We may replae �Dr and Dr by any simple losed urveand its interior, respetively, though for most of our appliations irlessuÆe.)b℄ Rouh�e's Theorem. Suppose f and g are analyti inside and on asimple losed path  (for most purposes we may use  a irle). Ifjf(z)� g(z)j < jf(z)jfor every z 2 ; then f and g have the same number of zeros inside (ounting multipliities).



1.2 The Fundamental Theorem of Algebra 15A funtion analyti on C is alled entire.℄ Liouville's Theorem. A bounded entire funtion is onstant.d℄ Maximum Priniple. An analyti funtion on an open set U � Cassumes its maximum modulus on the boundary. Moreover, if f is analytiand takes at least two distint values on an open onneted set U � C ; thenjf(z)j < supz2U jf(z)j ; z 2 U :e℄ Uniity Theorem. Suppose f and g are analyti on an open onnetedset U . Suppose f and g agree on S, where S is an in�nite ompat subsetof U , then f and g agree everywhere on U:E.2 Division.a℄ Suppose p is a polynomial of degree n and p(�) = 0. Then there existsa polynomial q of degree n� 1 suh thatp(x) = (x� �)q(x) :Hint: Consider the usual division algorithm for polynomials. utb℄ A polynomial of degree n has at most n roots.This is the easier part of the Fundamental Theorem of Algebra. The remain-ing ontent is that every nononstant polynomial has at least one omplexroot.The next exerise develops the basi omplex analysis tools mostly forpolynomials on irles. The point of this exerise is to note that the proofsin this ase are partiularly straightforward.E.3 Polynomial Complex Analysis.a℄ Dedue Cauhy's integral formula for polynomials on irles.Hint: Integrate zn on �Dr. utb℄ If p(z) = anQni=1(z��i); then the number of indies i for whih j�ij < ris 12�i Z�Dr p0(z)p(z) dz ;provided no �i lies on �Dr:Hint: We have p0(z)p(z) = nXi=1 1z � �iand 12�i Z�Dr dzz � �i = � 1 if j�ij < r0 if j�ij > r : ut



16 1. Introdution and Basi Properties℄ Dedue Rouh�e's theorem from part b℄ for polynomials f and g givenby their fatorizations, and for irles .Hint: Let h := 1 + (g � f)=f . So fh = g and12�i Z�Dr g0(z)g(z) dz = 12�i Z�Dr f 0(z)f(z) dz + 12�i Z�Dr h0(z)h(z) dz :Show that the last integral is zero by expanding h�1 and applying b℄. utd℄ Dedue E.1 ℄ and E.1 d℄ from E.1 a℄.e℄ Observe that the uniity theorem an be sharpened for polynomials asfollows. If p; q 2 Pn and p(z) = q(z) for n+1 distint values of z 2 C ; thenp and q are idential, that is, p(z) = q(z) for every z 2 C : Equivalently, apolynomial p 2 Pn is either identially 0 or has at most n zeros. (This istrivial from the Fundamental Theorem of Algebra, but as in E.2, it doesnot require it.)E.4 The Fundamental Theorem of Algebra. Every nononstant polyno-mial has at least one omplex zero.Prove this diretly from Liouville's theorem.E.5 Pellet's Theorem. Suppose ap 6= 0; jap+1j+ � � �+ janj > 0, andg(x) := ja0j+ ja1jx+ � � �+ jap�1jxp�1 � japjxp + jap+1jxp+1 + � � �+ janjxnhas exatly two positive zeros s1 < s2. Thenf(z) := anzn + an�1zn�1 + � � �+ a0 2 Pnhas exatly p zeros in the disk fz 2 C : jzj � s1g and no zeros in the annulusfz 2 C : s1 < jzj < s2g.Proof. Let s1 < t < s2: Then g(t) < 0; that is,nXj=0j 6=p jaj jtj < japjtp :Now apply Rouh�e's theorem to the funtionsF (z) := apzp and G(z) := nXj=0 ajzj : ut



1.2 The Fundamental Theorem of Algebra 17E.6 Proof of Theorem 1.2.4.a℄ H�older's inequality (see E.7 of Setion 2.2) asserts thatnXk=1 jakbkj �  nXk=1 jakjp!1=p nXk=1 jbkjq!1=q ;where p�1 + q�1 = 1 and p � 1. So ifp(z) := anzn + an�1zn�1 + � � �+ a0 2 Pn ;then n�1Xk=1 jakjjzjk �  n�1Xk=0 jakjp!1=p n�1Xk=0 jzjkq!1=q :b℄ Thus, for jzj > 1;jp(z)j � janjjzjn � n�1Xk=0 jakjjzjk� janjjzjn8<:1� n�1Xk=0 ����akan ����p!1=p n�1Xk=0 jzjkqjzjnq!1=q9=;� janjjzjn8<:1� n�1Xk=0 ����akan ����p!1=p 1(jzjq � 1)1=q9=; :℄ When is the last expression positive?E.7 The Number of Positive Zeros of a Polynomial. Supposep(z) := nXj=0 ajzjhas m positive real roots. Thenm2 � 2n log ja0j+ ja1j+ � � �+ janjpja0anj ! :This result is due to Shur though the proof more or less follows Erd}os andTur�an [50℄. It requires using M�untz's theorem from Chapter 4.a℄ Suppose p(z) = an nYk=1(z � rkei�k )



18 1. Introdution and Basi Propertiesand q(z) := nYk=1(z � ei�k) :Note that for jzj = 1; jz � rei�j2jrj � jz � ei�j :Use this to dedue thatjq(z)j2 � jp(z)j2ja0anj �  ja0j+ ja1j+ � � �+ janjpja0anj !2whenever jzj = 1:b℄ Sine p has m positive real roots q has m roots at 1: Use the hange ofvariables x := z + z�1 applied to znq(z�1)q(z) to show thatkqk2fjzj=1g� minfbkg k(z � 1)m(zn�m + bn�m�1zn�m�1 + � � �+ b1z + b0)k2fjzj=1g� minfkg kxm(xn�m + n�m�1xn�m�1 + � � �+ 1x+ 0)k[0;4℄= 4nminfdkg kxm(xn�m + dn�m�1xn�m�1 + � � �+ d1x+ d0)k[0;1℄� 4np2n+ 1� 2nn+m� ;where the last inequality follows by E.2 ℄ of Setion 4.2.℄ Show that log 4np2n+ 1� 2nn+m�! � m2=nand �nish the proof of the main result.1.3 Zeros of the DerivativeThe most basi and important theorem linking the zeros of the derivative ofa polynomial to the zeros of the polynomial is variously attributed to Gauss,Luas, Grae, and others, but is usually alled Luas' theorem [1874℄.Theorem 1.3.1 (Luas' Theorem). Let p 2 Pn. All the zeros of p0 are on-tained in the losed onvex hull of the set of zeros of p.The proof of this theorem follows immediately from the followinglemma by onsidering the intersetion of the halfplanes ontaining the on-vex hull of the zeros of p.



1.3 Zeros of the Derivative 19Lemma 1.3.2. Let p 2 Pn. If p has all its zeros in a losed halfplane, thenp0n also has all its zeros in the same losed halfplane.Proof. On onsideration of the e�et of the transformation z 7! �z+�; bywhih any losed halfplane may be mapped to H l := fz : Re(z) � 0g; itsuÆes to prove the lemma under the assumption that p has all its zeros inH l: If p has all its zeros in Hl; thenp0(z)p(z) = nXk=1 1z � �k ; �k 2 H l :But if z 2 Hr := fz 2 C : Re(z) > 0g; then1z � �k 2 Hr for eah �k 2 H l ;and it follows that nXk=1 1z � �k 2 Hr :In partiular, nXk=1 1z � �k 6= 0 ;whih �nishes the proof. utThere is a sharpening of Luas' theorem for real polynomials formu-lated by Jensen. We need to introdue the notion of Jensen irles for apolynomial p 2 Pn. For p 2 Pn the nonreal roots of p ome in onjugatepairs. For eah suh pair, �+ i�, �� i�, form the irle entered at � withradius j�j. So this irle entered on the x-axis at � has �+i� and ��i� onthe opposite ends of its perpendiular diameter. The olletion of all suhirles are alled the Jensen irles for p.Theorem 1.3.3 (Jensen's Theorem). Let p 2 Pn. Eah nonreal zero of p0lies in or on some Jensen irle for p.The proof, whih is similar to the proof of Luas' theorem, is left forthe reader as E.3.We state the following pretty generalization of Luas' theorem due toWalsh [21℄. The proof is left as E.4. Proofs an also be found in Marden[66℄ and P�olya and Szeg}o [76℄.



20 1. Introdution and Basi PropertiesTheorem 1.3.4 (Walsh's Two-Cirle Theorem). Suppose p 2 Pn has all itsn zeros in the disk D1 with enter 1 and radius r1. Suppose q 2 Pm hasall its m zeros in the disk D2 with enter 2 and radius r2. Thena℄ All the zeros of (pq)0 lie in D1 [ D2 [ D3, where D3 is the disk withenter 3 and radius r3 given by3 := n2 +m1n+m ; r3 := nr2 +mr1n+m :b℄ Suppose (n 6= m). Then all the zeros of (p=q)0 lie in D1[D2[D3; whereD3 is the disk with enter 3 and radius r3 given by3 := n2 �m1n�m ; r3 := nr2 +mr1jn�mj :Comments, Exerises, and Examples.Luas proved his theorem in 1874, although it is an easy and obvious on-sequene of an earlier result of Gauss. Jensen's theorem is formulated inJensen [13℄ and proved in Walsh [20℄. Muh more onerning the geometryof zeros of the derivative an be found in Marden [66℄.E.1 A Remark on Luas' Theorem. Show that p0 2 Pn has a zero � onthe boundary of the onvex hull of the zeros of p if and only if � is a multiplezero of p.E.2 Laguerre's Theorem. Suppose p 2 Pn has all its zeros in a disk D.Let � 2 C . Let w be any zero ofq(z) := np(z) + (� � z)p0(z)(q is alled the polar derivative of p with respet to �).a℄ If � =2 D; then w lies in D.Hint: Consider r(z) := p(z)(z � �)�n; where p has all its zeros in D and� 62 D. Then r0(z)r(z) = p0(z)p(z) + n� � zand if q(w) = 0 with w =2 D, then r0(w) = 0. Now observe that r is of theform r(z) = s� 1z � �� ; s 2 Pn ;where s0((w � �)�1) = 0. Note that � =2 D implies thateD := f(z � �)�1 : z 2 Dgis a disk. Then s has all its zeros in eD and so does s0 by Luas' theorem.However, w 62 D implies (w � �)�1 62 eD, so s0((w � �)�1) 6= 0, a ontradi-tion. utb℄ If p(w) 6= 0; then any irle through w and � either passes through allthe zeros of pn or separates them.



1.3 Zeros of the Derivative 21E.3 Proof of Jensen's Theorem. Prove Theorem 1.3.3.Hint: Suppose p 2 Pn n Pn�1 and denote the zeros of p by z1; z2; : : : ; zn:Then p0(z)p(z) = nXk=1 1z � zk :If zk = �k + i�k with �k; �k 2 R; and z = x+ iy with x; y 2 R; thenIm� 1x+ iy � �k � i�k + 1x+ iy � �k + i�k�= �2y((x� �k)2 + y2 � �2k)((x� �k)2 + (y � �k)2) � ((x � �k)2 + (y + �k)2) ;and so outside all the Jensen irles and o� the x-axis,sign�Im� p0(z)pn(z)�� = �sign(y) 6= 0 : utE.4 Proof of Walsh's Theorem. Prove Theorem 1.3.4.a℄ Prove Theorem 1.3.4 a℄.Hint: Let z0 be a zero of p0q + q0p outside D1 and D2. Let�1 := z0 � np(z0)p0(z0) and �2 := z0 � mq(z0)q0(z0)(p0(z0) 6= 0 and q0(z0) 6= 0 by Luas' theorem). Observe that �1 2 D1 and�2 2 D2 by E.2, and z0 = n�2 +m�1n+m : utb℄ Prove Theorem 1.3.4 b℄.Hint: Proeed as in the hint to part a℄, starting from a zero z0 of p0q � q0poutside D1 and D2. ut℄ If in Theorem 1.3.4 a℄ D1, D2, and D3 are disjoint, then D1 ontainsn� 1 zeros, D2 ontains m� 1 zeros, and D3 ontains 1 zero of (pq)0:Hint: By a ontinuity argument we may redue the general ase to the asewhere p(z) = (z � 1)n and q(z) = (z � 2)m. utd℄ If in Theorem 1.3.4 b℄ n = m and D1 and D2 are disjoint, then D1[D2ontains all the zeros of (p=q)0.



22 1. Introdution and Basi PropertiesE.5 Real Zeros and Poles.a℄ If all the zeros of p 2 Pn are real, then all the zeros of p0n are also real.b℄ Suppose all the zeros of both p 2 Pn and q 2 Pm are real, and all thezeros of pn are smaller than any of the zeros of qn. Show that all the zerosof (p=q)0 are real.Hint: Consider the graph of (p=q)0(p=q) = p0p � q0q : utDe�ne W (p), the Wronskian of p, byW (p)(z) = p(z)p00(z)� (p0(z))2= ���� p(z) p0(z)p0(z) p00(z) ����= p2(z)�p0(z)p(z) �0 :℄ Prove that if p 2 Pn has only distint real zeros, then W (p) has no realzeros.In Craven, Csordas, and Smith [87℄ it is onjetured that, for p 2 Pn,the number of real zeros ofW (p)=p2 does not exeed the number of nonrealzeros of p (a question they attribute to Gauss).d℄ Let p 2 Pn. Show that any real zero of W (p) lies in or on a Jensenirle of p.Proof. See Dilher [91℄. ute℄ Show that Luas' theorem does not hold for rational funtions.Hint: Consider r(x) = x=(�2 � x2). utThe next exerise is a weak form of Desartes' rule of signs.E.6 Positive Zeros of M�untz Polynomials. Suppose Æ0 < Æ1 < � � � < Ænand f(x) := a0xÆ0 + a1xÆ1 + � � �+ anxÆn ; ak 2 R :Show that either f = 0 or f has at most n zeros in (0;1).Hint: Proeed by indution on n. ut



1.3 Zeros of the Derivative 23E.7 Apolar Polynomials and Szeg}o's Theorem. Two polynomialsf(x) : = nXk=0 ak�nk�xk ; an 6= 0and g(x) : = nXk=0 bk�nk�xk ; bn 6= 0are alled apolar if nXk=0(�1)kakbn�k�nk� = 0 :a℄ A Theorem of Grae [02℄. Suppose that f and g are apolar polynomials.If f has all its zeros in a (losed or open) disk D; then g has at least onezero in D.Hint: Let �1; �2; : : : ; �n and �1; �2; : : : ; �n denote the zeros of f and g,respetively. Suppose that the zeros of g are all outside D. Letf1(x) := nf(x) + (�1 � x)f 0(x)and for k = 2; 3; : : : ; n, letfk(x) := (n� k + 1)fk�1(x) + (�k � x)f 0k(x) :Then, by E.2, eah fk has all its zeros in D: Now omputefn�1(�n) = n!bn ��n0�a0bn ��n1�a1bn�1 + � � �+ (�1)n�nn�anb0� = 0 ;where the vanishing follows by apolarity. This is a ontradition. utb℄ If f and g are apolar, then the losed onvex hull of the zeros of fintersets the losed onvex hull of the zeros of g.℄ A Theorem of Szeg}o [22℄. Supposef(x) := nXk=0 ak�nk�xk ; an 6= 0 ;g(x) := nXk=0 bk�nk�xk ; bn 6= 0 ;and h(x) := nXk=0 akbk�nk�xk :Suppose f has all its zeros in a losed disk D, and g has zeros �1; : : : ; �n:Then all the zeros of h are of the form �ii with i 2 D:



24 1. Introdution and Basi PropertiesHint: Suppose Æ is a zero of h. ThennXk=0 akbk�nk�Æk = 0 :So the polynomial r(x) := nXk=0(�1)k�nk�bkÆkxn�kis apolar to f , and thus has a zero � in D. But then � = �Æ=�i for some isine r(x) = xng(�Æ=x): utE.8 Zeros of the Integral. Suppose p 2 Pn n Pn�1 has all its zeros inD1 := fz 2 C : jzj � 1g:a℄ Show that the polynomial q de�ned by q(x) := R x0 p(t) dt has all itszeros in D2 := fz 2 C : jzj � 2g:Hint: Apply E.7 ℄. Takef(x) := p(x); g(x) := nXk=0�nk� xkk + 1 :Then h(x) = 1x Z x0 p(t) dt :Note that g(x) = (n+ 1)�1x�1((1 + x)n+1 � 1) has all its zeros in D2: utb℄ Show thatq(x) := Z x0 Z tm�10 Z tm�20 � � � Z t10 p(t) dt dt1 � � � dtm�2 dtm�1has all its zeros in Drm;n := fz 2 C : jzj � rm;ng, where rm;n � m + 1 isthe zero of nXk=0�m+ nm+ k�xkwith the largest modulus. Note that q is the mth integral of p normalizedso that the onstants of integration are all zero.Proof. See Borwein, Chen, and Dilher [95℄. ut



1.3 Zeros of the Derivative 25E.9 Grae's Complex Version of Rolle's Theorem. Suppose � and � arezeros of p 2 Pn n Pn�1. Then p0 has at least one zero in the diskD(; r) := fz 2 C : jz � j � rg ;where  := �+ �2 and r := j�� �j2 ot �n :Hint: Assume, without loss of generality, that � = �1 and � = 1: Letp0(x) = n�1Xk=0 akxk ; that is , p(x) = + n�1Xk=0 ak xk+1k + 1 :Apply E.7 a℄. Note that0 = p(1)� p(�1)2 = a0 + a23 + a45 + � � � :So f(z) := (z � 1)n � (z + 1)nand p0 are apolar. utE.10 Corollaries of Szeg}o's Theorem. Supposef(z) := �n0�a0 +�n1�a1z + � � �+�nn�anzn ;g(z) := �n0�b0 +�n1�b1z + � � �+�nn�bnzn ;and h(z) := �n0�a0b0 +�n1�a1b1z + � � �+�nn�anbnznwith anbn 6= 0.a℄ If f has all its zeros in a onvex set S ontaining 0 and g has all itszeros in [�1; 0℄; then h has all its roots in S:b℄ If f and g have all their zeros in [�1; 0℄; then so does h.E.11 Another Corollary of Szeg}o's Theorem. If nXk=0 akzk has all its zerosin D1 := fz 2 C : jzj � 1g; then so does nXk=0 akzk�nk� . In partiular, nXk=0 zk�nk�has all its zeros in D1:The results of the next exerise were �rst proved by M. Riesz (see, forexample, Mignotte [92℄) and were redisovered by Walker [93℄.



26 1. Introdution and Basi PropertiesE.12 Conseutive Zeros of p0 for p 2 Pn with Real Zeros. For a polyno-mial p(x) := nYi=1 (x� �i) ; �1 < �2 < � � � < �n ; n � 2with only real zeros, let�(p) := min1�i�n�1(�i+1 � �i) :By Rolle's theoremp0(x) = n n�1Yi=1 (x � �i) ; �1 < �1 < �2 < �2 < � � � < �n�1 < �n :a℄ Suppose n � 3. Prove that �(p) < �(p0):Outline. It is required to show that �j � �j�1 > �(p) for eah j � 2. Let2 � j � n be �xed. Sine f 0(�j)f(�j) = f 0(�j�1)f(�j�1) = 0we have nXi=1 1(�j�1 � �i)(�j � �i) = 0 :Now let uj := �j��j�1; vj := �j ��j : Also for eah i; let di := �j ��j�i;ei := �j+i � �j : Then the above an be rewritten asj�1Xi=1 1(di � uj)(di + vj) + 1(�ujvj) + n�jXi=1 1(ei + uj)(ei � vj) = 0 :De�ne F (u; v) := j�1Xi=1 uv(di � u)(di + v) + n�jXi=1 uv(ei + u)(ei � v) :Note that F is inreasing in eah variable (0 � u < d1; 0 � v < e1) andobserve that F (uj ; vj) = 1 :To prove the result, it suÆes to show that if u and v are nonnegativenumbers satisfying u+ v = �(p); then F (u; v) < 1.



1.3 Zeros of the Derivative 27Now show thatF (u; v) �uv j�1Xi=1 1(di � u)(di+1 � u) + n�jXi=1 1(ei+1 � v)(ei � v)!� uv�(p)  j�1Xi=1 � 1di � u � 1di+1 � u�+ n�jXi=1 � 1ei � v � 1ei+1 � v�!< uv�(p) � 1d1 � u + 1e1 � v� � uv�(p) �1v + 1u� � 1whenever u and v are nonnegative numbers satisfying u+ v = �(p): utb℄ Suppose n � 3 and  2 R. Show that �(p0 � p) has only real zerosand �(p0 � p) > �(p):℄ What happens when p has only real zeros but they are not neessarilydistint?E.13 Fej�er's Theorem on the Zeros of M�untz Polynomials. The followingpretty results of Fej�er may also be found in P�olya and Szeg}o [76℄:Suppose that (�k)1k=0 is an inreasing sequene of nonnegative integerswith �0 = 0.a℄ Let p(z) := nXk=0 akz�k ; ak 2 C ; a0a1 6= 0 :Then p has at least one zero z0 2 C so thatjz0j � � �2�3 � � ��n(�2 � �1)(�3 � �1) � � � (�n � �1)�1=�1 ����a0a1 ����1=�1 :Outline. We say that z1 2 C is not less than z2 2 C if jz2j � jz1j: Studyingq(z) := z�np(z�1); we need to show that the largest zero ofq(z) = a0x�n + nXk=1 akx�n��kis not less than� (�2 � �1)(�3 � �1) � � � (�n � �1)�2�3 � � ��n �1=�1 ����a1a0 ����1=�1 :We prove this statement by indution on n: The statement is obviously truefor n = 1: Now assume that the statement is true for n� 1: It follows fromLuas' theorem that if q is a polynomial with omplex oeÆients, then thelargest zero of q0 is not greater than the largest zero of q:



28 1. Introdution and Basi PropertiesBy the above orollary of Luas' theorem, it is suÆient to prove thatthe largest zero ofz�n�1��n+1q0(z) = �na0z�n�1 + n�1Xk=1(�n � �k)akz�n�1��kis not less than� (�2 � �1)(�3 � �1) � � � (�n � �1)�2�3 � � ��n �1=�1 ����a1a0 ����1=�1 :However, this is true by the indutive hypothesis. utb℄ Suppose f(z) = 1Xk=0 akz�k ; ak 2 Cis an entire funtion so that P1k=1 1=�k < 1; that is, the entire funtionf satis�es the Fej�er gap ondition. Show that there is a z0 2 C so thatf(z0) = 0:Hint: Use part a℄. ut



This is page 29Printer: Opaque this2Some Speial Polynomials

OverviewChebyshev polynomials are introdued and their entral role in problems inthe uniform norm on [�1; 1℄ is explored. Sequenes of orthogonal funtionsare then examined in some generality, although our primary interest is inorthogonal polynomials (and rational funtions). The third setion of thishapter is onerned with orthogonal polynomials; it introdues the mostlassial of these. These polynomials satisfy many extremal properties, sim-ilar to those of the Chebyshev polynomials, but with respet to (weighted)L2 norms. The �nal setion of the hapter deals with polynomials withpositive oeÆients in various bases.2.1 Chebyshev PolynomialsThe ubiquitous Chebyshev polynomials lie at the heart of many analytiproblems, partiularly problems in C[a; b℄, the spae of real-valued on-tinuous funtions equipped with the uniform (supremum) norm, k � k[a;b℄.Throughout this book, for any real- or omplex-valued funtion f de�nedon [a; b℄, kfk[a;b℄ := supx2[a;b℄ jf(x)j :



30 2. Some Speial PolynomialsThe Chebyshev polynomials are de�ned byTn(x) : = os(n arosx) ; x 2 [�1; 1℄ ;= 12�(x+px2 � 1)n + (x�px2 � 1)n� ; x 2 C ;(2.1.1) = n2 bn=2Xk=0 (�1)k (n� k � 1)!k!(n� 2k)! (2x)n�2k ; x 2 C :These elementary equivalenes are left for the reader (see E.1). The nthChebyshev polynomial has the following equiosillation property on [�1; 1℄.There exist n + 1 points �i 2 [�1; 1℄ with �1 = �n < �n�1 < � � � < �0 = 1so that(2:1:2) Tn(�j) = (�1)n�jkTnk[�1;1℄ = (�1)n�j ; j = 0; 1; : : : ; n :In other words Tn 2 Pn takes the values �kTnk[�1;1℄ with alternating signthe maximum possible number of times on [�1; 1℄: (These extreme pointsare just the points os(k�=n), k = 0; 1; : : : ; n.) The Chebyshev polynomialTn satis�es the following extremal property:Theorem 2.1.1. We haveminp2Pn�1 kxn � p(x)k[�1;1℄ = k21�nTnk[�1;1℄ = 21�n ;where the minimum is uniquely attained by p(x) = xn � 21�nTn(x):Proof. Observe that, while the minimum is taken over Pn�1; we need onlyonsider p 2 Pn�1; sine taking the real part of a p 2 Pn�1 an only improvethe estimate. From the above formulas for Tn we have21�nTn(x) = xn + s(x) ; s 2 Pn�1 :Now suppose there exists q 2 Pn�1 with(2:1:3) kxn � q(x)k[�1;1℄ < 21�n :Then 21�nTn(x) � (xn � q(x)) = s(x) + q(x) 2 Pn�1hanges sign between any two onseutive extrema of Tn; hene it has atleast n zeros in (�1; 1); and thus it must vanish identially. This ontradits(2.1.3), and we are done up to proving uniqueness (this is left as E.2). ut



2.1 Chebyshev Polynomials 31Comments, Exerises, and Examples.The Chebyshev polynomials Tn are named after the versatile Russian math-ematiian, P. L. Chebyshev (1821{1894). The T omes from the spellingThebyhef (or some suh variant; there are many in the literature). Awealth of information on these polynomials may be found in Rivlin [90℄.Throughout later setions of this book the Chebyshev polynomials willkeep reurring. The initial exerises explore elementary properties of theChebyshev polynomials.Erd}os [39℄ proved that for t 2 Tn with ktkR � 1; the length of the graphof t on [0; 2�℄ is the longest if and only if t is of the form t(�) = os(n�+�)with some � 2 R (see E.6). He onjetured that for any p 2 Pn withkpk[�1;1℄ � 1; the maximum ar length is attained by the nth Chebyshevpolynomial Tn. This is proved in Bojanov [82b℄. Kristiansen [79℄ also laimsa proof. In E.9 the reduibility of Tn is onsidered, and in E.11 the basiproperties of the trans�nite diameter are established.E.1 Basi Properties.a℄ Establish the equivalene of the three representations of Tn given inequation (2:1:1):Hint: osn� = 12 [(os � + i sin �)n + ((os � � i sin �)n℄: To get the thirdrepresentation, use E.3 b℄. utb℄ The zeros of Tn are preisely the pointsxk = os (2k�1)�2n ; k = 1; 2; : : : ; n :℄ The extrema of Tn(x) in [�1; 1℄ are preisely the points�k = os k�n ; k = 0; 1; : : : ; n :d℄ Observe that the zeros of Tn and Tn+1 interlae, as do the extrema.E.2 Uniqueness of the Minimum in Theorem 2.1.1. Prove the uniquenessof the minimum in Theorem 2.1.1.Hint: Assume that q 2 Pn�1 andkxn � q(x)k[�1;1℄ � 21�n :Then h(x) := 21�nTn(x) �Re(xn � q(x))de�nes a polynomial from Pn�1 on R having at least n zeros (ountedaording to their multipliities). Thus21�nTn(x) = Re(xn � q(x)) ; x 2 R ;



32 2. Some Speial Polynomialswhih, together with the previous inequality, implies that q(x) is real when-ever Tn(x) = �1: Now E.6 of Setion 1.1 (Lagrange interpolation) yieldsthat q has real oeÆients. Hene21�nTn(x) = xn � q(x) ; x 2 R : utE.3 Further Properties of Tn.a℄ Composition. Show that Tnm(x) = Tn(Tm(x)):b℄ Three-Term Reursion. Show thatTn(x) = 2xTn�1(x) � Tn�2(x) ; n = 2; 3; : : : :℄ Verify that T0(x) = 1T1(x) = xT2(x) = 2x2 � 1T3(x) = 4x3 � 3xT4(x) = 8x4 � 8x2 + 1T5(x) = 16x5 � 20x3 + 5x :Note that Tn is even for n even and odd for n odd.d℄ Another Formula for Tn: Show that Tn(x) = osh(n osh�1(x)) forevery x 2 R n [�1; 1℄:e℄ Di�erential Equation. Show that(1� x2)T 00n (x) � xT 0n(x) + n2Tn(x) = 0 :f ℄ An Identity. Show thatTn(x) = T 0n+1(x)2n+ 2 � T 0n�1(x)2n� 2 :g℄ Orthogonality. Show that2� Z 1�1 Tn(x)Tm(x)dxp1� x2 = Æn;m := � 0; n 6= m1; n = m > 0 :h℄ Generating Funtion. Show that1� yx1� 2yx+ y2 = 1Xn=0Tn(x)yn ; x 2 [�1; 1℄ ; jyj < 1 :Hint: Set x = os � and sum. ut



2.1 Chebyshev Polynomials 33i℄ Another Representation of Tn: Show thatTn(x) = bn=2Xk=0 � n2k�xn�2k(x2 � 1)k :j℄ Another Identity. Show thatTn� 12 (x + x�1)� = 12 (xn + x�n) :E.4 Approximation to xk on [0; 1℄.a℄ Let T �n(x) = Tn(2x � 1) be the nth Chebyshev polynomial shifted tothe interval [0; 1℄: Suppose T �n(x) = nXk=0 bkxk :Show that for eah k = 0; 1; : : : ; n;minj2R kxk � nXj=0j 6=k jxjk[0;1℄ = kb�1k T �nk[0;1℄ :Hint: Proeed as in the proof of Theorem 2.1.1 and use E.6 of Setion 1.3.utb℄ Why does this not hold for Tn on [�1; 1℄ ?E.5 A Composition Charaterization. Suppose (pn)1n=1 is a sequene ofpolynomials of degree n and for all positive integers n and mpn Æ pm = pn�m :Then there exists a linear transformation w(x) = �x+ � so thatw Æ pn Æ w�1 = xn ; n = 1; 2; : : :or w Æ pn Æ w�1 = Tn ; n = 1; 2; : : : :This result is due to Blok and Thielman [51℄. The proof outlined in thisexerise follows Rivlin [90℄.



34 2. Some Speial Polynomialsa℄ Letq(x) := a0 + a1x+ a2x2 ; a2 6= 0 ; and v(x) := xa2 � a12a2 :Then v�1(q(v(x))) = x2 +  with  := a0a2 + (a1=2)� (a21=4) :b℄ Let q(x) = a0 + a1x + a2x2; a2 6= 0: Then there is at most onepolynomial pn of degree exatly n so thatpn(q(x)) = q(pn(x)) :Hint: By a℄ we may assume q(x) = x2 + : Now suppose r, s 2 PnnPn�1;r(x2 + ) = r2(x) + and s(x2 + ) = s2(x) +  :Then u := r � s 2 Pn�1 satis�esu(x2 + ) = u(x)(r(x) + s(x))from whih we dedue, by omparing degrees on both sides, that n = 0:(Note that the above onditions imply r and s moni.) ut℄ Finish the proof of the initial statement of this exerise.This is a speial ase of a more general theorem of Ritt [23℄ that lassi�esall rational funtions r and s that ommute in the sense that r Æ s = s Æ r:d℄ Another Composition Charaterization. Suppose p 2 Pn has the prop-erty that the losure of the setIp := fz 2 C : p[k℄(z) = 0 for some k = 1; 2; : : : gis the interval [�1; 1℄; where p[k℄ is the kth iterate of p; that is,p[1℄ := p and p[k℄ := p Æ p[k�1℄ for k = 2; 3; : : : :Then p(x) = �Tn(x):e℄ Let rn(x) = tan(n tan�1(x)) :Show that rn is a rational funtion in Rn;n; and observe thatrn Æ rm = rn�m :



2.1 Chebyshev Polynomials 35E.6 Trigonometri Polynomials of Longest Ar Length. Theorem 5.1.3(Bernstein-Szeg}o inequality) asserts thatt0(�)2 + n2t2(�) � n2ktk2Rfor every t 2 Tn and � 2 R: Use this to prove the following result of Erd}os.For t 2 Tn with ktkR � 1; the length of the graph of t on [0; 2�℄ is thelongest if and only if it is of the form t(�) = os(n� + �) for some � 2 R:Hint: Suppose t 2 Tn with ktkR = 1: Let s(�) := osn�: If�1 < t(�1) = s(�2) < 1holds, then by the Bernstein-Szeg}o inequality (see also E.5 of Setion 5.1)jt0(�1)j � n(1� t2(�1))1=2 = n(1� s2(�2))1=2 = js0(�2)j ;and if equality holds for one pair of �1, �2; then it holds for all pairs, andt(�) � os(n�+�) for some � 2 R: Suppose tn(�) 6� os(n�+�): Let � and� be monotone ars of the graphs of y = t(�) and y = s(�); respetively,with endpoints of eah having the same ordinates y1 and y2: Let j� j and j�jbe the length of � and �; respetively, and let j�xj and j�xj be the length ofthe projetion of � and �; respetively, on the x-axis. Show thatj� j < j�j+ (j�xj � j�xj)by approximating � and � by a polygonal line orresponding to a subdivi-sion of the interval with endpoints, y1 and y2 on the y-axis. utE.7 Moni Polynomials with Minimal Norm on an Interval.a℄ The unique moni polynomial p 2 Pn minimizing kpk[a;b℄ is given byp(x) = 2�b� a4 �n Tn�2x� a� bb� a � :b℄ Let 0 < a < b. Find all moni polynomials p 2 Pn minimizingkpk[�b;�a℄[[a;b℄ :(For two intervals of di�erent lengths this is a muh harder problem. Theproblem was originally due to Zolotarev and is solved in terms of elliptifuntions. See Todd [88℄, Fisher [92℄, and Peherstorfer [87℄.)



36 2. Some Speial PolynomialsE.8 Lower Bound for the Norm of Polynomials on the Unit Disk. Let Dbe the open unit disk of C : Show thatka0 + a1z + � � �+ anznkD � max0�k�n jakjfor arbitrary omplex numbers a0; a1; : : : ; an: Thus zn plays the role of thenth Chebyshev polynomial on the unit disk.Hint: If p(z) := a0 + a1z + � � �+ anzn; thenam = 12�i Z�D p(z)zm+1 dz : utThe next exerise supposes some familiarity with the rudiments ofreduibility over Q and basi properties, suh as irreduibility of ylotomipolynomials over Q (see Clark [71℄). Details of the following observation ofShur's are in Rivlin [90℄.E.9 On the Reduibility of Tn over Q. Let n 2 N be �xed.a℄ The zeros of Tn(x=2) are all of the formxj := e(2j�1)i�=(2n) + e�(2j�1)i�=(2n) ; j = 1; 2; : : : ; n :b℄ If n � 3 and � is a primitive nth root of unity, then �+ ��1 is of degree'(n)=2: (Here ' is the Euler ' funtion.)℄ Thus if Tn is irreduible over Q; then n must be a power of 2:d℄ For a positive integer h; letFh(x) := nYj=1gd(2j�1;2n)=h (x� xj) :(Here gd(m;n) denotes the greatest ommon divisor of m and n:) Showthat if h is odd, then Fh is irreduible over Q:e℄ The Fatorization of Tn:2Tn(x=2) = Yhjn ; h oddFh(x) :So if n is odd, Tn has '(n) fators, while if n is even, then Tn has '(m)fators, where m is the largest odd divisor of n:f ℄ Let n � 3 be odd. Then Tn(x)=x is irreduible over Q if and only if nis prime.



2.1 Chebyshev Polynomials 37E.10 Chebyshev Polynomials of the Seond Kind. Let the Chebyshev poly-nomials of the seond kind be de�ned byUn�1(x) := 1nT 0n(x) = sinn�sin � ; x = os � :a℄ Un(x) = 2Tn(x) + Un�2(x) .b℄ Tn(x) = Un(x)� xUn�1(x) .℄ Un(x) = nPk=0 xkTn�k(x) .d℄ Un(x) = �x+px2 � 1�n+1 � �x�px2 � 1�n+12px2 � 1 .e℄ Orthogonality. Show that2� 1Z�1 Un(x)Um(x)p1� x2 dx = Æn;m := � 0 ; n 6= m1 ; n = m > 0 :f ℄ Three-Term Reursion. Show thatU0(x) = 1 ; U1(x) = 2x ;Un(x) = 2xUn�1(x)� Un�2(x) ; n = 2; 3; : : : :(Note that this is the same reursion as for Tn:)g℄ The CoeÆients of Un. Show thatUn(x) = bn=2Xk=0 (�1)k�n� kk �(2x)n�2k :h℄ Another Form of Un. Show thatUn(x) = bn=2Xk=0 (�1)k� n+ 12k + 1�xn�2k(x2 � 1)k :The onepts of trans�nite diameter and apaity play a entral rolein potential theory, harmoni analysis, and other areas of mathematis.



38 2. Some Speial PolynomialsE.11 Trans�nite Diameter. Let E be a ompat subset of C : Let�n(E) := maxz1;::: ;zn2E Y1�i;j�ni6=j jzi � zj j :The points zi at whih the above maximum are obtained are alled nthFekete points for E: If the points zi are the nth Fekete points for E; thenthe polynomial qn(z) := nYi=1 (z � zi)is alled an nth (moni) Fekete polynomial for E: The trans�nite diameteror logarithmi apaity of E is de�ned byap(E) := limn!1(�n(E)) 1n(n�1) ;where the limit exists by part ℄ (below).a℄ Let z1; z2; : : : ; zn be nth Fekete points for E: Then(�n(E))1=2 = abs ��������� 1 z1 : : : zn�111 z2 : : : zn�12... ... . . . ...1 zn : : : zn�1n ��������� :Hint: See E.2 b℄ (Vandermonde determinant) of Setion 3.2. utb℄ Let qn(z) :=Qni=1(z � zi) be an nth Fekete polynomial for E: Letmn := mini=1;::: ;n jq0n(zi)j and Mn := kqnkE :Then Mn � ��n+1(E)�n(E) �1=2 � mn+1 � (�n+1(E)) 1n+1 :Outline. We havejqn(z)j2�n(E) = nYi=1 jz � zij2 Y1�i;j�ni6=j jzi � zj j � �n+1(E)and �n+1(E) = Y1�i;j�n+1i6=k;j 6=k;i6=j jzi � zj j Y1�i�n+1i6=k jzk � zij2��n(E) Y1�i�n+1i6=k jzk � zij2 :



2.1 Chebyshev Polynomials 39From the �rst line above,M2n�n(E) � �n+1(E) :From the seond line above,�n+1(E) � �n(E)m2n+1 : ut℄ Show that (�n(E)) 1n(n�1) is dereasing, so the limit exists in the de�ni-tion of ap(E):d℄ The Fekete points lie on the boundary of E: So ap(E) = ap(�(E)):Hint: Use the maximum priniple (see E.1 d℄ of Setion 1.2). ute℄ If E � F; where F � C is also ompat, then ap(E) � ap(F ):f ℄ Chebyshev Constants. LetMn := (p 2 Pn : p(z) = nYj=1 (z � zj) ; zj 2 C)and fMn := (p 2 Pn : p(z) = nYj=1 (z � zj) ; zj 2 E) :Let �n(E) := inffkpkE : p 2 Mngand e�n(E) := inffkpkE : p 2 fMng :Show that the in�mum in the de�nition of �n(E) and e�n(E) is atuallyminimum. Show also that�n+m(E) � �n(E)�m(E)and e�n+m(E) � e�n(E)e�m(E)for any two nonnegative integers n and m: Finally show that the aboveinequalities imply that�(E) := limn!1(�n(E))1=n and e�(E) := limn!1(e�n(E))1=nexist.



40 2. Some Speial PolynomialsThe numbers �(E) and e�(E) are alled the Chebyshev onstant andmodi�ed Chebyshev onstant, respetively, assoiated with E: Obviously�(E) � e�(E):g℄ Trans�nite Diameter and Chebyshev Constants Are the Same:ap(E) = �(E) = e�(E) :Proof. Without loss of generality we may assume that E ontains in�nitelymany points. Part b℄ yields e�(E) � ap(E): Therefore, sine �(E) � e�(E);it is suÆient to prove that ap(E) � �(E): Note that if p 2 Mn andz1; z2; : : : ; zn+1 2 E are the (n+ 1)th Fekete points for E; then(�n+1(E))1=2 = abs ��������� 1 z1 : : : zn�11 p(z1)1 z2 : : : zn�12 p(z2)... ... . . . ... ...1 zn+1 : : : zn�1n+1 p(zn+1) ��������� :Expanding the above determinant with respet to its last olumn, we obtain(�n+1(E))1=2 � (�n(E))1=2 n+1Xj=1 jp(zj)j� (n+ 1)(�n(E))1=2kpkE ;so (�n+1(E))1=2 � (n+ 1)(�n(E))1=2�n(E) :For the sake of brevity letn := �(n+ 1)2(�n(E))2�1=n and dn := (�n(E)) 2n(n�1) :Then dn+1n+1 � ndn�1n :Sine E ontains in�nitely many points, n > 0 and dn > 0 hold for eahn = 2; 3; : : : : Multiplying the above inequalities for n = 1; 2; : : : ; k; weobtain after simpli�ation that(d2d3 � � � dk+1) 1k�1 (dk+1) kk�1 � (d2) 2k�1 (23 � � � k) 1k�1 :Sine limk!1 dk = ap(E) and limk!1 k = (�(E))2; we onlude(ap(E))2 � (�(E))2 ;whih �nishes the proof. ut



2.2 Orthogonal Funtions 41h℄ Show that ap([a; b℄) = 14 (b� a):i℄ Show that ap(D�) = �; whereD� := fz 2 C : jzj � �g :j℄ Show that ap(A�) = sin(�=4); where A� is an ar of the unit irle Cof length �, 0 � � � 2�:Hint: Without loss of generality we may assume that the ar A� is sym-metri with respet to the x-axis and 1 2 A�: Now use part h℄ and thetransformation x = 12 (z + z�1): ut2.2 Orthogonal FuntionsThe most basi properties of orthogonal funtions are explored in this se-tion. The following setion speializes the disussion to polynomials.In this setion the funtions are omplex-valued and the vetor spaesare over the omplex numbers. All the results have obvious real analogsand in many later appliations we will restrit to these orresponding realases.An inner produt on a vetor spae V is a funtion h�; �i from V � Vto C that satis�es, for all f; g; h 2 V and �; � 2 C ;(2:2:1) hf; fi > 0 unless f = 0 (positivity)(2:2:2) hf; gi = hg; fi (onjugate symmetry)(2:2:3) h�f + �g; hi = �hf; hi+ �hg; hi (linearity).A vetor spae V equipped with an inner produt is alled an innerprodut spae. It is a normed linear spae with the norm k � k := h�; �i1=2:The anonial example for us will be the spae C[a; b℄ of all omplex-valued ontinuous funtions on [a; b℄ with the inner produt(2.2.4) hf; gi := Z ba f(x)g(x)w(x) dx ;where w(x) is a nonnegative integrable funtion on [a; b℄ that is positiveexept possibly on a set of measure zero. It is a normed linear spae withthe norm(2.2.5) kfkL2(w) := hf; fi1=2 =  Z ba jf(x)j2w(x) dx!1=2 :



42 2. Some Speial PolynomialsMore generally, if (X;�) is a measure spae (with � nonnegative), then(2.2.6) hf; gi := ZX f(x)g(x) d�(x)is an inner produt on the spae L2(�) of square integrable funtions. Morepreisely, L2(�) denotes the spae of equivalene lasses of measurable fun-tions for whihkfkL2(�) := hf; fi1=2 = �ZX jf(x)j2 d�(x)�1=2is �nite. The equivalene lasses are de�ned by the equivalene relationf � g if f = g �-almost everywhere on X:If V is a vetor spae equipped with an inner produt h�; �i; then ametri � an be de�ned on V by �(f; g) := hf � g; f � gi1=2: The fatthat this � is a metri on V is an immediate onsequene of (2.2.1) andTheorem 2.2.1 b℄. If this metri spae (V; �) is omplete (that is, if everyCauhy sequene in (V; �) onverges to some x 2 V ), then V is alled aHilbert spae.It an be shown that L2(�) is a Hilbert spae for every measure spae(X;�) (see Rudin [87℄), while C[a; b℄ equipped with the inner produt(2.2.4), where w(x) � 1; is not a Hilbert spae (see E.1).When we write L2[a; b℄ we always mean L2(�) where � is the Lebesguemeasure on X = [a; b℄: The fat that the inner produt gives a norm is partof the next theorem.Theorem 2.2.1. If (V; h�; �i) is an inner produt spae equipped with the normk � k := h�; �i1=2; then for all f; g 2 V;a℄ jhf; gij � kfk kgk Cauhy-Shwarz inequalityb℄ kf + gk � kfk+ kgk triangle inequality℄ kf + gk2 + kf � gk2 = 2 kfk2 + 2 kgk2 parallelogram law.Proof. Let f; g 2 V be arbitrary. To prove the Cauhy-Shwarz inequality,without loss of generality we may assume hg; gi = 1 and we may assumehf; gi is real (why?). Let � := hf; gi and note that by (2:2:1) and (2:2:3);0 � hf � �g; f � �gi = hf; fi � 2�hf; gi+ �2hg; gi= kfk2 � hf; gi2 ;whih �nishes the proof of part a℄.Using the Cauhy-Shwarz inequality, we obtainkf + gk2 = hf + g; f + gi = hf; fi+ 2Re(hf; gi) + hg; gi� kfk2 + 2 kfk kgk+ kgk2� (kfk+ kgk)2 ;whih is the triangle inequality.



2.2 Orthogonal Funtions 43The parallelogram law follows fromkf + gk2 + kf � gk2= hf; fi+ 2Re(hf; gi) + hg; gi+ hf; fi � 2Re(hf; gi) + hg; gi : utFor the spae L2(�) of all square integrable funtions, the Cauhy-Shwarz inequality beomes�����Z ba fg d������ �  Z ba jf j2 d�(x)!1=2 Z ba jgj2 d�!1=2 :Applying this with f and g replaed by jf j and jgj; we obtain(2.2.7) Z ba jfgj d� �  Z ba jf j2 d�(x)!1=2 Z ba jgj2 d�!1=2 :A olletion of vetors ff� : � 2 Ag in an inner produt spae (V; h�; �i)is said to be orthogonal if(2.2.8) hf�; f�i = 0 ; �; � 2 A ; � 6= � :If hf�; f�i = 0; then we write f�?f�. The olletion is alled orthonormalif, in addition to being orthogonal,(2.2.9) hf�; f�i = 1 ; � 2 A :An orthogonal olletion ff� : � 2 Ag of nonzero vetors in an innerprodut spae an always be orthonormalized as fkf�k�1f� : � 2 Ag: Thevetor spae over C generated by ff� : � 2 Ag is denoted byspanff� : � 2 Ag :So spanff� : � 2 Ag is just the set of all �nite linear ombinations( nXi=1 if�i : �i 2 A ; i 2 C ; n 2 N) :Any linearly independent olletion of vetors an be orthonormalized, asthe next theorem shows.



44 2. Some Speial PolynomialsTheorem 2.2.2 (Gram-Shmidt). Let (V; h�; �i) be an inner produt spaewith norm k � k := h�; �i1=2: Suppose ffig1i=1 is a linearly independent olle-tion of vetors in V: Let g1 := f1kf1kand (indutively) letun := fn � n�1Xk=1hfn; gkigk and gn := unkunk :Then fgng1n=1 is an orthonormal olletion, and for eah n;spanfg1; g2; : : : ; gng = spanff1; f2; : : : ; fng :Proof. This an be proved easily by indution where the indutive step is:for m < n; hun; gmi = hfn; gmi � n�1Xk=1hfn; gkihgk; gmi= hfn; gmi � n�1Xk=1hfn; gkiÆk;m = 0 : utThe key approximation theoreti property orthonormal sets have isenapsulated in the following result:Theorem 2.2.3 (Best Approximation by Linear Combinations). Let (V; h�; �i)be an inner produt spae with norm k � k := h�; �i1=2: Suppose ff1; : : : ; fngis an orthonormal olletion of vetors in V: Let f 2 V: Thenmini2C  nXi=1 ifi � fis attained if and only ifi = hf; fii ; i = 1; 2; : : : ; n :In other words, the sum Pni=1hf; fiifi is the best approximation to f fromspanff1; : : : ; fng in the norm h�; �i1=2:



2.2 Orthogonal Funtions 45Proof. Fix f 2 V; and let i be as above. Letg := nXi=1 ifiand let h 2 spanff1; : : : ; fng: Note that(g � f)?fi ; i = 1; 2; : : : ; nsine by orthonormalityhg � f; fii = nXj=1 jhfj ; fii � i = 0 :Thus (g � f)?(h� g)and so kh� fk2 = k(h� g) + (g � f)k2= kh� gk2 + 2Re(hh� g; g � fi) + kg � fk2= kh� gk2 + kg � fk2� kg � fk2with strit inequality unless h = g: This �nishes the proof. utNote that the above theorem gives the following orollary:Corollary 2.2.4. If ff1; : : : ; fng is an orthonormal olletion, then everyg 2 spanff1; : : : ; fngan be written as g = nXi=1hg; fiifi :Comments, Exerises, and Examples.The theory of orthogonal funtions, and in partiular orthogonal polyno-mials, is old and far-reahing. As we will see in the next setion, the namesassoiated with the lassial orthogonal polynomials inluding Chebyshev,Laguerre, Legendre, Hermite, Jaobi, and Stieltjes, are the \who's who"of nineteenth entury analysis. Various aspets of this beautiful body oftheory are explored in the exerises of this and the next setion.Muh of this material is available in G. Szeg}o's [75℄ lassial trea-tise \Orthogonal Polynomials." Of ourse, orthogonal polynomials are in-timately onneted to Fourier series and parts of harmoni and funtionalanalysis generally. The standard funtional analysis in the following exer-ises is available in many soures. See, for example, Rudin [73, 87℄.



46 2. Some Speial PolynomialsE.1 C[0; 1℄ Is Not a Hilbert Spae. Construt a sequene of ontinuousfuntions (fn)1n=1 on [0; 1℄ for whihkfn � fkL2[0;1℄ ! 0with somef =2 C[0; 1℄ (in the sense that f annot be modi�ed on a set ofmeasure zero to be in C[0; 1℄).So C[0; 1℄ equipped with the inner produt (2.2.4), where [a; b℄ = [0; 1℄and w(x) is identially 1; is not a Hilbert spae. It an be shown that thereis no way of putting a norm on C[0; 1℄ that preserves the uniform topologyand makes C[0; 1℄ into a Hilbert spae, essentially beause C[0; 1℄ is notreexive (see Rudin [73℄, Chapter 4). This, in fat, shows that C[0; 1℄ is notisomorphi to Lp[0; 1℄ for any p 2 (1;1): For the de�nition of Lp[0; 1℄; seeE.7.E.2 On L2(w). Considerhf; gi = Z ba f(x)g(x)w(x) dx :What onditions on w guarantee that hf; gi is an inner produt on C[a; b℄ ?E.3 Cauhy-Shwarz Inequality for Sequenes. Show that����� nXi=1 �i�i�����2 �  nXi=1 j�ij2! nXi=1 j�ij2!for all �1; : : : ; �n; �1; : : : ; �n 2 C : Equality holds if and only if there existsa  2 C so that either �i = �i for eah i or �i = �i for eah i:Hint: C n is a Hilbert spae with inner produth(�1; �2; : : : ; �n); (�1; �2; : : : ; �n)i = nXi=1 �i�i : utE.4 Bessel's Inequality. Let (V; h�; �i) be an inner produt spae withnorm k �k := h�; �i1=2: Suppose ffig1i=1 is a ountable olletion of orthonor-mal vetors in V:a℄ Show that 1Xi=1 jhfi; fij2 � kfk2 :Hint: With h := 0 in the last expression of the proof of Theorem 2.2.3kfk2 = kgk2 + kg � fk2 : ut



2.2 Orthogonal Funtions 47b℄ Suppose f = 1Xi=1hfi; fifiin the sense that the partial sums of the right-hand side onverge to f inthe norm k � k: Show that kfk2 =Xi jhfi; fij2 :E.5 The Kernel Funtion. Let fpigni=0 be a olletion of orthonormalfuntions in L2[a; b℄ with respet to the inner produt de�ned by (2.2.6),where X := [a; b℄: De�ne the kernel funtion byKn(x0; x) := p0(x0)p0(x) + p1(x0)p1(x) + � � �+ pn(x0)pn(x) :a℄ Reproduing Property. If q 2 spanfp0; : : : ; png; thenZ ba Kn(t; x)q(t) d�(t) = q(x) :Hint: Expand q in terms of p0; : : : ; pn as in Corollary 2.2.4. utb℄ (Kn(x0; x0))�1=2Kn(x0; x) solves the following maximization problem:max(jq(x0)j : q 2 spanfp0; p1; : : : ; png and Z ba jq(x)j2 d�(x) = 1) :Outline. Write q =Pni=0 ipi: Then, as in E.4 b℄,kqk2L2(�) = j0j2 + j1j2 + � � �+ jnj2 = 1 :The Cauhy-Shwarz inequality of E.3 yields thatjq(x0)j2 �  nXi=0 jij2! nXi=0 jpi(x0)j2! = Kn(x0; x0) :However, if i = pi(x0)�Pnj=0 jpj(x0)j2�1=2 ;so q(x) = Kn(x0; x)(Kn(x0; x0))1=2 ;then equality holds in the above inequality. ut℄ Show, as in a℄, that if q 2 spanfp0; : : : ; png and p0; : : : ; pn are m timesdi�erentiable at x0; thenjq(m)(x0)j �  mXk=0 jp(m)k (x0)j2!1=2 kqkL2(�) :When does equality hold?



48 2. Some Speial PolynomialsE.6 Completeness. Let ff� : � 2 Ag be an orthonormal olletion in aHilbert spae H: The olletion ff� : � 2 Ag is alled a maximal orthonor-mal set in H if there is no f 6= 0 so that hf; f�i = 0 for every � 2 A:The following statements are equivalent:(1) The set of all �nite linear ombinations of f�; � 2 A; is dense in H:(2) kfk2 =P�2A jhf�; fij2 for all f 2 H:(3) hf; gi =P�2Ahf�; fihf�; gi for all f; g 2 H:(4) ff� : � 2 Ag is a maximal orthonormal set in H:If any of the above holds, then the orthonormal olletion is alled a om-plete orthonormal system. (See, for example, Rudin [87℄.)a℄ Dedue (1)) (2) from Theorem 2.2.3.b℄ Dedue (2)) (3) from the simple identity4hf; gi = kf + gk2 � kf � gk2 + ikf + igk2 � ikf � igk2 :The above identity is alled polarization.℄ Prove (3)) (4).d℄ Prove (4)) (1) by ontradition.Equality (3) is alled Parseval's identity.The remaining exerises assumes some familiarity with measure theory.E.7 Basi Theory of Lp Spaes. Let (X;�) be a measure spae (� isnonnegative) and p 2 (0;1℄: The spae Lp(�) is de�ned as the olletion ofequivalene lasses of measurable funtions for whih kfkLp(�) <1; wherekfkLp(�) := �ZX jf jp d��1=p ; p 2 (0;1)and kfkL1(�) := supf� 2 R : �(fx 2 X : jf(x)j > �g) > 0g <1 :In any of the ases the equivalene lasses are de�ned by the equiv-alene relation f � g if f = g �-almost everywhere on X . When wewrite Lp[a; b℄ we always mean Lp(�); where � is the Lebesgue measureon X = [a; b℄: The notations Lp(a; b); Lp[a; b); and Lp(a; b℄ are also usedanalogously to Lp[a; b℄:



2.2 Orthogonal Funtions 49a℄ H�older's Inequality. Suppose 1 � p < q � 1 and p�1 + q�1 = 1: Showthat ����ZX fg d����� � kfkLp(�)kgkLq(�)for every f 2 Lp(�) and g 2 Lq(�):If 1 < p; q < 1; then equality holds if and only if �jf jp = �jgjq �-almost everywhere on X for some �; � 2 R with �2 + �2 > 0; and there isa  2 C with jj = 1 so that fg is nonnegative �-almost everywhere on X:H�older's inequality was proved by Rogers [1888℄ before H�older [1889℄proved it independently.Hint: If the right-hand side is 0; then the inequality is obvious. If it isdi�erent from 0; then letF := jf jkfkLp(�) and G := jgjkgkLq(�) :If x 2 X is suh that 0 < F (x) < 1 and 0 < G(x) < 1; then there arereal numbers s and t suh thatF (x) = es=p and G(x) = et=q :Use the onvexity of the exponential funtion to show thates=p+ t=q � p�1es + q�1et :Apply this with the above hoies of s and t; and integrate both sides onX with respet to �: utb℄ Minkowski's Inequality for p 2 [1;1℄: Let p 2 [1;1℄: Show thatkf + gkLp(�) � kfkLp(�) + kgkLp(�)for every f; g 2 Lp(�):If 1 < p; q < 1; then equality holds if and only if �f = �g �-almosteverywhere on X for some �; � 2 R with �2 + �2 > 0:Hint: The ases p = 1 and p =1 are straightforward. Let p 2 (1;1): Thenjf + gjp � jf j jf + gjp�1 + jgj jf + gjp�1and apply H�older's inequality (part a℄) to eah term separately. ut



50 2. Some Speial PolynomialsBy part b℄, Lp(�) is a vetor spae and k � kLp(�) is a norm on Lp(�)whenever p 2 [1;1℄: If p 2 (0; 1); then k � kLp(�) is still alled a norm in theliterature, however, for p 2 (0; 1) the subadditive property, in general, fails.In fat, if p 2 (0; 1); then k � kLp[a;b℄ is superadditive for Riemann integrablefuntions in Lp[a; b℄; see P�olya and Szeg}o [76℄.℄ Assume �(X) <1. Show that Lq(�) � Lp(�) for every 0 < p < q � 1:If �(X) � 1; then prove thatkfkLp(�) � kfkLq(�)for every measurable funtion f .d℄ Assume f 2 Lq(�) for some q > 0: Show thatlimp!1 kfkLp(�) = kfkL1(�) :e℄ Riesz-Fisher Theorem. Show that if 1 � p � 1; then (Lp(�); �) is aomplete metri spae, where�(f; g) := kf � gkLp(�) :Hint: Use the monotone onvergene theorem and Minkowski's inequality(part b℄); see Rudin [87℄ for details. utIf p 2 [1;1℄; then q 2 [1;1℄ de�ned by p�1 + q�1 = 1 is alledonjugate to p:f ℄ Bounded Linear Funtionals on Lp(�). Let 1 � p <1 and g 2 Lq(�);where q is the onjugate exponent to p: Show that�g(f) := ZX fg d�is a bounded linear funtional on Lp(�):Hint: Use H�older's inequality (part a℄). utg℄ Riesz Representation Theorem. Suppose 1 � p < 1, � is (�-) �niteand � is a bounded linear funtional on Lp(�): Then there is a uniqueg 2 Lq(�); where q is the onjugate exponent to p; so that�(f) = ZX fg d� ; f 2 Lp(�) :Moreover, if � and g are related as above, thenk�k := maxf�(f) : f 2 Lp(�); kfkLp(�) = 1g = kgkLq(�) :Proof. See, for example, Rudin [87℄ or Royden [88℄. ut



2.2 Orthogonal Funtions 51If X is a loally ompat Hausdor� spae, then the haraterizationof bounded linear funtionals on the spae C(X) of ontinuous funtionswith ompat support equipped with the uniform norm is also known as theRiesz representation theorem, and its proof may be found in, for example,Rudin [87℄.h℄ Orthogonality in Lp(�). Suppose 1 � p < 1; � is (�-)�nite, Y is a�nite-dimensional subspae of Lp(�): The funtion f 2 Lp(�) is said to beorthogonal to Y in Lp(�); written f ? Y; ifkfkLp(�) � kf + hkLp(�)for every h 2 Y: Show that an element f 2 Lp(�) is orthogonal to Y if andonly if ZX jf jp�1sign(f)h d� = 0for every h 2 Y; wheresign(f(x)) := 8><>: f(x)jf(x)j if f(x) 6= 00 if f(x) = 0 :Outline. Suppose that the integral vanishes for every h 2 Y: Let q be theonjugate exponent to p. de�ned by p�1 + q�1 = 1: Observe thatg := jf jp�1 sign(f) 2 Lq(�)and ZX jgjqd� = ZX jf jp d� :Without loss of generality we may assume that kfkLp(�) = 1: Then forevery h 2 Y; H�older's inequality yields thatkfkLp(�) = 1 = ZX fg d� = ZX (f + h)g d�� kf + hkLp(�)kgkLq(�) = kf + hkLp(�) ;proving that f ? Y: (Observe that this argument is also valid for p = 1:)Suppose now f ? Y: Without loss of generality we may assume thatf 62 Y: By a standard orollary to the Hahn-Banah theorem (see, forexample, Rudin [87℄), there exists a linear funtional M on Lp(�) suh thatM(f) = 1, M(h) = 0 for every h 2 Y; and kMk = kfk�1Lp(�): This M isthen representable by some element g 2 Lq(�); that is,M(f) = ZX fg d�; kgkLp(�) = kfk�1Lp(�)



52 2. Some Speial Polynomials(see part g℄). ThereforeZX fg d� = kfkLp(�) kgkLq(�) ;and by the onditions for equality to hold in H�older's inequality,g(x)f(x) � 0 a:e: [�℄ on Xand jg(x)jq = �jf(x)jp a:e: [�℄ on Xfor a suitable onstant � > 0: Heneg(x) = �jf(x)jp�1 sign(f(x)) ;and so M(h) = 0, h 2 Y; impliesZX jf jp�1 sign(f)h d� = 0for every h 2 Y: utThe statement of part h℄ remains valid for losed subspaes Y insteadof �nite-dimensional subspaes, see, for example, Shapiro [71℄.i℄ Minkowski's Inequality for p 2 (0; 1). Show thatkf + gkLp(�) � 21=p�1 �kfkLp(�) + kgkLp(�)�for every f; g 2 Lp(�) and p 2 (0; 1):Hint: Verify thatkf + gkLp(�) � �ZX(jf j+ jgj)p d��1=p� �ZX jf jp d�+ ZX jgjp d��1=p� 21=p�1 �ZX jf jp d��1=p +�ZX jgjp d��1=p!whenever f; g 2 Lp(�) and p 2 (0; 1): utFurther properties of Lp(�) spaes may be found in Rudin [87℄.



2.2 Orthogonal Funtions 53E.8 Fourier Series.a℄ Show that � ein�p2� : n 2 Z�is a maximal orthonormal olletion in L2[��; �℄:Hint: The orthonormality is obvious. In order to show the maximality, �rstnote that L2[��; �℄ is a Hilbert spae by the Riesz-Fisher theorem (E.7e℄). Hene, by E.6, it is suÆient to show that the set T  of all omplextrigonometri polynomials is dense in L2[��; �℄: By the Stone-Weierstrasstheorem (E.2 of Setion 4.1) T  is dense in C�[��; �℄; where C�[��; �℄is the spae of all omplex-valued 2�-periodi ontinuous funtions on Requipped with the uniform norm on R: Finally, it is a standard measuretheoreti argument to show that C�[��; �℄ is dense in L2[��; �℄; see, forexample, Rudin [87℄. utThe kth Fourier oeÆient bf(k) of a funtion f 2 L1[��; �℄ is de�nedby bf(k) := 12� �Z�� f(�)e�ik� d� :The (formal) Fourier series of a funtion f 2 L1[��; �℄ is de�ned byf � 1Xk=�1 bf(k)eik� :The funtions Sn(�) := nXk=�n bf(k)eik�are alled the nth partial sums of the Fourier series of f .b℄ Show that if f 2 L2[��; �℄; then1Xk=�1 j bf(k)j2 = kfk2L2[��;�℄ <1 :Hint: Use part a℄, E.6, and E.7 e℄. ut℄ Show that if f 2 L2[��; �℄; thenlimn!1 kf � SnkL2[��;�℄ = 0 ;so f is the L2[��; �℄ limit of the partial sums of its formal Fourier series.Hint: Use part b℄. ut



54 2. Some Speial PolynomialsCarleson, in 1966, solved Luzin's problem by showing that Sn ! falmost everywhere on [��; �℄ for every f 2 L2[��; �℄. Earlier, Kolmogorovshowed that there is a funtion f 2 L1[��; �℄ so that Sn diverges every-where on [��; �℄:d℄ Isometry of L2[��; �℄ and `2. Let`2 := (x = (xk)1k=�1 : xk 2 C ; 1Xk=�1 jxkj2 <1)and kxk`2 :=  1Xk=�1 jxkj2!1=2 ; x = (xk)1�1 ; xk 2 C :Show that the funtion I : L2[��; �℄! `2 de�ned byI(f) := bf := ( bf(k))1�1is one-to-one and onto, andkI(f)k`2 = kfkL2[��;�℄ :Hint: Use part a℄ to show that I is one-to-one. Use the Riesz-Fisher the-orem (E.7 e℄) to show that I is onto. The norm-preserving property is theontent of part b℄. utPart d℄ shows that the struture of L2[��; �℄ is the same as that of`2: Hene L2[��; �℄ is a separable Hilbert spae, that is, it has a ountabledense subset. So if � > 0 is �xed, then any olletion ff� : � 2 Ag fromL2[��; �℄ for whihkf� � f�kL2[��;�℄ � � ; �; � 2 A ; � 6= �must be ountable.e℄ The Riemann-Lebesgue Lemma. If f 2 L1[��; �℄; then bf(k) ! 0 ask !1:Hint: First prove it for step funtions, then extend the result to everyf 2 L1[��; �℄ by using the fat that step funtions form a dense set inL1[��; �℄: utf ℄ Show that1Xn=1 1n2 = �26 ; 1Xn=1 1n4 = �490 ; and 1Xn=1 1n2k = rk�2kfor every k = 3; 4; � � � ; where rk is a rational number.Hint: Let f be the 2� periodi funtion de�ned byf(�) := �� � �2 �k ; � 2 [0; 2�) :Apply part b℄. ut



2.2 Orthogonal Funtions 55E.9 Denseness of Polynomials in L2(�) on R.a℄ Let � be a �nite Borel measure on [a; b℄ and f 2 L1(�): Show that ifZ ba f(x)eitx d�(x) = 0 ; t = 2�kb� a ; k = 0;�1;�2; : : : ;then f(x) = 0 a.e. [�℄ on [a; b℄.Outline. Use the fat that the set T  of all omplex trigonometri poly-nomials is dense in C�[��; �℄ (see the hint given for E.8 a℄) and standardmeasure theoreti arguments to show that the assumption of part a℄ impliesZ ba f(x)g(x) d�(x) = 0for every bounded measurable funtion g de�ned on [a; b℄: Now, hoosingg(x) := sign(f(x)) := 8><>: f(x)jf(x)j if f(x) 6= 00 if f(x) = 0 ;we obtain Z ��� jf(x)j d�(x) = 0 ;and the result follows. utb℄ Let � be a �nite Borel measure on R and f 2 L1(�): Show that ifZR f(x)eitx d�(x) = 0 ; t 2 R ;then f(x) = 0 a.e. [�℄ on R:Hint: Use part a℄ to show that the assumption of part b℄ impliesZR f(x)g(x) d�(x) = 0for every bounded measurable funtion de�ned on R (�rst assume that ghas ompat support, then eliminate this assumption). Finish the proof asin part a℄. ut℄ Let � be a Borel measure on R satisfyingZR erjxj d�(x) <1with some r > 0: Show that the set P of all omplex algebrai polynomialsis dense in L2(�):



56 2. Some Speial PolynomialsOutline. First observe that the assumption on � implies P � L2(�): Thefat that L2(�) is a Hilbert spae (see E.7 e℄), Theorem 2.2.2 (Gram-Shmidt), and E.6 imply that it is suÆient to prove that if f 2 L2(�)and ZR f(x)xk d�(x) = 0 ; k = 0; 1; 2; : : : ;then f(x) = 0 a.e. [�℄ on R: Assume that f 2 L2(�) satis�es the aboveorthogonality relation. Use Theorem 2.2.1 a℄ (Cauhy-Shwarz inequality)to show that F (t) := ZR f(x)e�itx d�(x)is well-de�ned on R: For every t0 2 R; we havef(x)e�itx = f(x)e�it0xe�i(t�t0)x= 1Xk=0 (�i)k (t� t0)kk! f(x)e�it0xxk :Note that if jt � t0j � r=2; then the integral of the right-hand side withrespet to �(x) on R an be alulated by integrating term by term sine1Xk=0 ZR ����(�i)k (t� t0)kk! f(x)e�it0xxk���� d�(x)� 1Xk=0 ZR jt� t0jkk! jf(x)jjxjk d�(x)=ZR jf(x)jejt�t0jjxj d�(x)� ����ZR jf(x)j2 d�(x) ZR e2jt�t0jjxj d�(x)����1=2 <1 :Therefore, if jt� t0j � r=2; thenF (t) = 1Xk=0(�i)k (t� t0)kk! ZR f(x)e�it0xxk d�(x) :This means that F has a Taylor series expansion about every t0 2 R withradius of onvergene at least r=2: Also, with the hoie t0 = 0; by theassumed orthogonality relations, we have F (t) = 0 whenever jtj � r=2: Wean now dedue that F (t) = 0 for every t 2 R: Hene it follows from partb℄ that f(x) = 0 a.e. [�℄ on R: ut



2.3 Orthogonal Polynomials 572.3 Orthogonal PolynomialsThe lassial orthogonal polynomials arise on orthogonalizing the sequene(1; x; x2; : : : )with respet to various partiularly nie weights, w(x); on an interval,whih, after a linear transformation, may be taken to be one of [�1; 1℄,[0;1); or (�1;1). The main examples we onsider are the Jaobi polyno-mials(2.3.1) P (�;�)n (x) ; where w(x) := (1�x)�(1+x)� on [�1; 1℄ ; �; � > �1 :When � = � = �1=2 the Jaobi polynomials are the Chebyshev polynomialsof the �rst kind,(2.3.2) Tn(x) ; where w(x) := (1� x2)�1=2 on [�1; 1℄ :When � = � = 1=2 they are the Chebyshev polynomials of the seond kind,(2.3.3) Un(x) ; where w(x) := (1� x2)1=2 on [�1; 1℄ :Another speial ase of importane is � = � = 0; whih gives the Legendrepolynomials,(2.3.4) Pn(x) ; where w(x) = 1 on [�1; 1℄ :The Laguerre polynomials are(2.3.5) Ln(x) ; where w(x) := e�x on [0;1) :The Hermite polynomials are(2.3.6) Hn(x) ; where w(x) := e�x2 on (�1;1) :The above notation is traditionally used to denote orthogonal polynomialswith a standard normalization; see the exerises. It is not usually the asethat this normalization gives orthonormality. All of these muh studiedpolynomials arise naturally, as do all the speial funtions, in the study ofdi�erential equations. We atalog some of the speial properties of theselassial orthogonal polynomials in the exerises.In general, a nondereasing bounded funtion � (typially the distribu-tion funtion of a �nite measure) de�ned on R is alled an m-distributionif it takes in�nitely many distint values, and its moments, that is, theimproper Stieltjes integrals



58 2. Some Speial Polynomials1Z�1 xn d�(x) = lim!1!�1!2!+1 !2Z!1 xn d�(x) ;exist and are �nite for n = 0; 1; : : : :Theorem 2.3.1 (Existene and Uniqueness of Orthonormal Polynomials).For every m-distribution � there is a unique sequene of polynomials(pn)1n=0 with the following properties:(i) pn(x) = nxn + rn�1(x) ; n > 0 ; rn�1 2 Pn�1 ;(ii) ZR pn(x)pm(x) d�(x) = Æn;m = � 1 for n = m0 for n 6= m:Proof. The result follows from Theorem 2.2.2 (Gram-Shmidt). Note thatthe de�ning property of an m-distribution � ensures thathp; qi := ZR pq d�is an inner produt on Pn. utThe sequene (pn)1n=0 de�ned by Theorem 2.3.1 is alled the sequeneof orthonormal polynomials assoiated with an m-distribution �. The se-quene (qn)1n=0 is alled a sequene of orthogonal polynomials assoiatedwith an m-distribution � ifqn = npn ; 0 6= n 2 C ; n = 0; 1; : : : ;where (pn)1n=0 is the sequene of orthonormal polynomials assoiated with�. The support supp(�) of an m-distribution � is de�ned as the losure ofthe set fx 2 R : � is inreasing at xg :If � is absolutely ontinuous on R; thend�(x) = w(x) dx with some 0 � w 2 L1(1;1)in whih ase � may be identi�ed as a nonnegative weight funtion w 2L1(�1;1) whose integral takes in�nitely many distint values. If (a; b)is an interval and w 2 L1[a; b℄ has an integral that takes in�nitely manydistint values, then the sequene of orthogonal (orthonormal) polynomialsassoiated with ew(x) = �w(x) if x 2 (a; b)0 if x 62 (a; b)is said to be orthogonal (orthonormal) with respet to the weight w.One thing distinguishing orthogonal polynomials from general orthog-onal systems is the existene of a three-term reursion.



2.3 Orthogonal Polynomials 59Theorem 2.3.2 (Three-Term Reursion). Suppose (pn)1n=0 is a sequene oforthonormal polynomials with respet to an m-distribution �. Thenxpn(x) = anpn+1(x) + bnpn(x) + an�1pn�1(x) ; n = 0; 1; : : : ;wherep�1 := 0 ; a�1 = 0 ; an = nn+1 > 0 ; bn 2 R ; n = 0; 1; : : :(n is the leading oeÆient of pn).This theorem has a onverse due to Favard [35℄; see E.12.Proof. Sine xpn(x) 2 Pn+1; we may write(2.3.7) xpn(x) = n+1Xk=0 dkpk(x) ; dk 2 R :For notational onveniene, lethp; qi := ZR p(x)q(x) d�(x)for any two polynomials p and q. Sine hpn; qi = 0 for every q 2 Pn�1; wehave hxpn(x); q(x)i = hpn(x); xq(x)i = 0for every q 2 Pn�2. In partiular,hxpn(x); pk(x)i = 0 ; k = 0; 1; : : : ; n� 2 :On the other hand, using (2.3.7) and the orthonormality of (pn)1n=0; weobtain hxpn(x); pk(x)i = dkhpk; pki = dk :Hene dk = 0 for eah k = 0; 1; : : : ; n� 2 and(2:3:8) xpn(x) = dn+1pn+1(x) + dnpn(x) + dn�1pn�1(x) :Here the lead oeÆient of the left-hand side polynomial is n; while thelead oeÆient of the right-hand side polynomial is dn+1n+1; soan := dn+1 = n=n+1 :In order to show that an�1 := dn�1 = n�1=n; note that (2.3.8) and theorthonormality of (pn)1n=0 imply



60 2. Some Speial Polynomials0 = hpn+1; pn�1i= 1dn+1 hxpn(x); pn�1(x)i � dndn+1 hpn; pn�1i � dn�1dn+1 hpn�1; pn�1i= 1dn+1 hpn(x); n�1xni � dn�1dn+1= 1dn+1 n�1n � dn�1dn+1 :Hene an�1 := dn�1 = n�1n : utTheorem 2.3.3 (Christo�el-Darboux Formula). With the notation of theprevious theorem,nXk=0 pk(x)pk(y) = nn+1 �pn+1(x)pn(y)� pn(x)pn+1(y)x� y �for all x 6= y 2 C :Proof. Theorem 2.3.2 (three-term reursion) yields that�k : = pk+1(x)pk(y)� pk(x)pk+1(y)= 1ak (x� y)pk(x)pk(y) + ak�1ak (pk(x)pk�1(y)� pk�1(x)pk(y)) :So ak �kx� y = pk(x)pk(y) + ak�1�k�1x� y ;and we sum the above from 0 to n to get the desired formula. utCorollary 2.3.4. In the notation of Theorem 2.3.2nXk=0 p2k(x) = nn+1 �p0n+1(x)pn(x)� p0n(x)pn+1(x)� :Proof. Let y ! x in Theorem 2.3.3. utWe an dedue quite easily from this that orthogonal polynomials as-soiated with an m-distribution � have real interlaing zeros lying in theinterior of the smallest interval ontaining supp(�); see E.1 and E.2.



2.3 Orthogonal Polynomials 61Comments, Exerises, and Examples.Askey, in omments following an outline of the history of orthogonal poly-nomials by Szeg}o [82, vol. III℄, writes:\The lassial orthogonal polynomials are mostly attributed to someoneother than the person who introdued them. Szeg}o refers to Abel andLagrange and Tshebyshe� in [75, hapter 5℄ for work on the Laguerrepolynomials L0n(x). Abel's work was published posthumously in 1881. Prob-ably the �rst published work on these polynomials that uses their orthonor-mality was by Murphy (1833). Hermite polynomials were studied exten-sively by Laplae in onnetion with work on probability theory. Hermite'sreal ontribution to these polynomials was to introdue Hermite polynomi-als in several variables. Lagrange ame aross the reurrene relation forLegendre polynomials."Perhaps this is not very surprising given the many diverse ways in whihthese polynomials an arise.There are many soures for the basi properties of orthogonal polyno-mials. In partiular, Askey and Ismail [84℄, Chihara [78℄, Erd�elyi et al. [53℄,Freud [71℄, Nevai [79b℄, [86℄, Szeg}o [75℄, and, in tabular form, Abramowitzand Stegun [65℄ are suh soures. Exerises inlude a treatment of the ele-mentary properties of the most familiar orthogonal polynomials. The on-netions linking orthogonal polynomials, the moment problem, and Favard'sonverse theorem to the three-term reursion are also examined in the ex-erises.E.1 Simple Real Zeros. Let (pn)1n=0 be the sequene of orthonormal poly-nomials assoiated with anm-distribution �. Show that eah pn has exatlyn simple real zeros lying in the interior of the smallest interval ontainingsupp(�):Hint: Suppose the statement is false. Then pn has at most n�1 sign hangeson [a; b℄; hene there exists 0 6= q 2 Pn�1 so thatpn(x)q(x) � 0 ; x 2 [a; b℄ :Show that this ontradits the orthogonality relation0 = ZR pn(x)q(x) d�(x) = Z ba pn(x)q(x) d�(x) : utE.2 Interlaing of Zeros. Let (pn)1n=0 be the sequene of orthonormalpolynomials assoiated with an m-distribution �. Then the zeros of pnand pn+1 stritly interlae. That is, there is exatly one zero of pn stritlybetween any two onseutive zeros of pn+1.



62 2. Some Speial PolynomialsHint: From Corollary 2.3.4,p0n+1(x)pn(x) � p0n(x)pn+1(x)is positive on R: Sine pn+1 has n + 1 simple real zeros (see E.1), we seethat if  and Æ are two onseutive zeros of pn+1; thensign(p0n+1()) = �sign(p0n+1(Æ)) ;and hene sign(pn()) = �sign(pn(Æ)) : utE.3 Orthogonality of (Kn(x0; x))1n=0. Let (pn)1n=0 be the sequene oforthonormal polynomials assoiated with an m-distribution �. Letx0 < min supp(�) or x0 > max supp(�) :Let (Kn(x0; x))1n=0 be the sequene of assoiated kernel funtions (as inE.5 of Setion 2.2). Show thatZRKn(x0; x)Km(x0; x)jx � x0j d�(x) = 0 ;for any two nonnegative integers n 6= m:E.4 Hypergeometri Funtions. We introdue the following standard no-tation: the rising fatorial (or Pohammer symbol)(a)n := a(a+ 1) � � � (a+ n� 1) ; (a)0 := 1for a 2 C and n = 1; 2; : : : ; the binomial oeÆient�an� := a(a� 1) � � � (a� n+ 1)n! ; �a0� := 1for a 2 C and n = 1; 2; : : : ; and the Gaussian hypergeometri series2F1(a; b ;  ; z) := F (a; b ;  ; z) := 1Xn=0 (a)n(b)n()n znn!for a; b;  2 C :a℄ For Re() > Re(b) > 0 ;F (a; b ;  ; z) = � ()� (b)� (� b) Z 10 tb�1(1� t)�b�1(1� tz)�a dt ;



2.3 Orthogonal Polynomials 63where � is, as usual, the gamma funtion de�ned by� (z) := Z 10 tz�1e�t dt ; Re(z) > 0 :Proof. See, for example, Szeg}o [75℄. utb℄ Hypergeometri Di�erential Equation. The funtion y = F (a; b ;  ; z)satis�es z(1� z) d2ydz2 + [� (a+ b+ 1)z℄ dydz � aby = 0 :Proof. See, for example, Szeg}o [75℄. utIn E.5, E.6, and E.7 we atalog some of the basi properties of someof the lassial orthogonal polynomials. Proofs are available in Szeg}o [75℄,for example.E.5 Jaobi Polynomials.a℄ Rodrigues' Formula. LetP (�;�)n (x) := (�1)n 2�nn! (1�x)��(1+x)�� dndxn �(1� x)�(1 + x)�(1� x2)n� :Then (P (�;�)n )1n=0 is a sequene of orthogonal polynomials on [�1; 1℄ asso-iated with the weight funtionw(x) := (1� x)�(1 + x)� ; �1 < �; � <1 :That is,P (�;�)n 2 Pn and Z 1�1 P (�;�)n P (�;�)m (1� x)�(1 + x)� dx = 0for any two nonnegative integers n 6= m.In the rest of the exerise, the polynomials P (�;�)n are as in part a℄.b℄ Normalization. We haveP (�;�)n (1) = �n+ �n � = (�+ 1)nn!and Z 1�1(P (�;�)n (x))2(1� x)�(1 + x)� dx= 2�+�+12n+ �+ � + 1 � (n+ �+ 1)� (n+ � + 1)� (n+ 1)� (n+ �+ � + 1) :



64 2. Some Speial Polynomials℄ Expliit Form.P (�;�)n (x) = 12n nXm=0�n+ �m ��n+ �n�m�(x � 1)n�m(x + 1)m= nXm=0��+ nn�m���+ � + n+mm ��x� 12 �m= �n+ �n � 2F1��n; n+ �+ � + 1 ;�+ 1 ; 1� x2 � :d℄ Di�erential Equation. The funtion y = P (�;�)n (x) satis�es(1� x2) d2ydx2 + [� � �� (�+ � + 2)x℄ dydx + n(n+ �+ � + 1)y = 0 :e℄ Reurrene Relation. The sequene (P (�;�)n (x))1n=0 satis�esDnP (�;�)n+1 (x) = (An +Bnx)P (�;�)n (x)� CnP (�;�)n�1 (x) ;where P (�;�)0 = 1 and P (�;�)1 (x) = 12 [�� � + (�+ � + 2)x℄and Dn = 2(n+ 1)(n+ �+ � + 1)(2n+ �+ �)An = (2n+ �+ � + 1)(�2 � �2)Bn = (2n+ �+ � + 2)(2n+ �+ � + 1)(2n+ �+ �)Cn = 2(n+ �)(n+ �)(2n+ �+ � + 2) :f ℄ Generating Funtion.1Xn=0P (�;�)n (x)zn = 2�+�R(1� z +R)�(1 + z +R)� ;where R = p1� 2xz + z2:There are various speial ases, some of whih we have previously de-�ned. The Legendre polynomials Pn are de�ned byPn := P (0;0)n ; n = 0; 1; : : : :



2.3 Orthogonal Polynomials 65The Chebyshev polynomials Tn de�ned in Setion 2.1 satisfyTn = 4n�2nn �P (�1=2;�1=2)n ; n = 0; 1; : : : :The ultraspherial (or Gegenbauer) polynomials C(�)n are de�ned byC(�)n := � (2�+ n)� (�+ 12 )� (2�)� (�+ n+ 12 )P (��1=2 ;��1=2)n ; n = 0; 1; : : : :In terms of C(�)n ; the Chebyshev polynomials of the �rst and seond kindare given by Tn = n2C(0)n and Un = C(1)n ; n = 0; 1; : : : :E.6 Hermite Polynomials.a℄ Rodrigues' Formula. LetHn(x) := (�1)nexp(�x2) dndxn exp(�x2) :Then (Hn)1n=0 is a sequene of orthogonal polynomials on (�1;1) asso-iated with the weight funtionw(x) := exp(�x2) :That is, Hn 2 Pn and ZRHn(x)Hm(x) exp(�x2) dx = 0for any two nonnegative integers n 6= m.In the rest of the exerise, the polynomials Hn are as in part a℄.b℄ Normalization. We haveZ 1�1(Hn(x))2 exp(�x2) dx = p� 2nn!and H2n+1(0) = 0 ; H2n(0) = (�1)n (2n)!n! :℄ Expliit Form. Hn(x) = n! bn=2Xm=0 (�1)m(2x)n�2mm!(n� 2m)! :



66 2. Some Speial Polynomialsd℄ Di�erential Equation. The funtion y = Hn(x) satis�esd2ydx2 � 2x dydx + 2ny = 0 :e℄ Reurrene Relation. The sequene (Hn(x))1n=0 satis�esHn+1(x) = 2xHn(x) � 2nHn�1(x)with H0(x) = 1 and H1(x) = 2x :f ℄ Generating Funtion.1Xn=0Hn(x)znn! = exp(2xz � z2) :E.7 Laguerre Polynomials. Let � 2 (�1;1).a℄ Rodrigues' Formula. LetL(�)n (x) := 1n!e�xx� dndxn (e�xx�+n) :Then (L(�)n )1n=0 is a sequene of orthogonal polynomials on [0;1) assoiatedwith the weight funtion w(x) := x� exp(�x) :That is, L(�)n 2 Pn and Z 10 L(�)n (x)L(�)m (x)x� exp(�x) dx = 0for any two nonnegative integers n 6= m.In the rest of the exerise, the polynomials L(�)n are de�ned as in part a℄.b℄ Normalization. We haveZ 10 (L(�)n (x))2x�e�x dx = � (�+ n+ 1)n!and L(�)n (0) = �n+ �n � :℄ Expliit Form. L(�)n (x) = nXm=0 (�1)mm! � n+ �n�m�xm :



2.3 Orthogonal Polynomials 67d℄ Di�erential Equation. The funtion y = L(�)n (x) satis�esx d2ydx2 + (�+ 1� x) dydx + ny = 0 :e℄ Reurrene Relation. The sequene (L(�)n (x))1n=0 satis�es(n+ 1)L(�)n+1(x) = [(2n+ �+ 1)� x℄L(�)n (x) � (n+ �)L(�)n�1(x)with L(�)0 = 1 and L(�)1 (x) = �x+ �+ 1 :f ℄ Generating Funtion.1Xn=0L(�)n (x)zn = exp� xzz � 1� (1� z)���1 :E.8 Christo�el Numbers and Gauss-Jaobi Quadrature. Let (pn)1n=0 bethe sequene of orthonormal polynomials assoiated with anm-distribution�. Let x�;n, � = 1; 2; : : : ; n; denote the zeros of pn. Let��;n := 1p0n(x�;n) ZR pn(x)x� x�;n d�(x) ; � = 1; 2; : : : ; n :The numbers ��;n are alled the Christo�el or Cotes numbers.a℄ Show that, for any q 2 P2n�1;ZR q(x)d�(x) = nX�=1��;nq(x�;n) :Hint: First show the equality for every q 2 Pn�1 by using the Lagrangeinterpolation formula (E.6 of Setion 1.1). If q 2 P2n�1; then q = spn + rwith some s; r 2 Pn�1; where s is orthogonal to pn. utb℄ Show that ��;n > 0 for every � = 1; 2; : : : ; n:Hint: Use part a℄ to show that��;n = 1(p0n(x�;n))2 ZR� pn(x)x� x�;n�2 d�(x) : ut



68 2. Some Speial Polynomials℄ Suppose [a; b℄ is a �nite interval ontaining supp(�). Let f 2 C[a; b℄.Show that�����Z ba f(x) d�(x) � nX�=1��;nf(x�;n)������ 2(�(b+)� �(a�)) minp2P2n�1 kf � pk[a;b℄ :Hint: Use parts a℄ and b℄ together with the observationnX�=1 ��;n = Z ba d�(x) = �(b+)� �(a�) : utd℄ Suppose supp(�) � [a; b℄; where a; b 2 R. Show thatnX�=1��;nf(x�;n) �!n!1 Z ba f(x)d�(x)for every Riemann-Stieltjes integrable funtion on [a; b℄ with respet to �.Hint: First show that f is Riemann-Stieltjes integrable on [a; b℄ with respetto � if and only if for every � > 0 there are g1; g2 2 C[a; b℄ so thatg1(x) � f(x) � g2(x) ; x 2 [a; b℄and Z ba (g2(x) � g1(x)) d�(x) < � :Finish the proof by part ℄ and the Weierstrass approximation theorem (seeE.1 of Setion 4.1). ute℄ Suppose supp(�) is ompat. LetZ := fx�;n : � = 1; 2; : : : ; n; n = 1; 2; : : :g :Show that supp(�) � Z; where Z denotes the losure of Z.Hint: Use part d℄. utf ℄ Show by an example that supp(�) 6= Z is possible.E.9 Charaterization of Compat Support. Using the notation of Theo-rem 2.3.2 and E.8, show that the following statements are equivalent:(1) supp(�) is ompat.(2) supn2Nfjanj+ jbnjg <1.(3) The set Z := fx�;n : � = 1; 2; : : : ; n; n = 1; 2; : : :g is bounded.



2.3 Orthogonal Polynomials 69Outline. (1) ) (2). Note that the orthogonality of fpng1n=0 impliesan = ZRxpn�1(x)pn(x) d�(x) and bn = ZRxp2n(x) d�(x) :So supp(�) � [�K;K℄; the Cauhy-Shwarz inequality, and the orthonor-mality of (pn)1n=0 yieldjanj � K Z K�K jpn�1(x)pn(x)j d�(x)� K Z K�K p2n�1(x) d�(x)!1=2 Z K�K p2n(x) d�(x)!1=2 � Kand jbnj � K Z K�K p2n(x)d�(x) = K :(2) ) (3). Use Theorem 2.3.2 (three-term reursion) to show thatx�;n n�1Xk=0 p2k(x�;n) � 2 n�1Xk=0 ak+1pk(x�;n)pk+1(x�;n) + n�1Xk=0 bkp2k(x�;n) :Henejx�;nj n�1Xk=0 p2k(x�;n) � �2 max0�k�n�1 jakj+ max0�k�n�1 jbkj� n�1Xk=0 p2k(x�;n) :(3) ) (1). If Z � [�K;K℄; then by E.8 a℄ZRx2n�2 d�(x) = nX�=1��;nx2n�2�;n � K2n�2 ZR d�(x) ;whih implies supp(�) � [�K;K℄. utE.10 A Condition for supp(�) � [0;1). Let (pn)1n=0 be the sequeneof orthonormal polynomials assoiated with an m-distribution �. Supposesupp(�) is ompat andpn(0)pn+1(0) < 0 ; n = 0; 1; : : : :Show that supp(�) � [0;1).Hint: Use the interlaing property of the zeros of pn (E.2) to show thatZ := fx�;n : � = 1; 2; : : : ; n; n = 1; 2; : : :g � [0;1):Now use E.8 e℄ to obtain supp(�) � [0;1). ut



70 2. Some Speial PolynomialsE.11 The Solvability of the Moment Problem. Let (�n)1n=0 be a sequeneof real numbers. We would like to haraterize those sequenes (�n)1n=0 forwhih there exists an m-distribution � so thatZRxn d�(x) = �n ; n = 0; 1; : : : :Let �(p) := nXk=0 ak�kfor every p 2 Pn of the form p(x) =Pnk=0 akxk.A polynomial p is alled nonnegative if it takes nonnegative values onthe real line. The sequene (�n)1n=0 is alled positive de�nite if�(p) := nXk=0 ak�k > 0 ; n = 0; 1; : : :holds for every nonnegative polynomial p 2 Pn of the formp(x) = nXk=0 akxk :The aim of this exerise is to outline the proof of Hamburger's harateri-zation of the solvability of the moment problem by the positive de�nitenessof the sequene of moments. See part o℄.a℄ Show that if there exists an m-distribution � so thatZRxn d�(x) = �n ; n = 0; 1; : : : ;then (�n)1n=0 is positive de�nite.Hint: An m-distribution � is inreasing at in�nitely many points. utb℄ Show that (�n)1n=0 is positive de�nite if and only if �(p2) > 0 holds forevery 0 6= p 2 Pn; n = 0; 1; : : : :Hint: Use E.3 of Setion 2.4. ut℄ Show that (�n)1n=0 is positive de�nite if and only if�������� �0 �1 : : : �n�1 �2 : : : �n+1... ... . . . ...�n �n+1 : : : �2n �������� > 0 ; n = 0; 1; : : : :



2.3 Orthogonal Polynomials 71Hint: Use part b℄ and the law of inertia of Sylvester. See, for example, vander Waerden [50℄. utd℄ Helly's Seletion Theorem. Suppose the funtions fn; n = 1; 2; : : : ;are nondereasing on R; and supn2N kfnkR <1 :Then there exists a subsequene of (fn)1n=1 that onverges for every x 2 R.That is, we an selet a pointwise onvergent subsequene.Hint: See, for example, Freud [71℄. ute℄ Helly's Convergene Theorem. Let [a; b℄ be a �nite interval. Supposethe funtions �n, n = 1; 2; : : : ; are nondereasing on [a; b℄ andsupn2Nk�nk[a;b℄ <1 :Suppose also that (�n(x))1n=1 onverges to �(x) for every x 2 [a; b℄: Thenlimn!1 Z ba f(x) d�n(x) = Z ba f(x) d�(x)for every f 2 C[a; b℄:Hint: See, for example, Freud [71℄. utIn the rest of the exerise (exept for the last part) we assume that(�n)1n=0 is positive de�nite. Our goal is to prove the onverse of part a℄.Let p�n(x) := �������� �0 �1 : : : �n�1 1�1 �2 : : : �n x... ... . . . ... ...�n �n+1 : : : �2n�1 xn �������� :f ℄ Show that �(p�nq) = 0 ; q 2 Pn�1 :g℄ Show that eah p�n has n simple real zeros.Hint: Use part f℄. utLet x1;n > x2;n > � � � > xn;n be the zeros of p�n. Letl�;n(x) := p�n(x)p�0n (x�;n)(x � x�;n) ; � = 1; 2; : : : ; n ; n = 1; 2; : : :(see E.6 of Setion 1.1), and let��;n := �(l�;n) :



72 2. Some Speial Polynomialsh℄ Show that �(q) = nX�=1��;nq(x�;n)for every q 2 P2n�1:Hint: Use part f℄. uti℄ Show that��;n = �(l2�;n) > 0 ; � = 1; 2; : : : ; n ; n = 1; 2; : : : :Hint: Use part h℄. utFor x 2 R; let�n(x) := Xf�:x�;n�xg��;n ; n = 1; 2; : : : :j℄ Show that 0 � �n(x) � �0 on R for eah n; and there is a subsequene of(�n)1n=1 that onverges pointwise to a nondereasing real-valued funtion� on R.Hint: Use parts h℄, i℄, and d℄. utk℄ Show that for every �nite interval [a; b℄,limk!1 Z ba xm d�nk (x) = Z ba xm d�(x) ; m = 0; 1; 2; : : : ;where � is de�ned in part j℄.Hint: Use part e℄. utl℄ Let m be a �xed nonnegative integer and let r := bm=2+1. Show thatif nk � r + 1; a � �1 and b � 1; then����Z a�1 xm d�nk (x) + Z 1b xm d�nk (x)����� � 1jaj + 1jbj�ZRx2r d�nk (x) = � 1jaj + 1jbj��2r :Hint: Use part h℄. utm℄ Show that ZRxm d�(x) = �m ; m = 0; 1; 2; : : :where � is de�ned in part j℄.Hint: Use parts k℄ and l℄. ut



2.3 Orthogonal Polynomials 73n℄ Show that � de�ned in part j℄ is an m-distribution.o℄ There exists an m-distribution � so that�n = ZRxn d�(x)if and only if (�n)1n=0 is positive de�nite, that is, if and only if�������� �0 �1 : : : �n�1 �2 : : : �n+1... ... . . . ...�n �n+1 : : : �2n �������� > 0 ; n = 0; 1; : : : :Hint: Combine parts a℄, ℄, m℄, and n℄. utNeessary and suÆient onditions for the uniqueness of the solutionof the moment problem are given in Freud [71℄, for example.E.12 Favard's Theorem. Given (an)1n=0 � (0;1) and (bn)1n=0 � R; thepolynomials pn 2 Pn are de�ned byxpn(x) = anpn�1(x) + bnpn(x) + an+1pn+1(x) ;p�1 = 0 ; p0 = 0 > 0 :Then there exists an m-distribution � suh thatZR pn(x)pm(x) d�(x) = 0for any two distint nonnegative integers n and m. In other words, theonverse of Theorem 2.3.2 is true.In order to prove Favard's theorem, proeed as follows:a℄ Show that the polynomials pn are of the formpn(x) = nxn + r(x) ; n > 0 ; r 2 Pn�1 :b℄ Let epn := �1n pn; n = 0; 1; : : : . The sequene (�n)1n=0 is de�ned asfollows. Let �0 := 1 ; �(q) :=  if q =  ;  2 R :If �0; �1; : : : ; �n have already been de�ned, then let�(q) := nXk=0 k�k whenever q(x) = nXk=0 kxk ; k 2 R



74 2. Some Speial Polynomialsand let �n+1 := �(xn+1 � epn+1(x)) :Show that�(epnepm) = 0 ; m = 0; 1; : : : ; n� 1 ; n = 0; 1; : : :and �(ep2n) > 0 ; n = 0; 1; : : : :Hint: It is suÆient to prove that�(epn(x)xm) = 0 ; m = 0; 1; : : : ; n� 1 ; n = 0; 1; : : :and �(epn(x)xn) > 0 ; n = 0; 1; : : : :These an be obtained from the de�nition of � and from Theorem 2.3.2(three-term reursion) by indution on n. ut℄ Show that every q 2 Pn is of the formq = nXk=0 kepk ; k 2 Rand if q 6= 0; then �(q2) = nXk=0 2k�(ep2k) > 0 :d℄ Show that (�n)1n=0 is positive de�nite in the sense of E.11.Hint: Use the previous part and E.11 b℄. ute℄ Prove Favard's theorem.Hint: Use part o℄ of E.11, parts d℄ and b℄ of this exerise, and the de�nitionof �. utE.13 Christo�el Funtion. Let � be an m-distribution. For a �xed n 2 N;the funtion�n(z) = inf �ZR q2(x) d�(x) : q 2 Pn�1 ; jq(z)j = 1� ; z 2 Cis alled the nth Christo�el funtion assoiated with �.a℄ Show that �n(z) :=  n�1Xk=0 jpk(z)j2!�1 ;where (pn)1n=0 is the sequene of orthonormal polynomials assoiated with�.



2.3 Orthogonal Polynomials 75Show also that the in�mum in the de�nition of �n(z) is atually aminimum, and it is attained if and only ifq(x) = Pn�1k=0 pk(z)pk(x)Pn�1k=0 jpk(z)j2 :Hint: Write q = n�1Xk=0 kpk ; k 2 Cand observe that the orthonormality of (pn)1n=0 impliesZR q2(x) d�(x) = n�1Xk=0 jkj2 :Now use the Cauhy-Shwarz inequality (E.3 of Setion 2.2) to �nd themaximum of jq(z)j for polynomials q 2 Pn�1 satisfyingZR q2(x) d�(x) � 1where z 2 C is �xed.b℄ Let ��;n; � = 1; 2; : : : ; n; be the Christo�el numbers assoiated with anm-distribution �; that is, the oeÆients in the Gauss-Jaobi quadratureformula, as in E.8. Show that��;n = �n(x�;n) ; � = 1; 2; : : : ; n ;that is, the Christo�el numbers are the values of the Christo�el funtion atthe zeros of the nth orthonormal polynomial pn.Hint: Use parts E.8 a℄ and E.8 b℄. ut℄ Let x 2 R be �xed. Show that1Xn=0 p2n(x) <1if and only if x is a mass point of �; that is, �(x�) < �(x+); in whih ase1Xn=0 p2n(x) = (�(x+) � �(x�))�1 :Hint: Use part a℄ and the Weierstrass approximation theorem. See E.1 ofSetion 4.1. ut



76 2. Some Speial PolynomialsE.14 The Markov-Stieltjes Inequality. Let � be an m-distribution withassoiated orthonormal polynomials (pn)1n=0. Let x1;n > x2;n > � � � > xn;ndenote the zeros of pn. Let x0;n := 1 and xn+1;n := �1. As in E.8 let��;n, � = 1; 2; : : : ; n; be the Christo�el numbers assoiated with � . Showthat ��;n � Z x��1;nx�+1;n d�(x) ; � = 1; 2; : : : ; nand Z x��1;nx�;n d�(x) � ��;n + ���1;n ; � = 2; 3; : : : ; n :Hint: Let 1 � k � n be �xed. Use E.7 of Setion 1.1 (Hermite interpola-tion) to �nd polynomials P 2 P2n�1 and Q 2 P2n�1 with the followingproperties:(1) P (xj;n) = Q(xj;n) = 1 ; j = 1; 2; : : : ; k � 1 ;(2) P (xk;n) = 0 ; Q(xk;n) = 1 ;(3) P (xj;n) = Q(xj;n) = 0 ; j = k + 1; k + 2; : : : ; n ;(4) P (x) � �(�1; xk;n℄(x) � Q(x) ; x 2 R ;where �(�1; xk;n℄(x) := � 1 if �1 < x � xk;n0 if xk;n < x <1 :Now apply E.8 (Gauss-Jaobi quadrature formula) to P and Q. utE.15 Orthonormal Polynomials as Determinants. Suppose � is an m-distribution with moments�n = ZRxn d�(x) ; n = 0; 1; : : : :Let �n := �������� �0 �1 : : : �n�1 �2 : : : �n+1... ... . . . ...�n �n+1 : : : �2n �������� ; n = 0; 1; : : : :a℄ Show that �n > 0; n = 0; 1; 2; : : : :b℄ Show that the orthonormal polynomials pn assoiated with � are of theform pn(x) = (�n�n�1)�1=2 �������� �0 �1 : : : �n�1 1�1 �2 : : : �n x... ... . . . ... ...�n �n+1 : : : �2n�1 xn �������� :



2.3 Orthogonal Polynomials 77℄ Let (an)1n=0 � (0;1) and (bn)1n=0 � R be the oeÆients in the three-term reursion for the sequene (pn)1n=0 of orthonormal polynomials asso-iated with � as in Theorem 2.3.2. Show that the moni orthogonal poly-nomials epn := �1n pn are of the formepn(x) = det (xIn � Jn)where Jn is the tridiagonal n by n Jaobi matrixJn := 0BBBB� b0 a1a1 b1 a2a2 b2 a3. . . . . . . . .an bn
1CCCCAand In is the n by n unit matrix.E.16 The Support of �. Let (an)1n=0 � (0;1) and (bn)1n=0 � R be theoeÆient sequenes in the three-term reursion for the sequene of (pn)1n=0of orthonormal polynomials assoiated with an m-distribution � as in The-orem 2.3.2.a℄ Show that if supp(�) � [b� a; b+ a℄ with some a > 0 and b 2 R; thenan � a and jbn � bj � a ; n = 0; 1; : : : :Hint: Use the orthonormality of (pn)1n=0 to show thatan = Z b+ab�a (x� b)pn�1(x)pn(x) d�(x)and bn � b = Z b+ab�a (x� b)p2n(x) d�(x) :Now apply the Cauhy-Shwarz inequality, and use the orthonormality of(pn)1n=0 again. utb℄ Show that supp(�) � [�K;K℄where K := 2 supfan : n 2 Ng + supfjbnj : n 2 Ng(the suprema are taken over all nonnegative integers).Hint: Suppose K < 1; otherwise there is nothing to prove. Combine E.9,the inequality in the hint to the diretion (2)) (3) of E.9, and E.8 e℄. ut



78 2. Some Speial Polynomials℄ Blumenthal's Theorem. Assume thatlimn!1 an =: a2 > 0 and limn!1 bn =: b 2 R :Then supp(�) = [b� a; b+ a℄ [ Fwhere F � R n [b� a; b+ a℄ is a ountable bounded set for whihF n (b� a� �; b+ a+ �)is �nite for every � > 0.Proof. See Nevai [79b℄ or M�at�e, Nevai, and Van Asshe [91℄. utd℄ Rakhmanov's Theorem. Suppose supp(�) � [b � a; b + a℄ with somea > 0 and b 2 R. Suppose also that �0(x) > 0 a.e. in [b� a; b+ a℄. Thenlimn!1 an = a2 and limn!1 bn = b :Proof. See, for example, M�at�e, Nevai, and Totik [85℄, or Nevai [91℄. utThere is an analogous theory of orthogonal polynomials on the unitirle initiated by Geronimus, Shohat, and Ahiezer. An important ontri-bution, alled Szeg}o theory, may be found in Freud [71℄.E.17 A Theorem of Stieltjes [14℄. Let w be a positive ontinuous weightfuntion on [�a; a℄. Denote the nth moment by�n := Z a�a xnw(x) dx :Let epn 2 Pn denote the nth moni orthogonal polynomial on [�a; a℄ asso-iated with the weight w. Then (epn)1n=0 satis�es a three-term reursionepn(x) = (x�An)epn�1(x) �Bnepn�2(x)with ep0(x) = 1 and ep1(x) := x�A1; see Theorem 2.3.2.Suppose the sequene of polynomials (qn)1n=0 satis�es the same reur-sion ommening with q0(x) := 0 and q1(x) := B1. Stieltjes' theorem (see,for example, Cheney [66℄) states the following.Theorem. For any x =2 [�a; a℄;Z a�a w(t) dtx� t = �0x + �1x2 + � � �= B1x�A1 � B2x�A2 � B3x� A3 � � � � :



2.4 Polynomials with Nonnegative CoeÆients 79Furthermore, the nth onvergent qn=epn satis�esqn(x)epn(x) = B1x�A1 � B2. . . Bnx�An :E.18 Completeness of Orthogonal Polynomials. Let (pn)1n=0 be the se-quene of orthonormal polynomials assoiated with an m-distribution �. Ifsupp(�) � [a; b℄; where [a; b℄ is a �nite interval, then (pn)1n=0 is a maximalorthogonal olletion in L2[a; b℄.Hint: Use the Weierstrass approximation theorem (E.1 of Setion 4.1) on[a; b℄. utE.19 Bounds for Jaobi Polynomials. For all Jaobi weight funtionsw(x) = (1� x)�(1 + x)� with � � �1=2 and � � �1=2; the inequalitiesmaxx2[�1;1℄ p2n(x)Pnk=0 p2k(x) � 4�2 +p�2 + �2�2n+ �+ � + 2and maxx2[�1;1℄p1� x2w(x)p2n(x) � 2e�2 +p�2 + �2��hold, where (pn)1n=0 is the sequene of orthonormal Jaobi polynomialsassoiated with the weight funtion w.Proof. See Erd�elyi, Magnus, and Nevai [94℄. ut2.4 Polynomials with Nonnegative CoeÆientsA quadrati polynomial x2 + �x + � with real oeÆients has both rootsin the halfplane fz 2 C : Re(z) � 0g if and only if � � 0 and � � 0. Thiseasy onsequene of the quadrati formula gives the following lemma:Lemma 2.4.1. If p 2 Pn has all its zeros in fz 2 C : Re(z) � 0g; then eitherp or �p has all nonnegative oeÆients.The onverse of this is far from true. Indeed, the following result ofMeissner holds (see P�olya and Szeg}o [76℄). We denote by P+n the set ofpolynomials in Pn; that have all nonnegative oeÆients.



80 2. Some Speial PolynomialsTheorem 2.4.2. If p 2 Pn and p(x) > 0 for x > 0; then p = s=t; where sand t are both polynomials with all nonnegative oeÆients.Sine a polynomial p that is real-valued on the positive real axis hasreal oeÆients, and sine p(x) > 0 for all x > 0 implies that the leadingoeÆient of p is positive, Theorem 2.4.2 will follow immediately from thenext lemma.Lemma 2.4.3. Suppose �; � 2 R and suppose x2 � �x + � has no non-negative root. Then x2��x+� = p(x)=q(x); where p; q 2 Pm both have allnonnegative oeÆients, and wherem � 10�4� �2� ��1=2 :Proof. The quadrati polynomial x2 � �x + � has no positive root if andonly if �2 < 4�. We set  := �2=� and note that  < 4. Consider(x2 � �x + �)(x2 + �x+ �) = x4 + (2� � �2)x2 + �2= x4 + �(2� )x2 + �2 :If  � 2 we have the desired fatorization. If  > 2; onsider(x4 + �(2� )x2 + �2)(x4 � �(2� )x2 + �2)= x8 + �2(2� (2� )2)x4 + �4 :If 2� (2� )2 > 0 we are �nished. In general, we proeed as follows:LetPn(x) : = x2n+1 + �2n�1(2� (2� (2� � � � 2� (2� )2)2 � � � )2)x2n + �2n= x2n+1 + �2n�1nx2n + �2n ;where n has n nested terms. LetQn(x) := x2n+1 � �2n�1nx2n + �2n :Note that, sine n+1 = 2� 2nPn(x)Qn(x) = x2(n+1)+1 � �2n2nx2n+1 + 2�2nx2n+1 + �2n+1= x2n+2 + �2nn+1x2n+1 + �2n+1= Pn+1(x) :



2.4 Polynomials with Nonnegative CoeÆients 81Consider the smallest n (if it exists) suh that n is nonnegative. Then(x2 � �x + �)(x2 + �x+ �) = P1(x)and P1Q1Q2 � � �Qn�1 = Pn ;where Q1Q2 � � �Qn�1 2 P+2n+1�4 sine eah k < 0 for k < n; and wherePn 2 P+2n+1 sine n � 0. Thus, we have the desired representationx2 � �x+ � = Pn(x)(x2 + �x+ �)(Q1Q2 � � �Qn�1)(x) ;where n is the smallest integer suh that n > 0:Now suppose 1; : : : ; n�1, n are all nonpositive. Thenk = �p2� k+1 ; k = 1; 2; : : : ; n� 1and 1 = 2�  imply(2:4:1)  > 2 + (2 + � � � (2 + (2 + 21=2)1=2)1=2 � � � )1=2 =: Æn ;where the above formula ontains n iterations. Sine, by assumption,  < 4;and sine Æn ! 4 as n!1; it is lear that (2:4:1) is not satis�ed for somen; and eventually some n is greater than zero.The estimate on the degree requires analyzing the rate of onvergeneof (Æn)1n=0. Sine Æn = 2 +pÆn�1; we have4� Æn = 2�pÆn�1 = 4� Æn�12 +pÆn�1 � 4� Æn�12 :By repeated appliations of the above,4� Æn � 4� Æ02n = 12n�1 :Now we an improve the above estimate as follows: We have4� Æn = 4� Æn�12 +pÆn�1 = 4� Æn�2(2 +pÆn�1)(2 +pÆn�2)= 4� Æ0(2 +pÆn�1)(2 +pÆn�2) � � � (2 +pÆ0)� 2(2 +p4� 22�n)(2 +p4� 23�n) � � � (2 +p4� 2(n+1)�n)� 2(2 + 2� 21�n)(2 + 2� 22�n) � � � (2 + 2� 2n�n)�2 � 4�n n+1Yj=2 11� 2�j � 2 � 4�n n+1Yj=2 (1 + 2 � 2�j) � 2e4�n :



82 2. Some Speial PolynomialsSo if m := 2n+1 � 2p2ep4�  ;then 4� Æn � 2e4�n � 4�  ;that is, Æn � : utWe note that in the above proof a little additional e�ort yields a slightlybetter onstant than 10.Let k 2 N and � 2 (0; �). It follows easily from Lemma 2.3.4 that ifp 2 Pk has no zeros in the onefz 2 C : j arg(z)j < �g ;then there are s; t 2 P+m with m � 54�k��1 so that p = s=t; see E.1 d℄. Theessential sharpness of this upper bound is shown by E.1 e℄. An easier proofof Theorem 2.4.2 that gives a weaker bound for the degree of the numeratorand denominator in the representation is given by E.1 f℄.A similar sort of representation theorem due to Bernstein [15℄ is thefollowing:Theorem 2.4.4. If p 2 Pn and p(x) > 0 for x 2 (�1; 1); then there is arepresentation p(x) = dXj=0 aj(1� x)j(1 + x)d�jwith eah aj � 0. (The smallest d := d(p) for whih suh a representationexists is alled the Lorentz degree of p.)It suÆes to prove this result for quadrati polynomials; this is left asan exerise; see E.1 f℄.The proof of the following interesting result of Barnard et al. [91℄ issurprisingly ompliated, and we do not reprodue it here.Theorem 2.4.5. Suppose that p 2 Pn has all nonnegative oeÆients. Sup-pose that the zeros of p are z1; z1; : : : ; zn 2 C : For � � 0; letp� (z) = nYj=1jarg(zj)j>��1� zzj� ;where arg(z) is de�ned so that arg(z) 2 [��; �): Then p� (z) has all non-negative oeÆients.It follows from this result that if p 2 Pn has all nonnegative oeÆientsand if q(x) = x2 + �x + � is a quadrati polynomial with zeros forminga pair of onjugate zeros of p that have least angular distane from thepositive x-axis, then p=q also has all nonnegative oeÆients.



2.4 Polynomials with Nonnegative CoeÆients 83Comments, Exerises, and Examples.Polynomials with all nonnegative oeÆients have a number of distinguish-ing properties that are explored in the exerises. For example, only analytifuntions with all nonnegative oeÆients an be approximated uniformlyon [0; 1℄ by suh polynomials; see E.2. So a Weierstrass-type theorem doesnot hold for these polynomials. This is quite di�erent from approximationby polynomials of the form(2:4:2) X ai;j(x+ 1)i(1� x)j ; ai;j � 0 :Sine every polynomial that is stritly positive on (�1; 1) has suh a repre-sentation (E.1 b℄), it follows from the Weierstrass approximation theoremthat all nonnegative funtions from C[�1; 1℄ are in the uniform losure.It follows from Theorem 2.4.2 and the Weierstrass approximation the-orem (see E.1 of Setion 4.1) that frations of polynomials with all non-negative oeÆients form a dense set in the uniform norm on [0; 1℄ in theset of nonnegative ontinuous funtions on a �nite losed interval [0; 1℄.Hene they have a muh larger uniform losure on [0; 1℄ than that of thepolynomials with all nonnegative oeÆients.Various inequalities for polynomials of the form (2:4:2) are onsideredin Appendix 5.E.1 Remarks on Theorem 2.4.2.a℄ Suppose �; � 2 R; � 2 (0; �); and suppose x2 + �x + � has no zeros inthe one fz 2 C : j arg(z)j < �g :Show that there are p; q 2 P+m with m � 52���1 suh thatx2 + �x+ � = p(x)q(x) :Hint: This is a reformulation of Theorem 2.4.3 by introduing the anglebetween the positive x-axis and the zero of the quadrati polynomial. utb℄ Let n 2 N: Show that if p 2 P+n ; then p has no zeros in the onefz 2 C : jarg(z)j < �=(2n)g :This is sharp, as the example p(x) := xn + 1 shows.℄ Show that the result of part a℄ is sharp up to the onstant 52 .Hint: Let n 2 N. Considerx2 + �x + � = �x� exp � 2�i2n �� �x� exp ��2�i2n �� :



84 2. Some Speial PolynomialsShow that if there are p; q 2 P+m so that x2 + �x + � = p(x)=q(x); thenm � n� 1. utd℄ Let � 2 (0; �) and k 2 N: Suppose p 2 Pk has no zeros in the onefz 2 C : j arg(z)j < �g :Show that there are s; t 2 P+m with m � 54�k��1 so that p = s=t :e℄ Let � 2 (0; �) and k 2 N. Letfk(x) := ((x � z0)(x� z0))k ;where arg(z0) = �: Assume that fk = s=t; where s; t 2 P+m: Show thatm � (log 2)k��1 :Hint: First observe thats(y) � s(y + yÆm�1) � eÆs(y)for every s 2 P+m; y 2 (0;1); and Æ 2 (0;1): Thereforefk(y + yÆm�1) � eÆfk(y)for every y 2 (0;1) and Æ 2 (0;1): Now let y � jz0j be hosen so thatjy � z0j = �: Applying the above inequality with this y and Æ := m�; weobtain fk(y + �y) � em�fk(y) ;hene 2k � em�; that is, k log 2 � m�. utf ℄ Prove that if r 2 Pn and r(x) > 0 for all x > 0; then there is an integerd � n suh that r(x) = q(x)(1 + x)d�n ;where q 2 P+d :Hint: Let �; � 2 R and �2 < 4�: Consider(x2 � �x + �)(1 + x)d = d+2Xj=0 jxjand ompute j expliitly. utg℄ If p 2 Pn and p(x) > 0 for all x 2 (�1; 1); then it is of the formp(x) = dXj=0 aj(1� x)j(1 + x)d�j ; aj � 0for some d � n:Hint: Apply a℄ tor(u) := (1 + u)np�1� u1 + u� ; u := 1� x1 + x : ut



2.4 Polynomials with Nonnegative CoeÆients 85E.2 Polynomials with Nonnegative CoeÆients.a℄ If p 2 P+n ; then for x > 00 � p0(x) < nx p(x) :b℄ If (pn)1n=1 is a sequene of polynomials with pn 2 P+ := [1k=0P+k and(pn)1n=1 onverges to f uniformly on [0; 1℄; then f is the restrition to [0; 1℄of a funtion analyti in D := fz 2 C : jzj < 1g of the formf(z) = 1Xn=0 anzn ; an � 0 :Hint: Sine (pn(1))1n=1 onverges and eah pn has nonnegative oeÆients,there is a onstant C suh thatkpnkD � pn(1) � C ; n = 1; 2; : : : :Now Montel's theorem (see, for example, Ash [71℄) implies that (pn)1n=1has a loally uniformly onvergent subsequene on D. Dedue that thissubsequene onverges to an f with nonnegative oeÆients. utE.3 Nonnegative-Valued Polynomials and Sums of Squares.a℄ Suppose p 2 P2n is nonnegative on R. Then there exist s, t 2 Pn suhthat p(x) = s2(x) + t2(x) :Hint: If p 2 P2 and p is nonnegative, then for some real numbers � and �,p(x) = (x� �)2 + �2 :Now use the identity(a2 + b2)(2 + d2) = (a+ bd)2 + (ad� b)2 : utb℄ If p 2 P2n is nonnegative for x � 0; then there exist s, t, u, v 2 Pn suhthat p(x) = s2(x) + t2(x) + xu2(x) + xv2(x) :℄ Suppose t 2 Tn is nonnegative on R. Show that there exists a q 2 Pnsuh that t(�) = jq(ei�)j2 ; � 2 R :Show also that if, in addition, t 2 Tn is even, then there exists a q 2 Pnsuh that the above holds.



86 2. Some Speial Polynomialsd℄ If p 2 Pn is nonnegative on [�1; 1℄; then there exist s, t 2 Pn suh thatp(x) = s2(x) + (1� x2)t2(x) :Hint: Write, by ℄, p(os �) = js(os �) + it(os �) sin �j2 : utThe above exerise follows P�olya and Szeg}o [76℄; see also E.1 of Setion7.2 where this result is extended.The following two exerises disuss results proved in Erd�elyi andSzabados [88℄, [89b℄, and Erd�elyi [91℄.E.4 Lorentz Degree of Polynomials. Given a polynomial p 2 Pn; letd = d(p) be the minimal nonnegative integer for whih the polynomial p isof the form p(x) = � dXj=0 aj(1� x)j(x+ 1)d�j ; aj � 0 :If there is no suh d; then let d(p) := 1: We all d := d(p) the Lorentzdegree of the polynomial p:a℄ Let p 2 Pn n Pn�1 be of the formp(x) = nXj=0 bj(1� x)j(x+ 1)n�j ; bj 2 R :For m � n; let the numbers bj;m, j = 0; 1; : : : ;m; be de�ned byp(x) =  nXj=0 bj(1� x)j(x+ 1)n�j!�1� x2 + x+ 12 �m�n= mXj=0 bj;m(1� x)j(x+ 1)m�j :Show that if d(p) is �nite, then it is the smallest value of m for whih eahbj;m is nonnegative or eah bj;m is nonpositive.b℄ Show that if p 2 P1 n P0 has no zeros in (�1; 1); then d(p) = 1.℄ Show that if p 2 P2nP1 has no zeros in the open unit disk, then d(p) = 2.d℄ Show that if the zeros of a polynomial p 2 P2 n P1 lie on the ellipseB� := �z = x+ iy : y2 = �2(1� x2); x 2 (�1; 1)	with � 2 (0; 1℄; then ��2 � d(p) < 2��2 + 1:



2.4 Polynomials with Nonnegative CoeÆients 87e℄ Let � 2 (0; 1) be suh that ��2 is an integer. Letp1(x) := x2 + 23�2 � 11� �2 x+ 8�4 � 5�2 + 11� �2 :Show that p1 has its zeros on B� de�ned in d℄, and d(p1) = ��2:f ℄ Let � 2 (0; 1) be suh that 2��2 is an integer. Letp2(x) := x2 � 2 2� 3�2(1� �2)(2� �2)x+ ��8 � 5�6 + �4 � 8�2 + 4(1� �2)(2� �2)2 :Show that p2 has its zeros on B� de�ned in part d℄, and d(p2) = 2��2:g℄ Show that d(pq) � d(p) + d(q) for any two polynomials p and q:h℄ Let � 2 (0; 1℄. Show that if p 2 Pn has no zeros inD� := �z = x+ iy : y2 < �2(1� x2); x 2 (�1; 1); y 2 R	 ;then d(p) < 2n��2 + n < 3n��2 :i℄ Let p be a polynomial. Show that d(p) <1 if and only if p = 0 or p hasno zeros in (�1; 1):j℄ Show that ����p�y + i2q (1�y2)nd ����� � 2n ��p �y � n4d���for every p 2 Bd(�1; 1), 1 � n � d; and y 2 [0; 1) (i is the imaginary unit).Hint: Modify the proof of Lemma A.5.4. utk℄ Let b 2 [0; 1℄. Show that p0(b) � d p(b)for every p 2 Bd(�1; 1); positive in (�1; 1):Hint: If qj;d(x) := (1� x)j(x+ 1)d�j ; thenq0j;d(b) = qj;d(b)�d� j1 + b � j1� b� � d qj;d(b) ; j = 0; 1; : : : ; dfor every b 2 [0; 1℄: utl℄ Show that d(p) � 117n��2 wheneverp(x) = ((x� z0)(x� �z0))n ; z0 2 B� ; � 2 (0; 1℄ ;where B� is de�ned in part d℄.



88 2. Some Speial PolynomialsProof. Let z0 = y+ i�(1� y2)1=2, y 2 (�1; 1): Without loss of generality itmay be assumed that 0 � y < 1: Distinguish two ases.Case 1: 1� 2�2 � y < 1. By part k℄,d(p) � p0(1)p(1) = 2n(1� y)(1� y)2 + �2(1� y2)= 2n(1� y) + �2(1 + y) > n2�2 :Case 2: 0 � y < 1� 2�2: Applying part k℄ withb := y + �(1� y2)1=2 2 [0; 1℄dedue that(2:4:3) d(p) � p0(b)p(b) = 2n(b� y)(b� y)2 + �2(1� y2) = n�(1� y2)1=2 :Use part j℄ to obtain(2:4:4) ����(1� y2)�2 � (1� y2)n4d ����n � 2n�(1� y2)�2 + n216d2�n ;where d := d(p) and n = 12 deg(p): If(1� y2)�2 � (1� y2)n8d ;then there is nothing to prove. Therefore assume that(2:4:5) (1� y2)�2 � (1� y2)n8d :Now (2.4.3) to (2.4.5) yield� (1� y2)n8d �n � 2n�(1� y2)�2 + n216d2�nand so (1� y2)n8d � 2�(1� y2)�2 + n216d2� :Sine, by (2.4.3), n2d�2 � (1� y2)�2; the above inequality implies(1� y2)n8d � 2 1716(1� y2)�2and so d � 117n��2: ut



2.4 Polynomials with Nonnegative CoeÆients 89m℄ Show that p 2 Pn n Pn�1 and d(p) = n imply that the zerosz1; z2; : : : ; zn of p satisfy jz1z2 � � � znj � 1.n℄ Show that d(pq) < maxfd(p); d(q)g an happen.Hint: Letp(x) := (1� x)2 � 2(1� x2) + 4(x+1)2 and q(x) := (x+1)+ 12 (1� x) :Show that d(p) = 4, d(q) = 1; and d(pq) = 3: uto℄ Show that if p 2 Pk n Pk�1 has no zeros in (�1; 1), z 2 C ; jzj > 1; andp(x) = ((x � z)(x� z))mq(x) ;then d(p) = deg(p) = k + 2m if m is suÆiently large. This shows thatpolynomials p with the property d(p) = deg(p) an have arbitrary manypresribed zeros in C n (�1; 1):E.5 Lorentz Degree of Trigonometri Polynomials. Given ! 2 (0; �℄and a real trigonometri polynomial t 2 Tn; let d = d!(t) be the minimalnonnegative integer for whih t is of the formt(�) = � 2dXj=0 aj sinj ! � �2 sin2d�j � + !2 ; aj � 0 :If there is no suh d; then let d!(t) := 1. We all d = d!(t) the Lorentzdegree of t.a℄ Let t 2 Tn n Tn�1 be of the formt(�) = 2nXj=0 bj sinj ! � �2 sin2n�j � + !2 :For m � n let the numbers bj;m, j = 0; 1; : : : ; 2m; be de�ned byt(�) = 0� 2nXj=0 bj sinj ! � �2 sin2n�j � + !2 1A�� 1sin2 ! �sin2 ! � �2 + 2 os! sin ! � �2 sin � + !2 + sin2 � + !2 ��m�n= 2mXj=0 bj;m sinj ! � �2 sin2m�j � + !2 :Show that if d!(t) is �nite, then it is the smallest value of m for whih eahbj;m is nonnegative or eah bj;m is nonpositive.



90 2. Some Speial PolynomialsHint: The seond fator in the representation of t is identially 1. utWe introdue the notationG := fz = x+ iy : �� � x < �; y 2 Rgand G! := fz = x+ iy : os! osh y � osx; �� � x < �; y 2 Rg :b℄ Let t 2 T1 n T0. Show that d!(t) = 1 if and only if t has its zeros in G!:℄ Assume 0 < ! < �=2, t 2 T1; and t(z) = 0 for somez := x+ iy 2 G n (G! [ (�!; !)) :Show that d!(t) < max 4 sin(! � x)(sin! osh y � sinx)os! sinh2 y � 1 ;where the maximum is to be taken over both sets of signs.d℄ Suppose �=2 � ! � �; and t 2 T1, t(z) = 0 for some z 2 G nG! . Showthat d!(t) =1:e℄ Show that d!(t1t2) � d!(t1) + d!(t2) for any two trigonometri poly-nomials t1 and t2:f ℄ Let 0 < ! < �=2 and 0 < � <1. Show that if t 2 Tn has no zeros inE!;� := fz = x+ iy : y2 < �2(!2 � x2) ; x 2 (�!; !) ; y 2 Rg ;then d!(t) � n� 4os! ��2 + 2 tan! + 1� :g℄ Let p be a trigonometri polynomial and 0 < ! < �=2. Show thatd!(t) <1 if and only if t = 0 or t has no zeros in (�!; !): (Note that partd℄ shows that this onlusion fails to hold when �=2 � ! � �:)h℄ Show that there is an absolute onstant  > 0 (independent of n, ! andz0) so that d!(t) � n��2 whenevert(�) = �sin � � z02 sin � � z02 �nwith z0 2 �E!;� n f�!; !g, 0 < � <1; where �E!;� denotes the boundaryof E!;� de�ned in part f℄.



This is page 91Printer: Opaque this3Chebyshev and Desartes Systems

OverviewA Chebyshev spae is a �nite-dimensional subspae of C(A) of dimensionn+1 that has the property that any element that vanishes at n+1 pointsvanishes identially. Suh spaes, whose prototype is the spae Pn of realalgebrai polynomials of degree at most n; share with the polynomialsmany basi properties. The �rst setion is an introdution to these Cheby-shev spaes. A basis for a Chebyshev spae is alled a Chebyshev system.Two speial families of Chebyshev systems, namely, Markov systems andDesartes systems, are examined in the seond setion. The third setionexamines the Chebyshev \polynomials" assoiated with Chebyshev spaes.These assoiated Chebyshev polynomials, whih equiosillate like the usualChebyshev polynomials, are extremal for various problems in the supremumnorm. The fourth setion studies partiular Desartes systems�x�0 ; x�1 ; : : : � ; �0 < �1 < : : :on (0;1) in detail. These systems, whih we all M�untz systems, an bevery expliitly orthonormalized on [0; 1℄, and this orthogonalization is alsoexamined. The �nal setion onstruts Chebyshev \polynomials" assoiatedwith the Chebyshev spaesspan�1 ; 1x� a1 ; : : : ; 1x� an� ; ai 2 R n [�1; 1℄on [�1; 1℄ and explores their various properties.



92 3. Chebyshev and Desartes Systems3.1 Chebyshev SystemsFrom an approximation theoreti point of view an essential property thatpolynomials of degree at most n have is that they an uniquely interpolateat n + 1 points. This is equivalent to the fat that a polynomial of degreeat most n that vanishes at n + 1 points vanishes identially. Any (n + 1)-dimensional vetor spae of ontinuous funtions with this property is alleda Chebyshev spae or sometimes a Haar spae. Many basi approximationproperties extend to these spaes. The preise de�nition is the following.De�nition 3.1.1 (Chebyshev System). Let A be a Hausdor� spae. Thesequene (f0; : : : ; fn) is alled a real (or omplex) Chebyshev system orHaar system of dimension n+ 1 on A if f0; : : : ; fn are real- (or omplex-)valued ontinuous funtions on A, spanff0; : : : ; fng over R (or C ) is an(n+1)-dimensional subspae of C(A), and any element of spanff0; : : : ; fngthat has n+ 1 distint zeros in A is identially zero.If (f0; : : : ; fn) is a Chebyshev system on A; then spanff0; : : : ; fng isalled a Chebyshev spae or Haar spae on A.Chebyshev systems and spaes will be assumed to be real, unless weexpliitly speify otherwise. If A � R; then the topology on A is alwaysmeant to be the usual metri topology.Impliit in the de�nition is that A ontains at least n+1 points. Beinga Chebyshev system is a property of the spae spanned by the elements ofthe system, so every basis of a Chebyshev spae is a Chebyshev system.A point x0 2 (a; b) is alled a double zero of an f 2 C[a; b℄ if f(x0) = 0and f(x0� �)f(x0+ �) > 0 for all suÆiently small � > 0 (in other words, iff vanishes without hanging sign at x0). It is easy to see that if (f0; : : : ; fn)is a Chebyshev system on [a; b℄ � R; then every 0 6= f 2 spanff0; : : : ; fnghas at most n zeros even if eah double zero is ounted twie; see E.10.Chebyshev spaes are de�ned via zero ounting, and many of the theoremsin the theory of Chebyshev spaes are proved by zero ounting arguments.So it is important to make the agreement that, unless it is stated expliitlyotherwise, we ount the zeros of an element f from a Chebyshev spae on[a; b℄ so that eah double zero of f is ounted twie.The following simple equivalenes hold:Proposition 3.1.2 (Equivalenes). Let f0; : : : ; fn be real- (or omplex-) val-ued ontinuous funtions on a Hausdor� spae A (ontaining at least n+1points). Then the following are equivalent:a℄ Every 0 6= p 2 spanff0; : : : ; fng has at most n distint zeros in A:



3.1 Chebyshev Systems 93b℄ If x0; : : : ; xn are distint elements of A and y0; : : : ; yn are real (oromplex) numbers, then there exists a unique p 2 spanff0; : : : ; fng suhthat p(xi) = yi ; i = 1; 2; : : : ; n :℄ If x0; : : : ; xn are distint points of A; thenD(x0; : : : ; xn) := ������� f0(x0) : : : fn(x0)... . . . ...f0(xn) : : : fn(xn) ������� 6= 0 :Proof. These equivalenes are all elementary fats in linear algebra. utOn an interval there is a sign regularity to the determinants in ℄.Proposition 3.1.3. Suppose (f0; : : : ; fn) is a (real) Chebyshev system on[a; b℄ � R: Then there exists a Æ := �1 or Æ := 1 suh thatÆ ������� f0(x0) : : : fn(x0)... . . . ...f0(xn) : : : fn(xn) ������� > 0for any a � x0 < x1 < � � � < xn � b:Proof. This follows immediately from part ℄ of the previous proposi-tion and ontinuity onsiderations. That is, if D(x0; : : : ; xn) < 0 whileD(y0; : : : ; yn) > 0; then for some � 2 (0; 1)D(�x0 + (1� �)y0; : : : ; �xn + (1� �)yn) = 0 ;whih is impossible. utThe intimate relationship between Chebyshev systems and best ap-proximation in the uniform norm is indiated by the next result. In orderto state it we need to introdue the notion of an alternation sequene.De�nition 3.1.4 (Alternation Sequene). Let A � R and letx0 < x1 < � � � < xnbe n + 1 points of A: Then (x0; x1; : : : ; xn) is said to be an alternationsequene of length n+ 1 for a real valued f 2 C(A) ifjf(xi)j = kfkA ; i = 0; 1; : : : ; nand sign(f(xi+1)) = �sign(f(xi)) ; i = 0; 1; : : : ; n� 1 :



94 3. Chebyshev and Desartes SystemsDe�nition 3.1.5 (Best Approximation). Suppose that U is a (�nite-dimensional) subspae of a normed spae (V; k � k). If g 2 V and p 2 Usatisfy kg � pk = infh2U kg � hk ;then p is said to be a best approximation to g from U .As a result of the �nite dimensionality of the subspae U; at least onebest approximation to any g 2 V from U exists. This is straightforwardsine T := fp 2 U : kpk � kgk+ 1gis a ompat subset of U; so any sequene (pj) of approximations to g fromU satisfying kg � pjk � j�1 + infh2U kg � hkhas a onvergent subsequene with limit in U: This limit is then a bestapproximation to g from U .Theorem 3.1.6 (Alternation of Best Approximations). Suppose (f0; : : : ; fn)is a Chebyshev system on [a; b℄ � R: Let A be a losed subset of [a; b℄ontaining at least n+ 2 distint points. Then p 2 Hn := spanff0; : : : ; fngis a best approximation to g 2 C(A) from Hn in the uniform norm on A ifand only if there exists an alternation sequene of length n+2 for g� p onA.Proof. The proof of the only if part of the theorem is mostly an exampleof a standard type of perturbation argument that will reur later.The perturbation argument goes as follows. Suppose p is a best approx-imation of required type and suppose a alternation sequene of maximallength for g � p is (x0 < x1; < � � � < xm)where xi 2 A and where m is stritly less than n+1. Suppose, without lossof generality, that g(x0)� p(x0) > 0(otherwise multiply by �1). Now letY := fx 2 A : jg(x)� p(x)j = kg � pkAg :Note that Y is ompat. Sine (x0 < x1 < : : : < xm) is an alternationsequene of maximal length, we an divide Y into m + 1 disjoint ompatsubsets Y0; Y1; : : : ; Ym withx0 2 Y0 ; x1 2 Y1 ; : : : ; xm 2 Ym



3.1 Chebyshev Systems 95so thatsign(g(x)� p(x)) = �sign(g(y)� p(y)) 6= 0 ; x 2 Yi ; y 2 Yi+1 :Now hoose a p� 2 spanff0; : : : ; fng satisfyingsignx2Yi(p�(x)) = (�1)i ; i = 0; 1; : : : ;m :This an be done by hoosing points zi withmaxYi�1 < zi < minYi ; i = 1; 2; : : : ;mand then applying E.11. We now laim that, for Æ > 0 suÆiently small,(3.1.1) kg � (p+ Æp�)kA < kg � pkA ;whih ontradits the fat that p is a best approximation, and so there mustexist an alternation set of length n+ 2 for g � p on A: To verify (3:1:1) weproeed as follows:For eah i = 0; 1; : : : ;m hoose an open set Oi � [a; b℄ (in the usualmetri topology relative to [a; b℄) ontaining Yi so that for every x 2 Oi;(3.1.2) sign(g(x) � p(x)) = sign(p�(x))and(3.1.3) jg(x)� p(x)j � 12kg � pkA :Now pik a Æ1 > 0 suh that for every x 2 B := AnSmi=0Oi and Æ 2 (0; Æ1);jg(x)� (p(x) + Æp�(x))j < kg � pkA ;whih an be done sine B is ompat and by onstrutionkg � pkB < kg � pkA :Note that (3:1:2) and (3.1.3) allow us to pik a Æ2 > 0 suh that for x 2Smi=0 Oi and Æ 2 (0; Æ2);jg(x)� (p(x) + Æp�(x))j < jg(x)� p(x)j :This veri�es (3.1.1) and �nishes the diret half of the theorem.The proof of the onverse is simple. Suppose there is an alternationsequene of length n+2 for g� p on A, and suppose there exists a p� withkg � p�kA < kg � pkA:Then p��p has at least n+1 zeros on [a; b℄, one between any two onseutivealternation points for g � p on A, and hene it vanishes identially. Thisontradition �nishes the proof. utIn the setting of Theorem 3.1.6 the best approximation is unique; seeE.5.



96 3. Chebyshev and Desartes SystemsComments, Exerises, and Examples.The terminology is not entirely standard in the literature with Chebyshevsystems often referred to as Haar systems on intervals of R: There are vari-ous proofs of Theorem 3.1.6, of whih ours is by no means the most elegant(see Cheney [66℄, for example). The point of this proof is that it easily mod-i�es to deal with haraterizations of extremal funtions for various otherextremal problems. Many good books over this standard material. See, forexample, Cheney [66℄, Lorentz [86a℄, or Pinkus [89℄; see also Appendix 3.An extensive treatment of Chebyshev systems is available in Karlin andStudden [66℄ or N�urnberger [89℄, where E.3 an be found. E.4 shows thatreal Chebyshev systems are intrinsially one-dimensional.E.1 Examples of Chebyshev systems.a℄ Suppose 0 = �0 < �1 < � � � < �n: Show that(x�0 ; x�1 ; : : : ; x�n)is a Chebyshev system on [0;1).b℄ Suppose �0 < �1 < � � � < �n: Show that(x�0 ; x�1 ; : : : ; x�n)is a Chebyshev system on (0;1):℄ Suppose �0 < �1 < � � � < �n. Show that(x�0 ; x�0 logx ; x�1 ; x�1 logx ; : : : ; x�n ; x�n logx)is a Chebyshev system on (0;1).d℄ Suppose �0 < �1 < � � � < �n. Show that� 1x� �0 ; 1x� �1 ; : : : ; 1x� �n�is a Chebyshev system on (�1;1) n f�0; �1; : : : ; �ng:e℄ Suppose �0 < �1 < � � � < �n. Show that(e�0x; e�1x; : : : ; e�nx)is a Chebyshev system on (�1;1):f ℄ Show that(1; os �; sin �; os 2�; sin 2�; : : : ; osn�; sinn�)is a Chebyshev system on [0; 2�).g℄ Show that (1; os �; os 2�; : : : ; osn�)is a Chebyshev system on [0; �):



3.1 Chebyshev Systems 97E.2 More Examples.a℄ If (f0; : : : ; fn) is a Chebyshev system on A; then it is also a Chebyshevsystem on any subset B of A ontaining at least n+ 1 points.b℄ If (f0; : : : ; fn) is a Chebyshev system on A and g 2 C(A) is stritlypositive on A; then (gf0; : : : ; gfn) is also a Chebyshev system on A:℄ If (f0; : : : ; fn) is a Chebyshev system on [0; 1℄; then�1 ; Z x0 f0(t) dt ; : : : ; Z x0 fn(t) dt�is also a Chebyshev system on [0; 1℄:See E.8 of Setion 3.2, whih treats the e�et of di�erentiation on aChebyshev system.E.3 Extended Complete Chebyshev Systems. Let (g0; : : : ; gn) be a se-quene of funtions in Cn[a; b℄. De�ne the Wronskian determinantW (g0; : : : ; gm)(t) := �������� g0(t) g1(t) : : : gm(t)g00(t) g01(t) : : : g0m(t)... ... . . . ...g(m)0 (t) g(m)1 (t) : : : g(m)m (t) �������� :We say that (g0; : : : ; gn) is an extended omplete Chebyshev system (ECTsystem) on [a; b℄ ifW (g0; : : : ; gm)(t) > 0 ; m = 0; 1; : : : ; n ; t 2 [a; b℄ :a℄ Let spanfg0; : : : ; gng be an (n + 1)-dimensional subspae of Cn[a; b℄:Show that the following statements are equivalent:(i) For every m = 0; 1; : : : ; n, 0 6= f 2 spanfg0; : : : ; gmg has at mostm zeros in [a; b℄ ounting multipliities (x0 2 [a; b℄ is a zero of f withmultipliity k if f(x0) = f 0(x0) = � � � f (k�1)(x0) = 0 and f (k)(x0) 6= 0).(ii) For eah i = 0; 1; : : : ; n, there exists a hoie of Æi := 1 or Æi := �1suh that (Æ0g0; Æ1g1; : : : ; Ængn)is an ECT system on [a; b℄:In partiular, every ECT system on [a; b℄ is a Chebyshev system on[a; b℄.Proof. For details see Karlin and Studden [66℄. ut



98 3. Chebyshev and Desartes Systemsb℄ Charaterization Theorem. The following statements are equivalent:(i) (g0; : : : ; gn) is an ECT system on [a; b℄:(ii) There exist wi 2 Cn�i[a; b℄, i = 0; 1; : : : ; n, with wi stritly positivesuh thatg0(t) = w0(t) ;g1(t) = w0(t) Z ta w1(t1) dt1 ;...gn(t) = w0(t) Z ta w1(t1) Z t1a w2(t2) � � � Z tn�1a wn(tn) dtn � � � dt2 dt1 :Proof. This is proved by indution on n. See Karlin and Studden [66℄. ut℄ Suppose �0 < �1 < � � � < �n: Show that (x�0 ; : : : ; x�n) is an ECTsystem on [a; b℄ provided a > 0:E.4 Railway Trak Theorem. Real Chebyshev systems exist only on veryspeial subsets of Rm . Indeed, real Chebyshev systems intrinsially live onone-dimensional subsets.a℄ Suppose A � Rm ontains three distint ars that join at a point x0:Then, for n � 2; there exists no real Chebyshev system (f0; : : : ; fn) on A:Proof. Suppose there exists a real Chebyshev system (f0; : : : ; fn) on suha set A: Let V (x; y) := D(x; y; x2; x3; : : : ; xn)(D is de�ned in Proposition 3.1.2) whih is never zero for distint pointsx; y; x2; x3; : : : ; xn. Choose distint points x0; x1; : : : ; xn on one of the threedistint ars so that x0 is adjaent to x1. Pik the points z1 6= x0 and z2 6= x0so that z1, z2, and x1 are on di�erent ars. Now onsider interhangingx := x0 and y := x1 by moving x from x0 to z1, y from x1 to z2, x from z1to x1, and y from z2 to x0. Sine x; y; x2; x3; : : : ; xn remain distint, V (x; y)does not vanish in this proess. This ontradits the fat that V (x; y) isontinuous and V (x0; x1) = �V (x1; x0): utThe following more general result of Mairhuber [56℄ also holds:b℄ Mairhuber's Theorem. If (f0; : : : ; fn) is a real Chebyshev spae on A;then A is homeomorphi to a subset of the unit irle.E.5 Uniqueness of Best Approximations. Prove that a best approxima-tion from a Chebyshev spae satisfying the onditions of Theorem 3.1.6 isunique.



3.1 Chebyshev Systems 99Hint: Suppose f has two best approximations p1 2 Hn and p2 2 Hn. Then,by the alternation haraterization, p1 � p2 2 Hn has at least n + 1 zeroson [a; b℄ (we ount eah internal zero without sign hange twie). Now E.10implies that p1 � p2 = 0: utE.6 De la Vall�ee Poussin Theorem. Suppose Hn is a Chebyshev spae ofdimension (n+ 1) on [a; b℄. If p 2 Hn and there exist n+ 2 pointsa � x0 < x1 < � � � < xn+1 � bso thatsign(f(xi)� p(xi)) = �sign(f(xi+1)� p(xi+1)) ; i = 0; 1; : : : ; n ;then infp2Hn kf � pk[a;b℄ � mini=0;::: ;n+1 jf(xi)� p(xi)j :E.7 Haar's Charaterization of Chebyshev Spaes. The following prettytheorem is due to Haar (for a proof, see E.3 of Appendix 3):Theorem. Let f0; : : : ; fn 2 C(A) where A is a ompat Hausdor� spaeontaining at least n + 1 points. Then (f0; : : : ; fn) is a Chebyshev systemon A if and only if every g 2 C(A) has a unique best approximation fromspanff0; : : : ; fng in the uniform norm on A:E.8 Best Approximation to xn. Reprove Theorem 2.1.1 by using the al-ternation haraterization of best approximations.E.9 Best Rational Approximations. Let f 2 C[a; b℄. Then p=q 2 Rn;m isa best approximation to f from Rn;m in C[a; b℄ if and only if f � p=q hasan alternation set of length at least2 +maxfn+ deg(q);m+ deg(p)g[a; b℄: (Here we must assume p=q is written in a redued form.)The proof of this is a fairly ompliated variant of the proof of Theorem3.1.6 (see, for example, Cheney [66℄).E.10 Zeros of Funtions in Chebyshev Spaes. As before, we all thepoint x0 2 (a; b) a double zero of f 2 C[a; b℄ if f(x0) = 0 andf(x0 � �)f(x0 + �) > 0for all suÆiently small � > 0 (in other words, if f vanishes without hangingsign at x0). Let (f0; : : : ; fn) be a Chebyshev system on [a; b℄ � R. Showthat every 0 6= f 2 spanff0; : : : ; fng has at most n zeros even if eah doublezero is ounted twie.Hint: Use Proposition 3.1.2 b℄. ut



100 3. Chebyshev and Desartes SystemsE.11 Funtions in a Chebyshev Spae with Presribed Sign Changes. Let(f0; : : : ; fn) be a Chebyshev system on [a; b℄; and leta < z1 < z2 < � � � < zm < b ; 0 � m � n :Show that there is a funtion p� 2 spanff0; : : : ; fng suh that(i) p�(x) = 0 if and only if x = zi for some i = 1; 2; : : : ;m;(ii) p�(x) hanges sign at eah zi; i = 1; 2; : : : ;m.Hint: If m = n; then use Proposition 3.1.3 and a ontinuity argument toshow that p�(x) = �������� f0(x) f1(x) : : : fn(x)f0(z1) f1(z1) : : : fn(z1)... ... . . . ...f0(zn) f1(zn) : : : fn(zn) ��������satis�es the requirements.If m < n; then use the already proved ase, a limiting argument, andE.10 to show that there are pj 2 spanff0; : : : ; fng; j = 1; 2, suh that(1) pj(x) hanges sign at x if and only if x = zi, i = 1; 2; : : : ;m,(2) p1(x) 6= 0 for every x 2 [a; zm℄ n fz1; z2; : : : ; zmg,(3) p2(x) 6= 0 for every x 2 [z1; b℄ n fz1; z2; : : : ; zmg.Now show that either p� := p1 + p2 or p� := p1 � p2 satis�es the require-ments. utE.12 The Dimension of a Chebyshev Spae on a Cirle. Let (f0; : : : ; fn)be a Chebyshev system on a irle C. Show that n must be even. Observethat suh Chebyshev systems exist.Hint: Show that for every set of n distint points x1; x2; : : : ; xn on theirle there is a p 2 spanff0; : : : ; fng suh that p(x) = 0 if and only ifx 2 fx1; x2; : : : ; xng and p(x) hanges sign at eah xi. ut3.2 Desartes SystemsChebyshev systems apture some of the essential properties of polynomials.There are two additional types of systems that apture some additionalproperties.De�nition 3.2.1 (Markov System). We say that (f0; : : : ; fn) is a Markovsystem on a Hausdor� spae A if eah fi 2 C(A), and ff0; : : : ; fmg is aChebyshev system for eah m = 0; 1; : : : ; n. (We allow n to tend to +1; inwhih ase we all the system an in�nite Markov system on A.)



3.2 Desartes Systems 101A Markov system is just a Chebyshev system with eah initial segmentalso a Chebyshev system. Being a Chebyshev system is a property of thespae not of the basis. However, the Markov system depends on the basis.For example, (x�0 ; x�1 ; : : : ) ; �0 < �1 < � � �is a Markov system on any A � (0;1) ontaining in�nitely many points,but not every basis of spanfx�0 ; x�1 ; : : : g is a Markov system on A (seeE.1).Proposition 3.2.2. (f0; : : : ; fn) is a Markov system on an interval [a; b℄ ifand only if for eah i = 0; 1; : : : ; n, there exists a hoie of Æi := 1 orÆi := �1 suh that with gi := Æifi;D� g0 g1 : : : gmx0 x1 : : : xm � := ������� g0(x0) : : : gm(x0)... . . . ...g0(xm) : : : gm(xm) ������� > 0for every a � x0 < x1 < � � � < xm � b and m = 0; 1; : : : ; n:Proof. This is an easy onsequene of Proposition 3.1.3 by indution onn. utA stronger property that a system on an interval an have is the fol-lowing:De�nition 3.2.3 (Desartes System). The system (f0; : : : ; fn) is said to bea Desartes system (or order omplete Chebyshev system) on an interval Iif eah fi 2 C(I) and D� fi0 fi1 : : : fimx0 x1 : : : xm � > 0for any 0 � i0 < i1 < � � � < im � n and x0 < x1 < � � � < xm from I . (Oneagain we allow n to tend to 1.)This again is a property of the basis. It implies that any �nite-dimensional subspae generated by some basis elements is a Chebyshevspae on I . The anonial example of a Desartes system on [a; b℄, a > 0; is(x�0 ; x�1 ; : : : ) ; �0 < �1 < � � �(see E.2). A Desartes system on I is obviously a Desartes system on anysubinterval of I .



102 3. Chebyshev and Desartes SystemsThe following version of Desartes' rule of signs holds for Desartessystems.Theorem 3.2.4 (Desartes' Rule of Signs). If (f0; : : : ; fn) is a Desartessystem on [a; b℄; then the number of distint zeros of any0 6= f = nXi=0 aifi ; ai 2 Ris not greater than the number of sign hanges in (a0; : : : ; an):A sign hange ours between ai and ai+k exatly when aiai+k < 0 andai+1 = ai+2 = � � � = ai+k�1 = 0:Proof. Suppose (a0; : : : ; an) has p sign hanges. Then we an partitionfa0; : : : ; ang into exatly p+ 1 bloks so that eah blok is of the formanm+1; anm+2; : : : ; anm+1 ; m = 0; 1; : : : ; p(n0 := �1; np+1 := n), where all of the oeÆients in eah of the bloks areof the same sign and not all the oeÆients in a blok vanish. Now letgm := nm+1Xi=nm+1 jaijfi ; m = 0; 1; : : : ; p :Then, for a � x0 < x1 < � � � < xp � b,D� g0 g1 : : : gpx0 x1 : : : xp �= n1Xi0=n0+1 � � � np+1Xip=np+1 jai0 j � � � jaip jD� fi0 fi1 : : : fipx0 x1 : : : xp � > 0sine eah of the determinants in the sum is positive. Thus fg0; : : : :gpg isa (p+ 1)-dimensional Chebyshev system on [a; b℄; and henef := pXi=0 Æigi ; Æi = �1has at most p zeros. This �nishes the proof. utA re�ned version of Desartes' rule of signs for ordinary polynomials ispresented in the exerises. The following omparison theorem due to Pinkusand, independently, Smith [78℄ will be of use later.



3.2 Desartes Systems 103Theorem 3.2.5. Suppose (f0; : : : ; fn) is a Desartes system on [a; b℄: Sup-pose p = f� + kXi=1 aif�i ; and q = f� + kXi=1 bifi ;where 0 � �1 < �2 < � � � < �k � n; 0 � 1 < 2 < � � � < k � n,0 � i � �i < � ; i = 1; 2; : : : ;m ;and � < �i � i � n ; i = m+ 1;m+ 2; : : : ; kwith strit inequality for at least one index i = 1; 2; : : : ; k. Ifp(xi) = q(xi) = 0 ; i = 1; 2; : : : ; k ;where xi 2 [a; b℄ are distint, thenjp(x)j � jq(x)jfor all x 2 [a; b℄ with strit inequality for x 6= xi:The proof is left as a guided exerise (see E.4) with some interestingonsequenes presented in E.5.Comments, Exerises, and Examples.Theorem 3.2.4 haraterizes Desartes systems; see Karlin and Studden [66,p. 25℄. Some aution must be exerised sine, as in the previous setion, def-initions are not entirely standard. We will explore two partiular Desartessystems in greater detail later; see E.2 and E.3. For further material, thereader is referred to Karlin and Studden [66℄, Karlin [68℄, and N�urnberger[89℄.E.1 Distintions.a℄ Given �0 < �1 < � � � and A � (0;1) with in�nitely many points,show that (x�0 ; x�1 ; : : : ) is a Markov system on A; but there is a basis forspanfx�0 ; x�1 ; : : : g; whih is not a Markov system on A.b℄ Find a Markov system that is not a Desartes system.E.2 Examples of Desartes Systems.a℄ Suppose �0 < �1 < � � � : Show that the M�untz system(x�0 ; x�1 ; : : : )is a Desartes system on (0;1):



104 3. Chebyshev and Desartes SystemsHint: For every 0 � i0 < i1 < � � � < im; the determinantD�x�i0 x�i1 : : : x�imx0 x1 : : : xm � = �������x�i00 : : : x�im0... . . . ...x�i0m : : : x�imm �������is nonzero for any 0 < x0 < x1 < � � � < xm < 1 by Proposition 3.1.2 andE.1 a℄ of Setion 3.1. It only remains to prove that it is positive whenever0 < x0 < x1 < � � � < xm <1. Observe that the exponents �ij an be variedontinuously (for �xed xi) without hanging the sign of the determinantprovided no two ever beome equal. Now perturb (�i0 ; �i1 ; : : : ; �im) into(0; 1; : : : ;m) and observe that the determinant beomes a Vandermondedeterminant, as in part b℄, whih in this ase is positive. utb℄ Vandermonde Determinant. Show that�������� 1 x0 : : : xm01 x1 : : : xm1... ... . . . ...1 xm : : : xmm �������� = Y0�i<j�m(xj � xi) :Hint: The determinant is a polynomial in x0; x1; : : : ; xm of degree m ineah variable that vanishes whenever xi = xj : ut℄ Suppose �0 < �1 < � � � . Show that the exponential system(e�0t; e�1t; : : : )is a Desartes system on (�1;1):Hint: Use part a℄. utd℄ Suppose 0 < �0 < �1 < � � � . Show that(sinh�0t; sinh�1t; : : : )is a Desartes system on (0;1):Outline. Let 0 � i0 < i1 < � � � < im be �xed integers. First we show that(sinh �i0t; sinh�i1t; : : : ; sinh�imt)is a Chebyshev system on (0;1): Indeed, let0 6= f 2 spanfsinh�i0 t; sinh�i1 t; : : : ; sinh�im tg :Then 0 6= f 2 spanfe��i0 t; e��i1 t; : : : ; e��im tgand by E.1 e℄ of Setion 3.1, f has at most 2m zeros in (�1;1). Sine fis odd, it has at most m zeros in (0;1):



3.2 Desartes Systems 105Sine for every 0 � i0 < i1 < � � � < im, (sinh�i0 t; : : : ; sinh�im t) is aChebyshev system on (0;1); the determinantD� sinh�i0 t sinh�i1t : : : sinh�im tx0 x1 : : : xm �
= �������� sinh�i0x0 sinh�i1x0 : : : sinh�imx0sinh�i0x1 sinh�i1x1 : : : sinh�imx1... ... . . . ...sinh�i0xm sinh�i1xm : : : sinh�imxm ��������is nonzero for any 0 < x0 < x1 < � � � < xm <1 Proposition 3.1.2. So it onlyremains to prove that it is positive whenever 0 < x0 < x1 < � � � < xm <1.Now let D(�) := D� sinh�i0 t sinh�i1t : : : sinh�im t�x0 �x1 : : : �xm �

= �������� sinh�i0�x0 sinh�i1�x0 : : : sinh�im�x0sinh�i0�x1 sinh�i1�x1 : : : sinh�im�x1... ... . . . ...sinh�i0�xm sinh�i1�xm : : : sinh�im�xm ��������and D�(�) := D� 12e�i0 t 12e�i1 t : : : 12e�im t�x0 �x1 : : : �xm �
= ��������� 12e�i0�x0 12e�i1�x0 : : : 12e�im�x012e�i0�x1 12e�i1�x1 : : : 12e�im�x1... ... . . . ...12e�i0�xm 12e�i1�xm : : : 12e�im�xm ���������where 0 < x0 < x1 < � � � < xm <1 are �xed. Sine(sinh �i0t; sinh�i1t; : : : ; sinh�im t)and (e�i0 t; e�i1 t; : : : ; e�im t)are Chebyshev systems on (0;1), D(�) and D�(�) are ontinuous non-vanishing funtions of � on (0;1). Now, observe thatlim�!1 jD(�)j = lim�!1 jD�(�)j =1 and lim�!1 D(�)D�(�) = 1 :By part ℄, (e�i0 t; e�i1 t; : : : ; e�im t)



106 3. Chebyshev and Desartes Systemsis a Desartes system on (�1;1); hene D�(�) > 0 for every � > 0: Sothe above limit relations imply that D(�) > 0 for every large enough �;hene for every � > 0. In partiular,D(1) = D� sinh�i0t sinh�i1 t : : : sinh�im tx0 x1 : : : xm � > 0 ;whih �nishes the proof. ute℄ Suppose 0 < �0 < �1 < � � � . Show that(osh�0t; osh�1t; : : : )is a Desartes system on (0;1):Hint: Proeed as in the outline for part d℄. utE.3 Rational Systems.a℄ Cauhy Determinants. Show that������� 1�1+�1 : : : 1�1+�m... . . . ...1�m+�1 : : : 1�m+�m ������� = Q1�i<j�m(�j � �i)(�j � �i)Q1�i;j�m(�i + �j) :Hint: Multiply both sides above by Q1�i;j�m(�i+�j) and observe that bothsides are polynomials of the same degree,m�1; in eah variable �i; �i. Alsoboth sides vanish exatly when �i = �j or �i = �j : So up to a onstantboth sides are the same. Now show that the onstant is 1. utb℄ Let �1 > �2 > � � � > b. Show that� 1�1 � x ; 1�2 � x ; : : :�is a Desartes system on [a; b℄:Let �1 < �2 < � � � < a: Show that� 1x� �1 ; 1x� �2 ; : : :�is a Desartes system on [a; b℄ (see also E.6 e℄).E.4 Proof of Theorem 3.2.5. Assume the notation of this Theorem 3.2.5.a℄ Let 0 � Æ0 < Æ1 < � � � < Æ� � n and a < x1 < x2 < � � � < x� < b: Showthat there exists a unique p = fÆ� +P��1i=0 aifÆi suh that



3.2 Desartes Systems 107(1) p(xi) = 0 , i = 1; 2; : : : ; � :Show also that the above p has the following properties:(2) p(x) hanges sign at eah xi ;(3) p(x) 6= 0 if x =2 fx1; x2; : : : ; x�g ;(4) aiai+1 < 0 ; i = 0; 1; : : : ; �� 1 ; a� := 1 ;(5) p(x) > 0 ; x 2 (x�; b℄ :Hint: Sine (fÆ0 ; : : : ; fÆ�) and (fÆ0 ; : : : ; fÆ��1) are Chebyshev systems, E.11of Setion 3.1 shows that there exists a p of the desired form satisfying (1).Sine (fÆ0 ; : : : ; fÆ��1) is a Chebyshev system, this p is unique. Now E.11 ofSetion 3.1 yields that p satis�es (2) and (3). By Theorem 3.2.4, p satis�es(4). The fat that (5) holds for p follows from expanding the determinantD� fÆ0 fÆ1 : : : fÆ��1 fÆ�x1 x2 : : : x� x �by Cramer's rule. This determinant is just p(x) with some  > 0 sine itvanishes at eah xi; and the oeÆient of fÆ� is positive; see De�nition 3.2.3.Also, the above determinant is positive for all x 2 (x�; b℄; see De�nition3.2.3 again. utb℄ Prove Theorem 3.2.5.Outline. For notational simpliity assume that � = n (hene m = k); thegeneral ase is analogous. Further, we may assume that there is an index jsuh that j < �j and i = �i whenever i 6= jsine the result follows from this by a �nite number of pairwise omparisons.So we assume p = fn + ajf�j + kXi=1i6=j aif�iand q = fn + bjfj + kXi=1i6=j bif�i ;where 0 � �1 < �2 < � � � < �k < n and 0 � �j�1 < j < �j for some1 � j � k (of ourse, the inequality �j�1 < j holds only if �j�1 is de�ned,that is, only if j � 2). Thenp� q = ajf�j � bjfj + kXi=1i6=j (ai � bi)f�ihas exatly k zeros on [a; b℄ at x1; x2; : : : ; xk beause p� q is in a (k + 1)-dimensional Chebyshev subspae.



108 3. Chebyshev and Desartes SystemsBy property (5) in part a℄ applied to p and q; respetively,p(x) > 0 and q(x) > 0 ; x 2 (xk; b℄ :Now by property (4) in part a℄ applied to (p�q), where  is hosen so thatthe lead oeÆient of (p � q) is 1, and by the fat that p and p� q havethe same oeÆient for f�j , the lead oeÆient of p � q (ak � bk provided�k > �j) is negative. So property (5) in part a℄ implies thatp(x) � q(x) < 0; x 2 (xk; b℄ :Hene 0 < p(x) < q(x); x 2 (xk; b℄:Now use property (3) in part a℄ and the fat that all of p; q; and p� qhange sign only at xi to �nish the proof. utThe following extension of part a℄ will be used later:℄ Suppose0 � Æ0 < Æ1 < � � � < Æ� � n ; a � x1 � x2 � � � � � x� � b ;a < x2; x��1 < b, and xi < xi+2, i = 1; 2; : : : ; � � 2. Show that thereexists a unique p = fÆ� +P��1i=0 aifÆi (with ai 2 R) suh that(1) p(xi) = 0, i = 1; 2; : : : ; � ;(2) p(x) hanges sign at xi if and only if xi 62 fa; b; xi�1; xi+1g :Show also that(3) p(x) 6= 0 if x =2 fx1; x2; : : : ; x�g ;(4) aiai+1 � 0 ; i = 0; 1; : : : ; �� 1 ; a� := 1 ;(5) p(x) > 0 ; x 2 (x�; b) ;(6) (�1)�p(x) > 0 ; x 2 (a; x1) ;(7) (�1)��ip(x) > 0 ; x 2 (xi; xi+1) ; i = 1; 2; : : : ; �� 1 :Hint: Use part a℄ and a limiting argument. The uniqueness follows fromE.10 of Setion 3.1. utThe next exerise provides a solution to a problem of Lorentz, whihis settled in Borosh, Chui, and Smith [77℄.E.5 A Problem of Lorentz on Best Approximation to x�. Suppose that[a; b℄ � [0;1); n 2 N; and p 2 (0;1℄ are �xed. Let � be a �nite Borelmeasure on [a; b℄.a℄ Suppose �1; �2; : : : ; �n are arbitrary �xed real numbers if a > 0, or�xed real numbers greater than �1=p if a = 0. Let f 2 Lp(�) be �xed.Show thatEp;�(�1; �2; : : : ; �n; f) := minai2Rf(x)� nXi=1 aix�iLp(�)exists and is �nite.



3.2 Desartes Systems 109Outline. Use a standard ompatness argument. utb℄ Suppose 1 < p < 1, the support of � ontains at least n + 1 points,�1; �2; : : : ; �n; � are arbitrary �xed distint real numbers if a > 0; or �xedreal numbers greater than �1=p if a = 0: Show that if (eai)ni=1 � R satis�esEp;�(�1; �2; : : : ; �n;x�) = x� � nXi=1 eaix�iLp(�) ;then f(x) := x� � nXi=1 eaix�ihas exatly n sign hanges on (a; b):Hint: Sine (x�1 ; : : : ; x�n ; x�) is a Chebyshev system, it is suÆient to provethat f has at least n sign hanges on (a; b). Suppose f has at most n � 1sign hanges on [a; b℄: Then, sine (x�1 ; : : : ; x�n) is a Chebyshev system,by E.11 of Setion 3.1 there exists an elementh 2 spanfx�1 ; : : : ; x�ngsuh that jf(x)jp�1 sign(f(x))h(x) � 0on [a; b℄ with strit inequality at all but n points (at every point where fdoes not vanish). Using that the support of � ontains at least n+1 distintpoints, this implies Z ba jf jp�1 sign(f)h d� > 0 ;whih ontradits E.7 h℄ of Setion 2.2. ut℄ Suppose p = 1, supp(�) = [a; b℄, �1; �2; : : : ; �n; � are arbitrary �xeddistint real numbers if a > 0; or �xed distint nonnegative real numbers ifa = 0: Show that if (eai)ni=1 � R satis�esE1;�(�1; �2; : : : ; �n;x�) = x� � nXi=1 eaix�iL1(�) ;then f(x) := x� � nXi=1 eaix�ihas exatly n sign hanges on (a; b):Hint: Use Theorem 3.1.6. ut



110 3. Chebyshev and Desartes Systemsd℄ Best Approximation to x� from Certain Classes of M�untz Polynomials.Let 1 < p � 1: Suppose the support of � ontains at least n + 1 distintpoints if 1 < p <1 or supp(�) = [a; b℄ if p =1: Let � > 1 > 2 > � � � bearbitrary �xed real numbers if a > 0; or �xed nonnegative real numbers ifa = 0: Suppose we wish to minimizeEp;�(�1; �2; : : : ; �n;x�)for all sets of n distint real numbers �1 > �2 > � � � > �n satisfyingf�1; �2; : : : ; �ng � f1; 2; : : : g :Show that the minimum ours if and only iff�1; �2; : : : ; �ng = f1; 2; : : : ; ng :Hint: Let Ep;�(�1; �2; : : : ; �n;x�) = x� � nXi=1 eaix�iLp(�) ;where f�1; �2; : : : ; �ng is a set of n distint real numbers for whih theminimum is taken; see part a℄. By parts b℄ and ℄f(x) := x� � nXi=1 eaix�ihas exatly n sign hanges x1; x2; : : : ; xn on (a; b): Letg 2 spanfx1 ; x2 ; : : : ; xnginterpolate x� at the points x1; x2; : : : ; xn: Now use Theorem 3.2.5 to �nishthe proof. utE.6 Stritly Totally Positive Kernels (Karlin [68℄). A (ontinuous) fun-tion K(s; t) is an STP kernel on [a; b℄� [; d℄ if�������K(s0; t0) : : : K(s0; tn)... . . . ...K(sn; t0) : : : K(sn; tn) ������� > 0for all a � s0 < � � � < sn � b,  � t0 < � � � < tn � d; and for all n > 0:



3.2 Desartes Systems 111a℄ Observe that E.3 b℄ implies thatK(s; t) = 1s+ t is STP on [a; b℄� [a; b℄ ; a > 0 :Observe also that E.2 b℄ implies thatK(s; t) = est is STP on (�1;1)� (�1;1) :b℄ Suppose K is STP on [a; b℄ � [; d℄; and (f0; : : : ; fn) is a Chebyshevsystem on [a; b℄: Show that ifvi(x) = Z ba K(t; x)fi(t) dt ; i = 0; 1; : : : ; n ;then (v0; : : : ; vn) is a Chebyshev system on [; d℄:℄ Variation Diminishing Property. Suppose K is STP on [a; b℄ � [; d℄and suppose f 2 C[a; b℄. Letg(x) := Z ba K(t; x)f(t) dt :Then g has no more sign hanges on [; d℄ than f has on [a; b℄:d℄ The Laplae transform of a funtion f 2 C[0;1) \ L1[0;1)L(f)(x) := Z 10 f(t)e�tx dthas no more sign hanges on [0;1) than f does.Proof. This follows from parts a℄ and ℄. It may also be proved diretly byindution as follows. Suppose f has exatly n sign hanges on [0;1); oneat x0. Then g(x) := (x0 � x)f(x) has exatly n� 1 sign hanges on [0;1):Now observe that e�x0x ddx (ex0xL(f)(x)) = L(g)(x) ;so L(f) has at most one more sign hange on [0;1) than L(g) does. ute℄ Use part d℄ and E.2 a℄ to reprove that� 1x+ �1 ; 1x+ �2 ; : : :� ; �a < �1 < �2 < � � �satis�es Desartes' rule of signs on [a; b℄: utProof. Observe that 1Z0 e��ite�tx dt = 1x+ �ifor every x 2 (��i;1): ut



112 3. Chebyshev and Desartes SystemsE.7 Desartes' Rule of Signs for Polynomials.a℄ Prove by indution that Pnk=0 akxk 2 Pn has no more zeros in (0;1)(repeated zeros are ounted aording to their multipliities) than the num-ber of sign hanges in (a0; a1; : : : ; an):b℄ Let � > 0. Let p(x) =Pnk=0 akxk and q(x) := (x��)p(x) =Pn+1k=0 bkxk:Show that if the number of sign hanges in fa0; a1; : : : ; ang is m; then thenumber of sign hanges in fb0; b1; : : : ; bn+1g is at least m+ 1:℄ Give another proof of a℄ based on b℄.d℄ In part a℄ the number of sign hanges in (a0; a1; : : : ; an) exeeds thenumber of positive zeros by an even integer.Hint: See P�olya and Szeg}o [76℄. utRe�nements of the above exerise are presented in E.6 of Appendix 1,where Cauhy indies are disussed.The �rst part of the following exerise is a version of a result fromZielke [79℄:E.8 The E�et of Di�erentiation on Weak Markov Systems. The system(f0; : : : ; fn) is alled a weak Chebyshev system on [a; b℄ if fi 2 C[a; b℄ foreah i and every f 2 spanff0; : : : ; fng has at most n sign hanges on [a; b℄(so the only di�erene between a Chebyshev system and a weak Chebyshevsystem is that in the de�nition of the latter, zeros without sign hange arenot ounted).Analogously, the system (g0; : : : ; gn) is alled a weak Markov systemon [a; b℄ if gi 2 C[a; b℄ for eah i and (g0; : : : ; gm) is a weak Chebyshevsystem on [a; b℄ for every m = 0; 1; : : : ; n (so the only di�erene between aMarkov system and a weak Markov system is that in the de�nition of thelatter, zeros without sign hange are not ounted).a℄ Suppose (1; f1; : : : ; fn) is a weak Markov system of C1 funtions on[a; b℄. Show that (f 01; : : : ; f 0n) is a weak Markov system on [a; b℄:Outline. Proeed by indution on n. If n = 0; then the statement is obvious.Suppose that the statement is true for n� 1. By the indutive hypothesis(f 01; : : : ; f 0n�1) is a weak Markov system on [a; b℄, hene Rolle's theoremimplies that (1; f1; : : : ; fn�1) is a Markov system on [a; b℄:Suppose that g 2 spanff 01; : : : ; f 0n�1g is of the formg := nXi=1 aif 0i ; ai 2 Rand g has at least n sign hanges on [a; b℄: Then there exist n+ 2 distint



3.2 Desartes Systems 113points a < x1 < x2 < � � � < xn+2 < band � = �1 suh that F := � nXi=1 aifisatis�es (�1)i(F (xi+1)� F (xi)) > 0 ; i = 1; 2; : : : ; n+ 1 :Sine (1; f1; : : : ; fn�1) is a Markov system on [a; b℄; by Proposition 3.1.2,there exist funtions GÆ 2 spanf1; f1; : : : ; fn�1gsuh that GÆ(xi) = F (xi) + Æ(�1)i ; i = 2; 3; : : : ; n+ 1for every Æ > 0: Then by the indutive hypothesis, G0Æ has at most n � 2sign hanges on [a; b℄: It follows that if Æ > 0 is suÆiently small, then(�1)(GÆ(x2)�GÆ(x1)) < 0and (�1)n+1(GÆ(xn+2)�GÆ(xn+1)) < 0 ;otherwise G0Æ would have at least n sign hanges on [a; b℄: Now show thatfor suÆiently small Æ > 0F �GÆ 2 spanf1; f1; : : : ; fnghas at least n+ 1 sign hanges, whih is a ontradition. utb℄ Suppose that (1; f1; : : : ; fn) is an ECT system on [a; b℄ and supposethat eah fi 2 Cn[a; b℄ (see E.3 of Setion 3.1). Show that (f 01; : : : ; f 0n) isalso an ECT system on [a; b℄ with eah f 0i 2 Cn�1[a; b℄:Hint: Use the de�nition given in E.3 of Setion 3.1. ut℄ Suppose (1; f1; : : : ; fn) is a weak Markov system on [a; b℄ with eahfi 2 C1[a; b℄: Show that (1; f1; : : : ; fn) is a Markov system on [a; b℄:Hint: Use Rolle's theorem and part a℄. ut



114 3. Chebyshev and Desartes Systems3.3 Chebyshev Polynomials in Chebyshev SpaesSuppose Hn := spanff0; f1; : : : ; fngis a Chebyshev spae on [a; b℄; and A is a ompat subset of [a; b℄ with atleast n+ 1 points. We an de�ne the generalized Chebyshev polynomialTn := Tnff0; f1; : : : ; fn;Agfor Hn on A by the following three properties:(3:3:1) Tn 2 spanff0; f1; : : : ; fngthere exists an alternation sequene (x0 < x1 < � � � < xn) for Tn on A; thatis,(3:3:2) sign(Tn(xi+1)) = �sign(Tn(xi)) = �kTnkAfor i = 0; 1; : : : ; n� 1; and(3:3:3) kTnkA = 1 with Tn(maxA) > 0 :Of ourse the existene and uniqueness of suh a Tn has to be proved.Note that if together with spanff0; : : : ; fng, spanff0; : : : ; fn�1g is also aChebyshev spae, then Theorem 3.1.6 implies thatTn =  fn � n�1Xk=0 akfk! ;where the numbers a0; a1; : : : ; an�1 2 R are hosen to minimize(3:3:4) fn � n�1Xk=0 akfkA ;satis�es properties (3.3.1) and (3.3.2), and the normalization onstant  2 Ran be hosen so that Tn satis�es property (3.3.3) as well. In E.1 we outlinethe proof of the existene and uniqueness of a Tn satisfying properties(3.3.1) to (3.3.3) without assuming that spanff0; : : : ; fn�1g is a Chebyshevspae.Note that if (f0; : : : ; fn) is a Desartes system on [a; b℄; then the nor-malization onstant (that is, the lead oeÆient)  in Tn is positive. Thisfollows from E.4 of Setion 3.2.



3.3 Chebyshev Polynomials in Chebyshev Spaes 115On intervals, with fi(x) := xi; the de�nition (3.3.1) to (3.3.3) gives theusual Chebyshev polynomials; see E.7 of Setion 2.1.The Chebyshev polynomials Tn for Hn on A enode muh of the in-formation of how the spae Hn behaves with respet to the uniform normon A. Many extremal problems are solved by the Chebyshev polynomials.When (f0; f1; : : : ) is a Markov system on [a; b℄ we an introdue thesequene (Tn)1n=0 of assoiated Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn; [a; b℄gfor Hn on [a; b℄: Then (T0; T1; : : : ) is a Markov system on [a; b℄ again withthe same span. (One reason for not always hoosing this as a anonial basisis that it is never a Desartes system.)The denseness of Markov spaes in C[a; b℄ is intimately tied to theloation of the zeros of the assoiated Chebyshev polynomials; see Setion4.1. An example of an extremal problem solved by the Chebyshev polyno-mials is the following:Theorem 3.3.1. Suppose Hn := spanff0; : : : ; fng is a Chebyshev spae on[a; b℄ with assoiated Chebyshev polynomialTn := Tnff0; f1; : : : ; fn; [a; b℄gand eah fi is di�erentiable at b: Thenmaxfjp0(b)j : p 2 Hn ; kpk[a;b℄ � 1 ; p(b) = Tn(b)gis attained by Tn:Proof. Suppose p 2 Hn, kpk[a;b℄ � 1; and p(b) = Tn(b): We need to showthat jp0(b)j � jT 0n(b)j: Let a � �0 < �1 < � � � < �n � b be the points ofalternation for Tn; that is,Tn(�i) = �(�1)i ; i = 0; 1; : : : ; n :Note that Tn � p has at least n zeros in [�0; �n℄; one in eah [�i�1; �i℄;i = 1; 2; : : : ; n (we ount eah internal zero without sign hange twie, asin E.10 of Setion 3.1). So if b 6= �n; then Tn � p has n + 1 zeros on [a; b℄inluding the zero at b, hene p = Tn, and the proof is �nished. We maythus assume that Tn(b) = 1. Assume that jp0(b)j > jT 0n(b)j: Sine T 0n(b) � 0,without loss of generality we may assume that p0(b) > T 0n(b); otherwise westudy �p: Then Tn�p has two zeros on [�n; b℄, and hene has n+1 zeros in[a; b℄ (again, we ount eah internal zero without sign hange twie). Thusby E.10 of Setion 3.1 we have p = Tn, whih ontradits the assumptionp0(b) > T 0n(b): utAn extension of the above theorem to interior points is onsidered inE.3.



116 3. Chebyshev and Desartes SystemsTheorem 3.3.2. Suppose (f0; : : : ; fn�1; g) and (f0; : : : ; fn�1; h) are bothChebyshev systems on [a; b℄ with assoiated Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn�1; g; [a; b℄gand Sn := Tnff0; f1; : : : ; fn�1; h; [a; b℄g ;respetively. Suppose (f0; f1; : : : ; fn�1; g; h) is also a Chebyshev system.Then the zeros of Tn and Sn interlae (there is exatly one zero of Snbetween any two onseutive zeros of Tn).Proof. Sine (f0; : : : ; fn�1; g; h) is a Chebyshev system on [a; b℄; Tn � Snhas at most n+1 zeros. However, between any two onseutive alternationpoints of Tn; of whih there are n+1; there is a zero of Tn�Sn (whih maybe at an internal alternation point of Tn only if it is a zero without signhange, whih is then ounted twie). Likewise, there is a zero of Tn � Snbetween any two onseutive alternation points of Sn: Thus between anythree suessive alternation points of say Tn there an be at most three zerosof Tn � Sn: However, if Sn had two zeros between two onseutive zeros ofTn; then there would be three onseutive alternation points of either Tnor Sn with at least four zeros of either Tn + Sn or Tn � Sn between them,whih is impossible. utTheorem 3.3.3. Suppose (f0; f1; : : : ) is a Markov system on [a; b℄ with as-soiated Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn; [a; b℄g :Then the zeros of Tn and Tn�1 stritly interlae (there is exatly one zeroof Tn�1 stritly between any two onseutive zeros of Tn).Proof. The proof is analogous to that of Theorem 3.3.2. utTheorem 3.3.4 (Lexiographi Property). Let (f0; f1; : : : ) be a Desartessystem on [a; b℄. Suppose �0 < �1 < � � � < �n and 0 < 1 < � � � < n arenonnegative integers satisfying�i � i ; i = 0; 1; : : : ; n :Let Tn := Tnff�0 ; f�1 ; : : : ; f�n ; [a; b℄gand Sn := Tnff0 ; f0 ; : : : ; fn ; [a; b℄gdenote the assoiated Chebyshev polynomials.



3.3 Chebyshev Polynomials in Chebyshev Spaes 117Let �1 < �2 < � � � < �n and �1 < �2 < � � � < �ndenote the zeros of Tn and Sn; respetively. Then�i � �i ; i = 1; 2; : : : ; nwith strit inequality if �i 6= i for at least one index i: (In other words, thezeros of Tn lie to the left of the zeros of Sn:)Proof. It is learly suÆient to prove the theorem in the ase that �i = ifor eah i 6= m, and �m < m < �m+1 for a �xed index m; and then toproeed by a sequene of pairwise omparisons (if m = n; then �m+1 ismeant to be replaed by 1). So supposeTn := Tnff�0 ; : : : ; f�m ; : : : ; f�n ; [a; b℄g = nXi=0 if�iand Sn := Tnff�0 ; : : : ; fm ; : : : ; f�n ; [a; b℄g = dmfm + nXi=0i6=m dif�iwith �m < m < �m+1. Then by Theorem 3.3.2 the zeros of Sn and Tninterlae and all that remains to prove is that the largest zero of Sn is largerthan the largest zero of Tn: That is, we must show that �n < �n: For thiswe argue as follows. It follows from Theorem 3.2.5 that the lead oeÆientof Tn is less than the lead oeÆient of Sn (n < dn provided m < n). Sineboth Tn and Sn have an alternation sequene of length n+ 1 on [a; b℄; andsine kTnk[a;b℄ = kSnk[a;b℄ = 1 ; Tn(b) > 0 ; Sn(b) > 0 ;it follows from E.1 b℄ thatSn � Tn 2 spanff�0 ; f�1 : : : ; f�n ; fmghas n+1 zeros x1 � x2 � � � � � xn+1 on [a; b℄: Therefore, it follows from E.4℄ of Setion 3.2 that (Sn�Tn)(x) > 0 on (xn+1; b) and (Sn�Tn)(x) < 0 on(xn; xn+1): Hene the assumption �n � �n would imply that Sn�Tn has atleast n+ 2 zeros on [a; b℄ (ounting eah internal zero without sign hangetwie), whih is a ontradition. (Draw a piture and use the alternationharaterization of the Chebyshev polynomials Tn and Sn to make the proofof the above statement transparent.) So �n > �n; indeed, and the proof is�nished. ut



118 3. Chebyshev and Desartes SystemsComments, Exerises, and Examples.If Hn := span(f0; : : : ; fn) is a Chebyshev spae on [a; b℄, A is a ompatsubset of [a; b℄, and p 2 (0;1); thenTn =  fn � n�1Xk=0 akfk!with a0; a1; : : : ; an�1 2 R minimizingZA ���fn � n�1Xk=0 akfk���pis alled an Lp Chebyshev polynomial for Hn on A: When A = [a; b℄ andp 2 (1;1℄; the properties of the zeros of these Lp Chebyshev polynomialsare explored in Pinkus and Ziegler [79℄, where muh of the material of thissetion may be found. For example, an Lp analog of Theorem 3.3.2 stillholds.E.1 Existene and Uniqueness of Chebyshev Polynomials. Let A � [a; b℄be a ompat set ontaining at least n + 1 points. Let (f0; : : : ; fn) be aChebyshev system on [a; b℄:a℄ Existene of Chebyshev Polynomials. Show that there exists a Tn sat-isfying properties (3.3.1) to (3.3.3).Hint: If A ontains exatly n + 1 points, then the existene of Tn is justthe interpolation property of a Chebyshev spae formulated in Proposition3.1.2 b℄. So assume that A ontains at least n + 2 points. Then there is aÆ > 0 so that A\ [a; ℄ ontains at least n+1 points for every  2 (b� Æ; b):Show that for every  2 (b�Æ; b); there is a g 2 spanff0; : : : ; fng for whihsupff(b) : f 2 spanff0; f1; : : : ; fng ; kfk[a;℄ = 1gis attained. Use a variational method to show that g satis�es properties(3.3.1) to (3.3.3) with A replaed by A \ [a; ℄.Now let (k)1k=1 be a sequene of numbers from (b�Æ; b) that onvergesto b. Let gk 2 spanff0; : : : ; fng satisfy properties (3.3.1) to (3.3.3) with Areplaed by A \ [a; k℄: Show that there is a subsequene of (gk)1k=1 thatonverges to a g 2 spanff0; : : : ; fng uniformly on [a; b℄: Show that Tn := gsatis�es properties (3.3.1) to (3.3.3). utb℄ A Lemma for Part ℄. Suppose f; g 2 C[a; b℄ with kfkA = kgkA > 0and there are alternation sequenes(x1 < x2 < � � � < xn+1) and (y1 < y2 < � � � < yn+1)for f and g, respetively, on A:



3.3 Chebyshev Polynomials in Chebyshev Spaes 119Suppose also that sign(f(x1)) = sign(g(y1)):Show that f � g has at least n+ 1 zeros on [a; b℄:℄ Uniqueness of Chebyshev Polynomials. Show that the Chebyshev poly-nomials Tnff0; f1; : : : ; fn;Agsatisfying properties (3.3.1) to (3.3.3) are unique.Hint: Use part a℄ and E.10 of Setion 3.1. utE.2 More on Chebyshev Polynomials. Let Hn := spanff0; : : : ; fng be aChebyshev spae on [a; b℄ with assoiated Chebyshev polynomial denotedby Tn := Tnff0; : : : ; fn; [a; b℄g: Show the following statements.a℄ If 1 2 Hn; then jTn(a)j = jTn(b)j = 1:b℄ If 1 2 Hn; then Tn is monotone between two suessive points of itsalternation sequene.Note that the onlusions of parts a℄ and b℄ do not neessarily hold ingeneral.℄ If Tn =: Pni=0 aifi; ai 2 R; then the oeÆient sequene of Tn=amsolves minbi2Rfm + nXi=0i6=m bifi[a;b℄uniquely, provided that ff0; : : : fm�1; fm+1; : : : fng is also a Chebyshev sys-tem on [a; b℄: (So this applies to ordinary polynomials on [0; 1℄ but not on[�1; 1℄:)d℄ Suppose (f0; : : : ; fn) is a Desartes system on [a; b℄ with assoiatedChebyshev polynomial Tn := Tnff0; : : : ; fn; [a; b℄g =: Pni=0 aifi; ai 2 R:Show that an > 0 and aiai+1 < 0 for eah i = 0; 1; : : : ; n� 1:Hint: Use E.4 a℄ of Setion 3.2. utE.3 Extension of Theorem 3.3.1. LetHn := spanff0; : : : ; fng be a Cheby-shev spae on [a; b℄ with assoiated Chebyshev polynomialTn := Tnff0; f1; : : : ; fn; [a; b℄gand suppose eah fi is di�erentiable at x0 2 [a; b℄.a℄ If T 0n(x0) > 0; thenmaxfp0(x0) : p 2 Hn ; kpk[a;b℄ � 1 ; p(x0) = Tn(x0)gis attained only by Tn:



120 3. Chebyshev and Desartes Systemsb℄ If T 0n(x0) < 0; thenminfp0(x0) : p 2 Hn ; kpk[a;b℄ � 1 ; p(x0) = Tn(x0)gis attained and only by Tn:Hint: Consider the number of zeros of Tn � p: utE.4 More Lexiographi Properties of M�untz Spaes. Let [a; b℄ � [0;1):Suppose �0 < �1 < � � � < �n and 0 < 1 < � � � < nare arbitrary real numbers if a > 0; or arbitrary nonnegative numbers ifa = 0. Suppose �i � i for eah i with strit inequality for at least oneindex i: LetHn := spanfx�0 ; x�1 ; : : : ; x�ng and Gn := spanfx0 ; x1 ; : : : ; xng :Denote the assoiated Chebyshev polynomials for Hn and Gn on [a; b℄ byTn;� := Tnfx�0 ; x�1 ; : : : ; x�n ; [a; b℄gand Tn; := Tnfx0 ; x1 ; : : : ; xn ; [a; b℄g ;respetively.a℄ Show that �n � 0 implies Tn;�(b) = 1:Hint: Tn;�(b) 6= 1 would imply that T 0n;� has at least n+1 distint zeros in[a;1) if �0 > 0 and at least n distint zeros if �0 = 0: utb℄ Let x0 = a or x0 = b. If x0 = a = 0; then assume that �0 = 0 and�1 = 1: Show that maxfjp0(x0)j : p 2 Hn ; kpk[a;b℄ � 1gis attained uniquely by �Tn;�:℄ Let x0 2 [0;1) n [a; b℄. If x0 = 0; then assume that �0 = 0: Show thatmaxfjp(x0)j : p 2 Hn ; kpk[a;b℄ � 1gis attained uniquely by �Tn;�:Hint for b℄ and ℄: First prove that an extremal p� 2 Hn exists. Then show,by a variational method, that p� equiosillates n+ 1 times between �1 on[a; b℄: utd℄ Let �n � 0, n � 0; and a > 0: Show thatjT 0n;�(b)j < jT 0n;(b)j :



3.3 Chebyshev Polynomials in Chebyshev Spaes 121Show also that if a > 0 and there exists an index k, 0 � k � n; suh that�k = k = 0; then jT 0n;�(a)j > jT 0n;(a)j :e℄ Let �n � 0, n � 0; and a > 0: Show thatjTn;�(x0)j < jTn;(x0)j ; x0 2 (b;1) :Show also that if �0 � 0; 0 � 0; and a > 0; thenjTn;�(x0)j > jTn;(x0)j ; x0 2 [0; a)(when x0 = 0; we need the assumption �0 = 0 = 0).Hint for d℄ and e℄: Suppose to the ontrary that one of the inequalitiesof parts d℄ and e℄ fails. Assume, without loss of generality, that there isan index m suh that �i = i whenever i 6= m; and �m < m: Note thatby a℄, �n � 0 and n � 0 imply Tn;�(b) = Tn;(b) = 1: Also, by E.1 a℄,�k = k = 0 implies Tn;�(a) = Tn;(a) = (�1)n: Now use Theorem 3.3.4 toshow that Tn;� � Tn; 2 spanfx�0 ; x�1 ; : : : ; x�n ; xmghas at least n+2 zeros in (0;1) (in the ases when �n � 0 and n � 0 areassumed) or in [0;1) (in the ases when �k = k = 0 is assumed). Thisontradition �nishes the proof. utf ℄ Let 0 < a < b: Show that if �n � 0 and n � 0; thenmaxp2Hn jp0(b)jkpk[a;b℄ < maxq2Gn jq0(b)jkqk[a;b℄ :Show also that if there exists an index k, 0 � k � n, suh that �k = k = 0;then maxp2Hn jp0(a)jkpk[a;b℄ > maxq2Gn jq0(a)jkqk[a;b℄ :Hint: Combine parts b℄ and d℄. utg℄ Let 0 < a < b. Let �n � 0 and n � 0: Show thatmaxp2Hn jp(x0)jkpk[a;b℄ < maxq2Gn jq(x0)jkqk[a;b℄ ; x0 2 (b;1) :Show also that maxp2Hn jp(x0)jkpk[a;b℄ > maxq2Gn jq(x0)jkqk[a;b℄ ; x0 2 [0; a)(when x0 = 0, we need the assumption �0 = 0 = 0).



122 3. Chebyshev and Desartes SystemsHint: Combine parts ℄ and e℄. uth℄ Extend the validity, with < and > replaed by � and �, respetively, ofthe inequalities of parts f℄ and g℄ to the ase when the interval [a; b℄ � (0;1)is replaed by [0; b℄:i℄ Suppose there exists an index k, 0 � k � n, suh that �k = k = 0: Letx0 2 (0; a): Show that the seond inequalities of parts e℄ and g℄ hold true.Hint: Modify the arguments given in the hints to parts d℄, e℄, f℄, and g℄.Note that 1 2 Hn \Gn ensures, as in E.1 a℄, thatTn;�(b) = Tn;(b) = 1 and Tn;�(a) = Tn;(a) = (�1)n : utE.5 Lexiographi Properties of (sinh�0t; : : : ; sinh�nt). Let0 < �0 < �1 < � � � < �n and 0 < 0 < 1 < � � � < n :Suppose �i � i for eah i: LetHn := spanfsinh�0t; sinh�1t; : : : ; sinh�ntgand Gn := spanfsinh 0t; sinh 1t; : : : ; sinh ntg :Denote the assoiated Chebyshev polynomials for Hn and Gn on [0; 1℄ byTn;� := Tnfsinh�0t; sinh�1t; : : : ; sinh�nt; [0; 1℄gand Tn; := Tnfsinh 0t; sinh 1t; : : : ; sinh nt; [0; 1℄g ;respetively.a℄ Let �1 < �2 < : : : < �n and �1 < �2 < � � � < �ndenote the zeros of Tn;� and Tn; , respetively. Show that�i � �i; i = 1; 2; : : : ; n(in other words, the zeros of Tn;� lie to the left of the zeros of Tn;).Outline. By E.2 d℄ of Setion 3.2, (sinh�0t; : : : ; sinh�nt) is a Desartessystem on (0;1): Hene, by Theorem 3.3.3, the zeros ofTn;�;Æ := Tnfsinh�0t; sinh�1t; : : : ; sinh�nt; [Æ; 1℄gon [Æ; 1℄ lie to the left of the zeros of



3.3 Chebyshev Polynomials in Chebyshev Spaes 123Tn;;Æ := Tnfsinh 0t; sinh 1t; : : : ; sinh nt; [Æ; 1℄gon [Æ; 1℄ for every Æ 2 (0; 1): Show thatlimÆ!0 kTn;� � Tn;�;Æk = limÆ!0 kTn; � Tn;;Æk = 0 ;hene the desired result follows by a ontinuity argument. utb℄ Show that maxfjp0(0)j : p 2 Hn ; kpk[0;1℄ � 1gis attained uniquely by �Tn;�:℄ Show that Tn;�(1) = Tn;(1) = 1 :Hint: Tn;�(1) 6= 1 would imply thatT 0n;� 2 spanfosh�0t; osh�1t; : : : ; osh�ntghas at least n+ 1 distint zeros in (0;1): This is impossible, sine by E.2e℄ of Setion 3.2, (osh�0t; : : : ; osh�nt) is a Desartes (hene Chebyshev)system on (0;1): utd℄ Show that jT 0n;�(0)j � jT 0n;(0)j :Hint: Suppose to the ontrary that the above inequality fails to hold. As-sume, without loss of generality, that there is an index m suh that �i = iwhenever i 6= m; and �m < m: ObviouslyTn;�(0) = Tn;(0) = 0 :Part ℄ implies that Tn;�(1) = Tn;(1) = 1 : Now use part a℄ and the aboveobservation to show thatTn;� � Tn; 2 spanfsinh�0t; sinh�1t; : : : ; sinh�nt; sinh mtghas at least n+2 zeros in (0;1): This ontradits E.2 d℄ of Setion 3.2. ute℄ Show that max06=p2Hn jp0(0)jkpk[0;1℄ � max06=q2Gn jq0(0)jkqk[0;1℄ :Hint: Combine parts b℄ and d℄. utThe result of the following exerise has been observed independently byLubinsky and Ziegler [90℄ and Kro�o and Szabados [94℄. Various oeÆientestimates for polynomials are disussed in Milovanovi�, Mitrinovi�, andRassias [94℄. An estimate for the oeÆients of polynomials having a givennumber of terms is obtained in Baishanski and Bojani [80℄. Approximationby suh polynomials is studied in Baishanski [83℄.



124 3. Chebyshev and Desartes SystemsE.6 CoeÆient Bounds for Polynomials in a Speial Basis. Show thatjmj � 2�n�2n2m�kpk[�1;1℄ ; m = 0; 1; : : : ; nfor every polynomial p of the formp(x) = nXm=0 m(1� x)m(x+ 1)n�m ; m 2 R :Outline. By E.5 a℄ and b℄ of Setion 2.3Tn(x) = nXm=0 dm;n(1� x)m(x+ 1)n�m ;where dm;n = (�1)m2�n �n�1=2m ��n�1=2n�m ��n�1=2n � = 2�n�2n2m� :If jmj > dm;nkpk[�1;1℄ for some index m; then the polynomialq(x) = Tn(x)dm;n � p(x)mhas at least n distint zeros in (�1; 1): However,q(x) = nXj=0j 6=m aj(1� x)j(x + 1)n�j = (1� x)n nXj=0j 6=m aj �1 + x1� x�n�jan have at most n� 1 distint zeros in (�1; 1) sine(u0; u1; : : : un�m�1; un�m+1; un�m+2; : : : ; un)is a Chebyshev system on (0;1) by E.1 a℄ of Setion 3.1. utE.7 On the Zeros of the Chebyshev Polynomials for M�untz Spaes. Let0 =: �0 < �1 < � � � < �n, and letHn := spanfx�0 ; x�1 ; : : : ; x�ng :Denote the assoiated Chebyshev polynomials for Hn on [0; 1℄ byTn := Tn�x�0 ; x�1 ; : : : ; x�n ; [0; 1℄	 :



3.4 M�untz-Legendre Polynomials 125a℄ Let � 2 �0; 12�. Suppose � < � are two onseutive zeros of Tn lying in[�; 1� �℄. Show that �2n � � � � :Hint: It is lear that Qn(x) := x(1 � x)Tn(x) has two onseutive zeros < Æ in [�; 1℄ suh that Æ �  � �n :Show that if � � � < �2n ;then Rn(x) := Tn(x) � Tn �x� � 2 Hnhas at least n+ 1 zeros on [0; �=℄; whih is a ontradition. utb℄ Denote the zeros of Tn in (0; 1) by x1 < x2 < � � � < xn: Show thatlogxk+1 � logxk � logxk � logxk�1 ; k = 2; 3; : : : ; n� 1 :Hint: Use a zero ounting argument, as in the hint to part a℄. ut3.4 M�untz-Legendre PolynomialsWe examine in some detail the system(x�0 ; x�1 ; : : : )on [0; 1℄ whih we all aM�untz system. In partiular, we expliitly onstrutorthogonal \polynomials" for this system. This allows us to derive variousextremal properties of these systems and leads to a very simple proof of thelassial M�untz-Sz�asz theorem in Setion 4.2.We adopt the following de�nition for x�:(3:4:1) x� = e� log x ; x 2 (0;1) ; � 2 Cwith value at 0 de�ned to be the limit of x� as x! 0 from (0;1) wheneverthe limit exists.Given a sequene � := (�i)1i=0 of omplex numbers, an element ofspanfx�0 ; x�1 ; : : : ; x�ng is alled a M�untz polynomial or a �-polynomial.We denote the set of all suh polynomials by Mn(�); that is,(3:4:2) Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng ;



126 3. Chebyshev and Desartes Systemswhere the linear span is over R or C aording to ontext. Let(3:4:3) M(�) := 1[n=0Mn(�) = spanfx�0 ; x�1 ; : : : g :For the L2[0; 1℄ theory of M�untz systems, we onsider(3:4:4) � = (�i)1i=0 ; Re(�i) > �1=2 ; and �i 6= �j ; i 6= j ;where Re(�) denotes the real part of �: This ensures that the �-polynomialsp(x) = nXk=0 akx�k ; ak 2 Care in L2[0; 1℄. We an then de�ne the orthogonal �-polynomials with re-spet to Lebesgue measure. We all these M�untz-Legendre polynomials. Al-though we often assume (3:4:4), the following de�nition requires neither thedistintness of the numbers �i nor the assumption Re(�i) > �1=2:De�nition 3.4.1 (M�untz-Legendre Polynomials). Let � := (�i)1i=0 be a se-quene of omplex numbers. We de�ne the nth M�untz-Legendre polynomialon (0;1) byLn(x) := Lnf�0; : : : ; �ng(x)(3:4:5) := 12�i Z� n�1Yk=0 t+ �k + 1t� �k xt dtt� �n ; n = 0; 1; : : : ;where the positively oriented, simple losed ontour � surrounds the zerosof the denominator in the integrand, and �k denotes the onjugate of �k:The orthogonality of the above funtions with respet to the Lebesguemeasure is proved in Theorem 3.4.3. However, �rst we give a simple expliitrepresentation of Ln in the ase that the numbers �i are distint. This isdedued immediately from evaluating the above integral by the residuetheorem.Proposition 3.4.2. Let � := (�i)1i=0 be a sequene of distint omplex num-bers. Then(3:4:6) Lnf�0; : : : ; �ng(x) = nXk=0 k;nx�k ; x 2 (0;1)with k;n := Qn�1j=0 (�k + �j + 1)Qnj=0;j 6=k(�k � �j) ;where Lnf�0; : : : ; �ng(x) is de�ned by (3.4.5).



3.4 M�untz-Legendre Polynomials 127So Lnf�0; : : : ; �ng is indeed a � polynomial provided the numbers �iare distint. Its value at x = 0 is de�ned if for all i either Re(�i) > 0 or�i = 0:From either De�nition 3.4.1 or the above proposition it is obvious thatthe order of �0; : : : ; �n�1 in Lnf�0; : : : ; �ng does not make any di�erene,as long as �n is kept last. For example,L2f�0; �1; �2g = L2f�1; �0; �2gwhile both, in general, are di�erent from L2f�0; �2; �1g. For a �xed sequene�, we let Ln(�), or simply Ln, denote the nth M�untz-Legendre polynomialLnf�0; : : : ; �ng, whenever there is no ambiguity.An analog of Proposition 3.4.2 an be established even if the numbers�i are not distint, however, in the nondistint ase, Ln(�) does not belongto the spae Mn(�); see E.7 b℄. In the very speial ase that all the indiesare the same we reover the Laguerre polynomials; see E.1.The orthogonality of fLng1n=0 is the ontent of the main theorem ofthis setion.Theorem 3.4.3 (Orthogonality). Let � = (�i)1i=0 be a sequene of omplexnumbers with Re(�i) > �1=2 for i = 0; 1; : : : . The funtions Ln de�ned by(3.4.5) satisfy(3:4:7) Z 10 Ln(x)Lm(x) dx = Æn;m1 + �n + �nfor all nonnegative integers n and m: (Here Æn;m is the Kroneker symbol.)Proof. We may assume that the numbers �i are distint. Note thatLnf�0; �1; : : : ; �ng(x)is uniformly ontinuous in �0; : : : ; �n for x in losed subintervals of (0; 1℄;and the nondistint �i ase an be handled by a limiting argument. We mayfurther suppose that m � n: Sine Re(�i) > �1=2; we an pik a simplelosed ontour � suh that � lies ompletely to the right of the vertialline Re(t) = �1=2 and � surrounds all zeros of the denominator of theintegrand in (3.4.5). When t 2 �; we have Re(t+ �m) > �1; andZ 10 xt+�m dx = 1t+ �m + 1for every m = 0; 1; : : : : Hene Fubini's theorem yieldsZ 10 Ln(x)x�m dx = 12�i Z� n�1Yk=0 t+ �k + 1t� �k dt(t� �n)(t+ �m + 1) :



128 3. Chebyshev and Desartes SystemsNotie that for m < n; the new fator, t + �m + 1; in the denominatoran be anelled, and for m = n the new pole �(�n + 1) is outside �sine Re(��n � 1) < �1=2: Changing the ontour from � to jtj = R withR > maxf�0j+ 1; : : : ; j�nj+ 1g; givesZ 10 Ln(x)x�m dx = 12�i Zjtj=R n�1Yk=0 t+ �k + 1t� �k dt(t� �n)(t+ �m + 1)� Æm;n��n � 1� �n n�1Yk=0 ��n + �k��n � 1� �k :On letting R!1; we see that the integral on the right-hand side is atually0; whih givesZ 10 Ln(x)x�m dx = Æn;m�n + �n + 1 n�1Yk=0 �n � �k�n + �k + 1 :Therefore Proposition 3.4.2 and m � n yieldZ 10 Ln(x)Lm(x) dx = Z 10 Ln(x) mXk=0 k;mx�k dx= m;m Z 10 Ln(x)x�m dx = Æm;n�n + �n + 1 ;and the proof is �nished. utAn alternative proof of orthogonality is suggested in E.3. If we let(3:4:8) L�n := (1 + �n + �n)1=2Ln ;then we get an orthonormal system, that is,Z 10 L�n(x)L�m(x) dx = Æm;n ; m; n = 0; 1; : : : :We all these L�n the orthonormal M�untz-Legendre polynomials.There is also a Rodrigues-type formula for the M�untz-Legendre poly-nomials (see E.2). Letpn(x) = nXk=0 x�kQnj=0;j 6=k(�k � �j) :Then Ln(x) = (D�0D�1 � � �D�n�1)(pn)(x) ;where the di�erential operators D� are de�ned byD�(f)(x) := x�� ddx (x1+�f(x)) :The following is a di�erential reurrene formula for (Ln)1n=0:



3.4 M�untz-Legendre Polynomials 129Theorem 3.4.4. For a �xed sequene � := (�i)1i=0 of omplex numbers, letLn be de�ned by (3.4.5). The identity(3:4:9) xL0n(x) � xL0n�1(x) = �nLn(x) + (1 + �n�1)Ln�1(x)holds for every x 2 (0;1) and n = 1; 2; : : : :Proof. From (3:4:5) we get(x��nLn(x))0 = 12�i Z� Qn�2k=0 (t+ �k + 1)Qn�1k=0 (t� �k) (t+ �n�1 + 1)xt��n�1 dt :On multiplying both sides by x�n+�n�1+1; we obtainx�n+�n�1+1(x��nLn(x))0= 12�i Z� Qn�2k=0 (t+ �k + 1)Qn�1k=0 (t� �k) (t+ �n�1 + 1)xt+�n�1 dt ;and again by the de�nition of Ln�1;x�n+�n�1+1(x��nLn(x))0 = (x�n�1+1Ln�1(x))0 :We �nish the proof by simplifying by the produt rule and dividing bothsides by x�n�1 : utCorollary 3.4.5. For a �xed sequene � := (�i)1i=0 of omplex numbers, letLn and L�n be de�ned by (3.4.5) and (3.4.8), respetively. Then for everyx 2 (0;1) and for every n = 0; 1; : : : ,a℄ xL0n(x) = �nLn(x) + n�1Xk=0 (�k + �k + 1)Lk(x) ;b℄ xL�0n (x) = �nL�n(x) +q�n + �n + 1 n�1Xk=0q�k + �k + 1L�k(x) ;and℄ xL00n(x) = (�n � 1)L0n(x) + n�1Xk=0 (�k + �k + 1)L0k(x) :Proof. The �rst identity follows from Theorem 3.4.4 on expressingxL0n(x) � xL00(x)as a telesoping sum. From this and the relationL�k = (�k + �k + 1)1=2Lkwe get part b℄. Di�erentiating the identity of part a℄ gives part ℄. utThe values and derivative values of the M�untz-Legendre polynomialsat 1 an now all be alulated.



130 3. Chebyshev and Desartes SystemsCorollary 3.4.6. For a �xed sequene � := (�i)1i=0 of omplex numbers, letLn be de�ned by (3.4.5). Thena℄ Ln(1) = 1 ;b℄ L0n(1) = �n + n�1Xk=0 (�k + �k + 1) ;and℄ L00n(1) = (�n � 1)L0n(1) + n�1Xk=0 (�k + �k + 1)L0k(1) :Proof. It suÆes to show that Ln(1) = 1; the rest follows from Corollary3.4.5. Notie that Ln(1) = 12�i Z� n�1Yk=0 t+ �k + 1t� �k dtt� �n :Now, sine � surrounds all zeros of the denominator, and the degree of thedenominator is one higher than that of the numerator, we an evaluate theintegral on irles of radius R!1 to get the result. utComments, Exerises, and Examples.M�untz polynomials are just exponential polynomials Pake��kt underthe hange of variables x = e�t and have reeived onsiderable srutiny(Shwartz [59℄ is a monograph on this topi). The orthogonalizations ofM�untz systems exist in the Russian literature (see, for example, Badalyan[55℄ and Taslakyan [84℄; it has been further explored in MCarthy, Sayre,and Shawyer [93℄). Borwein, Erd�elyi, and Zhang [94b℄ ontains most of theontent of this setion.Various properties of the M�untz-Legendre polynomials are examinedin the exerises. Note that if �0 < �1 < �2 < � � � ; then the M�untz system(x�0 ; x�1 ; : : : ) is a Desartes system on [a; b℄; a > 0; and so we an applyTheorem 3.3.4 to the assoiated Chebyshev polynomials on [a; b℄ to deduehow the zeros shift when the exponents are varied lexiographially. Similarresults are given for the M�untz-Legendre polynomials in E.7.E.1 Laguerre Polynomials.a℄ Let Lnf�0; : : : ; �ng(x) be de�ned by (3.4.5). If �0 = � � � = �n = �; thenLnf�0; �1; : : : ; �ng(x) = x�Ln(�(1 + �+ �) logx) ;where Ln is the nth Laguerre polynomial orthonormal with respet to theweight e�x on [0;1) with Ln(0) = 1 (see E.7 of Setion 2.3, where Ln isdenoted by Ln as is standard).



3.4 M�untz-Legendre Polynomials 131Proof. Sine �k = �, (3.4.5) yieldsLnf�0; �1; : : : ; �ng(x) = 12�i Z� xt(t+ �+ 1)n(t� �)n+1 dt ;where the ontour � an be taken to be any irle entered at �: By theresidue theorem,Lnf�0; �1; : : : ; �ng(x) = 1n! � dndtn (xt(t+ �+ 1)n�t=�= 1n! nXk=0�nk�x�(logx)k [n(n� 1) � � � (k + 1)℄(�+ �+ 1)k= x� nXk=0 1k!�nk�(1 + �+ �)k logk x :See also part b℄. utb℄ Let Ln(x) := nXk=0 1k!�nk�(�x)k:Then (Ln)1n=0 is an orthonormal sequene of polynomials on [0;1) withrespet to the inner produthf; gi = Z 10 f(x)g(x)e�x dx :Dedue the orthonormality from a℄ and Theorem 3.4.3 by substitutingy = �(1 + �+ �) logx :E.2 Rodrigues-Type Formula. Let � = (�i)1i=0 be a sequene of distintomplex numbers. Let Ln be de�ned by (3.4.5).a℄ Let pn(x) := nXk=0 x�kQnj=0;j 6=k(�k � �j) :Show that pn(x) = 12�i Z� xt dtQnj=0(t� �j) ;where � is any ontour surrounding �0; �1; : : : ; �n: Use this to show thatp(k)n (1) = 0 ; k = 0; 1; : : : ; n� 1 :



132 3. Chebyshev and Desartes Systemsb℄ Show that Ln(x) = (D�0D�1 � � �D�n�1)(pn)(x) ;where D�(f)(x) := x��(x1+�f(x))0 :℄ If 0 = �0 < �1 < � � � ; thenpn(0) = (�1)n nYj=1��1jand (�1)npn is stritly dereasing on [0; 1℄:E.3 Another Proof of Orthogonality. Dedue the orthogonality of thesequene (Ln)1n=0 on [0; 1℄ from Theorem 3.4.4 by using integration byparts and indution.E.4 Integral Reursion. For a given sequene � := (�i)1i=0 of omplexnumbers satisfying (3.4.4), let Ln be de�ned by (3.4.5). Show thatLn(x) = Ln�1(x)� (�n + �n�1 + 1)x�n Z 1x t��n�1Ln�1(t) dt ; x 2 (0; 1℄ :Hint: Use Theorem 3.4.4. utE.5 On the Maximum of Ln on [0; 1℄. If � = (�i)1i=0 is a sequene ofnonnegative numbers satisfying(3:4:10) �n � n�1Xk=0 (1 + 2�k) ; n = 1; 2; : : :and Ln is de�ned by (3.4.5), thenjLn(x)j < Ln(1) = 1 ; x 2 [0; 1) ; n = 2; 3; : : : :Hint: Use Theorem 3.4.4. utIf �k = �k; then (3:4:10) holds if and only if � � 2 +p3:E.6 The Reproduing Kernel. Let � = (�i)1i=0 be as in (3.4.4), and letLn and L�n be de�ned by (3.4.5) and (3.4.8), respetively. Then for everyp 2Mn(�); we have p(x) = Z 10 Kn(x; t)p(t) dt ;where Kn(x; t) := nXk=0L�k(x)L�k(t)is the nth reproduing kernel (see also E.5 of Setion 2.2).



3.4 M�untz-Legendre Polynomials 133E.7 On the Zeros of M�untz-Legendre Polynomials. Assume that(�0; �1; : : : ; �n) � �� 12 ;1� :a℄ For a funtion f 2 C(0; 1) let S�(f) and Z(f) denote the number ofsign hanges and the number of zeros, respetively, of f in (0; 1) (we ounteah zero without sign hange twie). Let � and 	 2 C(0; 1). Show that ifn � S�(��+ �	) � Z(��+ ��) � n+ 1for every real � and � with �2 + �2 > 0; then the zeros of � and 	 stritlyinterlae.Proof: This result is due to Pinkus and Ziegler [79℄. utb℄ Assume that f�0; �1; : : : ; �ng = fe�0; e�1; : : : ; e�mg ;where the numbers e�0; e�1; : : : ; e�m are distint, and letmj ; j = 0; 1; : : : ;m;be the number of indies i = 0; 1; : : : ; n for whih �i = e�j : Show thatLnf�0; : : : ; �ng is in the spaeHn := spanfx�j (logx)i : j = 0; 1; : : : ;m; i = 0; 1; : : : ;mj � 1g ;whih is a Chebyshev spae on (0;1):Hint: Use the de�nition and the residue theorem. ut℄ Show that fLkf�0; : : : ; �kggnk=0 is a basis for the Chebyshev spae Hnde�ned in part b℄.Hint: Use Theorem 3.4.3 (orthogonality). utd℄ Show that Ln := Lnf�0; : : : ; �ng has exatly n distint zeros in (0; 1)and Ln hanges sign at eah of these zeros.Hint: Assume to the ontrary that the number of sign hanges of Ln is lessthan n. Use part ℄ to �nd a funtion p 2 spanfLkgn�1k=0 that hanges signexatly at those points in (0; 1) where Ln hanges sign. Then R 10 Lnp 6= 0;whih ontradits Theorem 3.4.3. ute℄ Suppose �n < ��n: Show that the zeros of� := Lnf�0; �1; : : : ; �n�1; �ngand 	 := Lnf�0; �1; : : : ; �n�1; ��ngin (0; 1) stritly interlae.



134 3. Chebyshev and Desartes SystemsHint: Note that Theorem 3.4.3 (orthogonality) impliesZ 10 (�� + �	)p = 0for every p 2 Hn�1, where Hn�1 is de�ned by part b℄ with respet to thesequene (�0; �1; : : : ; �n�1): Use the hint given to part d℄ to show that�� + �	 has at least n sign hanges in (0; 1) whenever � and � are realwith �2 + �2 > 0: Use part b℄ to obtain that �� + �	 annot have morethan n + 1 zeros in (0; 1) whenever � and � are real with �2 + �2 > 0:Finish the proof by part a℄. utf ℄ Let �0; : : : ; �k�1; �k+1; : : : ; �n be �xed distint numbers. Suppose(�k;i)1i=1 � (�1=2;1)is a sequene with limi!1 �k;i =1: Show that the largest zero ofLn;k;i := Lnf�0; : : : ; �k�1; �k;i; �k+1; : : : ; �ngin (0; 1) tends to 1:Outline. Assume, without loss, that �k;i is greater than eah of the numbers�j ; j = 0; 1; : : : ; n; j 6= k. Letgi(x) := �k;i(Ln;k;i(x) � (i)k;n x�k;i ) ;where (i)k;n = Qn�1j=0 (�k;i + �j + 1)Qnj=0;j 6=k(�k;i � �j)is the oeÆients of x�k;i in Ln;k;i: Use (3.4.6) to show that the funtionsgi onverge uniformly on [Æ; 1℄, Æ 2 (0; 1), to a funtion0 6= g 2 Hn�1 := spanfx�0 ; : : : ; x�k�1 ; x�k+1 ; : : : ; x�ng :Use Ln;k;i(1) = 1 (see Corollary 3.4.6) and the expliit formula for (i)k;n toshow that g(1) � 0 and that the funtionsLn;k;i(x) = (Ln;n;i(x)� (i)k;n x�k;i ) + (i)k;n x�k;ionverge to g(x); as i!1; for every x 2 (0; 1):Now assume that the statement of part f℄ is false. Then there is an� 2 (0; 1) and a subsequene (�k;ij )1j=1 of (�k;i)1i=1 suh that the M�untz-Legendre polynomials Ln;k;ij have no zeros in [1��; 1℄: Dedue from this and



3.4 M�untz-Legendre Polynomials 135L0n;k;ij (1) > 0, �n;ij > 0 (see Corollary 3.4.6 a℄), that gij is nondereasingon [1� �; 1℄ whenever �n;ij > 0:Therefore g is nondereasing on [1 � �; 1℄; whih, together with 0 6=g 2 Hn�1 and g(1) � 0; implies that g(1� �) < 0: Hene Ln;k;i(1� �) < 0if i is large enough. Sine Ln;k;i(1) = 1 (see Corollary 3.4.6), eah Ln;k;ihas a zero in (1 � �; 1); provided i is large enough, whih ontradits ourassumption. utg℄ Let � and 	 be as in part e℄. Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros of � and 	; respetively, in (0; 1): Show that �n < ��n impliesthat xj < x�j ; j = 1; 2; : : : ; n :Hint: Combine parts e℄ and f℄. uth℄ Let �k 6= �n: Show that the zeros of� := Lnf�0; : : : ; �k�1; �k; �k+1 : : : ; �n�1; �ngand 	 := Lnf�0; : : : ; �k�1; �n; �k+1 : : : ; �n�1; �kgin (0; 1) stritly interlae.Hint: Use part a℄ and arguments similar to those given in the hints to parte℄. Note that�(1) = 	(1) = 1 and 	 0(1)� �0(1) = �n � �k 6= 0(see Corollary 3.4.6 a℄) imply that ��+�	 is not identially 0 whenever �and � are real with �2 + �2 > 0: uti℄ Let � and 	 be as in part h℄. Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros of � and 	; respetively, in (0; 1). Show that �k < �n impliesthat xj < x�j ; j = 1; 2; : : : ; n :Hint: By part h℄ it is suÆient to prove that xn � x�n: Let Hn be theChebyshev spae de�ned in part b℄. Corollary 3.4.6 implies that�(1) = 	(1) = 1 and 	 0(1)� 	 0(1) = �n � �k > 0 :Dedue from this and part i℄ that x�n < xn would imply that 0 6= 	�� 2 Hnhas at least n+ 1 distint zeros in (0; 1℄; whih is a ontradition. ut



136 3. Chebyshev and Desartes Systemsj℄ Lexiographi Property. Supposemax0�i�n�i � min0�j�n�jand �i < �j for some indies i and j: Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros ofLnf�0; �1; : : : ; �ng and Lnf�0; �1; : : : ; �ng ;respetively, in (0; 1): Show thatxj < x�j ; j = 1; 2; : : : ; n :Hint: Repeated appliations of parts g℄ and i℄ give the desired result. utk℄ Let �0 < �n: Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros ofLnf�0; �1; : : : ; �ng and Lnf�n; �n�1; : : : ; �0g ;respetively, in (0; 1). Show that (xj)nj=1 and (x�j )nj=1 stritly interlae andxj < x�j ; j = 1; 2; : : : ; n :Hint: Use parts h℄ and i℄ and the omment given after Proposition 3.4.2. utl℄ Show that the zeros of� := Ln�1f�0; : : : ; �n�1g and 	 := Lnf�0; : : : ; �ngin (0; 1) stritly interlae.Hint: Use part a℄ and arguments similar to those given in the hints for parte℄. utE.8 A Global Estimate for the Zeros. Let (�i)ni=1 � (�1=2;1). Assumethat x1 < x2 < � � � < xn are the zeros of Lnf�0; : : : ; �ng in (0; 1): Thenexp�� 4n+ 21 + 2��� < x1 < x2 < � � � < xn < exp� �j21(1 + 2��)(4n+ 2)� ;



3.4 M�untz-Legendre Polynomials 137where �� := minf�0; : : : ; �ng, �� := maxf�0; : : : ; �ng and j1 > 3�=4 is thesmallest positive zero of the Bessel funtionJ0(z) := 1Xk=0 (�z2)k(k! 2k)2 :Proof. Let Ln be the nth Laguerre polynomial with respet to the weighte�x on [0;1); and let the zeros of Ln be z1 < z2 < � � � < zn: Then by[Szeg}o [75℄, pp. 127{131℄)j214n+ 2 < z1 < z2 < � � � < zn < 4n+ 2 ;where the upper estimate is asymptotially sharp, and the lower estimateis sharp up to a multipliative onstant (not exeeding 44=(9�2)). Now useE.1 and E.7 j℄. utE.9 The Order of the Zero at 1 of Certain Polynomials. This exerise, duein part to K�os, gives preise estimates on the maximum order of the zero at1 of a polynomial whose oeÆients are bounded in modulus by the leadingoeÆient.a℄ Suppose a0; a1; : : : ; an�1 are omplex numbers with modulus at most1; and suppose an = 1: Then the multipliity of the zero ofp(x) = a0 + a1x+ a2x2 + � � �+ anxnat 1 is at most 5pn:Proof. If p has a zero at 1 of multipliity m, then for every polynomial fof degree less than m, we have(3.4.11) a0f(0) + a1f(1) + � � �+ anf(n) = 0 :We onstrut a polynomial f of degree at most 5pn; for whihf(n) > jf(0)j+ jf(1)j+ � � �+ jf(n� 1)j :Equality (3.4.11) annot hold with this f , so the multipliity of the zero ofp at 1 is at most the degree of f:Let T� be the �th Chebyshev polynomial de�ned by (2.1.1). Let k 2 N;and let g := T0 + T1 + � � �+ Tk 2 Pk :Note that g(1) = k + 1: Also, for 0 < y � �;



138 3. Chebyshev and Desartes Systemsg(os y) = 1 + os y + os 2y + � � �+ os ky = sin(k + 12 )y + sin 12y2 sin 12y :Hene, for �1 � x < 1; jg(x)j � p2p1� x :Let f(x) := g4( 2xn � 1): Then f(n) = g4(1) = (k + 1)4 andjf(0)j+ jf(1)j+ � � �+ jf(n� 1)j � nXj=1 4� 2jn �2 < n2 1Xj=1 1j2 = �2n26 :If k := b(�2=6)1=4pn; thenf(n) > jf(0)j+ jf(1)j+ � � �+ jf(n� 1)j :In this ase the degree of f is 4k � 5pn: utThe result of part a℄ is essentially sharp.b℄ For every n 2 N; there exists a polynomialpn(x) = a0 + a1x+ � � �+ a2n2x2n2suh that a2n2 = 1; ja0j; ja1j; : : : ; ja2n2�1j are real numbers with modulusat most 1; and pn has a zero at 1 with multipliity at least n:Proof. De�neLn(x) := (n!)22�i Z� xt dtQnk=0 (t� k2) ; n = 0; 1; : : : ;where the simple losed ontour � surrounds the zeros of the denominatorof the integrand. Then Ln is a polynomial of degree n2 with a zero of mul-tipliity at least n at 1: (This an easily be seen by repeated di�erentiationand then evaluation of the above ontour integral by expanding the ontourto in�nity.)Also, by the residue theorem,Ln(x) = 1 + nXk=1 k;nxk2where k;n = (�1)n(n!)2Qnj=0;j 6=k(k2 � j2) = (�1)k2(n!)2(n� k)!(n+ k)! :It follows that jk;nj � 2 ; k = 1; 2; : : : ; n :Hene, Pn(x) := Ln(x) + Ln(x2)2is a polynomial of degree 2n2 with a zero of order n at 1: Also Pn hasonstant oeÆient 1 and eah of its other oeÆients is a real number ofmodulus less than 1: Now let pn(x) := x2n2Pn(1=x): ut



3.5 Chebyshev Polynomials in Rational Spaes 139℄ For every n 2 N; there exists a polynomialpn(x) = a0 + a1x+ � � �+ anxnsuh that an = 1; a0; a1; : : : ; an�1 are real numbers of modulus less than1; and p has a zero at 1 with multipliity at least bpn=2:3.5 Chebyshev Polynomials in Rational SpaesThere are very few situations where Chebyshev polynomials an be expli-itly omputed. Indeed, only the lassial ase of Setion 2.1 is well known.However, the expliit formulas for the Chebyshev polynomials for thetrigonometri rational system(3:5:1) �1 ; 1� sin �os � � a1 ; 1� sin �os � � a2 ; : : : ; 1� sin �os � � an� ; � 2 [0; 2�)and therefore also for the rational system(3:5:2) �1 ; 1x� a1 ; 1x� a2 ; : : : ; 1x� an� ; x 2 [�1; 1℄with distint real poles outside [�1; 1℄ are impliitly ontained in Ahiezer[56℄.The ase (3:5:1) does not perfetly �t our disussion of Setion 3.3beause of the periodiity or beause [0; 2�) is not a ompat subset ofR. This leads to nonuniqueness of the Chebyshev polynomials. Note thatordinary polynomials arise as a limiting ase of the span of system (3:5:2)on letting all the poles tend to �1:We are primarily interested in the linear span of (3:5:2) and its trigono-metri ounterpart obtained with the substitution x = os �: Let(3:5:3) Pn(a1; a2; : : : ; an) := � p(x)Qnk=1 jx� akj : p 2 Pn�and(3:5:4) Tn(a1; a2; : : : ; an) := � t(�)Qnk=1 jos � � akj : t 2 Tn� ;where (ak)nk=1 � C n[�1; 1℄ is a �xed sequene of poles.



140 3. Chebyshev and Desartes SystemsWhen the poles a1; a2; : : : ; an are distint and real, (3:5:3) and (3:5:4)are simply the real spans of the systems(3:5:5) �1 ; 1x� a1 ; 1x� a2 ; : : : ; 1x� an� on [�1; 1℄and(3:5:6) �1 ; 1� sin �os � � a1 ; 1� sin �os � � a2 ; : : : ; ; 1� sin �os � � an� on [0; 2�) ;respetively.We an onstrut Chebyshev polynomials of the �rst and seondkinds, whih are analogous to Tn and Un of Setion 2.1, for the spaesPn(a1; a2; : : : ; an) and Tn(a1; a2; : : : ; an) as follows. Given a sequene(ak)nk=1 � C n[�1; 1℄; we de�ne the sequene (k)nk=1 by(3:5:7) ak = 12 (k + �1k ) ; jkj < 1 ;that is,(3:5:8) k := ak �qa2k � 1 ; jkj < 1 :Note that �ak +qa2k � 1��ak �qa2k � 1� = 1 :In what follows, pa2k � 1 is always de�ned by (3:5:8) (this spei�es thehoie of root). Let D := fz 2 C : jzj < 1g; let(3:5:9) Mn(z) :=  nYk=1(z � k)(z � k)!1=2 ;where the square root is de�ned so thatM�n(z) := znMn(z�1) is an analytifuntion in a neighborhood of the losed unit disk D; and let(3:5:10) fn(z) := Mn(z)znMn(z�1) :Note that f2n is atually a �nite Blashke produt (see E.12 of Setion 4.2).Also, fn(z�1) = fn(z)�1 whenever jzj = 1:



3.5 Chebyshev Polynomials in Rational Spaes 141The Chebyshev polynomials of the �rst kind for the spaesPn(a1; a2; : : : ; an) and Tn(a1; a2; : : : ; an)are now de�ned by(3:5:11) Tn(x) := 12 (fn(z) + fn(z)�1) ; where x := 12 (z + z�1) ; jzj = 1and(3:5:12) eTn(�) := Tn(os �) ; � 2 R ;respetively.The Chebyshev polynomials of the seond kind for these two spaes arede�ned by(3:5:13) Un(x) := fn(z)� fn(z)�1z � z�1 ; where x := 12 (z + z�1) ; jzj = 1and(3:5:14) eUn(�) := Un(os �) sin � ; � 2 R ;respetively.As we will see, these Chebyshev polynomials preserve many of the ele-mentary properties of the lassial trigonometri and algebrai Chebyshevpolynomials. This is the ontent of the next three results.Theorem 3.5.1 (Chebyshev Polynomials of the First and Seond Kinds inTrigonometri Rational Spaes). Given (ak)nk=1 � C n[�1; 1℄; let eTn andeUn be de�ned by (3.5.12) and (3.5.14), respetively. Then the followingstatements hold:a℄ eTn 2 Tn(a1; a2; : : : ; an) and eUn 2 Tn(a1; a2; : : : ; an) :b℄ keTnkR = 1 and keUnkR = 1 :℄ There exist 0 = �0 < �1 < � � � < �n = � suh thateTn(�j) = eTn(��j) = (�1)j ; j = 0; 1; : : : ; n :d℄ There exist 0 < �1 < �2 < � � � < �n < � suh thateUn(�j) = �eUn(��j) = (�1)j�1 ; j = 1; 2; : : : ; n :e℄ For every � 2 R; eT 2n(�) + eU2n(�) = 1 :Proof. Observe that there are polynomials p1 2 Pn and p2 2 Pn�1 suhthat eTn(�) = Tn(os �) = e�in�M2n(ei�) + ein�M2n(e�i�)2Mn(ei�)Mn(e�i�)(3:5:15) = p1(os �)Qnk=1 jos � � akj



142 3. Chebyshev and Desartes Systemsand eUn(�) = Un(os �) sin � = e�in�M2n(ei�)� ein�M2n(e�i�)2iMn(ei�)Mn(e�i�)(3:5:16) = p2(os �) sin �Qnk=1 jos � � akj :Thus a℄ is proved.Sine jkj < 1 and f2n is a �nite Blashke produt, we have(3:5:17) jfn(z)j = 1 whenever jzj = 1 :Now b℄ follows immediately from (3:5:10) to (3:5:14).Note that eTn(�) is the real part, and eUn(�) is the imaginary part offn(ei�), that is, fn(ei�) = eTn(�) + ieUn(�) ; � 2 R ;whih together with (3:5:17) implies e℄.To prove parts ℄ and d℄, we note that eTn(�) = �1 if and only iffn(ei�) = �1; and eUn(�) = �1 if and only if fn(ei�) = �i: Sine jkj < 1for k = 1; 2; : : : ; n; f2n has exatly 2n zeros in the open unit disk D: Sinef2n is analyti in a region ontaining the losed unit disk D; ℄ and d℄ followby the argument priniple (see, for example, Ash [71℄). utWith the transformation x = os � = 12 (z+ z�1) and z = ei�; Theorem3.5.1 an be reformulated as follows:Theorem 3.5.2 (Chebyshev Polynomials in Algebrai Rational Spaes).Given (ak)nk=1 � C n [�1; 1℄; let Tn and Un be de�ned by (3.5.11) and(3.5.13), respetively. Thena℄ Tn 2 Pn(a1; a2; : : : ; an) and Un 2 Pn(a1; a2; : : : ; an) :b℄ kTnk[�1;1℄ = 1 and kp1� x2 Un(x)k[�1;1℄ = 1 :℄ There exist 1 = x0 > x1 > � � � > xn = �1 suh thatTn(xj) = (�1)j ; j = 0; 1; 2; : : : ; n :d℄ There exist 1 > y1 > y2 > � � � > yn > �1 suh thatq1� y2j Un(yj) = (�1)j�1 ; j = 1; 2; : : : ; n :e℄ For every x 2 [�1; 1℄;(Tn(x))2 + (p1� x2 Un(x))2 = 1 :



3.5 Chebyshev Polynomials in Rational Spaes 143Parts ℄ and d℄ of Theorems 3.5.1 and 3.5.2 establish the equiosilla-tion property of the Chebyshev polynomials, whih also extends to ertainlinear ombinations of Chebyshev polynomials. In the trigonometri poly-nomial ase this is the fat that os� osn�+sin� sinn� = os(n���) equi-osillates 2n times on the unit irle [0; 2�℄: Our next theorem haraterizesthe Chebyshev polynomials for Tn(a1; a2; : : : ; an) and reords a monotoni-ity property that we require later.Theorem 3.5.3 (Chebyshev Polynomials in Trigonometri Rational Spaes).Let (ak)nk=1 � C n [�1; 1℄: Then (i) and (ii) below are equivalent:(i) There is an � 2 R suh thatV = (os�) eTn + (sin�) eUn ;where eTn and eUn are de�ned by (3.5.12) and (3.5.14).(ii) V 2 Tn(a1; a2; : : : ; an) has uniform norm 1 on R; and it equiosillates2n times on R (mod 2�). That is, there exist0 � �0 < �1 < � � � < �2n�1 < 2�so that V (�j) = �(�1)j ; j = 0; 1; : : : ; 2n� 1 :Furthermore, if V is of the form in (i) (or haraterized by (ii)), thenV 0 = (os�) eT 0n + (sin�) eU 0ndoes not vanish between any two onseutive alternation points of V (thatis, between �j�1 and �j for j = 1; 2; : : : ; 2n � 1 and between �2n�1 and2� + �0).Proof. (i)) (ii). By Theorem 3.5.1 e℄ and Cauhy's inequality, we have(3:5:18) j(os�) eTn + (sin�) eUnj2 � (os2 �+ sin2 �)( eT 2n + eU2n) = 1on the real line. From Theorem 3.5.1 ℄, d℄, and e℄, we obtain that eTn=eUnosillates between +1 and �1 exatly 2n times on R (mod 2�), andhene it takes the value ot� exatly 2n times. At eah suh point, (3:5:18)beomes an equality, namely, (os�) eTn + (sin�) eUn = �1 with di�erentsigns for every two onseutive suh points.(ii)) (i). Let V be as spei�ed in part (ii) of the theorem. Let �0 bea point where V ahieves its maximum on R, so V (�0) = 1: We want toshow that V is equal to p := eTn(�0) eTn+ eUn(�0)eUn: Sine V (�0) = p(�0) = 1and V 0(�0) = p0(�0) = 0, V � p has a zero at �0 with multipliity at least2: There are at least 2n � 1 more zeros (we ount multipliities) of V � p



144 3. Chebyshev and Desartes Systemsin R (mod 2�), with one between any two onseutive alternation points ofp if the �rst zero of p to the right of �0 is greater than the �rst zero of Vto the right of �0: If the �rst zero of V to the right of �0 is greater than orequal to the �rst zero of p to the right of �0; then there is one zero of p�Vbetween any two onseutive alternation points of V: In any ase V � p hasat least 2n+ 1 zeros in R (mod 2�). Hene V � p is identially 0:To prove the �nal part of the theorem let V 2 Tn(a1; a2; : : : ; an) besuh that kV kR = 1 and V equiosillates 2n times on R (mod 2�) between�1: Assume there is a �0 2 [0; 2�) suh that jV (�0)j < 1 and V 0(�0) = 0:Then V (�0) 6= 0; otherwise the numerator of V would have at least 2n+ 1zeros in R (mod 2�), whih is a ontradition. Observe that there is atrigonometri polynomial t 2 T2n suh thatV 2(�) � V 2(�0) = t(�)Qnk=1(os � � ak)(os � � ak) :This t has at least 4n + 1 zeros in R (mod 2�), whih is a ontraditionagain. Therefore V 0(�) 6= 0 if jV (�)j < 1; whih means that V is stritlymonotone between any two of its onseutive alternation points. utUnder some assumptions on (ak)nk=1 it is easy to write down the expliitpartial fration deompositions for Tn and Un.Theorem 3.5.4. Let (ak)nk=1 � C n [�1; 1℄ be a sequene of distint numberssuh that its nonreal elements are paired by omplex onjugation. Let Tnand Un be the Chebyshev polynomials of the �rst and seond kinds de�nedby (3.5.11) and (3.5.13), respetively. Then(3:5:19) Tn(x) = A0;n + A1;nx� a1 + � � �+ An;nx� anand(3:5:20) Un(x) = B1;nx� a1 + B2;nx� a2 + � � �+ Bn;nx� an ;where A0;n = (�1)n2 (�11 �12 � � � �1n + 12 � � � n) ;Ak;n = �k � �1k2 �2 nYj=1j 6=k 1� kjk � j ; k = 1; 2; : : : ; n ;and Bk;n = k � �1k2 nYj=1j 6=k 1� kjk � j ; k = 1; 2; : : : ; n :



3.5 Chebyshev Polynomials in Rational Spaes 145Proof. It follows from Theorems 3.5.1 a℄ and 3.5.2 a℄ that Tn and Un an bewritten as the partial fration forms above. Now it is quite easy to alulatethe oeÆients Ak;n and Bk;n. For example,A0;n = limx!1Tn(x) = limz!0 12 � Mn(z)znMn(z�1) + znMn(z�1)Mn(z) �= (�1)n2 (�11 �12 � � � �1n + 12 � � � n)and for k = 1; 2; : : : ; n ;Ak;n = limx!ak(x� ak)Tn(x)= limz!k 14(z � k)(1� �1k z�1)� Mn(z)znMn(z�1) + znMn(z�1)Mn(z) �= �k � �1k2 �2 nYj=1j 6=k 1� kjk � j ; k = 1; 2; : : : ; n :The oeÆients Bk;n an be alulated in the same fashion. utComments, Exerises, and Examples.The expliit formulas of this setion are tremendously useful. They al-low, for example, derivation of sharp Bernstein-type inequalities for ra-tional funtions; see Setion 7.1. Various further properties of these Cheby-shev polynomials for rational funtion spaes are explored in the exerises,whih follow, Borwein, Erd�elyi, and Zhang [94b℄. In partiular, the orthog-onalization of suh rational systems on [�1; 1℄ with respet to the weightw(x) = (1� x2)�1=2 an be made expliit in terms of the Chebyshev poly-nomials. Various other aspets of these orthogonalizations may be found inAhiezer [56℄, Bultheel et al. [91℄, and Van Asshe and Vanherwegen [92℄.E.1 Further Properties of eTn and Tn. Given (ak)nk=1 � C n [�1; 1℄, let(k)nk=1 be de�ned byk := ak �qa2k � 1 ; jkj < 1 ;as before. We introdue the Bernstein fatorsBn(x) := nXk=1Re pa2k � 1ak � x !and eBn(�) := Bn(os �) == nXk=1Re pa2k � 1ak � os �! ;



146 3. Chebyshev and Desartes Systemswhere the hoie of pa2k � 1 is determined by the restrition jkj < 1: Notethat for x 2 [�1; 1℄; we haveRe pa2k � 1ak � x ! = Re �1k � k12�1k � x! � (1� jkj2)(1� jkj)2j1� 2kxj2 > 0 :The following result generalizes the trigonometri identities(osnt)0 = �n sinnt ; (sinnt)0 = n osnt ;and ((osnt)0)2 + ((sinnt)0)2 = n2 ;whih are limiting ases (if n 2 N and t 2 R are �xed, then lim eBn(t) = nas all ak ! �1):a℄ Show that, on the real line,eT 0n = � eBn eUn ; eU 0n = eBn eTn ;and ( eT 0n)2 + (eU 0n)2 = eB2n :Hint: For example,eT 0n(�) = 12 �f 0n(ei�)� f 0n(ei�)f2n(ei�)� iei�= �ei�f 0n(ei�)fn(ei�) fn(ei�)� fn(ei�)�12i = � eBn(�)eUn(�) : utb℄ If V := (os�) eTn + (sin�) eUn for some � 2 R; then(V 0)2 + eB2nV 2 = eB2nholds on the real line.℄ The Derivative of Tn at �1. Let Tn be de�ned by (3:5:11). ThenT 0n(1) =  nXk=1Re�1 + k1� k�!2and T 0n(�1) = (�1)n nXk=1Re�1� k1 + k�!2 :



3.5 Chebyshev Polynomials in Rational Spaes 147d℄ Contour Integral for Tn. Show thatTn(x) = 12�i Z0� nYj=1 (t� j)(t� j)(1� jt)(1� jt)1A1=2 t� xt2 � 2tx+ 1 dtfor every x 2 [�1; 1℄; where  is a irle entered at the origin with radius1 < r < minfj�1j j : 1 � j � ng; and the square root in the integrand is ananalyti funtion of t in a neighborhood of :Hint: Cauhy's integral formula and the map x = 12 (z + z�1) giveTn(x) = 12 � Mn(z)znMn(z�1) + znMn(z�1)Mn(z) �= 12�i Z 12 Mn(t)tnMn(t�1) � 1t� z + 1t� z�1� dt= 12�i Z Mn(t)tnMn(t�1) t� xt2 � 2tx+ 1 dt ;where Mn is de�ned by (3.5.9). utE.2 Orthogonality. Given (ak)1k=1 � Rn [�1; 1℄; let (k)1k=1 be de�ned byak = 12 (k + �1k ) ; k = ak �pa2k � 1 ; k 2 (�1; 1)and let (Tn)1n=0 be de�ned by (3.5.11).a℄ Show thatZ 1�1 Tn(x)Tm(x) dxp1� x2 = �2 (�1)n+m(1 + 21 � � � 2m)m+1 � � � nfor all integers 0 � m � n: (The empty produt is understood to be 1.)b℄ Given a 2 R n [�1; 1℄; let  2 (�1; 1) be de�ned bya = 12 (+ �1) ;  = a�pa2 � 1 ;  2 (�1; 1) :Show that Z 1�1 Tn(x) 1x� a dxp1� x2 = 2�� �1 nYj=1 � j1� j :



148 3. Chebyshev and Desartes Systems℄ Show that Z 1�1 Tn(x) dxp1� x2 = (�1)n�12 � � � nand Z 1�1 Tn(x) 1x � ak dxp1� x2 = 0 ; k = 1; 2; : : : ; n :Given a sequene (ak)1k=1 � Rn[�1; 1℄; we de�neR0 := 1 ; Rn := Tn + nTn�1and R�0 := 1p� ; R�n :=s 2�(1� 2n) (Tn + nTn�1) :The following part of this exerise indiates that these simple linear om-binations of Tn and Tn�1 give the orthogonalization of the rational system�1 ; 1x� a1 ; 1x� a2 ; : : :�whenever (ak)1k=1 � R n [�1; 1℄ is a sequene of distint real numbers.d℄ Show that, for all nonnegative integers n and m;Z 1�1R�n(x)R�m(x) dxp1� x2 = Æm;n ;where Æm;n is the Kroneker symbol.Proof. Let m � n. By part ℄,Z 1�1Rn(x) 1x � ak dxp1� x2 = 0holds for k = 1; 2; : : : ; n� 1. AlsoZ 1�1Rn(x) dxp1� x2 = Z 1�1 (Tn(x) + nTn�1(x)) dxp1� x2= (�1)n(12 � � � n) + n(�1)n�1(12 � � � n�1) = 0 :This implies thatZ 1�1Rn(x)Rm(x) dxp1� x2 = 0 ; m = 0; 1; : : : ; n� 1 :Finally, it follows from part a℄ thatZ 1�1R�n(x)2 dxp1� x2 = 1 : ute℄ Assume (ak)1k=1 � R n [�1; 1℄: Then Tn and Rn have exatly n zeros in[�1; 1℄; and the zeros of Tn�1 and Tn stritly interlae.



3.5 Chebyshev Polynomials in Rational Spaes 149E.3 Extension of Theorems 3.5.1 and 3.5.3. Given (ak)2nk=1 � C n R; letTn(a1; a2; : : : ; a2n) := ( t(�)Q2nk=1 jsin((� � ak)=2)j : t 2 Tn) :Without loss of generality we may assume thatIm(ak) > 0 ; k = 1; 2; : : : ; 2n :a℄ Show that there is a polynomial q2n 2 P2n of the formq2n(z) =  2nYk=1 (z � k) ; jkj < 1 ;  2 Csuh that jq2n(ei�)j = 2nYk=1 jsin((� � ak)=2)j ; � 2 R :Hint: Use the fat that jz � j = j1� zj whenever jzj = 1 and  2 C : utAssoiated with q2n 2 P2n de�ned in part a℄, letMn(z) :=pq2n(z)and M�n(z) :=   2nYk=1(1� z)!1=2 ;where the square roots are de�ned so that M�n is analyti in a neighbor-hood of the losed unit disk, and Mn is analyti in a neighborhood of theomplement of the open unit disk. Letfn(z) := Mn(z)M�n(z) :For � 2 R; we de�neeTn(�) := Re(fn(ei�)) = 12 �Mn(ei�)M�n(ei�) + M�n(ei�)Mn(ei�)�and eUn(�) := Im(fn(ei�)) = 12i �Mn(ei�)M�n(ei�) � M�n(ei�)Mn(ei�)� :Using the new (extended) de�nitions, show the following:



150 3. Chebyshev and Desartes Systemsb℄ eTn 2 Tn(a1; a2; : : : ; a2n) and eUn 2 Tn(a1; a2; : : : ; a2n) :℄ k eTnkR = 1 and keUnkR = 1 :d℄ There are numbers �1 < �2 < � � � < �2n in [��; �) suh thateT (�j) = �(�1)j ; j = 1; 2; : : : ; 2n :e℄ There are numbers �1 < �2 < � � � < �2n in [��; �) suh thateU(�j) = �(�1)j ; j = 1; 2; : : : ; 2n :f ℄ eT (�)2 + eU(�)2 = 1 for every � 2 R :g℄ Both eTn and eUn have exatly 2n simple zeros in the period [��; �), andthe zeros of eTn and eUn stritly interlae.h℄ The statements of Theorem 3.5.3 remain valid.E.4 Extension of the Bernstein Fator eBn. Let(ak)2nk=1 � C n R ; Im(ak) > 0 :With the notation of the previous exerise we de�neeBn(�) := ei�f 0n(ei�)fn(ei�) ; � 2 R :a℄ Show that for every � 2 R;eBn(�) = 2nXk=1 1� jkj2jk � ei�j2 = 2nXk=1 1� jeiak j2jeiak � ei�j2 :b℄ Show that, on the real line,eT 0n = � eBn eUn ; eU 0n = eBn eTn ;and ( eT 0n)2 + (eU 0n)2 = eB2n :℄ Show that (V 0)2 + eB2nV 2 = eB2nholds on the real line for every V of the formV = (os�) eTn + (sin�) eUn ; � 2 R :



3.5 Chebyshev Polynomials in Rational Spaes 151E.5 Chebyshev Polynomials for Pn(a1; a2; : : : ; an) on R. Let(ak)nk=1 � C n R with Im(ak) > 0 ; k = 1; 2; : : : ; n :Let Mn(z) :=  nYk=1(z � ak)!1=2and M�n(z) :=  nYk=1(z � ak)!1=2 ;where the square roots are de�ned so thatM�n is analyti in a neighborhoodof the losed upper half-plane, and Mn is analyti in a neighborhood of thelosed lower half-plane. Let fn(z) := Mn(z)M�n(z) :For x 2 R; we de�neTn(x) := Re(fn(x)) = 12 �Mn(x)M�n(x) + M�n(x)Mn(x)�and Un(x) := Im(fn(x)) = 12i �Mn(x)M�n(x) � M�n(x)Mn(x)� :Show the following:a℄ Tn 2 Pn(a1; a2; : : : ; an) and Un 2 Pn(a1; a2; : : : ; an) :b℄ kTnkR = 1 and kUnkR = 1 :℄ There are real numbers x1 > x2 > � � � > xn�1 suh thatTn(xj) = (�1)j ; limx!1Tn(x) = 1 ; and limx!�1Tn(x) = (�1)n :d℄ There are real numbers y1 > y2 > � � � > yn�1 suh thatUn(yj) = (�1)j+1 and limx!�1Un(x) = 0 :e℄ Tn(x)2 + Un(x)2 = 1 for every x 2 R :f ℄ Both Tn and Un have exatly n simple zeros on R; and the zeros of Tnand Un stritly interlae.



152 3. Chebyshev and Desartes Systemsg℄ The following statements are equivalent:(i) There exists an � 2 R suh thatV = (os�)Tn + (sin�)Un :(ii) V 2 Pn(a1; a2; � � � ; an) has uniform norm 1 on R; and it equiosillatesn times on the extended real line. That is, there are extended real numbers1 � z1 > z2 > � � � > zn > �1 suh thatV (zj) = �(�1)j ; j = 1; 2; : : : ; n ;where V (1) := limx!1V (x) :h℄ With the notation of part g℄, V is stritly monotone on eah of theintervals (z1;1); (z2; z1); : : : ; (zn; zn�1); (�1; zn) :E.6 Bernstein Fator on R. Let (ak)nk=1 � C n R withIm(ak) > 0 ; k = 1; 2; : : : ; n :With the notation of E.5 letBn(x) := f 0n(x)fn(x) ; x 2 R :a℄ Show that Bn(x) = nXk=1 2Im(ak)jx� akj2 ; x 2 R :b℄ Show that, on the real line,T 0n = �BnUn ; U 0n = BnTn ;and (T 0n)2 + (U 0n)2 = B2n :℄ Show that (V 0)2 +B2nV 2 = B2nholds on the real line for every V of the formV = (os�)Tn + (sin�)Un :



3.5 Chebyshev Polynomials in Rational Spaes 153E.7 CoeÆient Bounds in Nondense Rational Funtion Spaes. Suppose(ak)1k=1 � R n [�1; 1℄ is a sequene of distint numbers satisfying1Xj=1q1� jaj j�2 <1 :Show that there are numbers Kj > 0 suh thatjDj;nj � Kjkpk[�1;1℄ ; j = 0; 1; : : : ; n ; n 2 Nfor every p 2 Pn(a1; a2; : : : ; an) of the formp(x) = D0;n + D1;nx� a1 + � � �+ Dn;nx� an ; Dj;n 2 R :Hint: Use E.2 ℄ of Setion 3.3 and Theorem 3.5.4. ut



This is page 154Printer: Opaque this4Denseness Questions

OverviewWe give an extended treatment of when various Markov spaes are dense.In partiular, we show that denseness, in many situations, is equivalent todenseness of the zeros of the assoiated Chebyshev polynomials. This isthe prinipal theorem of the �rst setion. Various versions of Weierstrass'lassial approximation theorem are then onsidered. The most impor-tant is in Setion 4.2 where M�untz's theorem onerning the denseness ofspanf1; x�1 ; x�2 ; : : : g is analyzed in detail. The third setion onerns theequivalene of denseness of Markov spaes and the existene of unboundedBernstein inequalities. In the �nal setion we onsider when rational fun-tions derived from Markov systems are dense. Inluded is the surprisingresult that rational funtions from a �xed in�nite M�untz system are alwaysdense.4.1 Variations on the Weierstrass TheoremMuh of the utility of polynomials stems from the fat that all ontinuousfuntions on a �nite losed interval are uniform limits of them. This is thewell-knownWeierstrass approximation theorem. There are numerous proofsof this; several are presented in the exerises. Another proof follows fromthe main theorem of this setion.



4.1 Variations on the Weierstrass Theorem 155Assoiated with a Markov systemM := (f0; f1; : : : ) on [a; b℄ we de�ne,as in Setion 3.3, the Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn; [a; b℄g :Denote the zeros of Tn by (a �)x1 < x2 < � � � < xn(� b). Let x0 := aand xn+1 := b. The mesh of Tn is de�ned by(4:1:1) Mn :=Mn(Tn : [a; b℄) := max1�i�n+1 jxi � xi�1j :This is a measure of the maximal gap between two onseutive zeros of Tnwith respet to the interval [a; b℄:For a sequene (Tn)1n=0 of Chebyshev polynomials assoiated with a�xed Markov system on [a; b℄; we havelimn!1Mn = 0 if and only if lim infn!1 Mn = 0 :This follows from the fat that if m < n; then Tm annot have more thanone zero between any two onseutive zeros of Tn:Our main result shows the strong onnetion between the denseness ofthe real span of an in�nite Markov system M of C1 funtions on [a; b℄ inC[a; b℄ and the density of the zeros of the assoiated Chebyshev polynomials.Theorem 4.1.1. Suppose M := (1; f1; f2; : : : ) is an in�nite Markov systemon [a; b℄ with eah fi 2 C1[a; b℄: Then span M is dense in C[a; b℄ if andonly if limn!1Mn = 0 ;where Mn is the mesh of the assoiated Chebyshev polynomials.Proof. The only if part of this result is the easier part and we o�er thefollowing proof. Suppose span M is dense in C[a; b℄; while lim infn!1 Mn > 0:Then there exists an interval [; d℄ � [a; b℄ that ontains no zero of Tn forin�nitely many n, say, for n1 < n2 < � � � : Consider the pieewise linearfuntion F de�ned as follows. Let  < y1 < y2 < y3 < y4 < d; and letF (x) := 8<: 0 ; x 2 fa; ; d; bg2 ; x 2 fy1; y3g�2 ; x 2 fy2; y4gand be linear elsewhere. Sine span M is dense in C[a; b℄; there exists ak 2 N and a p 2 spanf1; f1; : : : , fnkg with(4:1:2) kp� Fk[a;b℄ < 1 :



156 4. Denseness QuestionsNow p � Tnk has at least nk � 2 zeros on [a; ℄ [ [d; b℄ beause Tnk has atleast nk extrema on these intervals. The four extrema of F on (; d) togetherwith (4.1.2) guarantee at least three more zeros of p� Tnk on (; d): Henep� Tnk has at least nk + 1 zeros and vanishes identially. This ontradits(4:1:2).The if part of the theorem follows from the next theorem and E.8 a℄ ofSetion 3.2. This exerise shows that (f 01; f 02; : : : ) is a weak Markov systemon [a; b℄: utThe phenomenon formulated in Theorem 4.1.1 is quite general, and weprove a rather more general result than is needed for the preeding theorem.The modulus of ontinuity !f of a funtion f : [a; b℄ 7! R is de�ned by(4:1:3) !f (Æ) := supjx�yj<Æx;y2[a;b℄ jf(x)� f(y)j :Theorem 4.1.2. Suppose thatHn := spanf1; g1; g2; : : : ; gngis a Chebyshev spae on [a; b℄ with assoiated Chebyshev polynomial Tn:Suppose eah gi 2 C1[a; b℄ and (g01; : : : ; g0n) is a weak Chebyshev systemon [a; b℄ (weak Chebyshev systems are de�ned in E.8 of Setion 3.2). LetH 0n := spanfg01; : : : ; g0ng: If f 2 C[a; b℄; then there exists an hn 2 Hn suhthat khn � fk[a;b℄ � C!f�pÆn � ;where Æn :=Mn(Tn : [a; b℄) :Here C is a onstant depending only on a and b:Proof. Suppose a <  < d < b and Sn 2 Hn is the best uniform approxi-mation from Hn to F on [a; ℄ [ [d; b℄; whereF (x) := � 0; x 2 [a; ℄1; x 2 [d; b℄ :We laim the following:(4:1:4) Sn is monotone on [; d℄and(4:1:5) kSn � Fk[a;℄[[d;b℄ � 5Æn(d� ) :



4.1 Variations on the Weierstrass Theorem 157Let � := n+1 be the dimension of the Chebyshev spae Hn: Sine Snis a best approximation to F on [a; ℄[ [d; b℄; there exist �+1 points in thisset where the maximum error(4:1:6) �n := kF � Snk[a;℄[[d;b℄ours with alternating sign (see Theorem 3.1.6). Suppose m + 1 of thesepoints y0 < � � � < ym lie in [a; ℄, and ��m of these points ym+1 < � � � < y�lie in [d; b℄: Then S0n has at least m � 1 sign hanges in (a; ) (one ateah alternation point in [a; ℄ exept possibly at the endpoints a and ).Likewise, S0n has at least � � m � 2 sign hanges in (d; b): So S0n has atleast � � 3 sign hanges in (a; ) [ (d; b). Note that this ount exludes ymand ym+1. Thus S0n has at most one more sign hange in (a; b) unless S0nvanishes identially (whih is not possible for � � 2). Now suppose S0n hasa sign hange on (; d). Then, sine there is at most one sign hange of S0nin (; d); it annot be the ase that both ym =  and ym+1 = d and S0nhanges sign at neither  nor d; otherwisesign(Sn()� f()) = sign(Sn(d)� f(d))as a onsideration of the two ases shows. But if ym 6=  or ym+1 6= d orS0n hanges sign at either  or d; then we have aounted for all the signhanges of S0n by aounting for the (possible) one additional sign hange(either S0n vanishes with sign hange at  or d or one of ym or ym+1 is aninterior alternation point of Sn where S0n vanishes). Thus S0n has no zeroswith sign hange in (; d) and (4.1.4) is proved.To prove (4.1.5) we proeed as follows. With �n de�ned by (4.1.6),Dn := �nTn � Snhas at least m zeros on [a; ℄ andD�n := Dn + 1 = 1 + �nTn � Snhas at least � �m� 1 zeros on [d; b℄ (ounting eah internal zero withoutsign hange twie). Thus D0n has at least �� 3 sign hanges on [a; ℄[ [d; b℄:Suppose Tn has at least four alternation points on an interval [; Æ℄ � (; d);and suppose that Sn(Æ)� Sn() < 2�n :Then, beause of (4.1.4) and the osillation of Tn on [; Æ℄;Dn + Sn() + Sn(Æ)2 = �nTn � �Sn � Sn() + Sn(Æ)2 �has at least three zeros on [; Æ℄ and hene



158 4. Denseness QuestionsD0n = �Dn + Sn() + Sn(Æ)2 �0has at least two sign hanges on [; Æ℄: This, however, gives that D0n 2 H 0nhas a total of at least � � 1 = n sign hanges, whih is impossible. Inpartiular, Sn(Æ)� Sn() � 2�non any interval [; Æ℄ � (; d) where Tn has at least 4 alternation points.Thus, Sn(d)� Sn() � (d� )5Æn 2�n :However, sine Sn is a best approximation to F on [a; ℄ [ [d; b℄;Sn(d)� Sn() � 1 + 2�nand we an dedue (4.1.5) on omparing these last two inequalities andnoting that �n � 12 :The proof is now a routine argument, whih for simpliity, is presentedon the interval [a; b℄ := [0; 1℄: LetV (x) := f(0) + m�1Xi=0 �f � i+1m �� f � im��Sn;i(x) ;where, for i = 0; 1; : : : ;m�1, Sn;i 2 Hn is the best uniform approximationto Fn;i(x) := � 0 ; x 2 �0; i+1m �1 ; x 2 � i+1m ; 1�on �0; im� [ � i+1m ; 1� : Letef(x) := f(0) + m�1Xi=0 �f � i+1m �� f � im��Fn;i(x) :Then repeated appliations of (4.1.5) with the intervals [a; ℄ := �0; im� and[d; b℄ := � i+1m ; 1� yield for every x 2 [0; 1℄ thatjV (x) � f(x)j � jV (x)� ef(x)j + j ef(x) � f(x)j� m�1Xi=0 �f � i+1m �� f � im�� (Sn;i(x) � Fn;i(x)) + !f � 1m�� (m� 1)(5Ænm)!f � 1m�+ 2!f � 1m�+ !f � 1m� :Hene, with m := bÆ�1=2n ;kV � fk[0;1℄ � C !f�pÆn � : utAn immediate orollary to Theorem 4.1.1 is the Weierstrass theorem.



4.1 Variations on the Weierstrass Theorem 159Corollary 4.1.3. The polynomials are dense in C[�1; 1℄:Proof. M = (1; x; x2; : : : ) is an in�nite Markov system of C1 funtions on[�1; 1℄:The assoiated Chebyshev polynomials are just the usual Chebyshevpolynomials Tn (see Setion 2.1) andMn � �n ; n = 1; 2; : : :is obvious from E.1 of Setion 2.1. utAlso from the last part of the proof of Theorem 4.1.2 we have thefollowing orollary.Corollary 4.1.4. Suppose M := (1; f1; f2; : : : ) is an in�nite Markov systemon [a; b℄ with eah fi 2 C1[a; b℄. Then for eah n 2 N; there exists apn 2 spanf1; f1; f2; : : : ; fngsuh that kpn � fk[a;b℄ � C(1 +m2Mn)!f � 1m�for every m 2 N; where C is a onstant depending only on a and b:Comments, Exerises, and Examples.The Weierstrass approximation theorem of 1885 (see Weierstrass [15℄) is oneof the very basi theorems of approximation theory. It, of ourse, requiresthat lear distintions be made about the nature of onvergene (pointwiseversus uniform) and the region of onvergene (intervals versus omplexdomains). Weierstrass, the preeminent analyst of the last third of the nine-teenth entury, was prinipal in insisting that suh distintions be learlymade. His famous and profoundly surprising example of a nowhere di�er-entiable ontinuous funtion dates from 1872. A number of proofs of hisapproximation theorem and its many generalizations are explored in theexerises. Theorem 4.1.1 was proved by Borwein [90℄. The only if part ofthis theorem an be found in Kro�o and Peherstorfer [92℄.Appliations of the methods and results of this setion an be found inBorwein [91b℄, Borwein and Sa� [92℄, and Lorentz, Golitshek, and Makovoz[92℄. The last two papers give an appliation to weighted inomplete poly-nomials, where the zeros of the Chebyshev polynomials are often dense ina subinterval (see also Mhaskar and Sa� [85℄).E.1 The Weierstrass Approximation Theorem. Every real-valued ontin-uous funtion on a �nite losed interval [a; b℄ an be uniformly approximatedby polynomials with real oeÆients.Every omplex-valued ontinuous funtion on a �nite losed interval[a; b℄ an be uniformly approximated by polynomials with omplex oeÆ-ients.



160 4. Denseness QuestionsMore preisely, in the real ase, letEn := En(f : [a; b℄) := infp2Pn kf � pk[a;b℄ :The Weierstrass approximation theorem asserts thatlimn!1En(f : [a; b℄) = 0 ; f 2 C[a; b℄ :The following steps outline an elementary proof basially due toLebesgue [1898℄. Parts a℄ to d℄ deal with the real version (�rst statement) ofthe theorem. The omplex version (seond statement) of the theorem aneasily be redued to the real version; see part e℄.a℄ Every ontinuous funtion on [a; b℄ an be uniformly approximated bypieewise linear funtions.Hint: Consider the pieewise linear funtion that interpolates f at n equallyspaed points and use the uniform ontinuity of f: utb℄ It suÆes to prove that jxj an be uniformly approximated by polyno-mials on [�1; 1℄:Hint: Use part a℄. ut℄ Approximation to jxj: Show thatlimn!1En(jxj : [�1; 1℄) = 0 :Hint: The Taylor series expansion of f(z) := p1� z yieldsp1� z = 1� 12 z + 12 � 4 z2 � 1 � 32 � 4 � 6 z3 + � � �and the onvergene is uniform for 0 � z � 1: (By Abel's theorem, a powerseries onverges uniformly on every losed subinterval of the set of pointsin R where it onverges; see, for example, Stromberg [81℄). Thus,jxj = px2 =p1� (1� x2)= 1� 12(1� x2) + 12 � 4(1� x2)2 � 1 � 32 � 4 � 6(1� x2)3 + � � �and the onvergene is uniform for �1 � x � 1: utd℄ An Alternative to ℄. LetQ0(x) := 1 and Qn+1(x) := 12(1� x2 +Q2n(x)) :Show that0 � Qn+1(x) � Qn(x) � 1; n = 0; 1; : : : ; x 2 [�1; 1℄and Qn(x)! 1� jxj uniformly on [�1; 1℄ as n!1.



4.1 Variations on the Weierstrass Theorem 161Hint: First show the pointwise onvergene and then use Dini's theorem(see, for example, Royden [88℄). ute℄ Complex Version of the Weierstrass Approximation Theorem. Everyomplex-valued ontinuous funtion on a �nite losed interval [a; b℄ an beuniformly approximated by polynomials with omplex oeÆients.It an be shown that En(jxj : [�1; 1℄) � n ;where 0:280168 <  < 0:280174: Bernstein [13℄ established the aboveasymptoti with weaker bounds on ; namely, 0:278 <  < 0:286; andobserved that 12��1=2 = 0:282 is roughly the average of these bounds. Thestronger bounds on , due to Varga and Carpenter, show that  6= 12��1=2,but it is open whether or not  is some familiar onstant; see Varga [90℄.E.2 The Stone-Weierstrass Theorem. If X is a ompat Hausdor� spae,then a subalgebra A of C(X); whih ontains f = 1 and separates points,is dense in C(X):A subalgebra A of C(X) is a vetor spae of funtions that is losedunder multipliation (here, addition and multipliation are pointwise). Sep-arating points means that for any two distint x, y 2 X; there exists anf 2 A suh that f(x) 6= f(y):a℄ Observe that the set P := [1n=0Pn of all polynomials with real oeÆ-ients is a subalgebra of C[a; b℄ that separates points, and hene the Stone-Weierstrass theorem implies the Weierstrass approximation theorem.b℄ Observe that the real polynomials in x2 form a subalgebra of C[�1; 1℄that does not separate points.We outline a standard proof of the Stone-Weierstrass theorem. Let Adenote the losure of a subalgebra A � C(X) in the uniform norm.℄ If f 2 A; then jf j 2 A:Proof. If f 2 A; then p(f) 2 A for any polynomial p: Now hoose pn suhthat pn(x)! jxj on the interval [�kfk; kfk℄: utd℄ Let(f _ g)(x) := maxff(x); g(x)g and (f ^ g)(x) := minff(x); g(x)g :Show that if f , g 2 A; then so are f _ g and f ^ g:



162 4. Denseness QuestionsHint: f _ g = 12(f + g + jf � gj) ; and f ^ g = 12(f + g � jf � gj) : ute℄ If p; q 2 X are distint and �; � 2 R; then there exists f 2 A withf(p) = � and f(q) = � :Hint: Let g 2 A be suh that g(p) 6= g(q) and onsiderf := �� �g(p)� g(q) � g + �g(p)� �g(q)g(p)� g(q) � 1 : utf ℄ Completion of Proof. Let f 2 C(X): For eah p; q 2 X; let fpq be anelement of A with fpq(p) = f(p) and fpq(q) = f(q): Fix � > 0 and de�neopen sets Vpq := fx 2 X : fpq(x) < f(x) + �g :Now fVpq : p 2 Xg is an open over of the ompat Hausdor� spae X; sofor eah q 2 X we an pik a �nite suboverfVp1q; Vp2q ; : : : ; Vpnqgof X: We let fq := minffp1q ; fp2q; : : : ; fpnqg :Observe that fq 2 A by part e℄, andfq(x) < f(x) + � ; x 2 X :g℄ Continued. LetVq := fx 2 X : fq(x) > f(x)� �g ;where fq is de�ned in part f℄ for every q 2 X . Then fVq : q 2 Xg is an openover of the ompat Hausdor� spae X , so we an extrat a �nite suboverfVq1 ; Vq2 ; : : : ; Vqmgof X: Now let g := maxffq1 ; fq2 ; : : : ; fqmg :Note that g 2 A by part e℄, andf(x) = � < g(x) < f(x) + � ; x 2 X ;whih �nishes the proof. ut



4.1 Variations on the Weierstrass Theorem 163The next exerise presents pretty theorems due to Bohman [52℄ andKorovkin [53℄ on the onvergene of sequenes of positive linear operators.The exerise after that gives some appliations that inlude di�erent proofsof the Weierstrass theorem via onvergene of speial polynomials, suh asthe Bernstein polynomials.An operator L on C(X) is alled monotone iff � g implies L(f) � L(g)(here f � g means f(x) � g(x) for all x 2 X).E.3 Monotone Operator Theorems.Korovkin's First Theorem. Let (Ln)1n=1 be a sequene of monotone linearoperators on C(K) (the set of ontinuous, 2� periodi, real-valued funtionson R). Let f0(x) := 1 ; f1(x) := sinx ; f2(x) := osx :Then limn!1 kLn(f)� fkK = 0for all f 2 C(K) if and only iflimn!1 kLn(fi)� fikK = 0 ; i = 0; 1; 2 :Korovkin's Seond Theorem. Let (Ln)1n=1 be a sequene of monotone lin-ear operators on C[a; b℄: Letf0(x) := 1 ; f1(x) := x ; f2(x) := x2 :Then limn!1 kLn(f)� fk[a;b℄ = 0for all f 2 C[a; b℄ if and only iflimn!1 kLn(fi)� fik[a;b℄ = 0 ; i = 0; 1; 2 :Korovkin's theorem in a more general setting an be found in Lorentz[86a℄.a℄ Proof of Korovkin's Seond Theorem. The only if part of the theoremis trivial. For the if part, observe that the pointwise onvergene of (Ln)1n=1an be easily proved sine, for any preassigned � > 0 at any �xed x0; one an



164 4. Denseness Questions�nd parabolas y = p1(x) := a1x2+b1x+1 and y = p2(x) := a2x2+b2x+2suh that p1(x) < f(x) < p2(x) ; x 2 [a; b℄with jf(x0)� p1(x0)j < � and jf(x0)� p2(x0)j < � :Now use the ontinuity of f and the ompatness of [a; b℄ to make theabove argument uniform on the interval [a; b℄: utb℄ Proof of Korovkin's First Theorem.Hint: Modify the proof of Korovkin's seond theorem. utE.4 Bernstein Polynomials. The nth Bernstein polynomial for a funtionf 2 C[0; 1℄ is de�ned byBn(f)(x) := nXk=0 f �kn��nk�xk(1� x)n�k ; n = 1; 2; : : : :a℄ Let f0(x) := 1 ; f1(x) := x ; f2(x) := x2 :Show thatBn(f0) = f0 ; Bn(f1) = f1 ; Bn(f2) = n�1n f2 + 1nf1for every n = 0; 1; 2; : : : :b℄ Use Korovkin's seond theorem and part a℄ to show thatlimn!1 kBn(f)� fk[0;1℄ = 0for every f 2 C[0; 1℄:For more on Bernstein polynomials, see Lorentz [86b℄.E.5 The Fourier and Fej�er Operators. For f 2 C(K); letSn(f)(x) := 12� Z ��� f(t+ x) sin �n+ 12� t2 sin 12 t ! dt ; n = 0; 1; : : :and Fn(f)(x) := 12�n Z ��� f(t+ x)� sin 12ntsin 12 t �2 dt ; n = 0; 1; : : : :The operator Sn is alled the Fourier operator, while the operator Fn isalled the Fej�er operator.



4.1 Variations on the Weierstrass Theorem 165a℄ Show that Sn(f) is the nth partial sum of the Fourier series of f; thatis, Sn(f)(x) = a02 + nXk=1 (ak os kx+ bk sin kx) ;where ak = 1� Z ��� f(t) os kt dtand bk = 1� Z ��� f(t) sin kt dt :Hint: sin �n+ 12� t2 sin 12 t = 12 + nXk=1 os ktand Sn(f)(x) = 1� Z ��� f(t+ x) 12 + nXk=1 os kt! dt : utb℄ Fn(f) is the Ces�aro mean of S0; S1; : : : Sn�1, that is,Fn(f) = S0(f) + S1(f) + � � �+ Sn�1(f)n :Hint: n�1Xk=0 sin �k + 12� tsin 12 t = � sin 12ntsin 12 t �2 : ut℄ Fej�er's Theorem. For every f 2 C(K); Fn(f)! f uniformly on R:Hint: Eah Fn is obviously a monotone operator on C(K); so it suÆes toprove the uniform onvergene of (Fn)1n=1 on R only for fi, i = 0; 1; 2, asde�ned in Korovkin's �rst theorem. However, this is obvious, sineFn(f0) = f0 ; Fn(f1) = n�1n f1 ; Fn(f2) = n�1n f2for every n = 1; 2; : : : : utd℄ The set T := [1n=0Tn of all real trigonometri polynomials is dense inC(K); the set of all ontinuous, 2� periodi, real-valued funtions. The setT  := [1n=0T n of all omplex trigonometri polynomials is dense in C(K);the set of all ontinuous, 2� periodi, omplex-valued funtions.



166 4. Denseness QuestionsHint: This follows from Fej�er's theorem. This is also a orollary of the Stone-Weierstrass theorem (see E.2). utThe remaining parts of the exerise follow Lorentz [86a℄. Suppose thatLn : C(K) 7! Tn is a linear operator. We say that Ln preserves the elementsof Tn if Ln(t) = t for every t 2 Tn: A anonial example for suh a linearoperator Ln is the Fourier operator Sn: The purpose of the remaining partof the exerise is to show that the Fourier operator Sn is extremal amonglinear operators preserving the elements of Tn in the sense that it has thesmallest norm. This leads to the result of Faber, Nikolaev, and Lozinskii(see part g℄) that for arbitrary linear operators Ln preserving the elementsof Tn; n = 1; 2; : : : , the sequene (Ln(f))1n=1 annot onverge for everyf 2 C(K):e℄ Berman's Generalization of a Formula of Faber and Marinkiewiz.Let fa denote the a-translation of a funtion f 2 C(K); that is, fa(x) :=f(x+ a): Suppose Ln is a linear operator preserving Tn: Show that12� Z ��� Ln(ft)(x � t) dt = Sn(f)(x)for every f 2 C(K) and x 2 K:Hint: Let An(x) := 12� Z ��� Ln(ft)(x� t) dt :Show that An(f) = Sn(f) for every f 2 Tn: Prove that An(f) = Sn(f) forevery f of the form f(x) = osmx or f(x) = sinmx; where m is an integergreater than n. Conlude that An(f) = Sn(f) for every f 2 T := [1n=0Tn:Note that T is dense in C(K): This means that to omplete the proof,it is suÆient to show that An : C(K) ! Tn and Sn : C(K) ! Tn areontinuous. Observe that kAnk � kLnk and kSnk �  logn for some  > 0;see also part f℄. utf ℄ The Norm of the Fourier Operator Sn. Show thatkSnk := sup�kSn(f)kKkfkK : f 2 C(K)� = 12� Z ��� �����sin �n+ 12� t2 sin 12 t ����� dt :Use this to prove that there exist two onstants 1 > 0 and 2 > 0 indepen-dent of n suh that1 logn � kSnk � 2 logn ; n = 2; 3; : : : :Atually, it an be proved thatkSnk = 4�2 logn+O(1) ; n = 2; 3; : : : :See, for example, Lorentz [86a℄.



4.1 Variations on the Weierstrass Theorem 167g℄ The Norm of Operators that Preserve Trigonometri Polynomials. LetLn : C(K) ! Tn be a linear operator preserving the elements of Tn. Showthat kLnk � kSnk � 1 logn ;where 1 > 0 is a onstant independent of n:Hint: Use parts e℄ and f℄. utE.6 Polynomials in x�n . Given n 2 N and �n 2 R; letPn(�n) := fpn(x�n) : pn 2 Png:Suppose Æ 2 (0; 1) and �n � 1 for all n 2 N: Then [1n=1Pn(�n) is dense inC[Æ; 1℄ if and only if lim supn!1 logn�n � 12 log 1Æ :To prove the above statement, proeed as follows (see also Borwein[91b℄). Denote the Chebyshev polynomial for Pn(�n) on [Æ; 1℄ by Tn;Æ: De-note the zeros of Tn;Æ in [Æ; 1℄ byx(Æ)1;n < x(Æ)2;n < � � � < x(Æ)n;n :Let x(Æ)0;n := Æ and x(Æ)n+1;n := 1: LetMn(Æ) := max1�i�n+1�x(Æ)i;n � x(Æ)i�1;n� :a℄ Show thatTn;Æ(x) = Tn� 21� Æ�n x�n � 1 + Æ�n1� Æ�n� ; x 2 [Æ; 1℄ ;where Tn is the Chebyshev polynomial of degree n as de�ned by (2.1.1).b℄ Let Æ := lim infn!1 x(0)1;n: Show that iflim infn!1 � max2�i�n+1�x(0)i;n � x(0)i�1;n�� = 0 ;then lim infn!1 Mn(Æ) = 0:Hint: Count the zeros of Tn;Æ � Tn;0 2 Pn(�n) in [Æ; 1℄: ut



168 4. Denseness Questions℄ Let Æ := lim infn!1 x(0)1;n; as in part b℄. Show that12 log 1Æ = lim supn!1 logn�nwhenever the right-hand side is �nite.Hint: Use the expliit formula for Tn;0 given in part a℄. utd℄ Let Æ be de�ned by 12 log 1Æ = lim supn!1 logn�n :Suppose Æ > 0: Show thatlim infn!1 (x(0)2;n � x(0)1;n) = 0 :Hint: Use parts a℄ and ℄. ute℄ Let Æ := lim infn!1 x(0)1;n; as in parts b℄ and ℄. Suppose Æ > 0: Show thatx(0)i;n � x(0)i�1;n � 2Æ �x(0)2;n � x(0)1;n�for every suÆiently large n 2 N and for every i = 2; 3; : : : ; n+ 1:Hint: Count the zeros ofTn;0(x)� Tn;0(�i;nx) 2 Pn(�n) ;where �i;n := x(0)i�1;nx(0)1;n < 2Æfor every suÆiently large n 2 N and for every i = 2; 3; : : : ; n+ 1: utf ℄ Let Æ be de�ned by 12 log 1Æ = lim supn logn�n :Suppose Æ > 0: Show that [1n=1Pn(�n) is dense in C[Æ; 1℄:Hint: By parts a℄ to e℄, lim infn!1 Mn(Æ) = 0: Now apply Theorem 4.1.2. utg℄ Let 0 � y < Æ, where Æ is as in part f℄. Show that [1n=1Pn(�n) is notdense in C[y; 1℄:Hint: Show that there exists a onstant  depending only on Æ (and not onn or y) suh that jp(y)j � kpk[Æ;1℄for every p 2 [1n=1Pn(�n) and y 2 [0; Æ℄: Now use E.4 ℄ of Setion 3.3 andpart a℄. utE.10 of Setion 6.2 extends part g℄ of the above exerise. Namely, if0 � eÆ < Æ; where Æ is the same as in part f℄ and A � [0; 1℄ is a set ofLebesgue measure at least 1� eÆ; then [1n=1Pn(�n) is not dense in C(A):



4.1 Variations on the Weierstrass Theorem 169E.7 The Weierstrass Theorem in Lp. Let [a; b℄ be a �nite interval andp 2 (0;1). Show that both C[a; b℄\Lp[a; b℄ and the set P := [1n=0Pn of allreal algebrai polynomials are dense in Lp[a; b℄:Hint: The proof of the �rst statement is a routine measure theoreti argu-ment; see Rudin [87℄. The seond statement follows from the �rst and theWeierstrass approximation theorem; see E.1. utE.8 Density of Polynomials with Integer CoeÆients.a℄ Suppose f 2 C[0; 1℄ and f(0) and f(1) are integers. Show that for every� > 0 there is a polynomial p with integer oeÆients suh thatkf � pk[0;1℄ < � :Outline. By E.4, there is an integer n > 2=� so thatkf �Bn(f)k[0;1℄ < �2 :Let eBn(f) := nXk=0�f �kn��nk��xk(1� x)n�k :Show that if x 2 [0; 1℄; then0 � Bn(f)(x) � eBn(f)(x) � n�1Xk=1 xk(1� x)n�k� 1n nXk=0�nk�xk(1� x)n�k = 1n < �2 :Note that eBn(f) is a polynomial with integer oeÆients, andkf � eBn(f)k[0;1℄ � kf �Bn(f)k[0;1℄ + kBn(f)� eB(f)k[0;1℄< �2 + �2 = � : utb℄ Suppose the interval [a; b℄ does not ontain an integer. Show that poly-nomials with integer oeÆients form a dense set in C[a; b℄:Proof 1. This is an immediate onsequene of part a℄. utProof 2. Assume, without loss of generality, that [a; b℄ � (0; 1): By theWeierstrass approximation theorem, it is suÆient to prove that for every� > 0 there is a polynomial p with integer oeÆients suh that



170 4. Denseness Questions  12 � p[a;b℄ < � ;sine then all real numbers, and hene all p 2 Pn, an be approximated bypolynomials with integer oeÆients.The existene of suh a polynomial p follows from the identity12 = 1� x1� (1� 2(1� x)) = 1Xk=0 (1� x)(1� 2(1� x))k ;where the in�nite sum onverges uniformly on [a; b℄ � (0; 1): utE.9 Weierstrass Theorem on Ars. Let �D denote the unit irle of theomplex plane.a℄ Show that the set P := [1n=0Pn of all polynomials with omplex oef-�ients is not dense in C(�D):Hint: Use the orthonormality of the system ((2�)�1=2ein�)1n=�1 on [��; �℄to show that if k is a positive integer and p 2 P; then2�kz�k � p(z)kC(�D) � ke�ik� � p(ei�)kL2[��;�℄ � 2� :So none of the funtions z�1; z�2; : : : is in the uniform losure of P on�D. utb℄ Let A � �D be an ar of length less than 2�: Then the set P of allpolynomials with omplex oeÆients is dense in C(A).This is a speial ase of Mergelyan's theorem (see, for example, Rudin [87℄).Proof. Without loss of generality, we may assume that A is symmetri withrespet to the real line. By E.5 d℄, it is suÆient to prove that f(z) := z�1is in the uniform losure P of P on �D (this already implies that eahzk, k 2 Z, is in P). By E.11 j℄ of Setion 2.1, ap(A) < 1: By E.11 g℄ ofSetion 2.1, �(A) = ap(A); where �(A) denotes the Chebyshev onstantof A: Hene 0 � �(A) < � < 1with some �. Realling the de�nition of �(A), we an dedue that there aremoni polynomials pn 2 Pn suh thatkpnkA � �n ; n = 1; 2; : : : :For n = 1; 2; : : : , letqn(z) := zn�1pn(1=z) = z�1 + rn�1(z) ;where rn�1 2 Pn�1: Sine A is symmetri with respet to the real line,kz�1 + rn�1(z)kA = kqnkA = kpnkA � �n �!n!1 0 :Hene f(z) = z�1 is in P; whih �nishes the proof. ut



4.2 M�untz's Theorem 1714.2 M�untz's TheoremA very attrative variant of the Weierstrass theorem haraterizes exatlywhen the linear span of a system of monomialsM := (x�0 ; x�1 ; : : : )is dense in C[0; 1℄ or L2[0; 1℄:Theorem 4.2.1 (Full M�untz Theorem in C[0; 1℄). Suppose (�i)1i=1 is a se-quene of distint positive numbers. Thenspanf1; x�1 ; x�2 ; : : : gis dense in C[0; 1℄ if and only if1Xi=1 �i�2i + 1 =1 :Note that when inf i �i > 0;1Xi=1 �i�2i + 1 =1 if and only if 1Xi=1 1�i =1 :M�untz studied only this ase, and his theorem is usually given in terms ofthe seond ondition.When �i � 1 for eah i = 1; 2; : : : ; the above theorem follows bya simple trik from the L2 version of M�untz's theorem. The proof of thegeneral ase is left as a guided exerise. The diÆult ase to deal with isthe one where 0 and 1 are both luster points of the sequene (�i)1i=0; seeE.18.Theorem 4.2.2 (Full M�untz Theorem in L2[0; 1℄). Suppose (�i)1i=0 is asequene of distint real numbers greater than �1=2. Thenspanfx�0 ; x�1 ; : : : gis dense in L2[0; 1℄ if and only if1Xi=0 2�i + 1(2�i + 1)2 + 1 =1 :The proof of the following full L1 version of M�untz's theorem is pre-sented as E.19.



172 4. Denseness QuestionsTheorem 4.2.3 (Full M�untz Theorem in L1[0; 1℄). Suppose (�i)1i=0 is asequene of distint real numbers greater than �1: Thenspanfx�0 ; x�1 ; : : : gis dense in L1[0; 1℄ if and only if1Xi=0 �i + 1(�i + 1)2 + 1 =1 :Now we formulate a general M�untz-type theorem in Lp[0; 1℄; that ontainsthe above C[0; 1℄, L2[0; 1℄, and L1[0; 1℄ results as speial ases. The proofof this theorem is outlined in E.20.Theorem 4.2.4 (Full M�untz Theorem in Lp[0; 1℄). Let p 2 [1;1): Suppose(�i)1i=0 is a sequene of distint real numbers greater than �1=p: Thenspanfx�0 ; x�1 ; : : : gis dense in Lp[0; 1℄ if and only if1Xi=0 �i + 1p��i + 1p�2 + 1 =1 :The full version of M�untz's theorem for arbitrary distint real exponentson an interval [a; b℄, 0 < a < b; is given in E.7 and E.9.Proof of Theorem 4.2.1 assuming Theorem 4.2.2 and eah �i � 1. We needthe following two inequalities:�����xm � nXi=0 aix�i ����� = �����Z x0  mtm�1 � nXi=0 ai�it�i�1! dt�����(4:2:1) � Z 10 �����mtm�1 � nXi=0 ai�it�i�1����� dt� 0�Z 10 �����mtm�1 � nXi=0 ai�it�i�1����� 2 dt1A1=2for every x 2 [0; 1℄ and m = 1; 2; : : : , and(4:2:2) 0�Z 10 �����tm � nXi=0 ait�i ����� 2 dt1A1=2 � xm � nXi=0 aix�i[0;1℄



4.2 M�untz's Theorem 173for every m = 0; 1; 2; : : : . The assumption that �i � 1 for eah i impliesthat 1Xi=0 �i�2i + 1 =1 if and only if 1Xi=0 2(�i � 1) + 1(2(�i � 1) + 1)2 + 1 =1and 1Xi=0 �i�2i + 1 =1 if and only if 1Xi=0 2�i + 1(2�i + 1)2 + 1 =1 :If P1i=0 �i=(�2i + 1) = 1; then (4.2.1), together with Theorem 4.2.2and the Weierstrass approximation theorem (see E.1 of Setion 4.1), showsthat spanf1; x�1 ; x�2 ; : : : gis dense in C[0; 1℄:If the above span is dense in C[0; 1℄; then (4.2.2), together with E.7of Setion 4.1, shows that it is also dense in L2[0; 1℄: Hene Theorem 4.2.2implies P1i=1 �i=(�2i + 1) =1: utProof of Theorem 4.2.2. We onsider the approximation to xm by elementsof spanfx�0 ; : : : ; x�n�1g in L2[0; 1℄; and we assume m > � 12 and m 6= �ifor any i: In the notation of Setion 3.4 we de�ne� := (�0; �1; : : : ; �n�1;m)and study L�n, the nth orthonormal M�untz-Legendre polynomial assoiatedwith �: By (3.4.8) and (3.4.6) we have (with �n := m)L�n(x) = anxm + n�1Xi=0 aix�i ;where janj = p1 + 2m n�1Yi=0 ����m+ �i + 1m� �i ���� :It follows from kL�nkL2[0;1℄ = 1 and orthogonality that L�n=an is the errorterm in the best L2[0; 1℄ approximation to xm from spanfx�0 ; : : : ; x�n�1g(why?). Thereforeminbi2C xm � n�1Xi=0 bix�iL2[0;1℄ = 1janj = 1p1 + 2m n�1Yi=0 ���� m� �im+ �i + 1 ���� :



174 4. Denseness QuestionsSo, for a nonnegative integer m di�erent from any of the exponents �i,(4:2:3) xm 2 spanfx�0 ; x�1 ; : : : g(where span denotes the L2[0; 1℄ losure of the span) if and only iflimn!1 n�1Yi=0 ���� m� �im+ �i + 1 ���� = 0 :That is, (4.2.3) holds if and only iflimn!1 n�1Yi=0�i>m ����1� 2m+ 1m+ �i + 1 ���� n�1Yi=0�1=2<�i�m ����1� 2�i + 1m+ �i + 1 ���� = 0 :Hene (4.2.3) holds if and only if either1Xi=0�i>m 12�i + 1 =1 or 1Xi=0�1=2<�i�m (2�i + 1) =1 ;whih is the ase if and only if1Xi=0 2�i + 1(2�i + 1)2 + 1 =1 ;and the proof an be �nished by the Weierstrass approximation theorem(see E.1 of Setion 4.1). utComments, Exerises, and Examples.Theorem 4.2.1 (in the ase when inff�i : i 2 Ng > 0) and Theorem 4.2.2were proved independently by M�untz [14℄ and Sz�asz [16℄. Sz�asz [16℄ provedthe full version of Theorem 4.2.2. Theorem 4.2.1 is to be found in Borweinand Erd�elyi [to appear 5℄. Muh of Theorem 4.2.4 is stated in Shwartz[59℄ without proof and may be dedued by his methods. Indeed, Shwartz'smethod appears to give Theorem 4.2.4 for p 2 [1; 2℄. Johnson (private om-muniation) and Operstein [to appear℄ show how to derive the full Theorem4.2.4 from Theorem 4.2.1 as does E.20; see also E.7 of the next setion.Less omplete versions of the results presented in this setion are oftenalled the M�untz-Sz�asz Theorems. A 1912 version due to Bernstein an befound in his olleted works.A variant on our proof of M�untz's theorem is presented in E.2. Adistint proof based on possible zero sets of analyti funtions may befound in Feinerman and Newman [76℄; see also E.10, where this methodis explored for denseness questions for fos�k�g:



4.2 M�untz's Theorem 175Extensions of M�untz's theorem abound. For example, generalizationsto omplex exponents are onsidered in Luxemburg and Korevaar [71℄, toangular regions in Anderson [72℄ and with an exponential weight on [0;1)in Fuhs [46℄. It is a nontrivial problem to establish a M�untz-type theoremon an interval [a; b℄, a > 0, in whih ase the elements of the sequene� = (�i)1i=0 are allowed to be arbitrary distint real numbers. This is theontent of E.7; it is due to Clarkson and Erd}os [43℄ (in the ase wheneah �i is a nonnegative integer) and Shwartz [59℄ (in the general ase).It is shown in Setion 6.2 that if � = (�i)1i=0 is an inreasing sequeneof nonnegative real numbers, then the interval [0; 1℄ in M�untz's theorem(Theorem 4.2.1) an be replaed by an arbitrary ompat set A � [0;1)of positive Lebesgue measure.The exerises also explore in detail the losure of M�untz spaes inthe nondense ases. This study was initiated by Clarkson and Erd}os [43℄,who treated the ase when the exponents are nonnegative integers. Theonsiderably harder general ase is due to Shwartz [59℄.Denseness questions about quotients and produts of M�untz polyno-mials from a given M�untz spae are disussed in Setions 4.4 and 6.2, re-spetively.Some of the literature on the multivariate versions of M�untz's theo-rem an be found in Ogawa and Kitahara [87℄, Bloom [90℄, and Kro�o andSzabados [94℄.E.1 Another Proof of Some Cases of M�untz's Theorem.a℄ Golitskek's Proof of M�untz's Theorem when P1i=1 1=�i = 1. Sup-pose that (�i)1i=1 is a sequene of distint, positive real numbers satisfyingP1i=1 1=�i = 1. Golitshek [83℄ gives the following simple argument toshow that spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄:Proof. Assume that m 6= �k ; k = 0; 1; : : : , and de�ne the funtions Qnindutively: Q0(x) := xm andQn(x) := (�n �m)x�n Z 1x Qn�1(t)t�1��n dt ; n = 1; 2; : : : :Show, by indution on n, that eah Qn is of the formQn(x) = xm � nXi=0 an;ix�i ; an;i 2 R :Show also thatkQ0k[0;1℄ = 1 and kQnk[0;1℄ � ����1� m�n ���� � kQn�1k[0;1℄ ;so kQnk[0;1℄ � nYi=0 ����1� m�i ����! 0 as n!1 : ut



176 4. Denseness Questionsb℄ Another Proof of M�untz's Theorem when �i !  > 0. Suppose that(�i)1i=1 is a sequene of distint positive real numbers that onverges to > 0. Show, without using the arguments given in the proof of M�untz'stheorem, that spanf1; x�1 ; x�2 ; : : : g is dense in C[a; b℄, a > 0.Hint: Let k be a nonnegative integer. Use divided di�erenes to approxi-mate x logk x uniformly on [a; b℄. Finish the proof by using the Weierstrassapproximation theorem (see E.1 of Setion 4.1). utE.2 Another Proof of M�untz's Theorem in L2[0; 1℄.a℄ Gram's Lemma. Let (V; h�; �i) be an inner produt spae, and let g 2 V:Suppose ff1; : : : ; fng is a basis for an n-dimensional subspae P of V: Thenthe distane dn from g to P is given bydn := inffhg � p; g � pi1=2 : p 2 Pg = �G(f1; f2; : : : ; fn; g)G(f1; f2; : : : ; fn) �1=2 ;where G is the Gram determinantG(f1; f2; : : : ; fm) := ������� hf1; f1i : : : hf1; fmi... . . . ...hfm; f1i : : : hfm; fmi ������� :Proof. As in Theorem 2.2.3, the best approximation to g from P is givenby f� = nXi=1 ifi ;where the i are uniquely determined by the orthogonality onditionshf� � g; fki = 0 ; k = 1; 2; : : : ; n :Sine d2n = hg � f�; g � f�i ;we are led to a system of n+ 1 equationsnXi=1 ihfi; fki = hg; fki ; k = 1; 2; : : : ; nand nXi=1 ihfi; gi+ d2n = hg; gi :Solving this system by using Cramer's rule, we get the desired result. ut



4.2 M�untz's Theorem 177b℄ As in E.3 of Setion 3.2,������� 1�1+�1 : : : 1�1+�n... . . . ...1�n+�1 : : : 1�n+�n ������� = Q1�i<j�m(�j � �i)(�j � �i)Q1�i;j�n(�i + �j)for arbitrary omplex numbers �i and �j with �i + �j 6= 0:℄ Let ; �0; : : : ; �n be distint real numbers greater than �1=2: Then theL2[0; 1℄ distane dn from x to spanfx�0 ; : : : ; x�ng is given bydn = 1p2 + 1 nYi=0 ����  � �i + �i + 1 ���� :Hint: In L2[0; 1℄;hxa; xbi = Z 10 xaxb dx = 1a+ b+ 1 ; a; b 2 (�1=2;1) :Now apply parts a℄ and b℄. utd℄ Complete the proof of M�untz's theorem in L2[0; 1℄:E.3 More on M�untz's Theorem in the Nondense Case. We assumethroughout this exerise that (�i)1i=0 is a sequene of nonnegative real num-bers satisfying 1Xi=1 1�i <1and the gap ondition inff�i � �i�1 : i 2 Ng > 0holds. Some of the results of this exerise hold even if the above gap on-dition is removed (see the later exerises).a℄ Show that 0 < 1Yi=0i6=m �����i + �m�i � �m ���� = exp(m�m) ;where m ! 0 as m!1:Hint: First show that the above in�nite produt exists. Write the aboveprodut as1Yi=0�i<�m �����i + �m�i � �m ���� 1Yi=0�i2(�m;2�m) �����i + �m�i � �m ���� 1Yi=0�i�2�m �����i + �m�i � �m ����and estimate the three fators above separately. ut



178 4. Denseness Questionsb℄ Dedue that if �i 6= �m for eah i; thenx�m � p(x)L2[0;1℄ � 1p2�m + 1 1Yi=0 ���� (�i + 12 )� (�m + 12 )(�i + 12 ) + (�m + 12 ) ����= exp(�m(�m))for every p 2 spanfx�0 ; : : : ; x�ng; where m ! 0 as m!1:℄ Show that for every � > 0 there is a onstant � depending only on �and (�i)1i=0 (but not on the number of terms in p) suh thatjaij � �(1 + �)�ikpkL2[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g of the form p(x) =Pni=0 aix�i :Hint: Use part b℄. utd℄ Bounded Bernstein-Type Inequality. Let �0 = 0 and �1 � 1. Showthat for every � 2 (0; 1) there is a onstant � depending only on � and(�i)1i=0 (but not on the number of terms in p) suh thatkp0k[0;1��℄ � �kpkL2[0;1℄and hene kp0k[0;1��℄ � �kpk[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Use part ℄. utThe result of the next part is due to Clarkson and Erd}os [43℄.e℄ The Closure of a Nondense M�untz Spae. Suppose f 2 C[0; 1℄ andthere exist pn 2 spanfx�0 ; x�1 ; : : : g of the formpn(x) = knXi=0 ai;nx�i ; ai;n 2 R ; n = 1; 2; : : :suh that limn!1 kpn � fk[0;1℄ = 0: Show that f is of the formf(x) = 1Xi=0 aix�i ; ai;n 2 R ; x 2 [0; 1) :Show also that f an be extended analytially throughout the regionfz 2 C n(�1; 0℄ : jzj < 1gand limn!1 ai;n = ai ; i = 0; 1; : : : :If (�i)1i=0 is a sequene of distint nonnegative integers, then f an beextended analytially throughout the open unit disk.Hint: Use part ℄. ut



4.2 M�untz's Theorem 179If (�i)1i=0 is launary (that is, inff�i+1=�i : i 2 Ng > 1), then theuniform losure of spanfx�0 ; x�1 ; : : : g on [0; 1℄ is exatly(f 2 C[0; 1℄ : f(x) = 1Xi=0 aix�i ; x 2 [0; 1℄) :If (�i)1i=0 is not launary, then this fails, namely, there exists a funtion fof the form f(x) = 1Xi=0 aix�i ; x 2 [0; 1)in the uniform losure of spanfx�0 ; x�1 ; : : : g on [0; 1℄ suh that the right-hand side does not onverge at the endpoint 1; see Clarkson and Erd}os[43℄.f ℄ Bounded Chebyshev-Type Inequality. Show that for every � 2 (0; 1)there exists a onstant � depending only on � and (�i)1i=0 (but not on thenumber of terms in p) suh thatkpk[0;1℄ � �kpk[1��;1℄for every p 2 spanfx�0 ; x�i ; : : : g :Outline. Using the saling x ! x1=�1 , without loss of generality we mayassume that �1 = 1: Suppose there exists a sequene(pm)1m=1 � spanfx�0 ; x�1 ; : : : ; g ; m = 1; 2; : : :suh that 0 < Am := kpmk[0;1℄ !1while kpmk[1��;1℄ = 1 ; m = 1; 2; : : : :Let qm := pm=Am: Note that kqmk[0;1℄ = 1 for eah m; and kqmk[1��;1℄ ! 0as m!1: Then, by part d℄,kq0mk[0;1�Æ℄ � Æfor every Æ 2 (0; 1): Hene (qm)1m=0 is a sequene of uniformly boundedand equiontinuous funtions on losed subintervals of [0; 1); and by theArzela-Asoli theorem (see, for example, Rudin [87℄) we may extrat auniformly onvergent subsequene on [0; 1��=2℄: This subsequene, by parte℄, onverges uniformly to a funtion F analyti on (0; 1 � �=2); but sinekqmk[1��;1℄ ! 0; F must be identially zero. This is a ontradition sinekqmk[0;1℄ = 1 and kqmk[0;1��℄ = kqmk[0;1℄ for every suÆiently large m: utg℄ Suppose (qm)1m=1 � spanfx�0 ; x�1 ; : : : g and kqmk[a;b℄ � 1 for eahm; where 0 � a < b: Show that there is a subsequene of (qm)1m=1 thatonverges uniformly on every losed subinterval of [0; b):Hint: Use parts f℄ and d℄ and the Arzela-Asoli theorem. ut



180 4. Denseness QuestionsE.4 M�untz's Theorem with Real Exponents on [a; b℄; a > 0. Suppose(�i)1i=�1 is a set of distint real numbers satisfying1Xi=�1�i 6=0 1j�ij <1with �i < 0 for i < 0 and �i � 0 for i � 0. Suppose that the gap onditioninff�i � �i�1 : i 2 Zg> 0holds. Assoiated withp(x) := nXi=�n aix�i ; n = 0; 1; : : :let p�(x) := �1Xi=�n aix�i and p+(x) := nXi=0 aix�i :Let 0 < a < b:a℄ Show that there exists a onstant  depending only on a; b; and (�i)1i=�1(but not on the number of terms in p) suh thatkp+k[a;b℄ � kpk[a;b℄ and kp�k[a;b℄ � kpk[a;b℄for every p 2 spanfx�ig1i=�1:Outline. It is suÆient to prove only the �rst inequality; the seond inequal-ity follows from the �rst by the substitution y = x�1: If the �rst inequalityfails to hold, then there exists a sequene (pn)1n=1 � spanfx�ig1i=�1 suhthat kp+n k[a;b℄ = 1 ; n = 1; 2; : : : ; and limn!1 kpnk[a;b℄ = 0 :Sine p = p+ + p�; the above relations imply thatkp�n k[a;b℄ � K <1 ; n = 1; 2; : : : :By E.3 g℄ and E.3 e℄, there exists a subsequene (ni)1i=1 suh that (p+ni)1i=1onverges uniformly on every losed subinterval of [0; b) to a funtion fanalyti on Db := fz 2 C n(�1; 0℄ : jzj < bgof the form f(z) = 1Xi=0 aiz�i ; z 2 Db ;



4.2 M�untz's Theorem 181while (p�ni)1i=1 onverges uniformly on every losed subinterval of (a;1) toa funtion g analyti onEa := fz 2 C n (�1; 0℄ : jzj > agof the formg(z) = �1Xi=�1 aiz�i ; z 2 Ea ; limx!1x2R g(x) = 0 :Now limi!1 kpnik[a;b℄ = 0 and pni = p+ni + p�ni imply that f + g = 0 on (a; b):Show that h(z) := � f(ez) ; Rez < log b�g(ez) ; Rez > log ais a well-de�ned bounded entire funtion, and hene h = 0 on C by Liou-ville's theorem. From this, dedue thatf = 0 on [0; b) and g = 0 on (a;1) :Hene, for every y 2 (a; b), limi!1 kp+nik[a;y℄ = 0and limi!1 kp+nik[y;b℄ = limi!1 kpni � p�nik[y;b℄ = 0 :Therefore limi!1 kp+nik[a;b℄ = 0 ;whih ontradits kp+n k[a;b℄ = 1; n = 1; 2; : : : : utb℄ The Closure of M�untz Polynomials. Let f 2 C[0; 1℄, and suppose thereexist M�untz polynomials pn 2 spanfx�ig1i=�1 of the formpn(x) = knXi=�kn ai;nx�i ; n = 1; 2; : : :suh that limn!1 kpn � fk[a;b℄ = 0: Show that f is of the formf(x) = 1Xi=�1 aix�i ; x 2 (a; b) ;where



182 4. Denseness Questionsf+(x) := 1Xi=1 aix�i ; x 2 [0; b) ;f�(x) := �1Xi=�1 aix�i ; x 2 (a;1) ; limx!1 f�(x) = 0 ;f an be extended analytially throughout the regionfz 2 C n (�1; 0℄ : a < jzj < bg ;and limn!1 ai;n = ai ; i 2 Z :Hint: Use part a℄ and E.3 e℄. utE.5 Removing the Gap Conditions. Assume throughout this exerise that0 � �0 < �1 < � � � and P1i=1 1=�i <1:a℄ Bounded Chebyshev-Type Inequality. Show that for every � 2 (0; 1)there is a onstant � depending only on � and (�i)1i=0 (but not on thenumber of terms in p) suh thatkpk[0;1℄ � �kpk[1��;1℄for every p 2 spanfx�0 ; x�1 ; : : : g: (This is the inequality of E.3 f℄ withoutthe gap ondition inff�i � �i�1 : i 2 Ng > 0:)Hint: Assume, without loss of generality, that �0 = 0: Observe thatlimi!1 �i=i = 1. Choose m 2 N suh that �i > 2i whenever i > m: De-�ne � := (i)1i=1 byi := �minf�i; ig ; i = 0; 1; : : : ;m12�i + i ; i = m+ 1;m+ 2; : : : :Then0 = 0 < 1 < � � � ; 1Xi=1 1i <1 ; i � �i ; i = 0; 1; : : :and inffi � i�1 : i 2 Ng > 0: Now use E.3 g℄ of Setion 3.3 with [a; b℄ =[1� �; 1℄ and E.3 f℄ of this setion. utb℄ Bounded Bernstein-Type Inequality. Suppose �0 = 0 and �1 � 1:Prove that for every � 2 (0; 1) there is a onstant � depending only on �and (�i)1i=0 (but not on the number of terms in p) suh thatkp0k[0;1��℄ � �kpk[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g: (This is the seond inequality of E.3 d℄without the gap ondition inff�i � �i�1 : i 2 Ng > 0:)Hint: De�ne the sequene � as in the hint given to part a℄. Now use E.3 f℄of Setion 3.3 with [a; b℄; a 2 (0; 1� �℄; E.3 g℄ of this setion, and part a℄of this exerise. ut



4.2 M�untz's Theorem 183℄ Let 0 � a < b: Show that spanfx�0 ; x�1 ; : : : g is not dense in C[a; b℄:Hint: Use part a℄ and Theorem 4.2.1 (full M�untz's theorem in C[0; 1℄). utd℄ Let �2k�1 := k2 ; �2k := k2 + 2�k2 ; k = 1; 2; : : : ;a2k�1 := 2k2 ; a2k := �2k2 ; k = 1; 2; : : : :Show that the funtion f(x) := P1i=1�a2i�1x�2i�1 + a2ix�2i� is a well-de�ned ontinuous funtion on [0; 1℄: Show also that P1i=1 aix�i does notonverge for any x 2 (0;1) (hene the onlusions of E.3 e℄ are not validwithout a gap ondition).E.6 A Comparison Theorem. Let 0 � k � n be �xed integers. Assume�0 < �1 < � � � < �k < 0 < �k+1 < �k+2 < � � � < �n ;0 < 1 < � � � < k < 0 < k+1 < k+2 < � � � < n ;and jij � j�ij ; i = 0; 1; : : : ; nwith strit inequality for at least one index i: LetHn := spanfx�0 ; x�1 ; : : : ; x�ng and Gn := spanfx0 ; x1 ; : : : ; xngand let 0 < a < b: Thenminp2Gn k1� pk[a;b℄ < minp2Hn k1� pk[a;b℄ :Hint: Let q� 2 Hn be the best approximation to x0 � 1 on [a; b℄: Letr(x) = (�1)x0 + nXi=0 xi 2 spanfx0 ; : : : ; xk ; x0; xk+1 ; : : : ; xnginterpolate q� � 1 2 spanfx�0 ; : : : ; x�k ; x0; x�k+1 ; : : : ; x�ngat the n+1 distint zeros, x1; x2; : : : ; xn+1, of q��1 on [a; b℄ (see Theorem3.1.6). Use Theorem 3.2.5 to show thatjr(x)j � jq(x)j ; x 2 [a; b℄with strit inequality for x 6= xi: Finally show that if p� := r + 1; thenminp2Gn k1� pk[a;b℄ � k1� p�k[a;b℄ < k1� q�k[a;b℄ = minp2Hn k1� pk[a;b℄ : ut



184 4. Denseness QuestionsE.7 Full M�untz Theorem on [a; b℄; a > 0. Let (�i)1i=0 be a sequene ofdistint real numbers, and let 0 < a < b. Show that spanfx�0 ; x�1 ; : : : g isdense in C[a; b℄ if and only if 1Xi=0�i 6=0 1j�ij =1 :Hint: Distinguish the following ases.Case 1: The sequene (�i)1i=0 has a luster point 0 6= � 2 R: Use Theorem4.2.1 to show that spanfx�0 ; x�1 ; : : : g is dense in C[a; b℄:Case 2: The point 0 is a luster point of (�i)1i=1: Use Case 1 to show �rstthat spanfx�0+1; x�1+1; : : : g is dense in C[a; b℄; and reall that a > 0:Case 3: The sequene (�i)1i=0 does not have any (�nite) luster points, andeither 1Xi=0�i>0 1�i =1 or 1Xi=0�i<0 1j�ij =1 :Use Theorem 4.2.1 to show that spanfx�0 ; x�1 ; : : : g is dense in C[a; b℄:Case 4: 1Xi=0�i 6=0 1j�ij <1 :Without loss of generality we may assume that 0 =2 f�ig1i=0 (why?). By ahange of saling, we may also assume that [a; b℄ = [1� �; 1℄. Letfe�ig1i=�1 = f�ig1i=0 ; where � � � < e��2 < e��1 < 0 < e�0 < e�1 < � � � :Show that there is a sequene (i)1i=�1 satisfying� � � < �2 < �1 < 0 < 0 < 1 < � � � ;jij < je�ij ; i 2 Z ; 1Xi=�1 1jij <1 ;and the gap ondition inffi � i�1 : i 2 Zg> 0 :Use E.4 a℄, E.5 a℄, and E.2 ℄ to show that1 =2 spanfxig1i=�1 ;where spanfxig1i=�1 denotes the uniform losure of the span on [a; b℄:Finally use E.6 to show that1 =2 spanfxe�ig1i=�1 = spanfx�ig1i=0 : ut



4.2 M�untz's Theorem 185E.8 Further Results for Nonnegative Sequenes with No Gap Condition.Assume throughout this exerise that 0 � �0 < �1 < � � � ; P1i=1 1=�i <1,and 0 � a < b:a℄ Show that for every � 2 (0; b) there is a onstant � depending only on�; a; b; and (�i)1i=0 (but not on the number of terms in p) suh thatkpk[0;b��℄ � � Z ba jp(x)j dxfor every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Assume that b = 1; the general ase an be redued to this by saling.Use parts a℄ and b℄ of E.5 withep(x) := Z x0 p(t) dt 2 spanfx�0+1; x�1+1; : : : g : utb℄ Assume (pn)1n=1 � spanfx�0 ; x�1 ; : : : gonverges to an f 2 C[a; b℄ uniformly on [a; b℄: Show that f an be extendedanalytially throughout the regionDb := fz 2 C n (�1; 0℄ : 0 < jzj < bgand the onvergene is uniform on every losed subset of Db:Hint: This part of the exerise is diÆult. A proof of a more general state-ment an be found in Shwartz [59, pp. 38{48℄. ut℄ Suppose (pn)1n=1 � spanfx�0 ; x�1 ; : : : g and kpnk[a;b℄ � 1 for eah n:Show that there is a subsequene of (pn)1n=1 that onverges uniformly onevery losed subinterval of [0; b): (So the onlusion of E.3 g℄ holds withoutthe gap ondition inff�i � �i�1 : i 2 Ng > 0:)Hint: Use parts a℄ and b℄ of E.5 and the Arzela-Asoli theorem. utd℄ Let K be a losed subset of Db de�ned in part b℄. Show that there is aonstant K depending only on K; a; b; and (�i)1i=0 (but not on the numberof terms in p) suh that kpkK � Kkpk[a;b℄for every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Use parts ℄ and b℄. (If the gap ondition inff�i � �i�1 : i 2 Ng > 0holds, then the simpler result of E.3 e℄ an be used instead of part b℄ of thisexerise.) ut



186 4. Denseness QuestionsE.9 Full M�untz Theorem on [a; b℄; a > 0; in Lq Norm. Shwartz [59℄gives the following results: Suppose (�i)1i=�1 is a sequene of distint realnumbers. For a �nite set � of integers andp(x) =Xi2� aix�i ; ai 2 R ;let p�(x) := Xi2��i<0 aix�i and p+(x) := Xi2��i�0 aix�i :Let 0 < a < b and 1 � q �1:Theorem 4.2.5. Suppose 1Xi=�1�i 6=0 1j�ij <1 :Then there exists a onstant  depending only on a; b; q; and (�i)1i=�1 (butnot on the number of terms in p) suh thatkp+kLq[a;b℄ � kpkLq[a;b℄ and kp�kLq[a;b℄ � kpkLq[a;b℄for every p 2 spanfx�ig1i=�1:Theorem 4.2.6. Suppose that 0 < a < b: Then spanfx�0 ; x�1 ; : : : g is densein Lq[a; b℄ if and only if(4:2:4) 1Xi=0�i 6=0 1j�ij =1 :a℄ Prove the two above results under the gap onditioninff�i � �i�1 : i 2 Zg> 0 :Hint to Theorem 4.2.5: When q =1 see E.4 a℄. If 1 � q <1; then modifythe proof suggested in the hints to E.4 a℄, by using E.8 a℄. utHint to Theorem 4.2.6: If (4.2.4) holds, then the fat that spanfx�0 ; x�1 ; : : : gis dense in Lq[a; b℄ follows from E.7 and the obvious inequalitykpkLq[a;b℄ � (b� a)1=qkpk[a;b℄ :Now suppose (4.2.4) does not hold. Use Theorem 4.2.5 and E.8 a℄ toshow that for every � 2 (0; 12 (b � a)) there exists a onstant � dependingonly on a; b; q; and (�i)1i=�1 (but not on the number of terms in p) suhthat kpk[a+�;b��℄ � �kpkLq[a;b℄for every p 2 spanfx�ig1i=�1: Now show that the above inequality impliesthat spanfx�0 ; x�1 ; : : : g is not dense in Lq[a; b℄: ut



4.2 M�untz's Theorem 187E.10 Denseness of spanfos�k�g and spanfz�kg. Throughout this exer-ise the span is assumed to be over C : LetDR := fz 2 C : jzj < Rg and CR := fz 2 C : jzj = Rg :a℄ Show that (osn�)1n=0 is a omplete orthogonal system in L2[0; �℄: Sono term, osn�; an be removed if we wish to preserve denseness of thespan in L2[0; �℄:b℄ Let A := fei� : � 2 [0; Æ℄g. Suppose (�k)1k=0 is a sequene of distintomplex numbers satisfyingj�kj � ke1�Æ ; k = 1; 2; : : : :If Æ 2 [1; 2�℄; then spanfz�0 ; z�1 ; : : : g is dense in L2(A):The proof of part b℄ is outlined in parts ℄, d℄, and e℄.℄ Jensen's Formula. Suppose h is a nonnegative integer andf(z) = 1Xk=h kzk ; h 6= 0is analyti on a disk of radius greater than R; and suppose that the zerosof f in DR n f0g are a1; a2; : : : ; an; where eah zero is listed as many timesas its multipliity. Thenlog jhj+ h logR+ nXk=1 log Rjakj = 12� Z 2�0 log jf(Rei�)j d� :Proof. This is a simple onsequene of Poisson's formula (see, for example,Ahlfors [53℄), whih states thatlog jF (0)j = 12� Z 2�0 log jF (Rei�)j d�whenever the funtion F is analyti and zero-free in an open region on-taining the losed disk DR. Now, in the above notation, if we letF (z) := f(z)�Rz �h nYk=1 R2 � akzR(z � ak)and apply Poisson's formula to F; we get the required result by noting thatjF (z)j = jf(z)j whenever jzj = R: (The ase where f has zeros on theboundary of D requires an additional limiting argument.) ut



188 4. Denseness Questionsd℄ Let �1 � a < b � 1: Suppose (fk)1k=0 is a sequene in L2(a; b)and spanff0; f1; : : : g is not dense in L2(a; b). Then there exists a nonzerog 2 L2(a; b) suh thatZ ba fk(x)g(x) dx = 0 ; k = 0; 1; : : : :This is an immediate onsequene of the Riesz representation theorem (seeE.7 g℄ of Setion 2.2) and the Hahn-Banah theorem. The seond theoremsays that if spanff0; f1; : : : g is not dense in a Banah spae, then there existsa nonzero ontinuous linear funtional vanishing on ff0; f1; : : : g: The �rsttheorem gives the form of the funtional; see Rudin [73℄.e℄ Prove b℄ as follows: Suppose spanfz�0 ; z�1 ; : : : g is not dense in L2(A).Then by d℄ there exists a g 2 L2[0; Æ℄ suh thatf(z) := Z Æ0 exp(i(z + 1)�)g(�) d�vanishes at z = �k, k = 0; 1; : : : : Also observe that f is an entire funtion,and there is an absolute onstant � > 0 suh thatjf(z)j � � exp(Æjzj) :Use E.8 a℄ of Setion 2.2 to show that f 6= 0: Let R > j�0j be an integer.Applying ℄ on DR and exponentiating, we obtainjhj exp((Æ � 1)R)RR+1R! � jhjRh RYk=0�k 6=0 Rj�kj � � exp(ÆR) ;where h is the �rst nonvanishing oeÆient of the Taylor series expansionof f around 0. However, limR!1 RR+1R! eR =1 ;whih is a ontradition and �nishes the proof. utf ℄ Let A := [0; Æ℄. Suppose (�k)1k=0 is a sequene of distint omplex num-bers satisfying j�kj � ke1�Æ ; k = 1; 2; : : : :Show that if Æ 2 [1; �℄; then spanfos�0�; os�1�; : : : g is dense in L2(A).Hint: Proeed as in the proof of part b℄. ut



4.2 M�untz's Theorem 189g℄ Suppose (�k)1k=0 is a sequene of distint real numbers satisfying0 � �k � k ; k = 0; 1; : : : :Then spanfos�0�; os�1�; : : : g is dense in L2[0; � � �℄ for any � > 0:Proof. This is harder; see Boas [54, p. 235℄. uth℄ Suppose (�k)1k=0 is a sequene of distint omplex numbers satisfying0 � j�k j � k: Suppose f is an entire funtion suh that kfkDR � �eR forall R > 0 with an absolute onstant � > 0, and spanff(�z) : � 2 C g isdense in L2(C1): Then spanff(�0z); f(�1z); : : : g is dense in L2(C1):E.11 On the Hardy Spae H1. We denote by H1 the lass of funtionsthat are analyti and bounded on D := fz 2 C : jzj < 1g: We letkfkH1 := kfkD = supu2D jf(u)j :a℄ If f 2 H1; then f(z) = 1Xn=0 anzn ; z 2 D ;where janj � kfkH1 :Hint: By Cauhy's integral formulajanj = 1n! jf (n)(0)j � 12� Zjtj=R ���� f(t)tn+1 ���� jdtj � R�nkfkH1holds for every R 2 (0; 1): utb℄ If f 2 H1; thenjf 0(z)j � � 11� jzj�2 kfkH1 ; jzj < 1and jf (n)(z)j � n!� 11� jzj�n+1 kfkH1 ; jzj < 1 :℄ H1 is a Banah algebra.Hint: See Rudin [73℄. ut



190 4. Denseness QuestionsE.12 Blashke Produts. A produt of the formB(z) := zk 1Yi=1� �i � z1� �iz� j�ij�i ; �i 2 C n f0gwith k 2 Z is alled a Blashke produt. Let D := fz 2 C : jzj < 1g:a℄ Let '�(z) := �� z1� �z ; � 2 C :Show that j'�(z)j = 1 whenever jzj = 1 and'0�(z) = j�j2 � 1(1� �z)2 :b℄ Show that if j�j < 1; then '�(z) maps the losed unit disk D one-to-oneonto itself.℄ A Minimization Property. Let �1; �2; : : : ; �n be �xed omplex numberswith j�ij > 1; i = 1; : : : n: Show thatminai2C 1� nXi=1 aiz � �i D = nYi=1 j�ij�1and that the minimum is attained by the normalized �nite Blashke produt1� nXi=1 a�iz � �i =  nYi=1�i!�1 nYi=1 ��1i � z1� ��1i z! :Hint: Suppose that the statement is false. Then there are some ai 2 C suhthat �����1� nXi=1 aiz � �i ����� <  nYi=1 j�ij!�1 = �����1� nXi=1 a�iz � �i �����for all z 2 C with jzj = 1. Now Rouh�e's theorem implies thatnXi=1 ai � a�iz � �ihas n zeros in the disk D; whih is a ontradition. utd℄ Suppose (�n)1n=1 is a sequene in D satisfying�1 = �2 = � � � = �k = 0 ; �n 6= 0 ; n = k + 1; k + 2; : : :



4.2 M�untz's Theorem 191and 1Xn=1(1� j�nj) <1 :Then B(z) := zk 1Yn=k+1� �n � z1� �nz� j�nj�nde�nes a bounded analyti funtion onD (that is, B 2 H1), whih vanishesat z if and only if z = �j for some j = 1; 2; : : : ; in whih ase the multipliityof z0 in B(z) is the same as the multipliity of �j in (�n)1n=1:e℄ Suppose (�n)1n=1 is a sequene in D satisfying1Xn=1 (1� j�nj) =1 :Denote the multipliity of �j in (�n)1n=1 by mj : Suppose f 2 H1 has azero at eah �j with multipliity mj : Then f = 0:Hint: Suppose kfkD > 0: Without loss of generality we may assume thatf(0) 6= 0: By Jensen's formula (see E.10 ℄),1Xn=1j�nj<R log Rj�nj + log jf(0)j = 12� Z 2�0 log jf(Rei�j d� � log kfkDfor every R 2 (0; 1). Letting R tend to 1, we obtain1Xn=1 log 1j�nj < log kfkD � log jf(0)j <1 :Hene 1Xn=1(1� j�nj) <1 ;whih ontradits the assumption. utNote that the onlusion of part e℄ holds for the larger Nevanlinnalass N; whih is de�ned as the set of those analyti funtions f on D forwhih supR2(0;1) 12� Z 2�0 log+ jf(Rei�)jd� <1 ;where log+ x := maxflogx; 0g:



192 4. Denseness Questionsf ℄ Let B(z) := zk nYi=1� �i � z1� �iz� j�ij�i ; �i 2 C n f0gbe a �nite Blashke produt. Show thatjB0(z)j = k + nXi=1 1� j�ij2jz � �ij2 ; jzj = 1 :Hint: Consider B0=B; where jB(z)j = 1 whenever jzj = 1: utg℄ Suppose 1Xi=1 (1� j�ij) <1 ; �i 2 (0; 1)and B(z) := 1Yi=1� �i � z1� �iz� j�ij�i :Show that k((1� z)2B(z))0kD �  4 + 2 1Xi=1(1� �2i )! kBkD :Hint: Use f℄. utE.13 Yet Another Proof of M�untz's Theorem when inff�i : i 2 Ng > 0.As in E.10, this proof requires a onsequene of the Hahn-Banah theoremand the Riesz representation theorem whih we state in a℄. For details,the reader is referred to Feinerman and Newman [76℄ and Rudin [87℄. Weassume throughout the exerise that �0 := 0 and that (�k)1k=1 is a sequeneof distint positive numbers satisfying inff�k : k 2 Ng > 0:a℄ spanf1; x�1 ; x�2 ; : : : g is not dense if and only if there exists a nonzero�nite Borel measure � on [0; 1℄ withZ 10 t�k d�(t) = 0 ; k = 0; 1; 2 : : : :b℄ Show that P1k=1 1=�k =1 implies that spanf1; x�1 ; x�2 ; : : : g is densein C[0; 1℄:Outline. Suppose there is a nonzero �nite Borel measure � on [0; 1℄ suhthat Z 10 t�k d�(t) = 0 ; k = 0; 1; : : : :



4.2 M�untz's Theorem 193Let f(z) = Z 10 tz d�(t) ; Re(z) > 0 :Show that g(z) := f �1 + z1� z� 2 H1and g��k � 1�k + 1� = 0 with �����k � 1�k + 1 ���� < 1 ; k = 1; 2; : : : :Note that P1k=1 1=�k =1 and inff�k : k 2 Ng > 0 imply1Xk=1�1� �����k � 1�k + 1 ����� =1 :Hene E.12 e℄ yields that g = 0 on the open unit disk. Therefore f(z) = 0whenever Re(z) > 0; sof(n) = Z 10 tn d�(t) = 0 ; n = 1; 2; : : : :Note that Z 10 t0 d�(t) = 0also holds beause of the hoie of �: Now the Weierstrass approximationtheorem yields that Z 10 f(t) d�(t) = 0for every f 2 C[0; 1℄, whih ontradits the fat that the Borel measure �is nonzero. So part a℄ implies that spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄:ut℄ Show that P1k=1 1=�k < 1 implies that spanf1; x�1 ; x�2 : : : g is notdense in C[0; 1℄.Outline. Show under the above assumption thatf(z) = Z 10 tz � 12� Z 1�1 f(�1 + is)e�is log t ds� dt ; Re(z) > �1if f is de�ned by f(z) := z(2 + z)3 1Yn=1 �n � z2 + �n + z :



194 4. Denseness QuestionsShow that d�(t) = � 12� Z 1�1 f(�1 + is)e�is log t ds� dtde�nes a nonzero �nite Borel measure, �, on [0; 1℄ suh thatZ 10 t�k d�(t) = 0 ; k = 0; 1; 2; : : :as is required by part a℄. For the above, show thatf(z) = � 12� Z 1�1 f(is� 1)is� 1� z ds ; Re(z) > �1and use that 11 + z � is = Z 10 tz�is dt : utE.14 Another Proof of Denseness of M�untz Spaes when �i ! 0. Suppose� := (�i)1i=1 is a sequene of distint positive numbers with limi!1 �i = 0:Show that M(�) := spanf1; x�1 ; x�2 ; : : : gis dense in C[0; 1℄ if and only if P1i=1 �i =1 :Hint: If P1i=1 �i =1; then limi!1 �i = 0 implies that1Xi=1 �1� �����i � 1�i + 1 ����� =1 :So the outline of the proof of E.13 b℄ yields that M(�) is dense in C[0; 1℄:If � :=P1i=1 �i <1; then, by Theorem 6.1.1, the inequalitykxp0(x)k[0;1℄ � 9� kpk[0;1℄holds for every p 2 M(�). Use this inequality to show that M(�) fails tobe dense in C[0; 1℄: utE.15 Denseness of M�untz Spaes with Complex Exponents. Suppose� := (�i)1i=1 is a sequene of omplex numbers satisfyingRe(�i) > 0 ; i = 1; 2; : : : :Show that if 1Xn=1�1� �����n � 1�n + 1 ����� =1 ;then spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄. (In this exerise the span istaken over C , and C[0; 1℄ denotes the set of all omplex-valued ontinuousfuntions on [0; 1℄.)



4.2 M�untz's Theorem 195E.16 Christo�el Funtions for Nondense M�untz Spaes. Let � = (�i)1i=0be a sequene of distint omplex numbers with Re(�i) > � 12 for eah i: Asin Setion 3.4, let L�k := L�kf�0; : : : ; �kg denote the assoiated orthonormalM�untz-Legendre polynomials on [0; 1℄:a℄ Let Kn be de�ned by1Kn(y) := inf�Z 10 jp(t)j2 dt : p 2 spanfx�0 ; x�1 ; : : : ; x�ng; p(y) = 1� :Show that Kn(y) = nXk=0 jL�k(y)j2 :The funtion 1=Kn is alled the nth Christo�el funtion assoiated with �.Hint: Proeed as in the hint to E.13 of Setion 2.3. utIn the rest of the exerise we assume that (�i)1i=0 is a sequene of non-negative integers. We use this assumption for treating (higher) derivatives,although some weaker assumptions would lead to the same onlusions.b℄ Suppose P1i=1 1=�i < 1: Show that for every � 2 (0; 1) and m 2 N;there exists a onstant �;m depending only on �; �, and m suh thatkp(m)k[0;1��℄ � �;mkpkL2[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Use E.3 ℄. ut℄ Show that the following statements are equivalent:(1) spanfx�0 ; x�1 ; : : : g is not dense in C[0; 1℄ :(2) P1i=1 1=�i <1 :(3) P1k=0 (L�k)2 onverges uniformly on [0; 1� �℄ for all � 2 (0; 1) :(4) There exists an x 2 [0; 1) so that P1k=0 (L�k(x))2 <1 :Outline. The equivalene of (1) and (2) is the ontent of M�untz's theorem(Theorem 4.2.1). To see that (2) implies (3), �rst observe that1Xk=0��(L�k)(m) (y)��2= supn��p(m)(y)��2 : p 2 spanfx�0 ; x�1 ; : : : g; kpkL2[0;1℄ = 1o ;whih an be proved similarly to part a℄. Hene by part b℄, for every � 2(0; 1), there exists a onstant � depending only on � suh that



196 4. Denseness Questions1Xk=0 (L�k(x))2 � � and 1Xk=0 (L�0k (x))2 � � ; x 2 [0; 1� �℄ :Sine �Pnk=0 (L�k)2�0 = 2Pnk=0 L�kL�0k on [0;1); applying the Cauhy-Shwarz inequality, we obtain that���Pnk=0 (L�k)2�0(x)�� � 2� ; x 2 [0; 1� �℄ :Therefore the funtions Pnk=0 (L�k)2; n = 1; 2; : : : ; are uniformly boundedand equiontinuous on [0; 1 � �℄; whih implies the uniform onvergeneof the funtions Kn on [0; 1 � �℄ by the Arzela-Asoli theorem. Sine (3)obviously implies (4), what remains to be proven is that (4) implies (1).This an be easily done by part a℄. utd℄ Let � 2 (0; 1) and m 2 N be �xed. Show that if P1i=0 1=�i < 1; thenP1k=0 ((L�k)(m))2 onverges uniformly on [0; 1� �℄:Hint: Modify the argument given in the hints to part ℄. ute℄ Show that if P1i=0 1=�i <1; thenlimk!1 k(L�k)(m)k[0;1��℄ = 0for every � 2 (0; 1) and m 2 N:E.17 Chebyshev-Type Inequality with Expliit Bound via the Paley-Wiener Theorem. The method outlined in this exerise was suggestedby Hal�asz. A funtion f is alled entire if it is analyti on the omplexplane. An entire funtion f is alled a funtion of exponential type Æ if thereexists a onstant  depending only on f suh thatjf(z)j �  exp(Æjzj) ; z 2 C :The olletion of all suh entire funtions of exponential type Æ is denotedbe EÆ . The Paley-Wiener theorem haraterizes the funtions F that anbe written as the Fourier transform of some funtion f 2 L2[�Æ; Æ℄.Theorem (Paley-Wiener). Let Æ 2 (0;1): Then F 2 EÆ \ L2(R) if andonly if there exists an F 2 L2[�Æ; Æ℄ suh thatF (z) = Z Æ�Æ f(t)eitz dt :For a proof see, for example, Rudin [87℄.In the rest of the exerise let � = (�k)1k=0 be an inreasing sequenewith �0 = 0 and P1k=1 1=�k <1:



4.2 M�untz's Theorem 197E.5 says thatC(�; �) := sup� kpk[0;1℄kpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g� <1holds for every � 2 (0; 1): In this exerise we establish an expliit bound forC(�; �):a℄ Show thatC(�; �) = sup� jp(0)jkpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g�for every � 2 (0; 1):Hint: Use �0 = 0, E.4 ℄ of Setion 3.3, and the monotoniity of theChebyshev polynomialTnfx�0 ; x�1 ; : : : ; x�n ; [1� �; 1℄gon [0; 1� �℄: utb℄ Assume that(1) F 2 EÆ \ L2(R);(2) F (i�k) = 0; k = 1; 2; : : : (i is the imaginary unit); and(3) F (0) = 1:Show that jP (1)j � kFkL2(R)kPkL2[�Æ;Æ℄for every P 2 spanfe��0t; e��1t; : : : g:Outline. By the Paley-Wiener theoremF (z) = Z Æ�Æ f(t)eitz dtfor some f 2 L2[�Æ; Æ℄: Now ifP (t) = a0 + nXk=1 ake��kt ;then Z Æ�Æ f(t)P (t) dt = a0 Z Æ�Æ f(t) dt+ nXk=1 ak Z Æ�Æ f(t)e��kt dt= a0F (0) + nXk=1 akF (i�k) = a0 = P (1) :



198 4. Denseness QuestionsHene by the Cauhy-Shwarz inequality and the L2 inversion theorem ofFourier transforms, we obtain thatjP (1)j � kfkL2[�Æ;Æ℄ kPkL2[�Æ;Æ℄ � kFkL2(R) kPkL2[�Æ;Æ℄ : utGiven Æ 2 (0; 1), let N 2 N be hosen so that1Xk=N+1 1�k � Æ3 :Let �k := A�k with A := Æ3N :LetF (z) := sin(Æz=3)Æz=3� NYk=1��1� zi�k� sin(�kz=�k)�kz=�k � 1Yk=N+1 1�� sin(z=�k)sin i �4! ;where i is the imaginary unit.℄ Show that F 2 EÆ:d℄ Observe that F (0) = 1; F (i�k) = 0; k = 1; 2; : : : ; andjF (t)j � sin(Æt=3)Æt=3 NYk=1�2 + 1�k� ; t 2 R :e℄ Show that jP (1)j � 3Æ NYk=1�2 + 1�k� kPk[�Æ;Æ℄for every P 2 spanfe��0t; e��1t; : : : g with  := kt�1 sin tkL2(R):Hint: Use parts b℄, ℄, and d℄. utf ℄ Let �k := k�; � > 1: Show that there exists a onstant � dependingonly on � suh thatkpk[0;1℄ � exp ���1=(1��)� kpk[1��;1℄for every p 2 spanfx�0 ; x�1 ; : : : g and for every � 2 (0; 1=2℄:



4.2 M�untz's Theorem 199Proof. Let(4.2.5) Æ := �12 log(1� �) :Observe that N in part e℄ an be hosen so that(4.2.6) N := $�Æ(�� 1)3 �1=(1��)%+ 1 :Also, �k in part d℄ is of the form �k = Æk�(3N)�1: LetM+1 be the smallestvalue of k 2 N for whih1�k < 1 ; that is , 3Nk�Æ � 1 :Note that M := $�3NÆ �1=�% :If 0 < M < N; thenNYk=1�2 + 1�k� = NYk=1�2 + 3NÆk���  MYk=1 9NÆk�! NYk=M+1 3! � �9NÆ �M �Me ���M 3N�M= �9e�NÆ �M M��M3N�M� �9e�NÆ �M  12 �3NÆ �1=�!��M 3N�M� (3(2e)�)M3N�M � (3(2e)�)N ;and the theorem follows by (4.2.5), (4.2.6), and part e℄.If N �M; thenNYk=1�2 + 1�k� = NYk=1�2 + 3NÆk���  NYk=1 9NÆk�! � �9NÆ �N �Ne ���N = �9e�N (1��)Æ �N� �9e�Æ �N  �Æ(�� 1)3 �1=(1��)!(1��)N� �9e�Æ �N �Æ(�� 1)3 �N � (3e�(�� 1))N ;and the theorem follows by (4.2.5), (4.2.6), and part e℄.



200 4. Denseness QuestionsIf M = 0; then NYk=1�2 + 1�k� � NYk=1 3 = 3N ;and the theorem follows by (4.2.5), (4.2.6), and part e℄. utThe next part of the exerise shows that the result of part f℄ is loseto sharp.g℄ Let �k := k�; � > 1: Let � 2 (0; 1=2℄: Show that there exists a onstant� depending only on � > 0 so thatsup� jp(0)jkpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g� � exp ���1=(1��)� :Proof. Let n 2 N be a �xed. We de�ne k := kn��1; k = 0; 1; : : : . LetTn(x) := ((x � 1)=2)n andQn(x) := Tn 2xn��11� (1� �)n��1 � 1 + (1� �)n��11� (1� �)n��1! :Then Qn 2 spanfx0 ; : : : xng; and by E.3 g℄ of Setion 3.3 we obtain thatsup� jp(0)jkpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g� � jQn(0)jkQnk[1��;1℄ = jQn(0)j= � 11� (1� �)n��1 �n :Now let n be the smallest integer satisfying n��1 � ��1: Sine (1� �)1=� isbounded away from 0 on (0; 1=2℄; the result follows. utE.18 Completion of the Proof of Theorem 4.2.1. The ase when �i � 1for eah i has already been proved. The only real remaining diÆulty ispart d℄.a℄ Prove Theorem 4.2.1 in the ase when inff�i : i 2 Ng > 0:Hint: Use the saling x! x1=Æ and the already proved ase. utb℄ Show that if (�i)1i=1 � (0;1) has a luster point � 2 (0;1); thenspanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄:Hint: Use part a℄. ut℄ Suppose (�i)1i=1 � (0;1) and �i ! 0: Then spanf1; x�1 ; x�2 ; : : : g isdense in C[0; 1℄ if and only if P1i=1 �i =1:Hint: This is the ontent of E.14. ut



4.2 M�untz's Theorem 201d℄ Suppose f�i : i 2 Ng = f�i : i 2 Ng [ f�i : i 2 Ngwith limi!1�i = 0 and limi!1�i =1 :Show that spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄ if and only if(4:2:7) 1Xi=1 �i + 1Xi=1 1�i =1 :Outline. If (4.2.7) holds, then the denseness of spanf1; x�1 ; x�2 ; : : : g inC[0; 1℄ follows from parts a℄ and ℄. Now assume that (4.2.7) does not hold,so 1Xi=1 �i <1 and 1Xi=1 1�i <1 :For notational onveniene, letTn;� := Tnf1; x�1 ; : : : ; x�n : [0; 1℄g ;Tn;� := Tnf1; x�1 ; : : : ; x�n : [0; 1℄g ;T2n;�;� := T2nf1; x�1 ; : : : ; x�n ; x�1 ; : : : ; x�n : [0; 1℄g(we use the notation introdued in Setion 3.3).It follows from Theorem 6.1.1 (Newman's inequality) and the MeanValue Theorem that for every � > 0 there exists a k1(�) 2 N dependingonly on (�i)1i=1 and � (and not on n) suh that Tn;� has at most k1(�) zerosin [�; 1) and at least n� k1(�) zeros in (0; �):Similarly, E.5 b℄ and the Mean Value Theorem imply that for every� > 0 there exists a k2(�) 2 N depending only on (�i)1i=1 and � (and not onn) so that Tn;� has at most k2(�) zeros in (0; 1� �℄ and at least n � k2(�)zeros (1� �; 1):Now, on ounting the zeros of Tn;� � T2n;�;� and Tn;� � T2n;�;�, wean dedue that for every � > 0 there exists a k(�) 2 N depending onlyon (�i)1i=1 and � (and not on n) so that T2n;�;� has at most k(�) zeros in[�; 1� �℄.Let � := 14 and k := k � 14�. Pik k + 4 points14 < �0 < �1 < � � � < �k+3 < 34and a funtion f 2 C[0; 1℄ suh that f(x) = 0 for all x 2 �0; 14� [ � 34 ; 1� ;while f(�i) := 2 � (�1)i ; i = 0; 1; : : : :



202 4. Denseness QuestionsAssume that there exists a p 2 spanf1; x�1 ; x�2 ; : : : g suh thatkf � pk[0;1℄ < 1 :Then p�T2n;�;� has at least 2n+1 zeros in (0; 1): However, for suÆientlylarge n, p� T2n;�;� 2 spanf1; x�1 ; : : : ; x�2ngso it an have at most 2n zeros in [0;1): This ontradition shows thatspanf1; x�1 ; x�2 ; : : : g is not dense in C[0; 1℄: ute℄ Prove Theorem 4.2.1 in full generality.Outline. Combine parts a℄ to d℄. utE.19 Proof of Theorem 4.2.3. Prove Theorem 4.2.3.Proof. Assume that spanfx�0 ; x�1 ; : : : gis dense in L1[0; 1℄. Let m be a �xed nonnegative integer. Let � > 0. Choosea p 2 spanfx�0 ; x�1 ; : : : gsuh that kxm � p(x)kL1[0;1℄ < � :Now let q(x) := Z x0 p(t) dt 2 spanfx�0+1; x�1+1; : : : g :Then  xm+1m+ 1 � q(x)[0;1℄ < � :So the Weierstrass approximation theorem yields thatspanf1; x�0+1; x�1+1; : : : gis dense in C[0; 1℄; and Theorem 2.1 implies that1Xi=0 �i + 1(�i + 1)2 + 1 =1 :Now assume that(4:2:8) 1Xi=0 �i + 1(�i + 1)2 + 1 =1:By the Hahn-Banah theorem and the Riesz representation theorem



4.2 M�untz's Theorem 203spanfx�0 ; x�1 ; : : : gis not dense in L1[0; 1℄ if and only if there exists a 0 6= h 2 L1[0; 1℄ satisfyingZ 10 t�ih(t) dt = 0; i = 0; 1; : : : :Suppose there exists a 0 6= h 2 L1[0; 1℄ suh thatZ 10 t�ih(t) dt = 0 ; i = 0; 1; : : : :Let f(z) := Z 10 tzh(t) dt ; Re(z) > �1 :Then g(z) := f �1 + z1� z � 1�is a bounded analyti funtion on the open unit disk that satis�esg� �i�i + 2� = 0 with ���� �i�i + 2 ���� < 1 ; i = 0; 1; : : : :Note that (4.2.8) implies1Xi=1 �1� ���� �i�i + 2 ����� =1 :Hene Blashke's theorem (E.12 e℄) yields that g = 0 on the open unit disk.Therefore f(z) = 0 whenever Re(z) > �1; sof(n) = Z 10 tnh(t) dt = 0 ; n = 0; 1; : : : :Now the Weierstrass approximation theorem yieldsZ 10 u(t)h(t) dt = 0for every u 2 C[0; 1℄; whih ontradits the fat that 0 6= h: Sospanfx�0 ; x�1 ; : : : gis dense in L1[0; 1℄: ut



204 4. Denseness QuestionsE.20 Proof of Theorem 4.2.4.a℄ Show that if(4:2:9) 1Xi=0 �i + 1p��i + 1p�2 + 1 =1 ;then spanfx�0 ; x�1 ; : : : g is dense in Lp[0; 1℄:Outline. By the Hahn-Banah theorem and the Riesz representation theo-rem spanfx�0 ; x�1 ; : : : gis not dense in Lp[0; 1℄ if and only if there exists a 0 6= h 2 Lq[0; 1℄ satisfyingZ 10 t�ih(t) dt = 0 ; i = 0; 1; : : : ;where q is the onjugate exponent of p de�ned by p�1 + q�1 = 1.Suppose there exists a 0 6= h 2 Lq[0; 1℄ suh thatZ 10 t�ih(t) dt = 0 ; i = 0; 1; : : : :Let f(z) := Z 10 tzh(t) dt ; Re(z) > � 1p :Use H�older's inequality to show thatg(z) := f �1 + z1� z � 1p�is a bounded analyti funtion on the open unit disk that satis�esg �i + 1p � 1�i + 1p + 1! = 0 with ������i + 1p � 1�i + 1p + 1 ����� < 1 ; i = 0; 1; : : : :Note that (4.2.9) implies1Xi=1  1� ������i + 1p � 1�i + 1p + 1 �����! =1 :Hene Blashke's theorem (E.12 e℄) yields that g = 0 on the open unit disk.Therefore f(z) = 0 whenever Re(z) > � 1p ; so



4.2 M�untz's Theorem 205f(n) = Z 10 tnh(t) dt = 0 ; n = 0; 1; : : : :Now the Weierstrass approximation theorem yieldsZ 10 u(t)h(t) dt = 0for every u 2 C[0; 1℄; whih ontradits the fat that 0 6= h: Sospanfx�0 ; x�1 ; : : : gis dense in Lp[0; 1℄: utb℄ Show that if 1Xi=0 �i + 1p��i + 1p�2 + 1 <1 ;then spanfx�0 ; x�1 ; : : : g is not dense in Lp[0; 1℄.Outline. This follows from E.7 of Setion 4.3. ut℄ Suppose (�i)1i=0 is a sequene of distint positive numbers. Let p 2[1;1). Show that spanfe��0t; e��t ; : : : g is dense in Lp[0;1) if and only if1Xi=0 �i�2i + 1 =1 :Outline. Use parts a℄ and b℄ and the substitution x = e�t: utE.21 M�untz Theorem on [a; b℄ with a < 0 < b. Suppose � := (�i)1i=1 isa sequene of distint nonnegative integers, and suppose a < 0 < b: Thenspanf1; x�1 ; x�2 ; : : : g is dense in C[a; b℄ if and only if1Xi=1�i is even 1�i =1 and 1Xi=1�i is odd 1�i =1 :E.22 The Zeros of the Chebyshev Polynomials in Nondense M�untz Spaes.Let (�i)1i=0 be a sequene of distint nonnegative real numbers with �0 := 0and P1i=1 1=�i <1: LetTn := Tnf�0; �1; : : : ; �n; [0; 1℄gbe the Chebyshev polynomials for spanfx�0 ; : : : ; x�ng on [0; 1℄: LetZ := fx 2 [0; 1℄ : Tn(x) = 0 for some n 2 Ng :Let Z 0 be the set of all limit points of Z and Z 00 be the set of all limit pointsof Z 0. Show that Z 00 = f1g:Hint: Use the bounded Bernstein-type inequality of E.5 b℄ and the inter-laing property of the zeros of the Chebyshev polynomials Tn. ut



206 4. Denseness Questions4.3 Unbounded Bernstein InequalitiesIn Setion 4.1 we haraterized the denseness of C1 Markov spaes by thebehavior of the zeros of their assoiated Chebyshev polynomials. The prini-pal result of this setion is a haraterization of denseness of Markov spaesby whether or not they have an unbounded Bernstein inequality.De�nition 4.3.1 (Unbounded Bernstein Inequality). Let A be a subset ofC1[a; b℄. We say that A has an everywhere unbounded Bernstein inequalityif sup�kp0k[�;�℄kpk[a;b℄ : 0 6= p 2 A� =1for every [�; �℄ � [a; b℄; � 6= �:The subset A := fx2p(x) : p 2 Pn; n = 0; 1; : : :ghas an everywhere unbounded Bernstein inequality despite the fat thatf 0(0) = 0 for every f 2 A:The next result shows that in most instanes the Chebyshev polynomialis lose to extremal for Bernstein-type inequalities. This is a theme that willbe explored further in later hapters.Theorem 4.3.2 (A Bernstein-Type Inequality for Chebyshev Spaes). Let(1; f1; : : : ; fn) be a Chebyshev system on [a; b℄ suh that eah fi is di�eren-tiable at x0 2 [a; b℄: LetTn := Tnf1; f1; : : : ; fn; [a; b℄gbe the assoiated Chebyshev polynomial. Thenjp0(x0)jkpk[a;b℄ � 21� jTn(x0)j jT 0n(x0)jfor every 0 6= p 2 spanf1; f1; : : : ; fng; provided jTn(x0)j 6= 1:Proof. Let a = y0 < y1 < � � � < yn = b denote the extreme points of Tn,that is, Tn(yi) = (�1)n�i ; i = 0; 1; : : : ; n(see the de�nition and E.1 a℄ in Setion 3.3). Let yk � x0 � yk+1 and0 6= p 2 Hn := spanf1; f1; : : : ; fng :



4.3 Unbounded Bernstein Inequalities 207If p0(x0) = 0; then there is nothing to prove. Assume that p0(x0) 6= 0: Thenwe may normalize p so thatkpk[a;b℄ = 1 and sign(p0(x0)) = sign(Tn(yk+1)� Tn(yk)) :Let Æ := jTn(x0)j: Let � 2 (0; 1) be �xed. Then there exists a onstant �with j�j � Æ + 12 (1� Æ) suh that� + 12 (1� Æ)(1� �)p(x0) = Tn(x0) :Now let q(x) := � + 12 (1� Æ)(1� �)p(x) :Then kqk[a;b℄ < 1 ; q(x0) = Tn(x0) ;and sign(q0(x0)) = sign(Tn(yk+1)� Tn(yk)) :If the desired inequality did not hold for p; then for a suÆiently small� > 0 jq0(x0)j > jT 0n(x0)j ;so h(x) := q(x) � Tn(x)would have at least three zeros in (yk; yk+1): But h has at least one zero ineah of (yi; yi+1): Hene h 2 Hn has at least n + 2 zeros in [a; b℄; whih isa ontradition. utWe now state the main result.Theorem 4.3.3 (Charaterization of Denseness by Unbounded BernsteinInequality). Suppose M := (f0; f1; : : : ) is an in�nite Markov system on[a; b℄ with eah fi 2 C2[a; b℄, and suppose that (f1=f0)0 does not vanishon (a; b): Then span M is dense in C[a; b℄ if and only if span M has aneverywhere unbounded Bernstein inequality.Proof. The only if part of this Theorem is obvious. A good uniform ap-proximation on [a; b℄ to a funtion with uniformly large derivative on asubinterval [�; �℄ � [a; b℄ must have large derivative at some points in[�; �℄.In the other diretion we use Theorems 4.3.2 and 4.1.1 in the follow-ing way. Without loss of generality we may assume that f0 = 1 (why?). Ifspan M is not dense in C[a; b℄; then, by Theorem 4.1.1, there exists a subin-terval [�; �℄ � [a; b℄; where all elements of a subsequene of the sequeneof assoiated Chebyshev polynomials,



208 4. Denseness Questions(Tnf1; f1; : : : ; fn; [a; b℄g) ;have no zeros. It remains to show that from this subsequene we an pikanother subsequene (Tni) and a subinterval [; d℄ � [�; �℄ with(4:3:1) kTnik[;d℄ < 1� Æand(4:3:2) kT 0nik[;d℄ < for some absolute onstants Æ > 0 and  > 0: The result will now followfrom Theorem 4.3.2. A proof that the above hoie of (Tni) is possible isoutlined in E.1. utTheorem 4.3.3 has the following interesting orollary.Corollary 4.3.4. Suppose (�k)1k=1 � Rn [�1; 1℄ is a sequene of distint realnumbers. Then span�1 ; 1x� �1 ; 1x� �2 ; : : :�is dense in C[�1; 1℄ if and only if1Xk=1q�2k � 1 =1 :(Here, unlike in Setion 3.5, p�2k � 1 denotes the prinipal square root of�2k � 1: )Proof. A ombination of Theorem 4.3.3 and Corollary 7.1.3 yields the onlyif part of the orollary.The Chebyshev polynomials Tn (of the �rst kind) and Un (of the seondkind) for the Chebyshev spaespan�1 ; 1x� �1 ; : : : ; 1x� �n�on [�1; 1℄ were introdued in Setion 3.5. The properties ofeTn(�) := Tn(os �) and eUn(�) := Un(os �) sin � ;established in Setion 3.5, inlude(4:3:3) keTnkR = 1 and keUnkR = 1 ;



4.3 Unbounded Bernstein Inequalities 209(4:3:4) eT 2n + eU2n = 1 ;(4:3:5) ( eT 0n)2 + (eU 0n)2 = eB2n ;(4:3:6) eT 0n = � eBn eUn ;and(4:3:7) eU 0n = eBn eTn ;where eBn(�) := nXk=1 p�2k � 1j�k � os �j ; � 2 R(p�2k � 1 denotes the prinipal square root of �2k � 1) and the identitieshold on the real line. Suppose1Xk=1q�2k � 1 =1 :Then(4:3:8) limn!1 min�2[�;�℄Bn(�) =1 ; 0 < � < � < � :Assume that there is an interval [a; b℄ � (�1; 1) suh thatsupn2N kT 0nk[a;b℄ <1 :Let � := aros b and � := arosa: Thensupn2Nk eT 0nk[�;�℄ <1 :It follows from properties (4.3.6) and (4.3.8) thatlimn!1 keUnk[�;�℄ = 0 ;and hene, by property (4.3.4),limn!1 keT 2n � 1k[�;�℄ = 0 :Thus, by properties (4.3.7) and (4.3.8),limn!1 min�2[�;�℄ jeU 0n(�)j =1 ;that is, limn!1 jeUn(�)� eUn(�)j =1 ;whih ontradits property (4.3.3). Henesupn2N kT 0nk[a;b℄kTnk[�1;1℄ = supn2NkT 0nk[a;b℄ =1for every [a; b℄ � (�1; 1), whih, together with Theorem 4.3.3 shows the ifpart of the orollary. ut



210 4. Denseness QuestionsComments, Exerises, and Examples.We followed Borwein and Erd�elyi [95a℄ in this setion. Corollary 4.3.4, tobe found in Ahiezer [56℄, is proved by using entirely di�erent methods.E.1 The Cruial Detail in the Proof of Theorem 4.3.3. Suppose thatM := (1; f1; f2; : : : ) is an in�nite Markov system of C2 funtions on [a; b℄and f 01 does not vanish on (a; b): Suppose that the sequene of assoiatedChebyshev polynomials (Tn) has a subsequene (Tni) with no zeros on somesubinterval [�; �℄ of [a; b℄: Show that there exists another subinterval [; d℄and another in�nite subsequene (Tni) suh that for some Æ > 0 and  > 0,and for eah ni;kTnik[;d℄ < 1� Æ and kT 0nik[;d℄ <  :Outline. For both inequalities �rst hoose a subinterval [1; d1℄ � [�; �℄ anda subsequene (ni;1) of (ni) suh that eah alternation point of eah Tni;1is outside [1; d1℄: Then hoose a subsequene (ni;2) of (ni;1) so that eithereah Tni;2 is inreasing or eah Tni;2 is dereasing on [1; d1℄. Study the �rstase; the seond is analogous. Let [2; d2℄ be the middle third of [1; d1℄:If the �rst inequality fails to hold with [2; d2℄ and (ni;2); then there is asubsequene (ni;3) of (ni;2) suh that kTni;3k[2;d2℄ ! 1 as ni;3 !1. Hene,there is a subsequene (ni;4) of (ni;3) suh that eithermax2�x�d2 Tni;4(x)! 1 or min2�x�d2 Tni;4(x)! �1 :One again, study the �rst ase; the seond is analogous. Sine eah Tni;3is inreasing on [1; d1℄; limni;4!1 k1� Tni;4k[d2;d1℄ = 0 :Now hoose g := a0 + a1f1 + a2f2 so that g has two distint zeros�1 and �2 in [d2; d1℄; kgk[�1;�2℄ < 1; and g is positive on (�1; �2): Let� := max�1�x��2 g(x) and eg := g+1��: Show that Tni;4 �eg has at least n+1distint zeros in [a; b℄ if ni;4 is large enough, whih is a ontradition.For the seond inequality, note that E.4 of Setion 3.2 implies that(f 01; : : : ; f 0n) is a weak Chebyshev system on [a; b℄; and so is �T 02T 01�0 ; �T 03T 01�0 ; : : : ; �T 0nT 01�0! ; n = 2; 3; : : : :From this dedue that eah (T 0ni;2=T 01)0 has at most one sign hange in[2; d2℄: Choose a subinterval [3; d3℄ � [2; d2℄ and a subsequene (ni;5) of



4.3 Unbounded Bernstein Inequalities 211(ni;2) so that none of (T 0ni;5=T 01)0 hanges sign in [3; d3℄: Choose a sub-sequene (ni;6) of (ni;5) so that either eah T 0ni;6=T 01 is inreasing or eahT 0ni;6=T 01 is dereasing on [3; d3℄: Again, onsider the �rst ase; the seondis analogous. Let [4; d4℄ be the middle third of [3; d3℄: If the seond in-equality fails to hold with [4; d4℄ and (ni;6); then there is a subsequene(ni;7) of (ni;6) suh that eitherlimni;7!1 max4�x�d4 T 0ni;7(x)T 01(x) =1or limni;7!1 min4�x�d4 T 0ni;7(x)T 01(x) = �1 :One again we just treat the �rst ase; the seond is analogous. In this ase,for every K > 0 there is an N 2 N suh that for every ni;7 � N we haveT 0ni;7(x) > K ; x 2 [d4; d3℄ :Hene K(d3 � d4) � Z d3d4 T 0ni;7(x) dx = Tni;7(d3)� Tni;7(d4) � 2 ;whih is a ontradition. utE.2 On the Uniform Closure of Nondense Markov Spaes. Supposethat M = (f0; f1; : : : ) is an in�nite Markov system on [a; b℄ with eahfi 2 C2[a; b℄; and suppose that (f1=f0)0 does not vanish on (a; b): Supposethat span M fails to be dense in C[a; b℄:Show that there exists a subinterval [�; �℄ � [a; b℄; � < �, suh thatevery g 2 C[a; b℄ in the uniform losure of span M on [a; b℄ is di�erentiableon [�; �℄:Hint: By Theorem 4.3.3 there exists an interval [�; �℄ � [a; b℄ and a onstant� 2 R so that kh0k[�;�℄ � �khk[a;b℄for every h 2 span M. Suppose g 2 C[a; b℄ andlimn!1 khn � gk[a;b℄ = 0:Choose ni 2 N suh thatkg � hnik[a;b℄ � 2�i ; i = 0; 1; : : : :Then g = hn0 + 1Xi=1 (hni � hni�1) :Sine k(hni � hni�1)0k[�;�℄ � �21�i ;it follows that g is di�erentiable on [�; �℄. ut



212 4. Denseness QuestionsE.3 An Analog of Theorem 4.3.3 with Appliations. Suppose thatM = (f0; f1; : : : ) is an extended omplete Chebyshev (ECT) system ofC1 funtions on [a; b℄, as in E.3 of Setion 3.1. Note that E.3 a℄ of Setion3.1 implies that f0 does not vanish on [a; b℄:a℄ Show that the di�erential operator D de�ned byD(f) := � ff0�0 ; f 2 C1[a; b℄maps M to MD; whereMD :=  �f1f0�0 ; �f2f0�0 ; : : :!and MD is one again an ECT system of C1 funtions on [a; b℄:Hint: Use E.8 b℄ of Setion 3.2. utb℄ The di�erential operators D(n)(f) are de�ned for every f 2 Cn[a; b℄ asfollows. LetFi;0 := fi ; i = 0; 1; 2; : : : ;Fi;n := �Fi+1;n�1F0;n�1 �0 ; i = 0; 1; 2; : : : ; n = 1; 2; : : : ;D(0)(f) := f; D(n)(f) := �D(n�1)(f)F0;n�1 �0 ; n = 1; 2; : : : :LetMD(1) :=MD and MD(n) := �MD(n�1)�D ; n = 2; 3; : : : :Show that if span MD(n) is dense in C[a; b℄; then so is span M:℄ Suppose that span M fails to be dense in C[; d℄ for every subinterval[; d℄ � [a; b℄;  < d: Show that for eah n 2 N, there exists an interval[�n; �n℄ � [a; b℄; �n < �n; suh thatsup(kD(n)(f)k[�n;�n℄kfk[a;b℄ : 0 6= f 2 span M) <1 :Hint: Use Theorem 4.3.1 and indution on n: utd℄ Suppose that span M fails to be dense in C[; d℄ for every subinterval[; d℄ � [a; b℄  < d: Show that for eah n 2 N; there exists an interval[�n; �n℄ � [a; b℄; �n < �n, where every g 2 C[a; b℄ in the uniform losureof span M on [a; b℄ is n times ontinuously di�erentiable.



4.3 Unbounded Bernstein Inequalities 213Hint: Use part ℄. The argument is similar to the one given in the hint toE.2. ute℄ Suppose that span M fails to be dense in C[; d℄ for every subinterval[; d℄ � [a; b℄;  < d:Show that every funtion in the uniform losure of span M on [a; b℄ isC1 on a dense subset of [a; b℄.(This is the ase for M�untz systemsM := (x�0 ; x�1 ; : : : ) ; �i 2 R ; 1Xi=1�i 6=0 1j�ij <1on [a; b℄; 0 � a < b; see E.7 of Setion 4.2.)E.4 Bounded Bernstein-Type Inequality for Nondense M�untz Spaes.Suppose (�i)1i=1 is a sequene of distint positive numbers satisfying1Xi=1 �i�2i + 1 <1 :Then for every � > 0, there is a onstant � suh thatjp0(x)j � �x kpk[0;1℄ ; x 2 (0; 1� �℄for every p 2 spanf1; x�1 ; x�2 ; : : : g :To prove this proeed as follows. Let �0 := 0; and letTn := Tnf�0; �1; : : : ; �n; [0; 1℄gbe the Chebyshev polynomial for spanf1; x�1 ; : : : ; x�ng on [0; 1℄: LetM(�) := spanf1; x�1 ; x�2 ; : : : g:a℄ Observe that for every � > 0 there exists a k� 2 N depending only on(�i)1i=1 and � (and not on n) suh that Tn has at most k� zeros in [�; 1� �℄.Hint: This is proved in the outline of the proof of E.18 d℄ of Setion 4.2. utb℄ Show that every nonempty (a; b) � (0; 1) ontains a nonempty sub-interval (�; �) for whih there are integers 0 < n1 < n2 < � � � suh thatnone of the Chebyshev polynomials Tni vanishes on (�; �).Hint: Use part a℄. ut



214 4. Denseness Questions℄ Show that every nonempty (a; b) � (0; 1) ontains a nonempty sub-interval (�; �) suh thatsup�kp0k[�;�℄kpk[0;1℄ : 0 6= p 2M(�)� <1 :Hint: Modify the proof of Theorem 4.3.3. utd℄ Finish the proof of the initial statement of the exerise.Hint: Use part ℄ and a linear saling. utE.5 The Closure of Nondense M�untz Spaes in C[0; 1℄. Suppose (�i)1i=1is a sequene of distint positive numbers satisfying1Xi=1 �i�2i + 1 <1 :Show that spanf1; x�1 ; x�2 ; : : : g � C1(0; 1) ;that is, if f is the uniform limit of a sequene from spanf1; x�1 ; x�2 ; : : : g;then f is in�nitely many times di�erentiable on (0; 1):Hint: Use E.4 with the substitution x = e�t: utE.6 A Nondense Markov Spae with Unbounded Bernstein Inequality on aSubinterval. One may inorretly suspet that nondense Markov spaes on[a; b℄ an be haraterized by an everywhere bounded Bernstein inequalityon (a; b), at least under the assumptions of Theorem 4.3.3. The purpose ofthis exerise is to show that this is far from true, and in a sense, Theorem4.3.3 is the best possible result.The same onstrution an be used to give a nondense Markov spaeon [a; b℄ suh that the setZ := fx 2 [a; b℄ : Tn(x) = 0 for some n 2 Ngis neither dense nor nowhere dense in [a; b℄. Here (Tn)1n=0 is the sequeneof assoiated Chebyshev polynomials on [a; b℄.We onstrut an in�nite Markov system on (�1;1) as follows. Sup-pose � := (�i)1i=0 is a sequene of even integers satisfying0 = �0 < �1 < �2 < � � � ; 1Xi=1 1�i <1 :Suppose m > 0: Let 'k 2 C(�1;1), k = 0; 1; : : : , be de�ned by



4.3 Unbounded Bernstein Inequalities 215'2k(x) := � x2k+m ; x � 02kx�2k ; x � 0and '2k+1(x) := � x2k+m+1 ; x � 0�2k+1x�2k+1 ; x � 0 ;where (i)1i=0 is a sequene of positive numbers assoiated with a �xedsequene of integers 0 := n0 < n1 < n2 < � � � and a onstant Æ > 0, and itis hosen as follows. Letmj := nj+1 � nj � 1 ; j = 0; 1; : : : :Let Tn(x) := os(n aros(2x� 1)) =: nXi=0 �i;nxibe the nth Chebyshev polynomial on [0; 2℄: Now hoose the onstants i > 0suh that 1Xj=0 nj+1�1Xi=nj iÆ�i j�i�nj ;mj j � 1 :a℄ Show that ('0; '1; : : : ) is a Markov system on (�1;1):Hint: If p(x) = nXi=0 ai'i(x) ; ai 2 R ;then p(x) = nXi=0 aix�i ; x 2 [0;1) ;while p(x) = nXi=0(�1)iaix�i ; x 2 (�1; 0℄ :Now apply Theorem 3.2.4 (Desartes' rule of signs). utb℄ Show that spanf'0; '1; : : : g is not dense in C[�Æ; 2℄:℄ Show that there is a sequene of integers 0 := n0 < n1 < n2 < � � � suhthat sup� kp0k[�;�℄kpk[�Æ;2℄ : 0 6= p 2 spanf'0; '1; : : : g� =1for every nonempty interval [�; �℄ � [0; 2℄, whilesup� jp0(x)jkpk[�Æ;2℄ : 0 6= p 2 spanf'0; '1; : : : g� <1for every x 2 (�Æ; 0):



216 4. Denseness Questionsd℄ Suppose the sequene ('i)1i=0 is de�ned assoiated with a �xed sequeneof integers 0 := n0 < n1 < n2 < � � � and Æ := �2: LetTn := Tnf'0; '1; : : : ; 'n; [�2; 2℄gbe the Chebyshev polynomial for spanf'0; '1; : : : ; 'ng on [�2; 2℄: LetZ := fx 2 [�2; 2℄ : Tn(x) = 0 for some n 2 Ngand let Z 0 be the set of all limit points of Z, and let Z 00 be the set of all limitpoints of Z 0. Show that the sequene of integers 0 := n0 < n1 < n2 < � � �in the de�nition of ('i)1i=0 an be hosen so thatZ 00 \ (�2; 0) = ; and [0; 2℄ [ f�2g � Z 00 :E.7 Nikolskii-Type Inequalities for Nondense M�untz Spaes. Supposethat p 2 [1;1℄: Suppose (�i)1i=0 is a sequene of distint real numbersgreater than �1=p satisfying1Xi=0 �i + 1p��i + 1p�2 + 1 <1 :Show that for every � > 0, there exists a onstant � > 0 depending onlyon � and p so that jq(x)j � �x�1=pkqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g and for every x 2 [0; 1� �℄:In partiular, for every � > 0; there exists a onstant � > 0 dependingonly on � so that kqk[�;1��℄ � �kqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g:Thus, spanfx�0 ; x�1 ; : : : g is not dense in Lp[0; 1℄:Hint: Use H�older's inequality to show, as in Operstein [to appear℄, that theoperator J : Lp[0; 1℄ 7! L1[0; 1℄de�ned byJ(')(0) := 0 ; J(')(x) := x1=p�1 Z x0 '(t) dt ; x > 0is a bounded linear operator. That is, there is a onstant  � 0 suh thatkJ(')kL1[0;1℄ �  k'kLp[0;1℄



4.3 Unbounded Bernstein Inequalities 217for every ' 2 Lp[0; 1℄: Now observe that q 2 spanfx�0 ; x�1 ; : : : g impliesthat J(q) 2 spanfx�0 ; x�1 ; : : : g; where �i := �i + 1p , and so (�i)1i=0 is asequene of positive numbers satisfying1Xi=0 �i�2i + 1 <1 :Therefore, by E.4, for every � > 0, there exists a onstant � > 0 suh thatj(J(q))0(x)j � �x kJ(q)k[0;1℄ � �x  kqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g and for every x 2 (0; 1� �℄. Note that forx 2 (0; 1); (J(q))0(x) = x1=p�1q(x) � �1� 1p�x1=p�2 Z x0 q(t) dt ;where ����Z x0 q(t) dt���� = x1�1=pjJ(q)(x)j � x1�1=pkqkLp[0;1℄ :Therefore x1=pjq(x)j � �1� 1p� kqkLp[0;1℄ � � kqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g and for every x 2 (0; 1� �℄: utE.8 The Closure of Nondense M�untz Spaes in Lp[0; 1℄. Let p 2 [1;1℄:Suppose (�i)1i=0 is a sequene of distint real numbers greater than �1=psatisfying 1Xi=0 �i + 1p��i + 1p�2 + 1 <1 :Show that if f is a funtion in the Lp[0; 1℄ losure ofspanfx�0 ; x�1 ; : : : g ;then f 2 C1(0; 1); that is, f is in�nitely many times di�erentiable on (0; 1).Hint: Combine E.5 and E.7. ut



218 4. Denseness Questions4.4 M�untz RationalsA surprising and beautiful theorem, onjetured by Newman and proved bySomorjai [76℄, states that rational funtions derived from any in�nite M�untzsystem are always dense in C[a; b℄; a � 0: More spei�ally, we have thefollowing result.Theorem 4.4.1 (Denseness of M�untz Rationals). Let (�i)1i=0 be any sequeneof distint real numbers. Suppose a > 0. Then�Pni=0 aix�iPni=0 bix�i : ai; bi 2 R ; n 2 N�is dense in C[a; b℄:The same result holds when a = 0, however, the proof in this aserequires a few more tehnial details; see E.1 b℄.The proof of this theorem, primarily due to Somorjai, rests on thenext theorem. We introdue the following notation. A funtion Z de�nedon (a; b) is alled an �-zoomer (� > 0) at � 2 (a; b) ifZ(x) > 0 ; x 2 [a; b℄ ;Z(x) � � ; x < � � � ;(4:4:1) Z(x) � ��1; x > � + � :While (approximate) Æ-funtions are the building bloks for polynomialapproximations, the existene of �-zoomers is all that is needed for rationalapproximations. More preisely, we have the following result.Theorem 4.4.2 (Existene of Zoomers and Denseness). Let S be a linearsubspae of C[a; b℄: Suppose that S ontains an �-zoomer for every � > 0 atevery � 2 (a; b): Then R(S) := �pq : p; q 2 S�is dense in C[a; b℄:Proof. It suÆes to onsider the ase [a; b℄ = [0; 1℄: Let n 2 N and � > 1=nbe �xed. We onstrut a partition of unity indutively as follows. Let Z0 beany positive funtion in S and hoose funtions Z1; Z2; : : : ; Zn 2 S positiveon [0; 1℄ so that Zk(x) < �Zk�1(x) ; x < kn � �and Zk(x) > ��1Zk�1(x) ; x > k � 1n + �



4.4 M�untz Rationals 219(whih the existene of �-zoomers allows for). Let(4:4:2) �k(x) := Zk(x)Pni=0 Zi(x) ; k = 0; 1; : : : ; n :So �k(x) > 0 ; x 2 [0; 1℄and nXk=0�k(x) = 1 :Sine for every x 2 [0; 1℄;nXk=0kn��>x Zk(x) + nXk=0kn+�<x Zk(x) < 2� nXk=0Zk(x) ;we also know that nXk=0j kn�xj>� �k(x) � 2� ; x 2 [0; 1℄ :Now let f 2 C[0; 1℄; and onsider the approximationnXk=0 f � kn��k(x) 2 R(S) :Then�����f(x) � nXk=0 f � kn��k(x)������ ����� nXk=0j kn�xj� � �f(x)� f � kn���k(x)�����+ ����� nXk=0j kn�xj>� �f(x)� f � kn���k(x)������ !f (�) + 2� !f (1) ;whih �nishes the proof. utWe an now �nish the proof of Theorem 4.4.1:Proof of Theorem 4.4.1. We may suppose, on passing to a subsequeneif neessary, that (�i)1i=0 is a onvergent sequene (possibly onverging toin�nity). We may also assume that a := 1=b with b > 1: Sine C[1=b; b℄ is



220 4. Denseness Questionsinvariant under x ! 1=x, we may assume that (�i)1i=0 has a nonnegative(possibly in�nite) limit.Case 1: The sequene (�i)1i=0 has a �nite nonnegative limit. Then M�untz'stheorem on [a; b℄, a > 0 (see E.7 of Setion 4.2), yields that the M�untz poly-nomials themselves assoiated with (�i)1i=0 are already dense in C[1=b; b℄.Case 2: The sequene (�i)1i=0 tends to in�nity. In this ase (x=�)�i is an�-zoomer at � 2 (a; b) for suÆiently large �i, and the result follows fromTheorem 4.4.2. utComments, Exerises, and Examples.A omparison between M�untz's theorem and the main result of this se-tion shows the power of a single division in approximation. In what otherontexts does allowing a division reate a spetaularly di�erent result?Newman [78, p. 12℄ onjetures that if M is any in�nite Markov system on[0; 1℄; then the set �pq : p; q 2 span M�of rational funtions is dense in C[0; 1℄:Newman alls this a \wild onjeture in searh of a ounterexample."It does, however, hold for bothM = (x�0 ; x�1 ; : : : ) ; �i � 0 are distint(see E.1 b℄) andM = � 1x� �1 ; 1x� �2 ; : : :� ; �i 2 R n [0; 1℄ are distint(see E.2). A ounterexample to the full generality of this onjeture is pre-sented in E.6. However, the haraterization of the lass of Markov systemsfor whih it holds remains as an interesting question. In partiular, it isopen if Newman's onjeture holds for Desartes systems.The reader is referred to Newman [78℄ for an extensive treatment ofthese matters; see also Zhou [92a℄. In [78, p. 50℄ Newman asks about thedenseness of the produts (P aixi2)(P bixi2) in C[0; 1℄ (see E.3). He speu-lates that this \extra" multipliation of M�untz polynomials should not arrythe utility of the \extra" division. This is proved in Setion 6.2, where it isshown that produts pq of M�untz polynomials from nondense M�untz spaesnever form a dense set in C[0; 1℄.E.1 Denseness of M�untz Rationals on [0; 1℄. A funtion C de�ned on [a; b℄is alled an �-rasher, � > 0, at � 2 (a; b) ifC(x) > 0 ; x 2 [a; b℄ ;C(x) � � ; x > � + � ;C(x) � ��1 ; x � � � � :



4.4 M�untz Rationals 221a℄ Let S be a linear subspae of C[a; b℄: Suppose that S ontains an �-rasher for every � > 0 at every � 2 (a; b): Show thatR(S) := �pq : p; q 2 S�is dense in C[a; b℄:Hint: The argument is a trivial modi�ation of the proof of Theorem 4.4.2.utLet (�i)1i=0 be a sequene of distint real numbers. Let R(�) be thespae of funtions f 2 C[0; 1℄ of the formf(x) = Pni=0 aix�iPni=0 bix�i ; ai; bi 2 R ; n 2 N ; x 2 (0; 1℄ :b℄ Show that if (�i)1i=0 is a sequene of distint nonnegative real numberswith �0 := 0; then R(�) is dense in C[0; 1℄:Hint: As in the proof of Theorem 4.4.1, we may suppose, on passing to asubsequene if neessary, that (�i)1i=1 is a onvergent sequene (possiblyonverging to 1). Distinguish the following two ases.Case 1: limi!1 �i =1: Given � > 0 and � 2 (0; 1); show thatZ(x) := �2 +�x���iis an �-zoomer at � on [0; 1℄ if �i is large enough. Use Theorem 4.4.2 to�nish the proof.Case 2: (�i)1i=1 is a sequene with �nite limit. Given � > 0 and � 2 (0; 1);show that C(x) := �2 + (�1)n �4 Tnf�0; �1; : : : ; �n; [�; 1℄g(x)is an �-rasher at � on [0; 1℄ if n is large enough. This an be proved byusing M�untz's theorem (E.7 of Setion 4.2) on [� � �; 1℄ with � 2 (0; �); E.3℄ of Setion 3.3, and the monotoniity of C on [0; �℄: Finish the proof bypart a℄. utThe result of E.1 b℄ is due to Bak and Newman [78℄. Zhou [92b℄ extendsthis result to sequenes of arbitrary distint real numbers.E.2 Another Markov-System with Dense Rationals. Let (�i)1i=1 be anysequene of distint numbers in R n [0; 1℄: Show that(Pni=1 aix��iPni=1 bix��i : ai; bi 2 R ; n 2 N)is dense in C[0; 1℄:



222 4. Denseness QuestionsE.3 Produts of M�untz Spaes. Assoiated with a sequene � := (�i)1i=0of real numbers, letM2(�) := ( nXi=0 aix�i! nXi=0 bix�i! : ai; bi 2 R ; n 2 N) :a℄ Show that if (�k)1k=0 = (k�)1k=0, � > 2; then M2(�) is not dense inC[0; 1℄:b℄ Show that with (�k)1k=0 = (k2)1k=0 the nondenseness ofM2(�) does notfollow from M�untz's theorem sine Pk2� 1=k = 1; where � is the set ofnatural numbers k of the form k = n2 + m2 with nonnegative integers nand m:It is shown in Setion 6.2 that M2(�) is not dense in C[0; 1℄ whenever� is a sequene of nonnegative real numbers satisfyingP1k=1 1=�k <1; sothe \extra multipliation" is of no spetaular utility.It is not always possible to extend Theorem 4.4.2 to the ase when thenumerators and the denominators are oming from di�erent in�nite M�untzspaes. Somorjai [76℄ shows that�Pni=0 aix�iPni=0 bixÆi : ai; bi 2 R ; n 2 N�is not dense in C[0; 1℄ when, for example,�2�k < �Æk+1 < �k+1 ; k = 0; 1; : : :for some � > 1:E.4 Nondense Ratios of M�untz Spaes. Suppose 0 � �0 < �1 < � � � : Leta > 0: Show that � Pni=0 aix�iPni=0 bix��i : ai; bi 2 R; n 2 N�is dense in C[a; b℄ if and only if P1i=1 1=�i =1:Hint: For one diretion use M�untz's theorem. For the other diretion useE.5 a℄ and b℄ and E.8 b℄ and ℄ of Setion 4.2. utE.5 On the Rate of Approximation by M�untz Rationals. Let (�i)1i=0be a �xed sequene of nonnegative real numbers. We wish to estimatethe error of the best uniform approximation to f 2 C[0; 1℄ on [0; 1℄ fromspanfx�0 ; : : : ; x�ng: We letR�n(f) := inf (f(x)� Pni=0 aix�iPni=0 bix�i [0;1℄ : ai; bi 2 R) ;where the in�mum is taken for all ai; bi 2 R; i = 0; 1; : : : ; n:



4.4 M�untz Rationals 223In the ase when �n+1 � �n � 1; n = 0; 1; : : : , Newman [78℄ laims(without proof) that there exists a onstant C independent of n suh thatR�n(f) = C!f � 1n�and that this is the best possible. He onjetures, in Newman [78℄, thatthis estimate holds for every sequene (�i)1i=0 of distint nonnegative realnumbers.a℄ Observe in the last line of the proof of Theorem 4.4.2, with � = 2n ; wehave �����f(x)� nXk=0 f � kn��k(x)����� � 6!f � 1n�sine !f (1) � n!f � 1n� :b℄ What growth onditions on the sequene (�i)1i=0 guarantees thatR�n(f) = O �!f � 1n�� ?Hint: Estimate the \degree" of the zoomers Zk de�ned in Theorem 4.4.2.Use the zoomers de�ned in Case 1 of the hint for E.1 b℄. ut℄ Let f(x) := � x sin(1=x) ; x 2 R n f0g0 ; x = 0 :Show that R�n(f) � 1n�1 � 2 !f � 1n�for every sequene (�i)1i=0 of nonnegative real numbers, where 1 and 2are positive onstants independent of (�i)1i=0:Hint: �Pni=0 aix�i� = �Pni=0 bix�i� has at most n zeros on [0; 1℄: utE.6 A Markov System with Nondense Rationals. This example outlinesa onstrution of Markov systems on [�1; 1℄ whose rationals are not densein C[�1; 1℄: It follows and orrets Borwein and Shekhtman [93℄.We onstrut an in�nite Markov system on (�1;1) as follows. Sup-pose that � := (�i)1i=0, where 2�i + 1 = 72i: Then � is a sequene of evenintegers satisfying0 = �0 < �1 < �2 < � � � ; 1Xi=1 1�i <1 :Let 'k 2 C[�1; 1℄; k = 0; 1; : : : , be de�ned by'2k(x) := x�2kand '2k+1(x) := � x�2k+1 ; x � 0�x�2k+1 ; x � 0 :



224 4. Denseness Questionsa℄ Show that ('0; '1; : : : ) is a Markov system on (�1;1):Hint: If p(x) = nXi=0 ai'i(x) ; ai 2 R ;then p(x) = nXi=0 aix�i ; x 2 [0;1) ;while p(x) = nXi=0(�1)iaix�i ; x 2 (�1; 0℄ :Now apply Theorem 3.2.4 (Desartes' rule of signs). utb℄ There exists an absolute onstant  > 0 (independent of n) suh that nXi=0 aix�iL2[0;1℄ �   nXi=0 aix�iL2[1=2;1℄for all hoies of ai 2 R:Hint: Use E.8 a℄ of Setion 4.2 and H�older's inequality. ut℄ The inequalities13 nXi=0 jaij2 � Z 10  nXi=0 aip2�i + 1x�i!2 dx � 53 nXi=0 jaij2hold for all hoies of ai 2 R:Proof. We haveZ 10  nXi=0 aip2�i + 1x�i!2 dx= nXi=0 jaij2 + 2 nXk=1 n�kXj=0 ajaj+kp2�j + 1p2�j+k + 1�j + �j+k + 1 :Here p2�j + 1p2�j+k + 1�j + �j+k + 1 = 2 7j7j+k72j + 72j+2k < 2 72j+k72j+2k = 2 � 7�k ;so on applying the Cauhy-Shwarz inequality n times, we get



4.4 M�untz Rationals 2252 ������ nXk=1 n�kXj=0 ajaj+kp2�j + 1p2�j+k + 1�j + �j+k + 1 ������� 4 nXk=1 7�k! nXi=0 jaij2 � 23 nXi=0 jaij2 ;and the result follows. utd℄ The inequality nXi=0 aix�iL2[0;1℄ � p5  nXi=0(�1)iaix�iL2[0;1℄holds for all hoies of ai 2 R:Hint: Use part ℄. ute℄ The rational funtions of the formPni=0 ai'iPni=0 bi'i ; ai; bi 2 R ; n 2 Nare not dense in C[�1; 1℄:Proof. Consider f 2 C[�1; 1℄ de�ned byf(x) :=8><>: 1 if x 2 [�1;�1=2℄0 if x 2 [0; 1℄�2x if x 2 [�1=2; 0℄ :We show that f is not uniformly approximable on [�1; 1℄ by the aboverational funtions. Suppose thatPni=0 ai'iPni=0 bi'i �f[�1;1℄ < � < 1 ; ai; bi 2 R :This implies(4:4:3) Pni=0 aix�iPni=0 bix�i [0;1℄ < �and(4:4:4) Pni=0(�1)iaix�iPni=0(�1)ibix�i �1[1=2;1℄ < � :



226 4. Denseness QuestionsWithout loss of generality we may assume that(4:4:5)  nXi=0 bix�iL2[0;1℄ = 1 :From (4.4.3) and (4.4.5) it follows that(4:4:6)  nXi=0 aix�iL2[0;1℄ < � :Part d℄, together with (4.4.3) and (4.4.5), implies that(4:4:7)  nXi=0(�1)iaix�iL2[0;1℄ < p5 � :Part d℄, together with (4.4.5), also implies that(4:4:8)  nXi=0(�1)ibix�iL2[0;1℄ � 1p5 :Combining part b℄ and (4.4.8), we obtain that(4:4:9)  nXi=0(�1)ibix�iL2[1=2;1℄ � 1p5  :Now (4.4.7) and (4.4.9) yield the right-hand side of1� � � Pni=0(�1)iaix�iL2[1=2;1℄kPni=0(�1)ibix�ikL2[1=2;1℄ � 5�while (4.4.4) yields the left-hand side of it. This shows that � > 0 annotbe arbitrarily small. ut
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OverviewThe lassial inequalities for algebrai and trigonometri polynomials aretreated in the �rst setion. These inlude the inequalities of Remez, Bern-stein, Markov, and Shur. The seond setion deals with Markov's andBernstein's inequalities for higher derivatives. The �nal setion is onernedwith the size of fators of polynomials.5.1 Classial Polynomial InequalitiesWe start with the lassial inequalities of Remez, Bernstein, Markov, andShur. The most basi and general of these is probably due to Remez. Howlarge an kpk[�1;1℄ be if p 2 Pn andm(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� sholds? The inequality of Remez [36℄ answers this question. His inequalityand its trigonometri analog an be extended to generalized nonnegativepolynomials (disussed in Appendix 4) by a simple density argument. Theseextensions also play a entral role in the proof of various other Bernstein,Markov, Nikolskii, and Shur type inequalities for generalized nonnegativepolynomials, where simple density arguments do not work.



228 5. Basi InequalitiesTheorem 5.1.1 (Remez Inequality). The inequalitykpk[�1;1℄ � Tn�2 + s2� s�holds for every p 2 Pn and s 2 (0; 2) satisfyingm (fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s :Here Tn is the Chebyshev polynomial of degree n de�ned by (2:1:1). Equalityholds if and only if p(x) = �Tn��2x+ s2� s � :Proof. The proof is essentially a perturbation argument that establishesthat an extremal polynomial is of the required form. Let k � k denote theuniform norm on [�1; 1℄; and let(5:1:1) Pn(s) := fp 2 Pn : m (fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� sg :The set Pn(s) is ompat, say, in the uniform norm on [�1; 1℄; by E.1, andthe funtion p! kpk is ontinuous. Hene there is a p� 2 Pn(s) suh thatkp�k = supp2Pn(s) kpk :First assume that p�(1) = kp�k: We laim that all the zeros of p�are real and lie in [�1; 1): Indeed, if p� vanishes at a nonreal z; then forsuÆiently small � > 0 and � > 0;q(x) := (1 + �)p�(x)�1� �(x� 1)2(x � z)(x� z)�is in Pn(s) and ontradits the maximality of p�: If p� has a real zero zoutside [�1; 1℄; then, in similar fashion,q(x) := (1 + �)p�(x)�1� � sign(z)1� xz � x�ontradits the maximality of p�:Now we show that jp�(�)j = kp�k annot our with � 2 (�1; 1): Tosee this, assume, without loss of generality, that p�(�) = kp�k. Then thepolynomialsq1(x) := p��� � 12 + � + 12 x� and q2(x) := p��� + 12 + � � 12 x�



5.1 Classial Polynomial Inequalities 229satisfy qj(1) = kqjk = kp�k; j = 1; 2: Sine p� 2 Pn(s) is extremal, theLebesgue measure m(
j) of
j := fx 2 [�1; 1℄ : jqj(x)j > 1gis at least s; otherwise qj + � with suÆiently small � > 0 ontradits themaximality of p�: On the other hand,1 + �2 m(
1) + 1� �2 m(
2) = m (fx 2 [�1; 1℄ : p�(x) > 1g) � s :Hene m(
1) = m(
2) = s; whih means that qj 2 Pn(s), j = 1; 2,are extremal polynomials attaining their uniform norm on [�1; 1℄ at 1.It now follows from the �rst part of the proof that q1 and q2 have alltheir zeros in [�1; 1℄; whih is impossible sine the number of zeros ofqj ; j = 1; 2; in [�1; 1℄ is equal to the number of zeros of p� in [�1; �) and in(�; 1℄; respetively. This ontradition proves that jp�(�)j < kp�k for every� 2 (�1; 1). Hene either p�(1) = �kp�k or p�(�1) = �kp�k:Without loss of generality we may assume that p�(1) = kp�k; otherwisewe onsider �p�(�x) 2 Pn(s): We now have(5:1:2) p�(1) = kp�k > jp�(x)j ; �1 < x < 1 ;and eah zero of p� lies in [�1; 1):Next we prove that(5:1:3) jp�(x)j � 1 ; �1 � x � 1� s :Assume to the ontrary that for some �1 � �3 < �2 < �1 < 1;8><>: jp�(x)j > 1 ; x 2 I1 := (�1; 1℄jp�(x)j � 1 ; x 2 I2 := [�2; �1℄jp�(x)j > 1 ; x 2 I3 := (�3; �2) :Let x1; x2; : : : ; xm be the zeros of p� in (�2; �1): Sine all zeros of p� are in[�1; 1); we have m � 1; otherwise p�0 would vanish at an x larger than thelargest zero of p�; whih is a ontradition. The remaining n �m zeros ofp� lie in [�1; �3): We setp1(x) := mYj=1(x� xj) ; p2 := p�p1 :The polynomial q(x) := p1(x + h)p2(x) with 0 < h < �2 � �3 has thefollowing properties:



230 5. Basi Inequalities(1) If jp�(x)j � 1 for some x 2 [�1; �3℄; then jq(x)j � 1:(2) For eah x 2 I2 we have jq(x� h)j � jp�(x)j � 1:(3) q(1) = p1(1 + h)p2(1) > p1(1)p2(1) = p�(1) = kp�k:These properties show that q 2 Pn(s) ontradits the maximality of p�:By E.2, among all polynomials p 2 Pn with kpk � 1, the Chebyshevpolynomial Tn inreases fastest for x > 1: Hene, by a linear transformation,we see that the four polynomialsp�(x) = �Tn��2x+ s2� s �are the only extremal polynomials. In partiular,kp�k = Tn�2 + s2� s� : utThe next theorem establishes a Remez-type inequality for trigonomet-ri polynomials. Throughout this setion, as before, K := R (mod 2�).Theorem 5.1.2. The inequalityktkK � exp(4ns)holds for every t 2 Tn and s 2 (0; �=2℄ satisfying(5:1:4) m(f� 2 [��; �) : jt(�)j � 1g) � 2� � s :The inequalityktkK � Tn�2 + �2� �� ; � = 1� os(s=2) ; 0 < s < 2� ;also holds for every even t 2 Tn and s 2 (0; 2�) satisfying (5.1.4), andequality holds if and only ift(�) = �Tn��2 os � + �2� � � ; � = 1� os(s=2) :Proof. We prove the seond part �rst. Suppose t 2 Tn is even and satis�esjt(�)j � 1 on K n
 with m(
) � s: Then the polynomial p 2 Pn de�nedby t(�) := p(os �) satis�es jp(x)j � 1 on [�1; 1℄ n
0, where
0 := fx 2 [�1; 1℄ : x = os � ; � 2 
 \ [0; �℄g :



5.1 Classial Polynomial Inequalities 231It is easy to see that m(
0) � 1 � os(s=2) =: �; where equality holds ifand only if 
 := [�s=2; s=2℄: Hene, Theorem 5.1.1 implies thatktkK � Tn�2 + �2� �� ;where equality holds if and only if p is of the form given in the theorem.The �rst part of the theorem an be easily obtained from the seondpart as follows. Let t 2 Tn satisfy (5:1:4). Without loss of generality wemay assume that t(0) = ktkK : The polynomialet(�) := 12 (t(�) + t(��)) 2 Tnis even and m(f� 2 [��; �) : jet(�)j � 1g) � 2� � 2s :Hene, the seond part of the theorem yields thatetL1(K) � Tn�2 + �2� �� ;where � := 1� os s = 2 sin2(s=2) � 1 for every s 2 (0; �=2℄: SineTn(x) � �x+px2 � 1�n ; x � 1 ;we have Tn�2 + �2� �� �  1 +p2� + �=21� �=2 !n � �1 +p2� + 72��n� exp�n�p2� + 74��� � exp �n �s+ 74s2��� exp(4ns)for every s 2 (0; �=2℄: ThereforektkK = t(0) = et(0) � Tn�2 + �2� �� � exp �n �s+ 74s2�� � exp(4ns)for every s 2 (0; �=2℄; and the theorem is proved. Note that we have provedslightly more than we laimed in the statement of the theorem. That is,ktkK � exp �n �s+ 74s2��for every t 2 Tn satisfying (5:1:4): utWe now prove the basi inequality that bounds the derivative of atrigonometri polynomial in terms of its maximum modulus on the periodK:



232 5. Basi InequalitiesTheorem 5.1.3 (Bernstein-Szeg}o Inequality). The inequalityt0(�)2 + n2t2(�) � n2ktk2K ; � 2 Kholds for every t 2 Tn: Equality holds if and only if jt(�)j = ktkK or t is ofthe form t(�) = � os(n� � �) with �, � 2 R:Proof. Assume that there are t 2 Tn and � 2 K suh that ktkK < 1 and(5:1:5) t0(�)2 + n2t2(�) > n2 :For the sake of brevity let Tn;�(�) := os(n� � �): It is easy to see thatthere exists an � 2 K suh that(5:1:6) Tn;�(�) = t(�) and sign(T 0n;�(�)) = sign(t0(�)) :Sine T 0n;�(�)2 + n2T 2n;�(�) = n2, (5:1:5) and (5:1:6) imply thatjt0(�)j > jT 0n;�(�)j and sign(T 0n;�(�) = sign(t0(�)) :Hene E.4 yields that 0 6= t�Tn;� 2 Tn has at least 2n+2 distint zeros inK; whih is a ontradition. To �nd all the extremal polynomials, see thehint to E.5. utAs a orollary of Theorem 5.1.3 we have kt0kK � nktkK for everyt 2 Tn; and by indution on m we obtain the following theorem:Theorem 5.1.4 (Bernstein's Inequality). The inequalitykt(m)kK � nmktkKholds for every t 2 Tn:Corollary 5.1.5. The inequality of Theorem 5.1.4 remains true for allt 2 T n :Proof. Choose � 2 R suh that ei�t(m) attains the value kt(m)kK ; say,at � = � . Now et(�) := Re(ei�t(�)) 2 Tn and ketkK � ktkK : On applyingTheorem 5.1.4 to et 2 Tn, we obtainkt(m)kK = ei�t(m)(�) = et (m)(�) � nmketkK � nmktkK : utThe above orollary implies the following algebrai polynomial versionof Bernstein's inequality on the unit disk.



5.1 Classial Polynomial Inequalities 233Corollary 5.1.6. The inequalitykp0kD � n kpkDholds for every p 2 Pn; where D := fz 2 C : jzj < 1g:Proof. If p 2 Pn then t(�) := p(ei� ) 2 T n and by Corollary 5.1.5 we havejp0(z)j = j � ie�i� t0(�)j � nktkK = nkpkD ; z = ei� :The maximum priniple (see E.1 d℄ of Setion 1.2) �nishes the proof. utFrom Corollary 5.1.5, by the substitution x = os �; we get the alge-brai polynomial ase of Bernstein's inequality on [�1; 1℄:Theorem 5.1.7 (Bernstein's Inequality). The inequalityjp0(x)j � np1� x2 kpk[�1;1℄ ; �1 < x < 1holds for every p 2 Pn:The next theorem improves the previous result if x is lose to �1:Theorem 5.1.8 (Markov's Inequality). The inequalitykp0k[�1;1℄ � n2 kpk[�1;1℄holds for every p 2 Pn:A proof an be given as a simple ombination of Theorem 5.1.7 and thenext theorem.Theorem 5.1.9 (Shur's Inequality). The inequalitykpk[�1;1℄ � n p(x)p1� x2[�1;1℄holds for every p 2 Pn�1:Proof. Let xk := os (2k�1)�2n ; k = 1; 2; : : : ; n ;so the numbers xk are the zeros of the Chebyshev polynomialTn(x) = os(n arosx) :



234 5. Basi InequalitiesAssume that p 2 Pn�1 and kp(x)p1� x2k[�1;1℄ � 1: If jyj � xn; thenjp(y)j � (1� y2)�1=2 � (1� x2n)�1=2= �sin �2n��1 � � 2� �2n��1 = n :Now let jyj 2 (xn; 1℄: Without loss of generality we may assume thaty 2 (xn; 1℄: The Lagrange interpolation polynomial of a p 2 Pn�1 withnodes x1; x2; : : : ; xn is just p itself, hene E.6 of Setion 1.1 yieldsjp(y)j = ����� nXk=1 p(xk) Tn(y)T 0n(xk)(y � xk) �����= 1n ����� nXk=1 p(xk)q1� x2k Tn(y)y � xk ������ 1n nXk=1 Tn(y)y � xk � 1n T 0n(y) � 1n T 0n(1) = n ;where we use the fats thatTn(y)y � xk > 0 ; k = 1; 2; : : : ; n ;T 0n is inreasing on (xn;1), and T 0n(1) = n2: utProof of Theorem 5.1.8. Let p 2 Pn. Then p0 2 Pn�1 and Theorems 5.1.4and 5.1.9 yieldkp0k[�1;1℄ � n p0(x)p1� x2[�1;1℄ � n2kpk[�1;1℄ ;and the theorem is proved. utComments, Exerises, and Examples.Every result of this setion was proved by the person it is named after; seeRemez [36℄, Bernstein [12℄, Szeg}o [28℄ or [82℄, A. A. Markov [1889℄, Shur[19℄, and M. Riesz [14℄. However, earlier less omplete versions of these basipolynomial inequalities also appear in the literature. Some of the proofswere simpli�ed later. For example, in the proof of Theorem 5.1.1 we followedthe method given in Erd�elyi [89b℄, while in the proof of Theorem 5.1.8 amethod of P�olya and Szeg}o [76℄ is used. Theorem 5.1.3 is also obtained inCorput and Shaake [35℄, however, it follows from an earlier result of Szeg}o[28℄. Theorem 5.1.2 was established in Erd�elyi [92a℄ in a slightly weakerform. Various extensions of the inequalities of this setion are disussed inSetions 5.2 to 7.2 and in the appendies. Rahman and Shmeisser [83℄ also



5.1 Classial Polynomial Inequalities 235o�ers a olletion of Markov- and Bernstein-type inequalities. Some furtherlassial inequalities are in E.5 of Appendix 3.An interesting extension of Markov's inequality is due to Bojanov [82a℄.It states that kp0kLq[�1;1℄ � kT 0nkLq[�1;1℄kpk[�1;1℄for every p 2 Pn and q 2 [1;1℄; where Tn is the Chebyshev polynomial ofdegree n as in (2.1.1).The following result is due to Szeg}o [25℄. The inequalityjp0(0)j � n2�kpkD�holds for every p 2 Pn; where  is an absolute onstant andD� := fz 2 C : jzj � 1; j arg(z)j � �(1� �)g ; � 2 (0; 1℄ :Throughout the exerises Tn denotes the Chebyshev polynomial ofdegree n as de�ned by (2.1.1).E.1 A Detail in the Proof of Theorem 5.1.1. Show that the sets Pn(s)de�ned by (5:1:1) are ompat in the uniform norm on [�1; 1℄ for every�xed n 2 N and s 2 (0; 2):E.2 Chebyshev's Inequality. Prove thatjp(y)j � jTn(y)j � kpk[�1;1℄ ; y 2 R n [�1; 1℄for every p 2 Pn; and equality holds if and only if p = Tn for some  2 R:Extend the above inequality to every p 2 Pn and �nd all p 2 Pn forwhih equality holds.Hint: If p 2 Pn, kpk[�1;1℄ = 1, and jp(y)j > jTn(y)j for some y 2 R n [�1; 1℄;then with � := Tn(y)p(y)�1 2 [�1; 1℄; the polynomial �p� Tn 2 Pn has atleast n+ 1 zeros (ounting multipliities). utE.3 Trigonometri Chebyshev Polynomials on Subintervals of K.a℄ For n 2 N and ! 2 (0; �); letQn;!(�) := T2n� sin(�=2)sin(!=2)� :Show that Qn;! 2 Tn attains the values �kQn;!k[�!;!℄ = �1 with alternat-ing sign 2n+ 1 times on [�!; !℄:b℄ Prove thatjt(�)j � Qn;!(�)ktk[�!;!℄ ; � 2 K n [�!; !℄for every t 2 Tn; and for every �xed � 2 K n [�!; !℄: Equality holds if andonly if p = Qn;! for some  2 R:℄ Show that there exist absolute onstants 1 > 0 and 2 > 0 suh that12 exp(1n(� � !)) � kQn;!kK = Qn;!(�) � exp(2n(� � !)) :



236 5. Basi InequalitiesE.4 A Zero Counting Lemma. Let � 2 K be �xed. Suppose f and g areontinuous funtions on K := R (mod 2�); di�erentiable at a �xed � 2 K;and suppose f and g have the properties(1) kfkK = 1; kgkK < 1;(2) there are �� � x1 < x2 < � � � < x2n < � so that f(xj) = (�1)j ;(3) f(�)) = g(�); jg0(�)j > jf 0(�)j; and sign(g0(�) = sign(f 0(�)):Then f � g has at least 2n+ 2 distint zeros on K:E.5 Sharpness of Theorem 5.1.3. Let � 2 K be �xed. Suppose t 2 Tn andt0(�)2 + n2t2(�) = n2ktk2K :Show that either jt(�)j = ktkK or t is of the formt(�) = � os(n� � �) ; �; � 2 R :Hint: Suppose ktkK = 1 and jt(�)j < 1: Choose � 2 K suh that (5.1.6)is satis�ed and show that t � Tn;� 2 Tn has at least 2n + 2 zeros on K(ounting multipliities). utE.6 Sharpness of Theorem 5.1.4. Show that Theorem 5.1.4 is sharp andequality holds if and only if t is of the formt(�) = � os(n� � �) ; �; � 2 R :E.7 Sharpness of Corollary 5.1.6. Show that Corollary 5.1.5 is sharp andequality holds if and only if p is of the form p(z) = zn;  2 C :E.8 Sharpness of Theorem 5.1.7. Show that for a �xed integer n � 1;Theorem 5.1.7 is sharp if and only if x is a zero of the Chebyshev polynomialTn; that is, x = os (2k�1)�2n ; k = 1; 2; : : : ; n ;and p = Tn for some  2 R:E.9 Sharpness of Theorem 5.1.9. Show that Theorem 5.1.9 is sharp andequality holds if and only if p = Un for some  2 R; where Un is theChebyshev polynomial of the seond kind de�ned in E.10 of Setion 2.1.E.10 Sharpness of Theorem 5.1.8. Show that Theorem 5.1.8 is sharp andequality holds if and only if p = Tn for some  2 R:E.11 A Property of the Zeros of t 2 Tn. Let � 2 K be �xed. Show thatevery t 2 Tn has at most M := enrjt(�)j�1ktkKzeros (ounting multipliities) in the interval [� � r; � + r℄; r > 0:



5.1 Classial Polynomial Inequalities 237Proof. Assume that t 2 Tn has m > M zeros in [� � r; � + r℄: Interpolate tat these m zeros by a Hermite interpolation polynomial of degree at mostm � 1 (see E.7 of Setion 1.1). This gives the identially zero polynomial.The formula for the remainder term of the Hermite interpolation polyno-mial and Theorem 5.1.4 (Bernstein's inequality) yield that there exists a� 2 (� � r; � + r) suh thatjt(�)j = 1m!rmjt(m)(�)j < � em�m rmnmktkK< �enrM �m ktkK � jt(�)jmktk1�mK � jt(�)j ;whih is impossible. utE.12 A Property of the Zeros of a p 2 Pn. Show that every p 2 Pn hasat most M := ep2 npr jp(1)j�1kpk[�1;1℄zeros (ounting multipliities) in [1� r; 1℄; r > 0:Hint: Use the substitution x = os �; E.11, and the inequalityos r < 1� 14r2 ; 0 < r � 2 : utE.13 Riesz's Lemma.a℄ Suppose t 2 Tn and t(�) = ktkK = 1 for some � 2 K: Thent(�) � os(n(� � �)) ; � 2 ��� �2n ; �+ �2n� ;and equality holds for a �xed � 2 ��� �2n ; �+ �2n� if and only if t isof the form t(�) = os(n(� � �)). In partiular, t does not vanish in��� �2n ; �+ �2n� :Hint: If this were false, thenq(�) := t(�) � os(n(� � �))would have more than 2n zeros on K (ounting multipliities). utb℄ Suppose p 2 Pn and p(1) = kpk[�1;1℄ = 1: Then thatp(x) � Tn(x) ; x 2 �os �2n ; 1� ;and equality holds for a �xed x 2 �os �2n ; 1� if and only if p = Tn, where Tnis the Chebyshev polynomial of degree n as de�ned by (2.1.1). In partiular,p does not vanish in �os �2n ; 1� :The next two exerises follows Erd�elyi [88℄ and Erd�elyi and Szabados[89b℄.



238 5. Basi InequalitiesE.14 AMarkov-Type Inequality for Trigonometri Polynomials on [�!; !℄.Show that there exists a onstant 0 <  � 16� suh thatks0k[�!;!℄ � �n+  � � !! n2� ksk[�!;!℄for every s 2 Tn and ! 2 (0; �℄:Proof. If � � ! > (2n)�1; then(3 tan2(!=2) + 1)1=2 < 8n ;and E.19 ℄ gives the result. If � � ! � (2n)�1; then Theorem 5.1.4 (Bern-stein's inequality) ombined with the Mean Value Theorem yieldsksk[��;�℄ � ksk[�!;!℄ + (� � !)n ksk[��;�℄ ;and hene ksk[�!;!℄ � (1� n(� � !)) ksk[��;�℄for every s 2 Tn: Therefore, using Theorem 5.1.4 (Bernstein's inequality)and � � ! � (2n)�1; we getks0k[�!;!℄ � ks0k[��;�℄ � n ksk[��;�℄� n1� n(� � !) ksk[�!;!℄ � (n+ 2(� � !)n2)ksk[�!;!℄for every s 2 Tn: utE.15 Shur-Type Inequality for Tn on [�!; !℄. Let ! 2 (0; 2�℄. Show thatksk[�!;!℄ � 2n+ 1sin(!=2) s(�) � 12 (os � � os!)�1=2[�!;!℄for every s 2 Tn, and equality holds if and only if s is of the forms(�) =  sin h(2n+ 1) aros sin(�=2)sin(!=2)i(os � � os!)1=2 ;  2 R :Note that the right-hand side of the above is an element of Tn:Hint: De�ne 2n+ 1 distint points in (�!; !) by�k := 2 arsin�sin !2 sin k�2n+ 1� ; k = 0;�1; : : : ;�n :Distinguish two ases in estimating jsn(�)j for � 2 [�!; !℄:



5.1 Classial Polynomial Inequalities 239Case 1: j�j � j�nj. Use the inequality12(os � � os!) > sin2(!=2)(2n+ 1)2to get the desired result.Case 2: �n < j�j � !: LetMn(s) := maxjkj�nfjs(�k)j((os �k � os!)=2)1=2g:Let n 2 N, ! 2 (0; �℄, and � 2 [�!;��n)[ (�n; !℄ be �xed. Show that thereis an esn 2 Tn suh that jesn(�)jMn(esn) = maxs2Tn js(�)jMn(s) :Show by a variational method that esn is of the formesn(�) =  sin h(2n+ 1) aros sin(�=2)sin(!=2)i(os � � os!)1=2 ;  2 R : utE.16 Another Proof of Shur's Inequality.a℄ Prove Theorem 5.1.9 (Shur's inequality) by using the method given inthe hint to E.15.b℄ Prove the result of E.15 by using interpolation, as in the proof of The-orem 5.1.9.Proof. See Erd�elyi and Szabados [89b℄. utE.17 Growth of Polynomials in the Complex Plane. LetD := fz 2 C : jzj < 1g and D% := fz 2 C : jzj < %g:a℄ Show that jp(z)j � jzjn kpkDfor every p 2 Pn and z 2 C nD:Find all p 2 Pn for whih equality holds.Hint: Apply the maximum priniple (see E.1 d℄ of Setion 1.2) with D andq(z) := znp(z�1) 2 Pn : ut



240 5. Basi Inequalitiesb℄ Show that the transformation z =M(w) := 12 (w+w�1) an be writtenas x = 12 (%+ %�1) os � ; y = 12 (%� %�1) sin � ;where z = x+ iy; x; y 2 R and w = %ei�; % > 0; � 2 K:℄ For % > 0; let E% be the image of the irle �D% under M: Show thatE% is the ellipsex2a2 + y2b2 = 1 with semiaxes a := 12 (%+ %�1) and b := 12 j%� %�1j :Furthermore, E% = E%�1 ; and E1 is the interval [�1; 1℄ overed twie.d℄ Show that jp(z)j � %n kpk[�1;1℄for every p 2 Pn; z 2 E%; % > 1:Proof. Applying the maximum priniple (see E.1 d℄ of Setion 1.2) withD = D1 and Q(w) := wnp � 12 (w + w�1)� 2 P2n ;we obtain jQ(w)j � kQkD1 = kpk[�1;1℄ ; w 2 �D%�1 :This, together with part ℄, yieldsjp(z)j � %nkpk[�1;1℄ ; z 2 E% : ute℄ Show that there exists an absolute onstant  suh thatjp(z)j �  kpk�1;1℄ ; p 2 Pnwheneverz = x+ iy ; x; y 2 R ; jxj � 1 + 1n2 ; jyj � pj1� x2j+n + 1n2(j1� x2j+ := maxf1� x2; 0g).Hint: Use part d℄. utf ℄ Prove the following Markov-Bernstein inequality. There is a onstant(m) depending only on m suh thatjp(m)(x)j � (m)�min�n2; np1� x2��m kpk[�1;1℄for every p 2 Pn and x 2 [�1; 1℄:



5.1 Classial Polynomial Inequalities 241Hint: Use part e℄ and Cauhy's integral formula (see E.1 a℄ of Setion 1.2).utBernstein established Theorem 5.1.4 in order to prove inverse theoremsof approximation. Bernstein's method is presented in the proof of the nextexerise, whih is one of the simplest ases. However, several other inversetheorems of approximation an be proved by straightforward modi�ationsof the proof of this exerise. That is why Bernstein- and Markov-type in-equalities play a signi�ant role in approximation theory. Diret and inversetheorems of approximation and related matters may be found in manybooks on approximation theory, inluding Cheney [66℄, Lorentz [86a℄, andDeVore and Lorentz [93℄.E.18 An Inverse Theorem of Approximation. Let Lip�, � 2 (0; 1℄, denotethe family of all real-valued funtions g de�ned on K satisfyingsup� jg(x)� g(y)jjx� yj� : x 6= y 2 K� <1:For f 2 C(K), let En(f) := inffkt� fkK : t 2 Tng:An example for a diret theorem of approximation is stated in part a℄. Partb℄ deals with its inverse result.a℄ Suppose f is m times di�erentiable on K and f (m) 2 Lip� for some� 2 (0; 1℄: Then there is a onstant C depending only on f so thatEn(f) � Cn�(m+�); n = 1; 2; : : : :Proof. See, for example, Lorentz [86a℄. utb℄ Suppose m is a nonnegative integer, � 2 (0; 1), and f 2 C(K). Supposethere is a onstant C > 0 depending only on f suh thatEn(f) � Cn�(m+�); n = 1; 2; : : : :Then f is m times ontinuously di�erentiable on K and f (m) 2 Lip�:Outline. We show only that f is m times ontinuously di�erentiable onK: The rest an be proved similarly, but its proof requires more tehnialdetails. See, for example, Lorentz [86a℄.For eah k 2 N; let Q2k 2 T2k be hosen so thatkQ2k � fkK � C 2�k(m+�) :



242 5. Basi InequalitiesThen kQ2k+1 �Q2kkK � 2C 2�k(m+�) :Now f(�) = Q20(�) + 1Xk=1(Q2k+1 �Q2k)(�) ; � 2 K ;and by Theorem 5.1.4 (Bernstein's inequality)jQ(j)20 j+ ����� 1Xk=1(Q2k+1 �Q2k )(j)(�)������ kQ1kK + 1Xk=1�2k+1�jkQ2k+1 �Q2kkK� kQ1kK + 1Xk=1�2k+1�j2C 2�k(m+�)� kQ1kK + 2j+1C 1Xk=1(2j�m��)k <1for every � 2 K and j = 0; 1; : : : ;m; sine � > 0: Now we an onludethat f (j)(�) exists andf (j)(�) = Q(j)1 (�) + 1Xk=1(Q2k+1 �Q2k)(j)(�)for every � 2 K and j = 0; 1; : : : ;m: The fat that f (m) 2 C(K) an beseen by the Weierstrass M -test. utThe next exerise follows Videnskii [60℄.E.19 Videnskii's Inequalities. The main results of this exerise are theBernstein- (part b℄) and Markov-type (part ℄) inequalities for trigonometripolynomials on an interval shorter than the period.Let ! 2 (0; �);tn(�) := Qn;!(�) = os�2n aros� sin(�=2)sin(!=2)�� ;and un(�) := sin�2n aros� sin(�=2)sin(!=2)�� :a℄ Reall that tn 2 Tn by E.3 a℄.



5.1 Classial Polynomial Inequalities 243b℄ Show that js0n(�)j � jt0n(�) + iu0n(�)j ksnk[�!;!℄= n�1� os2(!=2)os2(�=2)��1=2 ksnk[�!;!℄for every sn 2 Tn and � 2 (�!; !): Equality holds if and only if sn = tnfor some  2 R and sn(�) = 0:Hint: First show that for every n 2 N; ! 2 (0; �℄; and � 2 [�!; !℄; thereexists an es 2 Tn suh thatjes 0(�)jkesk[�!;!℄ = maxsn2Tn js0n(�)jksnk[�!;!℄ :Use a variational method to show that eitherkesnk[�!;!℄ = kesnk[��;�℄or there exist � 2 (��;�!℄ and � 2 [!; �) suh that esn = Tn for some 2 R; where, as in Setion 3.3,Tn := Tnf1; os �; sin �; : : : ; osn�; sinn� ; [�; �℄gis the Chebyshev polynomial for Tn on [�; �℄: In the �rst ase use Theorem5.1.4 (Bernstein's inequality). In the seond ase observe thatTn(�) = tn� sin((� � )=2)sin(e!=2) �with  := 12 (�+ �) and e! := 12 (� � �) : ut℄ Show that if 2n > (3 tan2(!=2) + 1)1=2; thenks0nk[�!;!℄ � t0n(!)ksnk[�!;!℄ = 2n2 ot(!=2)ksnk[�!;!℄for every sn 2 Tn; and equality holds if and only if sn = tn;  2 R:Outline. Let �! = �0 < �1 < � � � < �2n = ! be the points wheretn(�j) = (�1)j ; j = 0; 1; : : : ; 2nand un(�j) = 0 ; j = 1; 2; : : : ; 2n� 1 ;



244 5. Basi Inequalitiesand let �1 < �2 < � � � < �2n be the zeros of tn (whih lie in (�!; !)): Notethat u0n(�j) = 0 ; j = 1; 2; : : : ; 2n :Step 1. Show that 2n > (3 tan2(!=2) + 1)1=2 implies t00n(�) > 0 for every� 2 [�2n�1; !℄; so t0n is inreasing on [�2n�1; !℄:Step 2. Use part b℄ to show that if � 2 [�1; �2n℄; thenjt0n(�)j � jt0n(�) + iu0n(�)j � jt0n(�2n) + iu0n(�2n)j = jt0n(�2n)j :Step 3. Dedue from Steps 1 and 2 thatjt0n(�)j < jt0n(�!)j ; � 2 (�!; !) :Step 4. Show that there is an es 2 Tn suh thatkes 0nk[�!;!℄kesnk[�!;!℄ = maxs2Tn ks0k[�!;!℄ksk[�!;!℄ :For the rest of the proof let esn be normalized by kesk[�!;!℄ = 1 and let�� 2 [�!; !℄ be hosen so thatjes 0n(��)j = kes 0n(�)k[�!;!℄:Let (a1 < a2 < � � � < am) be an alternation sequene of maximal length foresn 2 C[�!; !℄ on [�!; !℄: We would like to show that m = 2n+1: Clearlym < 2n+ 2:Step 5. Use a variational method to show that 2n � m:Step 6. Use a variational method to show that �� = �! impliesm = 2n+1;so m = 2n implies �� 2 (�!; !):Step 7. Show by a variational method thatjs0n(�!)j � jt0n(�!)j ksnk[�!;!℄for every sn 2 Tn; and equality holds if and only if sn = tn;  2 R: Inpartiular, if m = 2n; thenjes 0n(�!)j < jt0n(�!)j :Step 8. Use part b℄ and Step 3 to show thatjes 0n(�)j � t0n(�2n) < t0n(!) ; � 2 [�1; �2n℄ :Step 9. Use part b℄ to show that m = 2n implies



5.1 Classial Polynomial Inequalities 245jes 0n(�j)j < jt0n(�j)j = (�1)jt0n(�j) ; j = 1; 2; : : : ; 2n :Step 10. Suppose m = 2n: Use Steps 6 and 8 to show that�� 2 (�!; �1) [ (�2n; !) :Step 11. Suppose m = 2n: Use the de�ning property of esn and Steps 1and 10 to show thatjes 0n(��)j = kes 0nk[�!;!℄ � jt0n(�!)j > jt0n(��)j :Step 12. Suppose m = 2n and s 0n(��) � 0: Use Steps 7 to 11 to show thatt0n � es 0n has at least 2n+ 1 distint zeros in (�!; !); a ontradition.Step 13. Show that m = 2n+ 1 and esn = �tn. utE.20 Inequalities for Entire Funtions of Exponential Type. Entire fun-tions of (exponential) type � are de�ned in E.17 of Setion 4.2. Denote byE� the set of all entire funtions of exponential type at most �: This exeriseollets some of the interesting inequalities known for E� : Sine a trigono-metri polynomial of degree n belongs to En; these results an be viewed asextensions of the orresponding inequalities for trigonometri polynomials.More on various inequalities for entire funtions of exponential type maybe found in Rahman and Shmeisser [83℄.a℄ Bernstein's Inequality. The inequalitykf 0kR � � kfkR ; x 2 Rholds for every f 2 E� :Proof. See Bernstein [23℄ or Rahman and Shmeisser [83℄. utb℄ Extension of the Bernstein-Szeg}o Inequality. The inequality(f 0(x))2 + (�f(x))2 � �2kfk2R ; x 2 Rholds for every f 2 E� taking real values on the real line.Proof. See DuÆn and Shae�er [37℄. ut℄ The Growth of f 2 E� . The inequalityjf(x+ iy)j � e� jyjkfkR ; x; y 2 Rholds for every f 2 E� .Proof. See Rahman and Shmeisser [83℄. ut



246 5. Basi Inequalitiesd℄ The Growth of f 2 E� Taking Real Values on R. The inequalityjf(x+ iy)j � (osh �y) kfkR ; x; y 2 Rholds for every f 2 E� taking real values on the real line.Proof. See Shae�er and DuÆn [38℄. ute℄ Bernstein-Type Inequality in Lp. Let p 2 (0;1): The inequalitykf 0kLp(R) � � kfkLp(R)holds for every f 2 E� .Proof. See Rahman and Shmeisser [90℄. utE.21 Markov-Type Inequality on Conneted Subsets of the ComplexPlane. Let E be a onneted ompat set of the omplex plane. Thenkp0kE � e2 n2ap(E) kpkEfor every p 2 Pn:Proof. See Pommerenke [59℄. utErd}os onjetured that the onstant e2 in the above inequality an bereplaed by 12 : This result would ontain Theorem 5.1.8 (Markov's inequal-ity) as a speial ase. However, Rassias, Rassias, and Rassias [77℄ disprovedthe onjeture. Erd}os still speulates that e2 in Pommerenke's inequalitymay be replaed by 12 (1 + o(1)):The result of the next exerise is formulated so that its proof is ele-mentary at the expense of preision and generality.E.22 The Interval where the Sup Norm of a Weighted Polynomial Lives.Suppose w = exp(�Q); where(1) Q : R ! R is ontinuous and even,(2) Q0 is ontinuous and positive in (0;1),(3) tQ0(t) is inreasing in (0;1), and(4) limt!0+ tQ0(t) = 0 and limt!1 tQ0(t) =1:Let an > 0 be hosen so thatannw(an) = maxx2R jxnw(x)j :a℄ Show thatn = anQ0(an) and 0 < a1 < a2 < a3 < � � � :



5.1 Classial Polynomial Inequalities 247b℄ Show that kpwkR � kpwk[�2a2n;2a2n℄for every p 2 Pn:Proof. Using Chebyshev's inequality (see E.2 of Setion 5.1) and the expliitform (2.1.1) of the Chebyshev polynomial Tn, we an dedue thatjp(x)j � �����xa +r�xa�2 � 1�����n kpk[�a;a℄ � �2jxja �n kpk[�a;a℄for every p 2 Pn, x 2 R n [�a; a℄; and a > 0: Choosing a := an, and usingthe fat that w is dereasing on [0;1), we obtainj(pw)(x)j � �2jxjan �n w(x)w(an) kpwk[�an;an℄for every p 2 Pn and x 2 R n [�an; an℄. Now if x 2 R n [�2a2n; 2a2n℄; thenjxjnw(x)annw(an) � exp Z jxjan ddt log(tnw(t))! dt= exp Z jxjan n� tQ0(t)t dt!� exp�Z 2a2na2n n� 2nt dt� = 2�n ;where we used a2n � an, tQ0(t) � 2n for t � a2n, and tQ0(t) � n for t � an:Combining the above inequality with the previous one, we obtain thatj(pw)(x)j � kpwk[�an;an℄ ; x 2 R n [�2a2n; 2a2n℄for every p 2 Pn; from whih the result follows. ut℄ Let Q(x) := jxj�; � > 0. Show that Q satis�es the assumptions of theexerise, and an = �n��1=� :The idea of in�nite-�nite range inequalities, of whih E.22 b℄ is anexample, goes bak to Freud (an is the Freud number); see Nevai's surveypaper [86℄. The sharp form of these is due to Mhaskar and Sa� [85℄; seealso Lubinsky and Sa� [88℄ and Sa� and Totik [to appear℄. They are notthat diÆult to prove, but need the maximum priniple for subharmonifuntions.



248 5. Basi InequalitiesE.23 A Theorem of Markov. Let Tn be the Chebyshev polynomial ofdegree n de�ned by (2.1.1). ThenTn(x) = nXk=0 k;nxk :The Markov numbers Mk;n; 0 � k � n; are de�ned byMk;n := � jk;nj if k � n (mod 2)jk;n�1j if k � n� 1 (mod 2) :These an be expliitly omputed from (2.1.1).a℄ The inequalities jak;nj �Mk;n kpk[�1;1℄hold for every p 2 Pn of the formp(x) = nXk=0 ak;nxk; ak;n 2 R :Proof. See, for example, Natanson [64℄. utb℄ Show that jp0(0)j � (2n� 1) kpk[�1;1℄for every p 2 P2n:Hint: Use part a℄. ut℄ Show that jp0(x)j � 2n� 11� jxj kpk[�1;1℄for every p 2 P2n and x 2 (�1; 1):Hint: Use part b℄ and a linear transformation. utOf ourse, part ℄ gives a better result than Theorem 5.1.7 (Bernstein'sInequality) only if x is very lose to 0: This is exatly the ase we need inour appliation of part ℄ in E.4 ℄ of Setion 6.1.5.2 Markov's Inequality for Higher DerivativesFrom Theorem 5.1.8 (Markov's Inequality), by indution on m it followsthat kp(m)k[�1;1℄ � (n(n� 1) � � � (n�m+ 1))2kpk[�1;1℄for every p 2 Pn:



5.2 Markov's Inequality for Higher Derivatives 249However, this is not the best possible result. The main result of thissetion is the following inequality of DuÆn and Shae�er [41℄, whih givesa sharp improvement of the above. E.2 d℄ extends the following result topolynomials with omplex oeÆients:Theorem 5.2.1. If p 2 Pn satis�es��p �os j�n ��� � 1 ; j = 0; 1; : : : ; n ;then for every m = 1; 2; : : : ; n;jp(m)(x+ iy)j � jT (m)n (1 + iy)j ; x 2 [�1; 1℄ ; y 2 R ;where Tn is the Chebyshev polynomial of degree n de�ned by (2.1.1). Equal-ity an our only if p = �Tn:To prove this inequality we need three lemmas, whih are of someinterest in their own right.Lemma 5.2.2. Suppose �1; �2; : : : ; �n are distint real numbers,q(z) :=  nYj=1(z � �j) ; 0 6=  2 R ;and p 2 Pn satis�esjp0(�j)j � jq0(�j)j ; j = 1; 2; : : : ; n :Then, for every m 2 N,(5:2:1) jp(m)(x)j � jq(m)(x)jwhenever x is a zero of q(m�1):Proof. For m = 1, inequality (5.2.1) is simply a restatement of the assump-tion of the lemma, so onsider the ase m = 2: The Lagrange interpolationformula (see E.6 of Setion 1.1) gives(5:2:2) p0(z)q(z) = nXj=1 p0(�j)q0(�j) 1z � �j = nXj=1 Æjz � �j ;where, by the hypotheses of the lemma, jÆj j � 1: There is a similar expres-sion for q0(z)=q(z) in whih eah Æj is equal to 1. On di�erentiating (5.2.2),we obtain p00(z)q(z)� p0(z)q0(z)q(z)2 = � nXj=1 Æj(z � �j)2 :



250 5. Basi InequalitiesThus at the points x where q0(x) = 0 we have����p00(x)q(x) ���� = ������ nXj=1 Æj(x� �j)2 ������ � nXj=1 1(x� �j)2 = ����q00(x)q(x) ���� ;and it follows that the lemma is true for m = 2.The proof for m > 2 is by indution. Let jp(m)(x)j � jq(m)(x)j atthe zeros of q(m�1) (whih are real and distint). Applying the previousargument to p(m) and q(m) instead of p0 and q0; we obtainjp(m+1)(x)j � jq(m+1)(x)jat the zeros of q(m): This ompletes the indution. utLemma 5.2.3. Let q 2 Pn have n distint zeros in (�1; b); and supposethat in a strip of the omplex plane it satis�es the inequality(5:2:3) jq(x+ iy)j � jq(b+ iy)j ; x 2 [a; b℄ ; y 2 R :Suppose also that p0 2 Pn�1 satis�es(5:2:4) jp0(x)j � jq0(x)jwhenever x is a zero of q. Then the derivatives of p and q satisfy(5:2:5) jp(m)(x + iy)j � jq(m)(b+ iy)j ; x 2 [a; b℄ ; y 2 R :Proof. First we show that at every point x0 + iy0 in the stripjp0(x0 + iy0)j � jq0(b+ iy0)j :Let q(z) :=  nYj=1(z � �j) ; 0 6=  2 R ; �j 2 (�1; b) :Let h(z) be another polynomial with the same leading oeÆient as q andwhose zeros are obtained by reeting about x0 those zeros of q that lie tothe right of x0. Thus h(z) :=  nYj=1 (z � �j) ;where(5:2:6) �j := � 2x0 � �j if �j > x0�j if �j � x0 :



5.2 Markov's Inequality for Higher Derivatives 251Then on the line z = x0 + iy; y 2 R; we have jz � �j j = jz � �j j; so(5:2:7) jh(x0 + iy)j = jq(x0 + iy)j :We now show that(5:2:8) jp0(x0 + iy0)j � jh0(x0 + iy0)j :Note that(5:2:9) h0(z)h(z) = nXj=1 1z � �j ;and realling (5.2.2), we have(5:2:10) p0(z)q(z) = nXj=1 Æjz � �jwith Æj 2 [�1; 1℄ for eah j. Comparing the right-hand sides of (5.2.9) and(5.2.10), respetively, at z = x0 + iy0, we obtain������ nXj=1 Æjx0 + iy0 � �j ������ = ������ nXj=1 Æj(x0 � �j)(x0 � �j)2 + y20 � i nXj=1 y0Æj(x0 � �j)2 + y20 ������� ������ nXj=1 x0 � �j(x0 � �j)2 + y20 � i nXj=1 y0(x0 � �j)2 + y20 ������= ������ nXj=1 1x0 � �j + iy0 ������sine by onstrution jx0 � �j j = x0 � �j : Therefore����p0(x0 + iy0)q(x0 + iy0) ���� � ����h0(x0 + iy0)h(x0 + iy0) ���� ;and (5.2.7) yields (5.2.8).Let � 2 C ; j�j < 1; be an arbitrary onstant and let'(z) := q(z)� �h(z + x0 � b) :Let � be the simple losed urve onsisting of a segment of the linez = b + iy; y 2 R; and the portion of a irle with enter at b and ra-dius % that lies to the right of this line. Relations (5.2.3) and (5.2.7) showthat on the line segment of �;



252 5. Basi Inequalities jq(z)j > j�h(z + x0 � b)j :If % is suÆiently large, the same inequality is true for the irular portionof � sine q and h have the same leading oeÆient. Thus Rouh�e's theoremgives that ' and h have the same number of zeros inside �: We onludethat ' has no zeros on or to the right of the line z = b + iy; y 2 R: Thelast statement, together with Theorem 1.3.1, implies that '0 has no zeroson the line z = b+ iy; y 2 R: Thus for j�j < 1;q0(b+ iy0)� �h0(x0 + iy0) 6= 0 ;whih, together with (5.2.8), yieldsjp0(x0 + iy0)j � jh0(x0 + iy0)j � jq0(b+ iy0)j :This proves the lemma for m = 1:We turn now to the asem > 1: Applying the lemma with m = 1 whenp = q; we havejq0(x+ iy)j � jq0(b+ iy)j ; x 2 [a; b℄ ; y 2 R :Thus q0 satis�es all the requirements that are imposed on the interpolatingpolynomial q (with n replaed by n � 1) in the lemma, and by Lemma5.2.2, jp00(x)j � jq00(x)j at the n�1 zeros of q0: Applying the lemma to p0(x)instead of p in the ase m = 1, for whih it has already been proved, wehave jp00(x+ iy)j � jq00(b+ iy)j ; x 2 [a; b℄ ; y 2 R ;whih proves that inequality (5.2.5) is true for m = 2: Repetition of thisargument ompletes the proof for larger values of m. utLemma 5.2.4. Suppose p 2 P n and jp(�j)j � 1 for�j := os j�n ; j = 0; 1; : : : ; n :Thenjp0(xk)j � np1� x2k for xk := os (2k�1)�2n ; k = 0; 1; : : : ; n :For every �xed k; equality holds if and only if p = Tn for some  2 C withjj = 1.Proof. Let f(x) = (1� x2)T 0n(x) = a nYj=0 �x� os j�n � :



5.2 Markov's Inequality for Higher Derivatives 253Then by the di�erential equation for Tn (see E.3 e℄ of Setion 2.1), we havef 0(x) = �xT 0n(x) � n2Tn(x) :Di�erentiating the Lagrange interpolation formula for p (see E.6 of Setion1.1) gives p0(x) = nXj=0 p(�j)f 0(�j) (x� �j)f 0(x) � f(x)(x� �j)2 :For the zeros of Tn; this redues to(5:2:11) p0(x) = �T 0n(x) nXj=0 p(�j)f 0(�j) (1� x�j)(x� �j)2sine at these points(x� �j)f 0(x)� f(x) = �x(x� �j)T 0n(x) � (1� x2)T 0n(x)= �(1� x�j)T 0n(x) :In the same way, we obtain for the zeros of Tn;T 0n(x) = �T 0n(x) nXj=0 Tn(�j)f 0(�j) (1� x�j)(x� �j)2and sine Tn(�j) and f 0(�j) are of opposite sign (f 0(�j) = �n2Tn(�j)), thisgives(5:2:12) T 0n(x) = T 0n(x) nXj=0 ���� 1f 0(�j) ���� (1� x�j)(x � �j)2 :Sine jp(�j)j � 1 in (5.2.11), on omparing (5.2.11) and (5.2.12), we obtainfor every zero x of Tn thatjp0(x)j � jT 0n(x)j = np1� x2 :For a �xed zero of Tn; the equality ours if and only ifp(�j) = Tn(�j) ; j = 0; 1; : : : ; nfor some  2 C ; jj = 1; that is, if and only if p = Tn for some  2 C withjj = 1. utProof of Theorem 5.2.1. Suppose p 6= Tn satis�es the assumption of thetheorem. Then by Lemma 5.2.4 there exists a onstant � > 1 suh thatj�p0(x)j � jT 0n(x)j at the zeros of Tn: Applying Lemma 5.2.3 with p and qreplaed by �p and Tn (assumption (5.2.3) is satis�ed with [a; b℄ := [�1; 1℄by E.1 b℄), we obtainjp(m)(x+ iy)j � ��1��T (m)n (1 + iy)�� ; x 2 [�1; 1℄ ; y 2 Rfor every m = 1; 2; : : : ; n: If p = Tn; then we have the same inequality with��1 replaed by 1: ut



254 5. Basi InequalitiesComments, Exerises, and Examples.The inequality kp(m)k[�1;1℄ � T (m)n (1) � kpk[�1;1℄ ; p 2 Pnwas �rst proved by V. A. Markov [16℄. He was the brother of the morefamous A. A. Markov who proved the above inequality for m = 1 in [1889℄(see Theorem 5.1.8). However, their ingenious proofs are rather ompli-ated. Bernstein presented a shorter variational proof of V. A. Markov'sinequality in 1938 (see Bernstein [58℄, whih inludes a omplete list ofBernstein's publiations). Our disussion in this setion follows DuÆn andShae�er [41℄.E.1 A Property of Chebyshev Polynomials.a℄ Let (�i)2ni=1 be a sequene of 2n nonnegative numbers, and let (�0i) bea rearrangement of this sequene aording to magnitude,�01 � �02 � � � � � �02n � 0 :Show that for every y � 0,(5:2:13) (�1�2 + y)(�3�4 + y) � � � (�2n�1�2n + y)is not greater than(�01�02 + y)(�03�04 + y) � � � (�02n�1�02n + y) :Proof. If �1 and �3 are at least as large as any of the remaining numbers�i; then(�1�3 + y)(�2�4 + y)� (�1�2 + y)(�3�4 + y) = y(�1 � �4)(�3 � �2) � 0 :This shows that the numbers �i in (5.2.13) an be rearranged so that thetwo largest our in the same fator without dereasing (5.2.13). Then thetwo largest of the remaining numbers �i may be brought into the samefator without dereasing (5.2.13), and so on. utb℄ Show that the Chebyshev polynomials Tn de�ned by (2.1.1) satisfy theinequality jTn(x+ iy)j � jTn(1 + iy)j ; x 2 [�1; 1℄ ; y 2 R :Proof. We have jTn(x + iy)j2 = 2 nYj=1 ((x� os �j)2 + y2) ;



5.2 Markov's Inequality for Higher Derivatives 255where �j = (2j�1)�2n and  = 2n�1: With x = os � we writejTn(x+ iy)j2 = 2 nYj=1� 14 ��ei� � e�i�j ��2 ��ei� � ei�j ��2 + y2� :Geometrially, e�i�j ; j = 1; 2; : : : ; n; represent 2n points equally dis-tributed on the unit irle. Connet these points by hords to the pointei�: Then the lengths of these 2n hords are given by jei� � e�i�j j: If � isinreased or dereased by any multiple of �n ; we obtain a new set of hords,but the aggregate of their lengths is unhanged. Choose ' suh that' � � �mod �n� ; � �2n � ' � �2n :If x� = os'; thenTn(x� + iy) = 2 nYj=1�14 ��ei' � e�i�j ��2 ��ei' � ei�j ��2 + y2� ;where the numbers jei'�e�i�j j2 are simply a rearrangement of the numbersjei� � e�i�j j2: Use part a℄ to show thatjTn(x+ iy)j2 � jTn(x� + iy)j2 :Note that os �1 � x� � 1; where os �1 is the right most zero of Tn: HenejTn(x� + iy)j2 � jTn(1 + iy)j2 ;and the proof is �nished. utE.2 Markov's Inequality for Higher Derivatives for Pn.a℄ Show that if p and q satisfy the onditions of Lemma 5.2.3 with p 2 Pnreplaed by p 2 Pn; thenjp(m)(x)j � jq(m)(b)j ; x 2 [a; b℄for every m 2 N:Hint: After di�erentiating (5.2.2) m� 1 times, we obtainp(m)(x) = nXj=1 Æj dm�1dxm�1 � q(x)x� �j� ;where jÆj j = jp0(�j)=q0(�j)j � 1: It is evident that if x 2 (a; b) is �xed, thenjp(m)(x)j attains its maximum when Æj = �1 for eah j; in whih ase p0has real oeÆients. Now use Lemma 5.2.3. ut



256 5. Basi Inequalitiesb℄ Show that if p satis�es the assumption of Theorem 5.2.1 with p 2 Pnreplaed by p 2 Pn; then kp(m)k[�1;1℄ � jT (m)n (1)jfor every m 2 N: The equality an hold only if p = Tn for some  2 C ;jj = 1.Hint: Modify the proof of Theorem 5.2.1 by using part a℄. ut℄ Show thatT (m)n (1) = n2(n2 � 1)(n2 � 22) � � � (n2 � (m� 1)2)1 � 3 � 5 � � � (2m� 1) :Hint: Di�erentiating the seond-order di�erential equation for Tn (see E.3e℄ of Setion 2.1) m� 1 times gives(1� x2)T (m+2)n (x)� (2m+ 1)xT (m+1)n (x) + (n2 �m2)T (m)n (x) = 0from whih (2m+ 1)T (m+1)n (1) = (n2 �m2)T (m)n (1)follows. Use indution and Tn(1) = 1 to �nish the proof. utd℄ The Main Inequality. Suppose p 2 Pn satis�es��p �os j�n ��� � 1 ; j = 1; 2; : : : ; n :Show that for m = 1; 2; : : : ; n;kp(m)k[�1;1℄ � n2(n2 � 1)(n2 � 22) � � � (n2 � (m� 1)2)1 � 3 � 5 � � � (2m� 1) ;and the equality an our only if p = Tn for some  2 C ; jj = 1:Hint: Combine parts ℄ and b℄. utA slightly weaker version of Markov's inequality for higher derivativesis muh easier to prove.E.3 A Weaker Version of Markov's Inequality. Show thatkp(m)k[�1;1℄ � 2mn2mkpk[�1;1℄for every p 2 Pn:Hint: First show by a variational method that the extremal problemmax06=p2Pn jp0(�1)jkpk[�1;1℄



5.2 Markov's Inequality for Higher Derivatives 257is solved by the Chebyshev polynomial Tn; henejp0(�1)j � n2kpk[�1;1℄ :Then, by using a linear transformation, show thatjp0(y)j � 21� yn2kpk[y;1℄ � 2n2kpk[�1;1℄ ; �1 � y � 0and jp0(y)j � 21 + yn2kpk[�1;y℄ � 2n2kpk[�1;1℄ ; 0 � y � 1 :Hene the inequality of the exerise is proved whenm = 1: For larger valuesof m use indution. utE.4 Weighted Bernstein and Markov Inequalities. Let w 2 C[�1; 1℄ bestritly positive on [�1; 1℄:a℄ Show that for every � > 0 there exists an n0 depending on � and w suhthat p0(x)w(x)p1� x2[�1;1℄ � n(1 + �)kpwk[�1;1℄for every p 2 Pn; n � n0:Proof. By the Weierstrass approximation theorem, for every � > 0 there isa q 2 Pk suh thatw(x) � q(x) � (1 + �)w(x) ; x 2 [�1; 1℄ :Let m := minfw(x) : x 2 [�1; 1℄g: Applying Theorem 5.1.7 (Bernstein'sinequality) to pq 2 Pn+k and then to q 2 Pk; we obtain��p0(x)w(x)p1� x2�� � ��p0(x)q(x)p1� x2��� ��(pq)0(x)p1� x2��+ ��p(x)q0(x)p1� x2��� (n+ k)kpqk[�1;1℄ + kpk[�1;1℄kkqk[�1;1℄� (n+ k)(1 + �)kpwk[�1;1℄ + 1mkpwk[�1;1℄k(1 + �)kwk[�1;1℄� n(1 + �)kpwk[�1;1℄for every p 2 Pn; provided � > 0 is suÆiently small and n � n0: ut



258 5. Basi Inequalitiesb℄ Show that for every � > 0 there exists an n0 depending on � and w suhthat kp0wk[�1;1℄ � n2(1 + �)kpwk[�1;1℄for every p 2 Pn; n � n0:Hint: Use the idea given in the previous proof. utShae�er and DuÆn [38℄ prove an extension of Theorem 5.1.7 (Bern-stein's inequality) to higher derivatives. They show that���� dmdxm p(x)���� � ���� dmdxm exp(in arosx)���� ; x 2 (�1; 1)for every p 2 Pn: The following exerise gives a slightly weaker version ofthis, whih is muh simpler to prove. Some of this follows Lahane [84℄.E.5 Bernstein's Inequality for Higher Derivatives.a℄ Show that there exists a onstant (m) depending only on m suh thatjp(m)(x)j � (m)� np1� x2�m kpk[�1;1℄ ; x 2 (�1; 1)for every p 2 Pn: (That we an hoose (m) � 2m is shown in parts ℄, d℄,and e℄.)Hint: For j = 1; 2; : : : ;m; letaj := x� (m� j)(1 + x)m and bj := x+ (m� j)(1� x)m :Use Corollary 5.1.5 to show that there are onstants j(m) depending onlyon m suh thatkp(j)k[aj;bj ℄ � j(m) np1� x2 kp(j�1)k[aj�1;bj�1℄for every p 2 Pn and j = 1; 2; : : : ;m: utb℄ Show that there exists a onstant (m) > 0 depending only on m suhthat sup06=p2Pn jp(m)(x)jkpk[�1;1℄ � (m)�min�n2; np1� x2��mfor every x 2 [�1; 1℄ and m = 1; 2; : : : ; n:Hint: First show thatkT (m)n kI(x) � (m)�min�n2; np1� x2��m ;where I(x) := [x� 12 (1�jxj), x+ 12 (1�jxj)℄; then use a shift and a saling.ut



5.2 Markov's Inequality for Higher Derivatives 259In the rest of the exerise we show that (m) = 2m is a suitable hoiefor the onstant in part a℄.℄ Let k be a positive integer. Thenkp(x)(1� x2)(k�1)=2k[�1;1℄ � n+ kk kp(x)(1� x2)k=2k[�1;1℄for every p 2 Pn:Hint: Let p 2 Pn be normalized so that kp(x)(1� x2)k=2k[�1;1℄ = 1: ApplyTheorem 5.1.3 (Bernstein-Szeg}o inequality) witht(�) := p(os �) sink � 2 Tn+k :If x0 = os �0 denotes a relative extreme point for p on (�1; 1); thenp0(os �0) = 0; and after simpli�ation we obtain that(p(os �0) sink�1 �0)2 � (n+ k)2((n+ k)2 � k2) sin2 �0 + k2 � �n+ kk �2 : utd℄ Let k be a positive integer. Thenkp0(x)(1 � x2)(k+1)=2k[�1;1℄ � 2(n+ k)kp(x)(1� x2)k=2k[�1;1℄for every p 2 Pn:Proof. Let p 2 Pn be normalized so that kp(x)(1 � x2)k=2k[�1;1℄ = 1: Ap-plying Theorem 5.1.4 (Bernstein's inequality) with m = 1 andt(�) := p(os �) sink � 2 Tn+k ;we obtain jp0(os �) sink+1 � + p(os �)k sink�1 � os �j � n+ k :Now the triangle inequality and part ℄ yieldjp0(os �) sink+1 �j � (n+ k) + k ��p(os �) sink�1 ���� (n+ k) + k n+ kk � 2(n+ k) : ut



260 5. Basi Inequalitiese℄ Show that jp(m)(x)j � � 2np1� x2�m kpk[�1;1℄for every p 2 Pn and x 2 (�1; 1):Hint: Use indution on m; Theorem 5.1.7, and part d℄. ut5.3 Inequalities for Norms of FatorsA typial result of this setion is the following inequality due to Kneser[34℄.Theorem 5.3.1. Suppose p = qr; where q 2 Pm and r 2 Pn�m. Thenkqk[�1;1℄krk[�1;1℄ � 12Cn;mCn;n�mkpk[�1;1℄ ;where Cn;m := 2m mYk=1�1 + os (2k�1)�2n � :Furthermore, for any n and m � n the inequality is sharp in the ase thatp is the Chebyshev polynomial Tn of degree n de�ned by (2.1.1), and thefator q 2 Pm is hosen so that q vanishes at the m zeros of p losest to�1. Before proving the above theorem, we establish an asymptoti formulafor Cn;m and formulate a orollary.If f 2 C2[a; b℄; then by the midpoint rule of numerial integrationZ ba f(x) dx = (b� a)f � 12 (a+ b)�+ (b� a)324 f 00(�)for some � 2 [a; b℄: Let f(x) := log(2 + 2 os�x): Thenf 00(x) = ��2(1 + os�x)2 :On applying the midpoint rule to the above f; we obtainZ m=n0 log(2 + 2 os�x) dx = 1n mXk=1 log�2 + 2 os (2k�1)�2n �+O�m 124 1n3 n4(n�m)4�



5.3 Inequalities for Norms of Fators 261for all integers 0 � m � n: ThusCn;m = exp log mYk=1�2 + 2 os (2k�1)�2n �!(5:3:1) =  exp 1n mXk=1 log�2 + 2 os (2k�1)�2n �!!n= exp�O� mn2(n�m)4�� (exp(I(n;m)))n ;where I(n;m) := Z m=n0 log(2 + 2 os�x) dx :So(5:3:2) �Cn;bn=2�1=n � exp Z 1=20 log(2 + 2 os�x) dx! = 1:7916 : : :and(5:3:3) �Cn;b2n=3�1=n � exp Z 2=30 log(2 + 2 os�x) dx! = 1:9081 : : : :We use the notation an � bn and an . bn to mean limn!1 an=bn = 1 andlim supn!1 an=bn � 1; respetively.On estimating 12Cn;mCn;n�m in Theorem 5.3.1 and using (5.3.2), weobtain the following:Corollary 5.3.2. Let p 2 Pn and suppose p = qr for some polynomials qand r: Thenkqk[�1;1℄krk[�1;1℄ � 2n�1 bn=2Yk=1 �1 + os (2k�1)�2n �2 kpk[�1;1℄� 12C2n;bn=2kpk[�1;1℄and equality holds when p is the Chebyshev polynomial Tn of degree n, andthe fator q 2 Pm is hosen so that m := bn=2 and q vanishes at the mzeros of Tn losest to �1: Here C2=nn;bn=2 � 3:20991 : : : ; hene�kqk[�1;1℄krk[�1;1℄kpk[�1;1℄ �1=n . 3:20991 : : : :



262 5. Basi InequalitiesThe proof of Theorem 5.3.1 proeeds through a number of lemmas. Forthe remainder of the proof we assume that 0 < m < n are �xed. Now(5:3:4) supfkqk[�1;1℄krk[�1;1℄ : kqrk[�1;1℄ = 1 ; q 2 Pm ; r 2 Pn�mgis attained for some q 2 Pm and r 2 Pn�m: We proeed to show that thereare extremal polynomials q 2 Pm and r 2 Pn�m suh that p := qr is theChebyshev polynomial Tn of degree of n; and that the fators q and r areas advertised, that is,p(x) = (qr)(x) = Tn(x) = 12 nYk=1 2�x� os (2k�1)�2n � ;and the extremal fators, q and r, are given byq(x) := 1p2 mYk=1 2�x� os (2k�1)�2n �and r(x) := 1p2 nYk=m+1 2�x� os (2k�1)�2n � ;respetively. Note that for the above q and r we havekqk[�1;1℄ = jq(�1)j = 1p2 Cn;mand krk[�1;1℄ = jr(1)j = 1p2 Cn;n�m :First we show that there exist extremal polynomials q 2 Pm andr 2 Pn�m suh that(5:3:5) jq(�1)j = kqk[�1;1℄ and jr(1)j = krk[�1;1℄ :To see this, hoose �, � 2 [�1; 1℄ suh thatjq(�)j = kqk[�1;1℄ and jr(�)j = krk[�1;1℄ ;where, onsidering q(�z) and r(�z) if neessary, we may assume that� � �. Note that � = � annot happen, so � < �. We havekqk[�;�℄krk[�;�℄kqrk[�;�℄ � kqk[�1;1℄krk[�1;1℄kqrk[�1;1℄sine the numerators are equal andkqrk[�;�℄ � kqrk[�1;1℄ :Let eq 2 Pm be de�ned by shifting q from [�; �℄ to [�1; 1℄ linearly so that�! �1: Let er 2 Pn�m be de�ned by shifting r from [�; �℄ to [�1; 1℄ linearlyso that � ! 1: Then eq 2 Pm and er 2 Pn�m are extremal polynomials forwhih (5.3.5) holds.



5.3 Inequalities for Norms of Fators 263Lemma 5.3.3. Suppose q 2 Pm and r 2 Pn�m are extremal polynomialsfor whih (5.3.5) holds. Then there are extremal polynomials eq 2 Pm ander 2 Pn�m having only real zeros for whih (5.3.5) holds.Proof. Let eq(z) be de�ned by replaing every fator z � � with nonreal �by z�(j�+1j�1) in the fatorization of q: Let er(z) be de�ned by replaingevery fator z � � with nonreal � by z � (1� j� � 1j) in the fatorizationof r: Now it is elementary geometry to show that eq 2 Pm and er 2 Pn�mare extremal polynomials for whih (5.3.5) holds, and all the zeros of botheq and er are real. utLemma 5.3.4. Suppose q 2 Pm and r 2 Pn�m are extremal polynomialshaving only real zeros for whih (5.3.5) holds. Then there are extremal poly-nomials eq 2 Pm and er 2 Pn�m having all their zeros in [�1; 1℄ for whih(5.3.5) holds.Proof. Let eq(z) be de�ned by replaing every fator z�� by z�1 if � > 1,and by 1 if � < �1; in the fatorization of q: Let er(z) be de�ned by replaingevery fator z � � by z + 1 if � < �1; and by 1 if � > 1: Now it is againelementary geometry to show that eq 2 Pm and eq 2 Pn�m are extremalpolynomials having all their zeros in [�1; 1℄ for whih (5.3.5) holds. utSo we now assume that q 2 Pm and r 2 Pn�m are extremal polyno-mials having all their zeros in [�1; 1℄ for whih (5.3.5) holds. We may alsoassume that deg(q) = m and deg(r) = n�m; otherwise we would studyeq(z) := zm�deg(q)q(z) 2 Pmand er(z) := zn�m�deg(r)r(z) 2 Pn�m ;whih are also extremal polynomials having all their zeros in [�1; 1℄ forwhih (5.3.5) holds.It is now lear that if q and r are extremal polynomials with the aboveproperties, then the smallest zero of q is not less than the largest zero of r:Indeed, if there were numbers �1 � � < � � 1 so that q(�) = r(�) = 0;then the polynomials eq(z) := q(z)z � �z � � 2 Pmand er(z) := r(z)z � �z � � 2 Pn�mwould ontradit the extremality of q and r sine



264 5. Basi Inequalitieskeqk[�1;1℄ � jeq(�1)j > jq(�1)j = kqk[�1;1℄ ;kerk[�1;1℄ � jer(1)j > jr(1)j = krk[�1;1℄ ;and keqerk[�1;1℄ = kqrk[�1;1℄ :So now we have extremal polynomials q 2 Pm and r 2 Pn�m of theform q(z) = pa mYk=1(z � �k) and r(z) = pa n�mYk=1 (z � �k)satisfying jq(�1)j = kqk[�1;1℄ and jr(1)j = krk[�1;1℄ ;where �1 � �1 � �2 � � � � � �n�m � �1 � �2 � � � � � �m � 1and the onstant a > 0 is hosen so that for p := qr we have kpk[�1;1℄ = 1:Now we are ready to prove Theorem 5.3.1.Proof of Theorem 5.3.1. We show three properties of p = qr:(1) jp(�1)j = 1 and kp(1)j = 1:(2) kp(x)k[�i;�i+1℄ = 1; i = 1; 2; : : : ; n�m� 1,kp(x)k[�i;�i+1℄ = 1; i = 1; 2; : : : ;m� 1.(3) kpk[�n�m;�1℄ = 1:These three fats show that p is indeed the Chebyshev polynomial �Tnde�ned by (2.1.1) sine �Tn are the only polynomials of degree at most nthat equiosillate n+ 1 times on [�1; 1℄ with uniform norm 1:To prove (1), assume to the ontrary that jp(�1)j < 1: Then there isa Æ < �1 suh that kpk[Æ;1℄ = kpk[�1;1℄ :Sine jqj is stritly dereasing on [Æ;�1℄;kqk[Æ;1℄ � jq(Æ)j > jq(�1)j = kqk[�1;1℄and, of ourse, krk[Æ;1℄ � krk[�1;1℄ :Let eq 2 Pm and er 2 Pn�m be the polynomials q and r shifted linearlyfrom [Æ; 1℄ to [�1; 1℄ so that 1 7! 1: By the previous observations, these eq



5.3 Inequalities for Norms of Fators 265and er ontradit the extremality of q and r; hene jp(�1)j = 1; and we are�nished. A similar argument shows that jp(1)j = 1:To prove (2) let s(z) := (z � �i)(z � �i+1) :Given � > 0; we an �nd 0 < Æ1; Æ2 < � suh thatt(z) := (z � (�i � Æ1))(z � (�i+1 + Æ2))satis�es t(1) = s(1) ; kt� sk[�1;1℄ < � ;and jt(x)j < js(x)j ; x 2 [�1; �i � Æ1℄ [ [�i+1 + Æ2; 1) :Suppose kpk[�i;�i+1℄ < 1: Letbq(z) := q(z) 2 Pmand br(z) := r(z) t(z)s(z) 2 Pn�m :If � > 0 is suÆiently small, thenkbqbrk[�1;1℄ � kqrk[�1;1℄ and j(bqbr)(�1)j < 1 :The seond inequality guarantees that there exists a Æ < �1 suh thatkbqbrk[Æ;1℄ = kbqbrk[�1;1℄ :Sine jbqj is (stritly) dereasing on (�1; 1℄;kbqkÆ;1℄ � jbq(Æ)j > jbq(�1)j = jq(�1)j = kqk[�1;1℄ :Also kbrk[Æ;1℄ � kbrk[�1;1℄ � jbr(1)j = jr(1)j = krk[�1;1℄ :Now let eq 2 Pm and er 2 Pn�m be the polynomials bp and bq shifted linearlyfrom [Æ; 1℄ to [�1; 1℄ so that �1! �1: By the previous observations, theseeq and er ontradit the extremality of q and r: Hene kpk[�i;�i+1℄ = 1; andthe proof is �nished. The proof of kpk[�i;�i+1℄ = 1 is idential.To prove (3) assume that kpk[�n�m;�1℄ < 1: Leteq(z) := pa(z � (�1 + �)) mYk=2(z � �k)



266 5. Basi Inequalitiesand er(z) := pa(z � (�n�m � �)) n�m�1Yk=1 (z � �k) :If � > 0 is suÆiently small, thenkeqk[�1;1℄ � jeq(�1)j > jq(�1)j = kqk[�1;1℄ ;kerk[�1;1℄ � jer(1)j > jr(1)j = krk[�1;1℄ ;and keqerk[�1;1℄ � kqrk[�1;1℄ ;whih ontradits the extremality of q and r: Hene kpk[�n�m;�1℄ = 1; in-deed. utTheorem 5.3.5. Suppose p 2 Pn is moni and q 2 Pm is a moni fator ofp: Then jq(��)j � �m�n2n�1 mYk=1�1 + os (2k�1)�2n � kpk[��;�℄for every � > 0: Equality holds if p is the Chebyshev polynomial Tn;� ofdegree n on [��; �℄ (normalized to be moni), and the moni fator q 2 Pmis hosen so that q vanishes at the m zeros of Tn;� losest to �. Note thatTn;�(x) = �nTn(x=�); where Tn is de�ned by (2.1.1).The proof of Theorem 5.3.5 is outlined in E.1.Corollary 5.3.6. Suppose p 2 Pn is moni and q 2 Pm is a moni fator ofp: Thenjq(�2)j � 2m�1 mYk=1�1 + os (2k�1)�2n � kpk[�2;2℄ = 12Cn;mkpk[�2;2℄and the inequality is sharp for all m � n: Here, for all m � n;C1=nn;m � C1=nn;b2n=3 � 1:9081 : : : ;and hene � jq(�2)jkpk[�2;2℄�1=n . 1:9081 : : : :



5.3 Inequalities for Norms of Fators 267Proof. Take � = 2 in Theorem 5.3.5. Note that2m mYk=1�1 + os (2k�1)�2n � � 2(n) (n)Yk=1 �1 + os (2k�1)�2n � ;where (n)+1 := b 23n+ 32 is the smallest k 2 N for whih os (2k�1)�2n � � 12 :So, for every m = 0; 1; : : : ; n; Cn;m � Cn;(n)and by (5.3.3) C1=nn;m . Cn;b2n=3 . 1:9081 : : : : utTheorem 5.3.7. Suppose p 2 Pn is moni and has a moni fator of theform qr; where q 2 Pm1 and r 2 Pm2 : Thenjq(��)jjr(�)j ��m1+m2�n2n�1� m1Yk=1�1 + os (2k�1)�2n � m2Yk=1�1 + os (2k�1)�2n � kpk[��;�℄ :Equality holds if p is the Chebyshev polynomial Tn;� of degree n on [��; �℄normalized to be moni, and the fators q 2 Pm1 and r 2 Pm2 are hosenso that q vanishes at the m1 zeros of Tn;� losest to �; while r vanishes atthe m2 zeros of Tn;� losest to ��:The proof of Theorem 5.3.7 is analogous to the proof of Theorem 5.3.1and is left as an exerise (see E.2).Theorem 5.3.8. Suppose p 2 Pn is moni and has a moni fator of theform q1q2 � � � qj ; where qi 2 Pmi and m := m1 +m2 + � � �+mj � n. ThenjYi=1 kqik[��;�℄ ��m�n2n�1� bm=2Yk=1 �1 + os (2k�1)�2n � dm=2eYk=1 �1 + os (2k�1)�2n � kpk[��;�℄for every � > 0. Equality holds if p is the Chebyshev polynomial Tn;�of degree n on [��; �℄ normalized to be moni, j = 2; and the fatorsq1 2 Pbm=2 and q2 2 Pdm=2e are hosen so that q1 vanishes at the bm=2zeros of Tn;� losest to �; while q2 vanishes at the dm=2e zeros of Tn;�losest to ��:



268 5. Basi InequalitiesProof. For eah qi, write qi = risi ;where ri is the moni fator of qi omposed of the roots of qi with negativereal part, while si is the moni fator of qi omposed of the roots of qi withnonnegative real part. Sokrik[��;�℄ = jri(�)j and ksik[��;�℄ = jsi(��)j :Thus jYi=1 kqik[��;�℄ � ��� jYi=1 ri(�)��� � ��� jYi=1 si(��)��� :We now apply Theorem 5.3.7 to the two fators Qji=1 ri and Qji=1 si to�nish the proof. utAs before, let D := fz 2 C : jzj < 1g:We now derive inequalities on thedisk from those on the interval. A ontinuous funtion on D has the sameuniform norm on both D and D and it is notationally onvenient to statethe remaining theorems over D. Suppose t 2 Pn, s 2 Pm; and v 2 Pn�mare moni, and t = sv: By the maximum priniple, t, s; and v ahieve theirmaximum on D somewhere on �D. Now onsiderp(x) := t(z)t(z�1) ;q(x) := s(z)s(z�1) ; and r(x) := v(z)v(z�1)with x := z + z�1 :The e�et of this transformation on linear fators is(z � �)(z�1 � �) = ��x+ 1 + �2 ;so p 2 Pn, q 2 Pm, r 2 Pn�m; and p = qr: Alsokpk[�2;2℄ � ktk2D :If t(0) 6= 0; then the modulus of the leading oeÆient of p is jt(0)j; whilethe modulus of the leading oeÆient of q is js(0)j; and the modulus of theleading oeÆient of r is jv(0)j:From these transformations and the interval inequalities we an deduethe next three theorems.



5.3 Inequalities for Norms of Fators 269Theorem 5.3.9. Let t 2 Pn be moni and suppose t = sv; where s 2 Pmand v 2 Pn�m: Thenjv(0)j1=2kskD � � 12Cn;m�1=2 ktkD ;where Cn;m is the same as in Theorem 5.3.1. This bound is attained whenm � n are even, t(z) = zn + 1; and s 2 Pm vanishes at m adjaent zerosof t on the unit irle.Proof. We may assume, by performing an initial rotation if neessary, thatkskD = js(�1)j :So from Corollary 5.3.6 we dedue thatksk2D = js(�1)j2 = jq(�2)j(5:3:6) � js(0)=t(0)j2m�1 mYk=1�1 + os (2k�1)�2n � kpk[�2;2℄� js(0)=t(0)j2m�1 mYk=1�1 + os (2k�1)�2n � ktk2D ;where s(0)=t(0) = 1=v(0): utTheorem 5.3.10. Suppose t = sv, where s 2 Pm and r 2 Pn�m. ThenkskDkvkD � � 12Cn;mCn;n�m�1=2 ktkD ;where Cn;m is the same as in Theorem 5.3.1 and(Cn;mCn;n�m)1=(2n) � C1=nn;bn=2 � 1:7916 : : : :This bound is attained when m � n are even, t(z) = zn + 1; and s 2 Pmvanishes at the m zeros of t losest to 1 and v 2 Pn�m vanishes at then�m zeros of t losest to �1:Proof. From Theorem 5.3.1 we an dedue that if a; b 2 �D; thenjs(a)j2jv(b)j2 = js(a)s(a�1)jjv(b)v(b�1)j= jq(a+ a�1)jjr(b + b�1)j� 12Cn;mCn;n�mkpk[a+a�1;b+b�1℄� 12Cn;mCn;n�mkpk[�2;2℄� 12Cn;mCn;n�mktk2D ;where, without loss of generality, we may assume that a+ a�1 � b + b�1.The result now follows on hoosing a and b to be points on �D where s andv, respetively, ahieve their uniform norm on D: utIn the multifator ase we have the following theorem:



270 5. Basi InequalitiesTheorem 5.3.11. Suppose t 2 Pn is of the form t = vs1s2 � � � sj ; wheresi 2 Pmi and v 2 Pn�m with m := m1 +m2 + � � �+mj � n: Thenjv(0)j1=2 jYi=1 ksikD � 2(m�1)=2�0�bm=2Yk=1 �1 + os (2k�1)�2n � dm=2eYk=1 �1 + os (2k�1)�2n �1A1=2 ktkD :Equality holds if t(z) = zn + 1, j = 2, m1 = m2 := m=2 and n are even,and the fators q1 2 Pm=2 and q2 2 Pm=2 are hosen so that q1 vanishes atthe m=2 zeros of t losest to 1 and q2 vanishes at the m=2 zeros of t losestto �1:Proof. This follows from Theorem 5.3.8 in exatly the same way as Theorem5.3.10 follows from Theorem 5.3.1. utComments, Exerises, and Examples.The �rst result of this setion is due to Kneser [34℄ and in part to Aumann[33℄. The proof follows Borwein [94℄, as does most of the setion. There aremany variations and generalizations. See Boyd [92℄, [93a℄, [93b℄, [94a℄, and[94b℄; Beauzamy and Eno [85℄; Beauzamy, Bombieri, Eno, and Mont-gomery [90℄; Gel'fond [60℄; Glesser [90℄; Granville [90℄; Mahler [60℄, [62℄,and [64℄; and Mignotte [82℄. Some of these are presented in the exerises.In partiular, E.6 reprodues a very pretty proof of Boyd [92℄ thatkqkDkrkD � (1:7916 : : : )nkpkD ;where p 2 Pn and p = qr with some q 2 Pm and r 2 Pn�m: (Note that wehave not assumed real oeÆients unlike in Theorem 5.3.10, and we have� instead of . :)E.1 Proof of Theorem 5.3.5.Outline. Let m < n and � > 0 be �xed. The valuesup� jq(��)jkpk[��;�℄ : q 2 Pm and p 2 Pn are moni and q divides p�is attained for some moni q 2 Pm and p 2 Pn. We an now argue, exatlyas in the proof of Lemma 5.3.3, that there are extremal polynomials p 2 Pnand q 2 Pm suh that all the zeros of p are real and lie in [��;1): Arguingas in Lemma 5.3.4 gives that p has all its roots in [��; �℄: Thus q must beomposed of the m roots of p losest to �:



5.3 Inequalities for Norms of Fators 271The argument of the proof of Theorem 5.3.1 now applies essentiallyverbatim and proves that an extremal p 2 Pn an be hosen to be theChebyshev polynomial on [��; �℄ normalized to be moni. Thus on [�1; 1℄p(x) = nYk=1�x� os (2k�1)�2n � and q(x) = mYk=1 �x� os (2k�1)�2n �from whih the result follows (on onsidering �np(x=�) and �mq(x=�) on[��; �℄). utE.2 Proof of Theorem 5.3.7.Hint: Proeed as in the proof of Theorem 5.3.1 (or E.1). utE.3 A Version of Theorem 5.3.10 for Complex Polynomials. Supposet = sv; where s 2 Pm and v 2 Pn�m: Thenjs(�1)jjv(1)j � � 12Cn;mCn;n�m�1=2 ktkDand if t is monijt(0)j1=2kskDkvkD � 12 (Cn;mCn;n�m)1=2 ktk2D :Hint: The �rst inequality follows as in the proof of Theorem 5.3.10 witha := �1 and b := 1: The seond part is immediate from Theorem 5.3.9. utE.4 Mahler's Measure. Let F : C k ! C , and let the Mahler measure ofF be de�ned byMk(F ) := exp�Z 10 � � �Z 10 log jF (e2�it1 ; : : : ; e2�itk )j dt1 � � � dtk�if the integral exist.a℄ Show that if p(z) =  nYi=1(z � �i) ;  ; �i 2 C ;then M1(p) = jj nYi=1maxf1; j�ijg :Hint: Use Jensen's formula (see E.10 ℄ of Setion 4.2). utb℄ Show that if F := F (z1; : : : ; zk) and G := G(z1; : : : ; zk); thenMk(FG) =Mk(F )Mk(G) :



272 5. Basi Inequalities℄ Show that M1(ax+ b) = max(jaj; jbj) ;M2(1 + x+ y) =M1(maxf1; j1 + xjg) ;M2(1 + x+ y � xy) =M1(maxfj1� xj; j1 + xjg) :d℄ One an numerially hek thatM2(1 + x+ y) = 1:381356 : : :and M2(1 + x+ y � xy) = 1:791622 : : : :E.5 The Norm of a Fator of a p 2 Pn on the Unit Disk. Suppose p 2 Pnis moni and has a moni fator q 2 Pm. ThenkqkD � �nkpkD ;where � :=M2(1 + x+ y) = 1:3813 : : : :Outline. Letp(x) := nYi=1(x� �i) and q(x) := mYi=1(x� �i) ; �i 2 C :Suppose kqkD = jq(u)j; where u 2 �D: ThenkqkD = jq(u)j = mYi=1 ju� �ij � nYi=1maxfju� �ij; 1g=M1(p(x+ u)) �M1(maxf1; jx+ ujngkpkD) ;where the last equality holds by E.4 a℄, and the last inequality followsbeause(5:3:7) jp(z)j � maxf1; jzjng � kpkDholds for every p 2 Pn and z 2 C by E.18 a℄ of Setion 5.1. Now using E.4b℄ and M1(maxf1; jx+ ujg) =M1(maxf1; jx+ 1jg) ;we obtain kqkD �M1(maxf1; jx+ ujng) kpkD=M1((maxf1; jx+ ujg)n) kpkD=M1((maxf1; jx+ 1jg)n) kpkD= (M1(maxf1; jx+ 1jg))n kpkD= (M2(1 + x+ y))nkpkD = �nkpkD : ut



5.3 Inequalities for Norms of Fators 273E.6 Another Inequality for the Fators of a p 2 Pn on the Unit Disk. Letp = qr; where q 2 Pm and r 2 Pn�m: ThenkqkDkrkD � ÆnkpkDwhere Æ :=M2(1 + x+ y � xy) = 1:7916 : : : .Outline. Without loss of generality we may assume that q and r are moni.Letq(x) := mYi=1(x� �i) and r(x) := nYi=m+1(x� �i) ; �i 2 C :Choose u 2 �D and v 2 �D suh that jq(u)j = kqkD and jr(v)j = krkD:Then, using E.4 b℄ and ℄, we obtainkqkDkrkD = jq(u)jjr(v)j = mYi=1 ju� �ij nYi=m+1 jv � �ij� nYi=1maxfju� �ij; jv � �ijg= nYi=1 ju� �ijmax�1; ����v � �iu� �i �����=M1�(x� 1)np�ux� vx� 1 �� :Now, by (5.3.7),����(x� 1)np�xu� vx� 1 ����� � �maxnjx� 1j; ���x� vu ���o�n kpkD ;hene kqkDkrkD �M1((maxfjx� 1j; jx� v=ujg)n)kpkD= (M1(maxfjx� 1j; jx� v=ujg))nkpkD� (M1(maxfj1� xj; j1 + xjg))n kpkD= (M2(1 + x+ y � xy))nkpkD= (1:7916 : : : )nkpkD : ut



274 5. Basi InequalitiesE.7 Bombieri's Norm. For Q(z) := Pnk=0 akzk the Bombieri p norm isde�ned by [Q℄p :=  nXk=0�nk�1�pjakjp!1=p :Note that this is a norm on Pn for every p 2 [1;1); but it varies withvarying n: The following remarkable inequality holds (see Beauzamy et al.[90℄). If Q = RS with Q 2 Pn, R 2 Pm, and S 2 Pn�m; then[R℄2[S℄2 � �nm�1=2[Q℄2and this is sharp.One feature of this inequality is that it extends naturally to the multi-variate ase. See Beauzamy, Eno, and Wang [94℄ and Reznik [93℄ forfurther disussion.



This is page 275Printer: Opaque this6Inequalities in M�untz Spaes

OverviewVersions of Markov's inequality for M�untz spaes, both in C[a; b℄ andLp[0; 1℄, are given in the �rst setion of this hapter. Bernstein- andNikolskii-type inequalities are treated in the exerises, as are various otherinequalities for M�untz polynomials and exponential sums. The seond se-tion provides inequalities, inluding most signi�antly a Remez-type in-equality, for nondense M�untz spaes.6.1 Inequalities in M�untz SpaesWe �rst present a simpli�ed version of Newman's beautiful proof of anessentially sharp Markov-type inequality for M�untz polynomials. This sim-pli�ation allows us to prove the Lp analogs of Newman's inequality. Then,using the results of Setion 3.4 on orthonormal M�untz-Legendre polynomi-als, we prove an L2 version of Newman's inequality for M�untz polynomialswith omplex exponents. Some Nikolskii-type inequalities for M�untz poly-nomials are studied. The exerises treat a number of other inequalities forM�untz polynomials and exponential sums. Throughout this setion we usethe notation introdued in Setion 3.4. Unless stated otherwise, the spanalways denotes the linear span over R:



276 6. Inequalities in M�untz SpaesTheorem 6.1.1 (Newman's Inequality). Let � := (�i)1i=0 be a sequene ofdistint nonnegative real numbers. Then23 nXj=0 �j � sup06=p2Mn(�) kxp0(x)k[0;1℄kpk[0;1℄ � 9 nXj=0 �jfor every n 2 N; where Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:Proof. It is equivalent to prove that(6:1:1) 23 nXj=0 �j � sup06=P2En(�) kP 0k[0;1)kPk[0;1) � 9 nXj=0 �j ;where En(�) := spanfe��0t; e��1t; : : : ; e��ntg: Without loss of generalitywe may assume that �0 := 0: By a hange of sale we may also assume thatPnj=0 �j = 1: We begin with the �rst inequality. We de�ne the Blashkeprodut B(z) := nYj=1 z � �jz + �jand the funtion(6:1:2) T (t) := 12�i Z� e�ztB(z) dz ; � := fz 2 C : jz � 1j = 1g :By the residue theoremT (t) := nXj=1(B0(�j))�1e��jt ;and hene T 2 En(�): We laim that(6:1:3) jB(z)j � 13 ; z 2 � :Indeed, it is easy to see that 0 � �j � 1 implies����z � �jz + �j ���� � 2� �j2 + �j = 1� 12�j1 + 12�j ; z 2 � :So, for z 2 �;jB(z)j � nYj=1 1� 12�j1 + 12�j � 1� 12 nPj=1 �j1 + 12 nPj=1 �j = 1� 121 + 12 = 13 :



6.1 Inequalities in M�untz Spaes 277Here the inequality1� x1 + x 1� y1 + y = 1� (x + y)1 + (x + y) + 2xy(x+ y)(1 + x)(1 + y)(1 + (x+ y))� 1� (x + y)1 + (x + y) ; x; y � 0is used. From (6.1.2) and (6.1.3) we an dedue that(6:1:4) jT (t)j � 12� Z� ���� e�ztB(z) ���� jdzj � 12� 3(2�) = 3 ; t � 0 :Also T 0(t) = 12�i Z� �ze�ztB(z) dzand(6:1:5) T 0(0) = � 12�i Z� zB(z) dz = � 12�i Zjzj=1 zB(z) dz :Now, for jzj > max1�j�n �j ; we have the Laurent series expansionzB(z) = z nYj=1 1 + �j=z1� �j=z = z nYj=1 1 + 2 1Xk=1��jz �k!(6:1:6) = z0�1 + 2 nXj=1 �j! z�1 + 2 nXj=1 �j!2 z�2 + � � �1A= z + 2 + 2z�1 + � � � ;whih, together with (6.1.5), yields that T 0(0) = �2: Hene, by (6.1.4),jT 0(0)jkTk[0;1) � 23 = 23 nXj=1 �j ;so the lower bound of the theorem is proved.To prove the upper bound in (6.1.1), �rst we show that ifU(t) := 12�i Z� e�zt(1� z)B(z) dz ; � := fz 2 C : jz � 1j = 1g ;then(6:1:7) Z 10 jU 00(t)j dt � 6 :



278 6. Inequalities in M�untz SpaesIndeed, observe that if z = 1 + ei�; then jzj2 = 2 + 2 os �; so (6.1.3) andFubini's theorem yield thatZ 10 jU 00(t)j dt = Z 10 12� ����Z� z2e�zt(1� z)B(z) dz���� dt� 12� Z 10 Z 2�0 jzj2je�ztjjB(z)j d� dt� 32� Z 10 Z 2�0 (2 + 2 os �)e�(1+os �)t d� dt= 32� Z 2�0 (2 + 2 os �) 11 + os � d� = 6 :Now we show that(6:1:8) Z 10 e��jtU 00(t) dt = �j � 3 :To see this we write the left-hand side asZ 10 e��jtU 00(t) dt = Z 10 e��jt 12�i Z� z2e�zt(1� z)B(z) dz dt= 12�i Z 10 Z� z2e�(z+�j)t(1� z)B(z) dz dt = 12�i Z� z2(z + �j)(1� z)B(z) dz= 12�i Zjzj=2 zz + �j z1� z 1B(z) dz ;where in the third equality Fubini's theorem is used again. Here, for jzj > 1;we have the Laurent series expansionszz + �j = 1� �jz�1 + �2jz�2 + � � � ;z1� z = �1� z�1 � z�2 � � � � ;and, as in (6.1.6), 1B(z) = 1 + 2z�1 + 2z�2 + � � � :Now (6.1.8) follows from the residue theorem (see, for example, Ash [71℄).Let P 2 En(�) be of the formP (t) = nXj=0 je��jt ; j 2 R :



6.1 Inequalities in M�untz Spaes 279ThenZ 10 P (t+ a)U 00(t) dt = Z 10 nXj=0 je��jae��jtU 00(t) dt= nXj=0 je��ja Z 10 e��jtU 00(t) dt = nXj=0 j(�j � 3)e��ja= �P 0(a)� 3P (a)and so(6:1:9) jP 0(a)j � 3jP (a)j+ Z 10 jP (t+ a)U 00(t)j dt :Combining this with (6.1.7) giveskP 0k[0;1) � 3 kPk[0;1) + 6 kPk[0;1) = 9 kPk[0;1) ;and the theorem is proved. utThe next theorem establishes an Lp extension of Newman's inequality.Theorem 6.1.2 (Newman's Inequality in Lp). Let p 2 [1;1): If � := (�i)1i=0is a sequene of distint real numbers greater than �1=p; thenkxP 0(x)kLp[0;1℄ � 0�1p + 12 nXj=0��j + 1p�1A kPkLp[0;1℄for every P 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :If � := (i)1i=0 is a sequene of distint positive real numbers, thenkP 0kLp[0;1) � 12 nXj=0 j! kPkLp[0;1)for every P 2 En(� ) := spanfe�0t; e�1t; : : : ; e�ntg:Proof. First we show that the �rst statement of the theorem follows fromthe seond. Indeed, if (�i)1i=0 is a sequene of distint real numbers greaterthan �1=p and i := �i+ 1p for eah i; then (i)1i=1 is a sequene of distintpositive real numbers. Let Q 2Mn(�): Applying the seond inequality withP (t) := Q(e�t)e�t=p 2 En(� )and using the substitution x = e�t, we obtain



280 6. Inequalities in M�untz Spaes�Z 10 ����x�x1=pQ(x)�0���� p x�1 dx�1=p � 12 nXj=0��j + 1p�! kQkLp[0;1℄ :Now the produt rule of di�erentiation and Minkowski's inequality yieldkxQ0(x)kLp[0;1℄ � 0�1p + 12 nXj=0��j + 1p�1A kQkLp[0;1℄ ;whih is the �rst statement of the theorem.We prove the seond statement. Let P 2 En(� ) and p 2 [1;1) be�xed. As in the proof of Theorem 6.1.1, by a hange of sale, without lossof generality we may assume that Pnj=0 j = 1: It follows from (6.1.9) andH�older's inequality (see E.7 a℄ of Setion 2.2) thatjP 0(a)jp � 2p�1�3pjP (a)jp +�Z 10 jP (t+ a)jU 00(t)j dt�p�� 6pjP (a)jp+ 2p�1 �Z 10 jP (t+ a)jpjU 00(t)j dt�1=p�Z 10 jU 00(t)j dt�1=q!pfor every a 2 [0;1), where q 2 (1;1℄ is the onjugate exponent to p de�nedby p�1 + q�1 = 1: Combining the above inequality with (6.1.7), we obtainjP 0(a)jp � 6pjP (a)jp + 2p�16p=q Z 10 jP (t+ a)jpjU 00(t)j dtfor every a 2 [0;1): Integrating with respet to a; then using Fubini'stheorem and (6.1.7), we onlude thatkP 0kpLp[0;1) � 6pkPkpLp[0;1) + 2p�16p=q Z 10 Z 10 jP (t+ a)jpjU 00(t)j dt da� 6pkPkpLp[0;1) + 2p�16p=q Z 10 Z 10 jP (t+ a)jpjU 00(t)j da dt� 6pkPkpLp[0;1) + 2p�16p=qkPkpLp[0;1) Z 10 jU 00(t)j dt� 6pkPkpLp[0;1) + 2p�16p=q+1kPkpLp[0;1)= (6p + 2p�16p)kPkpLp[0;1) � 12pkPkpLp[0;1)and the proof is �nished. utThe following Nikolskii-type inequality follows from Theorem 6.1.1quite simply:



6.1 Inequalities in M�untz Spaes 281Theorem 6.1.3 (Nikolskii-Type Inequality). Suppose 0 < q < p � 1: If� := (�i)1i=0 is a sequene of distint real numbers greater than �1=q; thenky1=q�1=pP (y)kLp[0;1℄ �  18 � 2q nXj=0��j + 1q�!1=q�1=p kPkLq[0;1℄for every P 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:If � := (i)1i=0 is a sequene of distint positive real numbers, then(6:1:10) kPkLp[0;1) �  18 � 2q nXj=0 j!1=q�1=p kPkLq[0;1)for every P 2 En(� ) := spanfe�0t; e�1t; : : : ; e�ntg:Proof. First we show that the �rst statement of the theorem follows fromthe seond. If (�i)1i=0 is a sequene of distint real numbers greater than�1=q and i := �i + 1=q for eah i; then (i)1i=1 is a sequene of distintpositive real numbers. Let Q 2Mn(�): Applying (6.1.10) withP (t) := Q(e�t)e�t=q 2 En(� )and using the substitution x = e�t; we obtainky1=q�1=pQ(y)kLp[0;1℄� (18 � 2q)1=q�1=p nXj=0��j + 1q�!1=q�1=p kQkLq[0;1℄ ;whih is the �rst statement of the theorem.It is suÆient to prove (6.1.10) when p = 1; and then a simple ar-gument gives the desired result for arbitrary 0 < q < p < 1: To see this,assume that there is a onstant C so thatkPk[0;1) � C1=qkPkLq[0;1)for every P 2 En(� ) and 0 < q <1: ThenkPkpLp[0;1) = Z 10 jP (t)jp�q+q dt � kPkp�q[0;1)kPkqLq[0;1)� Cp=q�1kPkp�qLq[0;1℄kPkqLq[0;1)and therefore kPkLp[0;1) � C1=q�1=pkPkLq[0;1)for every f 2 En(� ) and 0 < q < p � 1.



282 6. Inequalities in M�untz SpaesWhen p = 1, (6:1:10) an be proven as follows. Let P 2 En(� ); andlet y 2 [0;1) be hosen so that jP (y)j = kPk[0;1): From Theorem 6.1.1and the Mean Value Theorem, we an dedue that jP (t)j > 12kPk[0;1) forevery t 2 I := �y; y + (18)�1� ; where  := nXj=0 j :Thus kPkqLq[0;1℄ � ZI jP (t)jq dt �  18 nXj=0 j!�1 2�qkPkq[0;1) ;and the result follows. utTheorem 6.1.3 immediately implies the following result, whih is aspeial ase of Theorem 4.2.4:Theorem 6.1.4 (M�untz-Type Theorem in Lp). Let p 2 [1;1): Let (�i)1i=0be a sequene of distint real numbers greater than �1=p satisfying1Xj=0��j + 1p� <1 :Then spanfx�0 ; x�1 ; : : : g is not dense in Lp[0; 1℄:The next theorem o�ers an L2 analog of Theorem 6.1.1 even for om-plex exponents. It also improves the multipliative onstant 12 in the L2inequality of Theorem 6.1.2 and shows that the L2 inequality of Theorem6.1.2 is essentially sharp.Theorem 6.1.5. If � := (�i)1i=0 is a sequene of distint omplex numberswith Re(�i) > �1=2 for eah i; thensup06=p2Mn(�)kxp0(x)kL2[0;1℄kpkL2[0;1℄�  nXj=0 j�j j2 + nXj=0(1 + 2Re(�j)) nXk=j+1(1 + 2Re(�k))!1=2for every n 2 N; whereMn(�) denotes the linear span of fx�0 ; x�1 ; : : : ; x�ngover C :If � := (�i)1i=0 is a sequene of distint nonnegative real numbers, then12p30 nXj=0 �j � sup06=p2Mn(�) kxp0(x)kL2[0;1℄kpkL2[0;1℄ � 1p2 nXj=0(1 + 2�j)for every n 2 N, whereMn(�) denotes the linear span of fx�0 ; x�1 ; : : : ; x�ngover R:



6.1 Inequalities in M�untz Spaes 283Proof. Let p 2Mn(�) with kpkL2[0;1℄ = 1: Thenp(x) = nXk=0 akL�k(x) with nXk=0 jakj2 = 1and xp0(x) = nXk=0 akxL�0k (x) ;where L�k 2 Mk(�) denotes the kth orthonormal M�untz-Legendre polyno-mials on [0; 1℄: Using the reurrene formula of Corollary 3.4.5 b℄ for theterms xL�0k (x) in the above sum, we obtainxp0(x) = nXj=0 aj�j +q1 + �j + �j nXk=j+1 akq1 + �k + �k!L�j (x) :Henekxp0(x)k2L2[0;1℄ = nXj=0���aj�j +q1 + �j + �j nXk=j+1 akq1 + �k + �k��� 2 :If we apply the Cauhy-Shwarz inequality to eah term in the �rst sumand reall that Pnk=0 jakj2 = 1; we see thatkxp0(x)k2L2[0;1℄ � nXj=0 �j�j j2 + (1 + �j + �j)� nXk=j+1(1 + �k + �k)� 12  nXj=0 (1 + 2j�j j)!2 ;whih proves the �rst part and the upper bound in the seond part of thetheorem.Now we prove the lower estimate in the seond part of the theorem.With the sequene � := (�i)1i=0 of distint nonnegative real numbers, weassoiate q(x) := nXk=0p�k  kXj=0 �j!L�k(x) 2Mn(�) :Sine the system (L�k)1k=0 is orthonormal on [0,1℄, we have(6:1:11) kqk2L2[0;1℄ = nXk=0�k  kXj=0 �j!2 �  nXj=0 �j!3 :



284 6. Inequalities in M�untz SpaesFurthermorexq0(x) = nXk=0p�k  kXj=0 �j!xL�0k (x) = nXm=0 bmL�m(x) ;where, by the reurrene formula of Corollary 3.4.5 b℄,bm := �mp�m mXj=0 �j +p1 + 2�m nXk=m+1p�k(1 + 2�k) kXj=0 �j�p�m nXk=m�k kXj=0 �j :Henekxq0(x)k2L2[0;1℄ = nXm=0 b2m � nXm=0�m nXk=m �k kXj=0 �j!2= X0�m�nm�k;k0�n X0�j�k0�j0�k0 �m�k�j�k0�j0� X0�m�j�j0�k�k0�n�m�k�j�k0�j0 � 15!  nXj=0 �j!5 :This, together with (6.1.11), yields the lower bound in the seond part ofthe theorem. utComments, Exerises, and Examples.Theorem 6.1.1 is due to Newman [76℄. We presented a modi�ed versionof Newman's original proof of Theorem 6.1.1. He worked with T insteadof U , and instead of (6.1.9) he established a more ompliated identityinvolving the seond derivative of P . Therefore, he needed an appliationof Kolmogorov's inequality (see E.1) to �nish his proof. It an be proventhat if the exponents �j are distint nonnegative integers, then kxp0(x)k[0;1℄in Theorem 6.1.1 an be replaed by kp0k[0;1℄ (see E.3). Theorems 6.1.2 to6.1.4 were proved by Borwein and Erd�elyi [to appear 6℄, while Theorem6.1.5 is due to Borwein, Erd�elyi, and J. Zhang [94b℄. It is shown in E.8 thatTheorem 6.1.2 is essentially sharp for every � with a gap ondition, and forevery p 2 [2;1).The interval [0; 1℄ plays a speial role in this setion, analogs of theresults on [a; b℄; a > 0; annot be obtained by a linear transformation.E.10 deals with the nontrivial extension of Newman's inequality to intervals[a; b℄; a > 0:A onjeture of Lorentz about the \right" Bernstein-type inequalityfor exponential sums with n terms is settled in E.4.



6.1 Inequalities in M�untz Spaes 285E.1 Kolmogorov's Inequality. Show thatkf 0k2[0;1) � 4kfk[0;1)kf 00k[0;1)for every f 2 C2[0;1):Hint: By Taylor's theoremf(x+ h) = f(x) + f 0(x)h + 12f 00(�)h2 ; h > 0with some � 2 (x; x+ h): Henekf 0k[0;1) � 2h�1kfk[0;1) + (h=2)kf 00k[0;1) :Now minimize the right-hand side by takingh := 2�kfk[0;1)kf 00k�1[0;1)�1=2 : utThe onstant 4 in E.1 is not the best possible. Kolmogorov [62℄ provedthat kf (k)kR � K(n; k)kfk1�k=nR kf (n)kk=nRfor every f 2 Cn(R) and 0 < k < n and found the best possible onstantsK(n; k); see also DeVore and Lorentz [93℄. This generalizes a result of Lan-dau, who proved the above inequality for n = 2, k = 1, and showed thatK(2; 1) = p2: Various multivariate extensions of Kolmogorov's inequalityhave also been established; see, for example, Ditzian [89℄.E.2 Nikolskii-Type Inequalities.a℄ Suppose (V; k�k) is an (n+1)-dimensional real or omplex Hilbert spae,(pk)nk=0 � V is an orthonormal system, and ' 6= 0 is a linear funtional onV . Then j'(p)j �  nXk=0 j'(pk)j2!1=2 kpkfor every p 2 V: Equality holds if and only ifp =  nXj=0 '(pk)pk ;  2 R or  2 C :Hint: Write p as a linear ombination of the orthonormal elements pk; usethe linearity of '; then apply the Cauhy-Shwarz inequality. ut



286 6. Inequalities in M�untz Spaesb℄ Suppose � := (�i)1i=0 is a set of distint omplex numbers satisfyingRe(�i) > �1=2 for eah i; and y 2 [0;1) is �xed. Show thatjp(m)(y)j �  nXk=0 jL�(m)k (y)j2!1=2 kpkL2[0;1℄for every p 2Mn(�); where Mn(�) denotes the linear span offx�0 ; x�1 ; : : : ; x�ngover C ; and L�k 2 Mk(�) is the kth orthonormal M�untz-Legendre polyno-mial on [0; 1℄: Show that if there exists a q 2Mn(�) with q(m)(y) 6= 0; thenequality holds if and only ifp =  nXk=0L�(m)k (y)L�k ;  2 C :℄ Under the assumptions of part b℄ show thatjy1=2p(y)jkpkL2[0;1℄ �  nXj=0(1 + 2Re(�j))!1=2and jy3=2p0(y)jkpkL2[0;1℄ � 0� nXk=0(1 + 2Re(�k))����k + k�1Xj=0(1 + 2Re(�j))��� 21A1=2for every 0 66= p 2Mn(�) and y 2 [0; 1℄:Hint: When y = 1, use part b℄ and substitute the expliit values of L�k(1)and L�0k (1) (see Corollary 3.4.6 and formula (3.4.8)). If 0 < y < 1; then thesaling x! yx redues the inequality to the ase y = 1: utd℄ Show that if n � 1 and p 6= 0; then equality holds in the inequalities ofpart b℄ if and only if y = 1 andp =  nXk=0L�k(1)L�k or p =  nXk=0L�0k (1)L�k ;respetively, with some 0 6=  2 C :



6.1 Inequalities in M�untz Spaes 287e℄ Show that sup06=p2Pn kpk[�1;1℄kpkL2[�1;1℄ = n+ 1p2 :Hint: Show that there is an extremal polynomial ep for the above extremalproblem for whih kepk[�1;1℄ is ahieved at 1: Now use parts ℄ and d℄ toshow thatjep(1)j 2 = 12  nXk=0(1 + 2k)!Z 1�1 ep 2(t) dt = 12 (n+ 1)2 Z 1�1 ep 2(t) dtand the result follows. utE.3 An Improvement of Newman's Inequality.a℄ Suppose � := (�k)1k=0 is a sequene with �0 = 0 and �k+1 � �k � 1 foreah k: Show that kp0k[0;1℄ � 18 nXj=1 �j! kpk[0;1℄for every p 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:Hint: Let y 2 [0; 1℄: To estimate jp0(y)j distinguish two ases. If 12 � y � 1;use Theorem 6.1.1 (Newman's inequality), and if 0 � y � 12 ; use E.3 f℄ ofSetion 3.3 and Theorem 5.1.8 (Markov's inequality) transformed to [y; 1℄to show that jp0(y)j � 2n21� ykpk[y;1℄ � 8 nXj=1 �j! kpk[0;1℄for every p 2Mn(�): utThe next exerise is based on an example given by Bos.b℄ Show that for every Æ 2 (0; 1) there exists a sequene � := (�k)1k=0 with�0 = 0, �1 � 1; and �k+1 � �k � Æ ; i = 0; 1; 2; : : :suh that limn!1 sup06=p2Mn(�) jp0(0)j�Pnj=0 �j� kpk[0;1℄ =1 :Outline. Let Qn be the Chebyshev polynomial Tn transformed linearly from[�1; 1℄ to [0; 1℄, that is,Qn(x) = os(n aros(2x� 1)) ; x 2 [0; 1℄ :



288 6. Inequalities in M�untz SpaesChoose natural numbers u and v so that Æ < u=v < 1: Let � := (�k)1k=0 bede�ned by �0 := 0, �1 := 1; and�k := 1 + kuv ; k = 1; 2; : : : :Let pn(x) := x1�u�Qn(xu=v)� (�1)n�v 2Mnv�v(�) :Then jp0n(0)j = �2n2�v:For the sake of brevity letqn(x) := Qn(xu=v)� (�1)n :Use Theorem 5.1.8 (Markov's inequality) and the Mean Value Theorem toshow that kqnk[y;1℄ � 12kqnk[0;1℄with y := �2n2��v=u :Thus, if n is odd, thenkpnk[0;1℄ � kpnk[y;1℄ � y1�u(kqnk[y;1℄)v� y1�u � 12kqnk[0;1℄�v = �2n2�(u�1)v=uand jp0n(0)j�Pnv�vj=0 �j� kpnk[0;1℄ = (2n2)v�Pnv�vj=0 �1 + j uv ���2n2�(u�1)v=u� �2n2�v=u(1 + nu)nv � �2n2�v=u�1uv �!n!11 : utIn his book Nonlinear Approximation Theory, Braess [86℄ writes thefollowing: \The rational funtions and exponential sums belong to thoseonrete families of funtions whih are the most frequently used in non-linear approximation theory. The starting point of onsideration of expo-nential sums is an approximation problem often enountered for the analysisof deay proesses in natural sienes. A given empirial funtion on a realinterval is to be approximated by sums of the formnXj=1 aje�jt ;where the parameters aj and �j are to be determined, while n is �xed."The next exerise treats inequalities for exponential sums of n + 1terms.



6.1 Inequalities in M�untz Spaes 289E.4 Nikolskii- and Bernstein-Type Inequalities for Exponential Sums.Let � := (�i)1i=1be a sequene of distint nonzero real numbers. LetEn(�) := (f : f(t) = a0 + nXj=1 aje�j t ; aj 2 R)and En :=[� En(�) = (f : f(t) = a0 + nXj=1 aje�j t ; aj ; �j 2 R) ;that is, En is the olletion of all (n+ 1)-term exponential sums with on-stant �rst term. Shmidt [70℄ proved that there is a onstant (n) dependingonly on n suh that kf 0k[a+Æ;b�Æ℄ � (n)Æ�1kfk[a;b℄for every p 2 En and Æ 2 �0; 12 (b� a)�. Lorentz [89℄ improved Shmidt'sresult by showing that for every � > 12 ; there is a onstant (�) depend-ing only on � suh that (n) in the above inequality an be replaed by(�)n� logn, and he speulated that there may be an absolute onstant suh that Shmidt's inequality holds with (n) replaed by n. Part d℄ of thisexerise shows that Shmidt's inequality holds with (n) = 2n�1: A weakerversion of this showing that Shmidt's inequality holds with (n) = 8(n+1)2is obtained in part b℄ and uses a Nikolskii-type inequality for exponentialsums established in part a℄. Part e℄ shows that the result of part d℄ is sharpup to a multipliative absolute onstant.a℄ Let p 2 (0; 2℄: Show thatkfk[a+Æ;b�Æ℄ � 22=p2 �n+ 1Æ �1=p kfkLp[a;b℄for every f 2 En and Æ 2 �0; 12 (b� a)� :Proof. Take the orthonormal sequene (Lk)nk=0 on �� 12 ; 12�, that is,(1) Lk 2 spanf1; e�1t; e�2t; : : : ; e�ktg ; k = 0; 1; : : : ; n ;and(2) Z 1=2�1=2 LiLj = Æi;j ; 0 � i � j � n ;where Æi;j is the Kroneker symbol. On writing f 2 En(�) as a linearombination of L0; L1; : : : ; Ln; and using the Cauhy-Shwarz inequality



290 6. Inequalities in M�untz Spaesand the orthonormality of (Lk)nk=0 on �� 12 ; 12�, we obtain in a standardfashion thatmax06=f2En(�) jf(t0)jkfkL2[�1=2;1=2℄ =  nXk=0Lk(t0)2!1=2 ; t0 2 R :Sine Z 1=2�1=2Pnk=0L2k(x) dx = n+ 1 ;there exists a t0 2 �� 12 ; 12� suh thatmax06=p2En(�) jf(t0)jkfkL2[�1=2;1=2℄ =  nXk=0L2k(t0)!1=2 � pn+ 1 :Observe that if f 2 En(�); then g(t) := f(t� t0) 2 En(�); somax06=f2En(�) jf(0)jkfkL2[�1;1℄ � pn+ 1 :Let C := max06=f2En(�) jf(0)jkfkLp[�2;2℄ :Then max06=f2En(�) jf(y)jkfkLp[�2;2℄ � C � 22� jyj�1=p � 21=pC ; y 2 [�1; 1℄ :Therefore, for every f 2 En(�);jf(0)j � pn+ 1 kfkL2[�1;1℄� pn+ 1�kfkpLp[�1;1℄kfk2�p[�1;1℄�1=2� pn+ 1�kfkpLp[�1;1℄�21=pC�2�pkfk2�pLp[�2;2℄�1=2� pn+ 1 �21=pC�1�p=2kfkLp[�2;2℄= 21=p�1=2pn+ 1C1�p=2kfkLp[�2;2℄ :Hene C = max06=f2En(�) jf(0)jkfkLp[�2;2℄ � 21=p�1=2pn+ 1C1�p=2and we onlude that C � 22=p2�1=p(n+ 1)1=p: So



6.1 Inequalities in M�untz Spaes 291jf(0)j � 22=p2�1=p(n+ 1)1=pkfkLp[�2;2℄for every f 2 En(�): Now let f 2 En(�) and t0 2 [a+ Æ; b� Æ℄: If we applythe above inequality tog(t) := f � 12Æt+ t0� 2 En(�) ;we obtain kfk[a+Æ;b�Æ℄ � 22=p2�1=p(n+ 1)1=p�2Æ�1=p kfkLp[a;b℄and the result follows. utThe following Bernstein-type inequality an be obtained as a simpleorollary of part a℄:b℄ Show that kf 0k[a+Æ;b�Æ℄ � 8(n+ 1)2Æ�1kfk[a;b℄for every f 2 En and Æ 2 (0; 12 (b� a)):Proof. Note that f 2 En(�) implies f 0 2 En(�): Applying part a℄ to f 0with p = 1; we obtainjf 0(0)j � 2(n+ 1)kf 0kL1[�2;2℄ = 2(n+ 1)Var[�2;2℄(f) � 4(n+ 1)2kfk[�2;2℄for every f 2 En(�): If f 2 En(�) and t0 2 [a+ Æ; b� Æ℄; then on applyingthe above inequality tog(t) := f � 12Æt+ t0� 2 En(�) ;we obtain the desired result. ut℄ Lorentz's Conjeture. Show thatsup06=f2 eE2n jf 0(0)jkfk[�1;1℄ = 2n� 1 ;whereeE2n := (f : f(t) = a0 + nXj=1�aje�jt + bje��jt� ; aj ; bj ; �j 2 R) :Proof. First we prove thatjf 0(0)j � (2n� 1) kfk[�1;1℄



292 6. Inequalities in M�untz Spaesfor every f 2 eE2n. So letf 2 spanf1; e��1t; e��2t; : : : ; e��ntgwith some nonzero real numbers �1; �2; : : : ; �n; where, without loss of gen-erality, we may assume that0 < �1 < �2 < � � � < �n :Let g(t) := 12 (f(t)� f(�t)) :Observe that g 2 spanfsinh�1t ; sinh�2t ; : : : ; sinh�ntg :It is also straightforward thatg0(0) = f 0(0) and kgk[0;1℄ � kfk[�1;1℄ :For a given � > 0; letHn;� := spanfsinh �t ; sinh 2�t ; : : : ; sinhn�tgand Kn;� := sup�jh0(0)j : h 2 Hn;� ; khk[0;1℄ = 1	 :The inequality of E.5 e℄ in Setion 3.3 is the key to the proof. It shows thatit is suÆient to prove thatinffKn;� : � > 0g � 2n� 1 :Observe that every h 2 Hn;� is of the formh(t) = e�n�tP (e�t) ; P 2 P2n :Therefore, using E.23 ℄ of Setion 5.1, we obtain for every h 2 Hn;� thatjh0(0)j = j�P 0(1)� n�P (1)j� �(2n� 1)1� e�� kPk[e��;e�℄ + n� kPk[e��;e�℄� ��(2n� 1)1� e�� + n�� en� khk[�1;1℄ :It follows that Kn;� � ��(2n� 1)1� e�� + n�� en� :So inffKn;� : � > 0g � 2n� 1; and the upper bound follows.



6.1 Inequalities in M�untz Spaes 293Now we prove that sup06=f2 eE2n jf 0(0)jkfk[�1;1℄ � 2n� 1 :Let � > 0 be �xed. We de�neQ2n;�(t) := e�n�tT2n�1� e�te� � 1 � 1e� � 1� ;where T2n�1 denotes the Chebyshev polynomial of degree 2n � 1 de�nedby T2n�1(x) = os((2n� 1) arosx); x 2 [�1; 1℄ :It is simple to hek that Q2n;� 2 eE2n;kQ2n;�k[�1;1℄ � en�tand jQ02n;�(0)j � 2n� 1� n� :Now the result follows by letting � derease to 0: utd℄ Show that kf 0k[a+Æ;b�Æ℄ � (2n� 1)Æ�1kfk[a;b℄for every f 2 En and Æ 2 �0; 12 (b� a)�.Proof. Observe that En � eE2n. Hene the result follows from part ℄ by alinear substitution. ute℄ Let a < b and y 2 (a; b). Suppose that n 2 N is odd. Let Tn be theChebyshev polynomial of degree n de�ned by (2.1.1). LetQn(t) := Qn;y(t) := Tn� ee� 1 exp� t� bb� y�� 1e� 1�and Rn(t) := Rn;y(t) := Tn� ee� 1 exp� t� aa� y�� 1e� 1� :Show that Qn; Rn 2 En andjQ0n(y)jkQnk[a;b℄ = 1e� 1 nb� y and jR0n(y)jkRnk[a;b℄ = 1e� 1 ny � afor every y 2 (a; b) :



294 6. Inequalities in M�untz Spaesf ℄ Let a < b and y 2 (a; b): Conlude that1e� 1 n� 1minfy � a; b� yg � sup06=f2En jf 0(y)jkfk[a;b℄ � 2n� 1minfy � a; b� yg :In the rest of the exerise letE�n := (f : f(t) = lXj=1 Pkj (t)e�j t; �j 2 R ; Pkj 2 Pkj ; lXj=1 (kj + 1) = n) :g℄ Extend the inequalities of parts a℄, ℄, and f℄ to E�n:h℄ Let [a; b℄ be a �nite interval. Let g 2 C[a; b℄: Show that the valueinf�kg � fk[a;b℄ : f 2 E�n	is attained by an ef 2 E�n:Hint: Use Shmidt's inequality (or its improved form given by part ℄). Forthe nontrivial details, see Braess [86℄. uti℄ Let [a; b℄ be a �nite interval. Let p 2 [1;1) and g 2 Lp[a; b℄: Show thatthe value inf�kg � fkLp[a;b℄ : f 2 E�n	is attained by an ef 2 E�n:Hint: Use part a℄ with p = 1 and H�older's inequality. One again, for thedetails, see Braess [86℄. utThe following result is from Borwein and Erd�elyi [95℄:E.5 Upper Bound for the Derivative of Exponential Sums with Nonnega-tive Exponents. The equalitysupp jp0(a)jkpk[a;b℄ = 2n2b� aholds for every a < b; where the supremum is taken over all exponentialsums 0 6= p 2 En with nonnegative exponents. The equalitysupp jp0(a)jkpk[a;b℄ = 2n2a(log b� log a)also holds for every 0 < a < b; where the supremum is taken over all M�untzpolynomials 0 6= p of the formp(x) = a0 + nXj=1 ajx�j ; aj 2 R ; �j > 0 :



6.1 Inequalities in M�untz Spaes 295Outline. It is suÆient to prove only the seond statement, the �rst anbe obtained from it by the hange of variable x = et: For � > 0; de�ne�� := (j�)1j=0: Let Tn;� := Tnf1; x�; x2�; : : : ; xn�; [a; b℄gbe the Chebyshev polynomial for Mn(��) on [a; b℄: Use E.3 b℄ and E.3 f℄ ofSetion 3.3 to show thatjp0(a)jkpk[a;b℄ � lim�!0+ jT 0n;�(a)jkTn;�k[a;b℄ = lim�!0+ jT 0n;�(a)jfor every p of the formp(x) = a0 + nXj=1 ajx�j ; aj 2 R ; �j > 0 :From the de�nition and uniqueness of Tn;� it follows thatTn;�(x) = Tn� 2b� � a�x� � b� + a�b� � a��where Tn(y) = os(n arosy); y 2 [�1; 1℄: ThereforejT 0n;�(a)j = jT 0n(�1)j 2b� � a� �a��1= 2n2��1(b� � 1)� ��1(a� � 1)a��1 �!�!0+ 2n2a(log b� log a)and the proof is �nished. utThe next exerise follows Tur�an [84℄.E.6 Tur�an's Inequalities for Exponential Sums.a℄ Let g(�) := nXj=1 bjz�j ; bj ; zj 2 C :Suppose jzj j � 1 ; j = 1; 2; : : : ; n :Then max�=m+1;::: ;m+n jg(�)j � � n2e(m+ n)�2 jb1 + b2 + � � �+ bnjfor every nonnegative integer m:



296 6. Inequalities in M�untz SpaesProof. Let(6:1:12) f(z) := nYj=1�1� zzj� =: nX�=0��z� :Sine f(z) has all its zeros outside the open unit disk, g := 1=f is of theform(6:1:13) g(z) = 1X�=0 ��z� ; jzj < 1 :Let(6:1:14) gm(z) := mX�=0��z�and(6:1:15) h := 1� fgm 2 Pn+m :Note that h(z) = 1� f(z) g(z)� 1X�=m��z�!(6:1:16) = f(z) 1X�=m+1��z�so h is of the form(6:1:17) h(z) = m+nX�=m+1 �z� :Observe that f(zj) = 0 and (6.1.13) imply h(zj) = 1; that is,m+nX�=m+1 �z�j = 1 ; j = 1; 2; : : : ; n :Multipliation with bj and summation over j yield the fundamental identity(6:1:18) m+nX�=m+1 �g(�) = nXj=1 bj :This immediately gives



6.1 Inequalities in M�untz Spaes 297(6:1:19) max�=m+1;::: ;m+n jg(�)j nX�=m+1 j� j! � ����� nXj=1 bj����� :It follows from (6.1.15), (6.1.17), (6.1.12), and (6.1.14) that(6:1:20) m+nX�=m+1 j� j �  nX�=0 j�� j! mX�=0 j�� j! :Sine eah zj is of modulus at least 1, (6.1.12) yields that(6:1:21) nX�=0 j�� j � 2n :Also, (6.1.13) implies that�� = Xi1+���+in=� 1zi11 zi22 � � � zinn :Again using that eah zj is of modulus at least 1; we obtainj�� j � Xi1+���+in=� 1 = �� + n� 1n� 1 � :Hene(6:1:22) mX�=0 j�� j � �m+ nn � � �e m+ nn �n :By (6.1.20) to (6.1.22) we onlude thatm+nX�=m+1 j� j � �2e m+ nn �n ;whih, together with (6.1.19), �nishes the proof. utb℄ Let f(t) := nXj=1 bje�jt ; bj ; �j 2 C :Suppose Re(�j) � 0 ; j = 1; 2; : : : ; n :Show that jf(0)j � �2e(a+ d)d �n kfk[a;a+d℄for every a > 0 and d > 0:



298 6. Inequalities in M�untz SpaesHint: First observe that the result of part a℄ an be formulated asmaxm���m+n�2N jg(�)j � � n2e(m+ n)�n jb1 + b2 + � � �+ bnj ;where m is an arbitrary positive (not neessarily integer) number. Nowapply the above inequality withm := and ; zj := exp�d�jn � ; j = 1; 2; : : : ; n : ut℄ Let p(z) := nXj=1 bjz�j ; bj 2 C ; �j 2 R ; z = ei�:Show that maxjzj=1 jp(z)j � �4e�Æ �n maxjzj=1��arg(z)��+Æ jp(z)jfor every 0 � � < �+ Æ � 2�:Hint: Use part b℄. utThe inequalities of the above exerise and their variants play a entralrole in the book of Tur�an [83℄, where many appliations are also presented.The main point in these inequalities is that the exponent on the right-handside is only the number of terms n; and so it is independent of the numbers�j : An inequality, say in part ℄, of typemaxjzj=1 jp(z)j � (Æ)�n maxjzj=1��arg(z)��+Æ jp(z)j ;where 0 � �1 < �2 < � � � < �n are integers and (Æ) depends only on Æ;ould be obtained by a simple diret argument, but it is muh less usefulthan the inequality of E.6 ℄.E.7 Nikolskii-Type Inequality for M�untz Polynomials. Suppose that� := (�i)1i=0 is a sequene with �0 := 0 and �i+1 � �i � 1 for eah i.Show that kPkLp[0;1℄ � 0�18 � 2q nXj=0 �j1A1=q�1=p kPkLq[0;1℄for every P 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng and 0 < q < p � 1:



6.1 Inequalities in M�untz Spaes 299Proof. It is suÆient to study the ase when p = 1 (see the omment inthe proof of Theorem 6.1.3). Let P 2 Mn(�) and let x0 2 [0; 1℄ be hosenso that jP (x0)j = kPk[0;1℄. Combining E.3 a℄ and the Mean Value Theorem,we obtain jP (x)j � 12 kPk[0;1℄ ; x 2 I ;where I := hx0 � (36�)�1 ; x0 + (36�)�1i with � := nXj=0 �j :So�Z 10 jP (x)jq dx�1=q � �ZI jP (x)jq dx�1=q � �(18�)�1�12 kPk[0;1℄�q �1=qand the result follows. utE.8 Sharpness of Theorem 6.1.2. Suppose � := (�i)1i=0 is a sequene with�0 := 0 and �i+1 � �i � 1 for eah i: Show that there exists an absoluteonstant  > 0 (independent of � and p) suh thatsupP2Mn(�) kxP 0(x)kLp[0;1℄kPkLp[0;1℄ �  nXk=0�kfor every p 2 [2;1), where Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:Proof. Let L�k 2 Mk(�) be the kth orthonormal M�untz-Legendre polyno-mial on [0; 1℄: Let p 2 [2;1) andP := nXk=0L�0k (1)L�k :For the sake of brevity let � := nXj=0 �j :Using Theorem 3.4.3 (orthogonality), (3.4.8), and Corollary 3.4.6, we obtainP 0(1) = nXk=0(L�0k (1))2 � nXk=0(2�k + 1) kXj=0 �j!2(6:1:23) � 2� kXj=0 �j!2 � 18�3



300 6. Inequalities in M�untz Spaesand kPkL2[0;1℄ =  nXk=0(L�0k (1))2!1=2(6:1:24) � 0� nXk=0(2�k + 1) kXj=0(2�j + 1)!21A1=2� p32�3=2 :A ombination of E.7 and (6.1.24) yieldskPkLp[0;1℄ � (72�)1=2�1=pkPkL2[0;1℄(6:1:25) � 721=2�1=pp32�2�1=p � 48�2�1=p :From E.3 a℄, E.7, and (6.1.24) we an dedue thatkP 0k[0;1℄ � 18� kPk[0;1℄(6:1:26) � 18�(72�)1=2kPkL2[0;1℄� 18�(72�)1=2p32�3=2� 18 � 48�3 :Applying E.3 a℄ with P 0, we get(6.1.27) kP 00k[0;1℄ � 18� kP 0k[0;1℄ � 182 � 48�4 :Now (6.1.23), (6.1.27), and the Mean Value Theorem givejP 0(x)j � 116�3 ; x 2 I ;where I := �1� �182 � 48 � 16���1; 1� :So kxP 0(x)kLp[0;1℄ � �ZI ��xP 0(x)��p dx�1=p(6:1:28) � ��182 � 48 � 16���1 � 132�3�p�1=p� �182 � 48 � 16��1=p 32�1=2�3�1=p� �128 � 9p3��1�3�1=p :Combining (6.1.25) and (6.1.28), we obtain the required result with a on-stant  = (128 � 9p3)�1: ut



6.1 Inequalities in M�untz Spaes 301E.9 On the Interval Where the Sup Norm of a M�untz Polynomial Lives.Let � := (�j)1j=0 be an inreasing sequene of nonnegative real numbers.Let 0 6= p 2 Mn(�) := spanfx�0 ; x�1 ; : : : x�ng; and let q(x) := xk�p(x);where � > 0 and k is a nonnegative integer. Let � 2 [0; 1℄ be hosen so thatjq(�)j = kqk[0;1℄:a℄ Suppose � = 1 and eah �j is an integer. Then� kk + n�2 < � :Proof. See Sa� and Varga [81℄. utThe above result is sharp in a ertain limiting sense, whih is desribed indetail in Sa� and Varga [78℄.b℄ Suppose �j = �j for eah j: Use part a℄ to show that� kk + n�2=� < � :℄ Suppose �j = �j for eah j: Use E.11 of Setion 5.1 to show, withoutusing part a℄, that there exists an absolute onstant  > 0 suh that� kk + n�2=� < � :d℄ Suppose �j � �j for eah j: Use part b℄ and E.3 g℄ of Setion 3.3 toshow that the onlusion of part b℄ remains valid.e℄ Suppose �j � �j for eah j: Use part ℄ and E.3 g℄ of Setion 3.3 toshow that the onlusion of part ℄ remains valid.The following extension of Newman's inequality is in Borwein andErd�elyi [to appear 3℄.E.10 Newman's Inequality on [a; b℄ � (0;1).a℄ Let � := (�j)1j=0 be an inreasing sequene of nonnegative real numbers.Assume that there exists an � > 0 suh that �j � �j for eah j: Supposethat [a; b℄ � (0;1): Show that there exists a onstant (a; b; �) dependingonly on a, b, and � suh thatkp0k[a;b℄ � (a; b; �) nXj=0 �j! kpk[a;b℄for every p 2Mn(�) := spanfx�0 ; x�1 ; : : : x�ng:



302 6. Inequalities in M�untz SpaesProof. We base the proof on E.9 d℄, however; it may also be based on E.9e℄. Let p 2 Mn(�): We want to estimate p0(y) for every y 2 [a; b℄: Firstlet y 2 � 12 (a+ b); b� : We de�ne q(x) := xmn�p(x); where m is the smallestpositive integer satisfyinga � a+ b2 � mm+ 1�2=� :Saling Newman's inequality from [0; 1℄ to [0; y℄; then using E.9 d℄, we obtainjq0(y)j � 9y nXj=0 (�j +mn�)kqk[0;y℄= 9y nXj=0 (�j +mn�)kqkhy( mm+1 )2=�;yi� 1(a; b; �) nXj=0 �j! kqk[a;y℄with a onstant 1(a; b; �) depending only on a, b, and �: Henejp0(y)j � ��q0(y)y�mn���+ mn�y jp(y)j� y�mn�1(a; b; �) nXj=0 �j! kqk[a;y℄ + mny kpk[a;y℄� 2(a; b; �) nXj=0 �j! kpk[a;y℄� 2(a; b; �) nXj=0 �j! kpk[a;b℄with a onstant 2(a; b; �) depending only on a, b; and �:Now let y 2 �a; 12 (a+ b)� : Then, by E.3 b℄ and f℄ of Setion 3.3, wean dedue thatjp0(y)j � ��T 0nfx0; x�; x2�; : : : ; xn�; [y; b℄g(y)�� kpk[y;b℄= 2�y��1b� � y� n2kpk[y;b℄ � 3(a; b; �)n2kpk[y;b℄� 4(a; b; �) nXj=0 �j! kpk[y;b℄with onstants 3(a; b; �) and 4(a; b; �) depending only on a, b; and �: This�nishes the proof. ut



6.2 Nondense M�untz Spaes 303b℄ Show that if the gap ondition �j � j� in part a℄ is dropped, thenthe onlusion of part a℄ fails to hold with (a; b; �) replaed by a onstant(a; b) depending only on a and b:Hint: Study T 0n �x0; x�; x2�; : : : ; xn�; �12 ; 1�	and let �! 0 + : ut6.2 Nondense M�untz SpaesThroughout this setion we assume that � := (�i)1i=0 is a sequeneof distint nonnegative real numbers, Mn(�) denotes the linear span offx�0 ; x�1 ; : : : ; x�ng over R; andM(�) := 1[n=0Mn(�) = spanfx�0 ; x�1 ; : : : g :If A � [0; 1℄ is ompat, then a ombination of Tietze's and M�untz's theo-rems yields that M(�) is dense in C(A) wheneverP1i=1 1=�i =1: (Reallthat Tietze's theorem guarantees that if A � [0; 1℄ is ompat, then forevery f 2 C(A) there exists an ef 2 C[0; 1℄ suh that ef(x) = f(x) for allx 2 A:) If the Lebesgue measure m(A) of A is positive, then the onverseis also true. More preisely, we have the following.Theorem 6.2.1 (M�untz Theorem on Compat Sets of Positive Measure).Suppose �0 := 0 and P1i=1 1=�i < 1: Let A � [0; 1℄ be a ompat set withpositive Lebesgue measure. Then M(�) is not dense in C(A): Moreover, ifthe gap ondition inff�i � �i�1 : i 2 Ng > 0holds and rA := supfx 2 [0;1) : m(A \ (x;1)) > 0g ;then every funtion f 2 C(A) from the uniform losure of M(�) on A isof the form f(x) = 1Xj=0 ajx�j ; x 2 A \ [0; rA):If the above gap ondition does not hold, then every funtion f 2 C(A)from the uniform losure of M(�) on A an still be extended analytiallythroughout the region fz 2 C n (�1; 0℄ : jzj < rAg :The proof of the above theorem rests on the following bounded Remez-type inequality:



304 6. Inequalities in M�untz SpaesTheorem 6.2.2 (Remez-Type Inequality for Nondense M�untz Spaes). Let�0 := 0 and P1i=0 1=�i <1: Then there exists a onstant  depending onlyon � and s (and not on %, A, or the number of terms in p) suh thatkpk[0;%℄ �  kpkAfor every p 2 spanfx�0 ; x�1 ; : : : g and for every ompat set A � [%; 1℄ ofLebesgue measure at least s > 0:To prove Theorem 6.2.2 we need a few lemmas. We use the notationintrodued in Setion 3.3. However, for notational onveniene, we letTnf�0; �1; : : : ; �n;Ag := Tnfx�0 ; x�1 ; : : : ; x�n ;Agfor ompat sets A � [0;1):By the unique interpolation property of Chebyshev spaes (see Propo-sition 3.1.2), assoiated with0 < x0 < x1 < � � � < xn ;we an de�ne`kfx0; x1; : : : ; xng 2Mn(�) ; k = 0; 1; : : : ; nsuh that `kfx0; x1; : : : ; xng(xj) = Æj;k := � 1 if j = k0 if j 6= k :Lemma 6.2.3. Let0 < x0 < x1 < � � � < xn and 0 < ex0 < ex1 < � � � < exn :Suppose 0 � k � n andxj � exj if j = 0; 1; : : : ; k � 1 ;xj = exj if j = k ;xj � exj if j = k + 1; k + 2; : : : ; n :For notational onveniene, let`k := `kfx0; x1; : : : ; xng and èk := `kfex0; ex1; : : : ; exng :Then j`k(0)j � jèk(0)j :



6.2 Nondense M�untz Spaes 305Proof. It is suÆient to prove the lemma in the ase where there is an indexm suh that 1 � m � n, m 6= k, andxj = exj if j = 0; 1; : : : ; n; j 6= m ;xm < exm if m < k ;xm > exm if m > k :The general ase of the lemma then follows from repeated appliations ofthe above speial ases. Note that in the above speial ases`k � èk 2Mn(�)has a zero at eah of the pointsxj ; j = 0; 1; : : : ; n ; j 6= m ;hene it hanges sign at eah of these points, and it has no other zero in[0;1) (see E.10 of Setion 3.1). It is also obvious thatsign(`k(x)) = sign(èk(x)) ; x 2 (0; x0) ;whih, together with the previous observation and the inequality x0 � ex0;yields that j`k(0)j � jèk(0)j ;whih �nishes the proof. utBy a simple saling we an extend Lemma 6.2.3 as follows. We use thenotation introdued in Lemma 6.2.3.Lemma 6.2.4. Let0 < x0 < x1 < � � � < xn and 0 < ex0 < ex1 < � � � < exn :Suppose 0 � k � n,  � 0; andxj � exj �  if j = 0; 1; : : : ; k � 1 ;xj = exj �  if j = k ;xj � exj �  if j = k + 1; k + 2; : : : ; n :Then j`k(0)j � jèk(0)j :



306 6. Inequalities in M�untz SpaesProof. If  = 0; then Lemma 6.2.3 yields the lemma. So we may assumethat  > 0: Let � := xkexk = exk � exk ;x�j := �exj ; j = 0; 1; : : : ; n ;and `�k := `kfx�0; x�1; : : : ; x�ng ; k = 0; 1; : : : ; n :Obviously èk(�x) = `�k(x) ; x 2 [0;1)and xj � x�j if j = 0; 1; : : : ; k � 1 ;xj = x�j if j = k ;xj � x�j if j = k + 1; k + 2; : : : ; n :Hene Lemma 6.2.3 implies thatj`k(0)j � j`�k(0)j = jèk(0)jwhih �nishes the proof. utLemma 6.2.5. Let A be a losed subset of [0; 1℄ with Lebesgue measure atleast s 2 (0; 1): Thenjp(0)j � jTnf�0; �1; : : : ; �n; [1� s; 1℄g(0)j � kpkAfor every p 2M(�):Proof. If 0 2 A; then the statement is trivial. So assume that 0 =2 A: Letex0 < ex1 < � � � < exndenote the extreme points ofTn := Tnf�0; �1; : : : ; �n; [1� s; 1℄gin [1� s; 1℄; that is,Tn(exj) = (�1)n�j ; j = 0; 1; : : : ; n :Let xj 2 A; j = 0; 1; : : : ; n; be de�ned so thatm([xj ; 1℄ \ A) = m([exj ; exn℄) = exn � exj :Sine A is a losed subset of [0; 1℄ with m(A) � s; suh points xj 2 A exist.Let p 2Mn(�): Then, by Lemma 6.2.4, we an dedue that



6.2 Nondense M�untz Spaes 307jp(0)j = ����� nXk=0 p(xk)`k(0)������  nXk=0 j`k(0)j! kpkA�  nXk=0 jèk(0)j! kpkA=  nXk=0(�1)n�k èk(0)! kpkA=  nXk=0Tn(exk)èk(0)! kpkA= jTn(0)j � kpkAwhih proves the lemma. utLemma 6.2.6. Suppose �0 := 0: Let A be a losed subset of [0; 1℄ withLebesgue measure at least s 2 (0; 1): Thenjp(y)j � jTnf�0; �1; : : : ; �n; [1� s; 1℄g(0)j � kpkAfor every p 2Mn(�) and y 2 [0; inf A℄:Proof. For notational onveniene, letTn;A := Tnf�0; �1; : : : ; �n;Ag :Note that �0 = 0 implies that jTn;Aj is dereasing on [0; inf A℄; otherwiseT 0n;A 2 spanfx�1�1; x�2�1; : : : ; x�n�1gwould have at least n + 1 zeros in (0; 1℄; whih is impossible. Hene, itfollows from E.3 and Lemma 6.2.5 thatjp(y)jkpkA � jTn;A(y)jkTn;AkA = jTn;A(y)j � jTn;A(0)j� jTnf�0; �1; : : : ; �n; [1� s; 1℄g(0)jfor every 0 6= p 2Mn(�): This �nishes the proof. utProof of Theorem 6.2.2. Lemma 6.2.6 and E.5 a℄ of Setion 4.2 yield thetheorem. utProof of Theorem 6.2.1. The theorem follows from E.5 of this setion andE.3 e℄ and E.8 b℄ of Setion 4.2. utOur next theorem is an interesting haraterization of launary se-quenes.



308 6. Inequalities in M�untz SpaesTheorem 6.2.7 (Charaterization of Launary M�untz Spaes). Suppose� := (�i)1i=0 with 0 � �0 < �1 < � � � . There exists a onstant  dependingonly on � suh thatjaj;nj �  kpk[0;1℄ ; j = 0; 1; : : : ; n ; n 2 Nfor every p 2M(�) of the formp(x) = nXj=0 aj;nx�jif and only if � is launary, that is, if and only if the elements �i of �satisfy inff�i+1=�i : i 2 Ng > 1 :To prove Theorem 6.2.7 we need the following result of Hardy andLittlewood [26℄ whose proof we do not reprodue:Theorem 6.2.8. Suppose 0 = 0 < 1 < � � � is a launary sequene, that is,inffi+1=i : i 2 Ng > 1 :Suppose the funtion f is of the formf(x) = 1Xi=0 aixi ; ai 2 R ; x 2 [0; 1)and A := limx!1�f(x) exists and is �nite. Then P1i=0 ai = A:Proof of Theorem 6.2.7. Suppose � is launary and suppose there exists asequene (Pk)1k=1 �M(�) suh that if Pk is of the formPk(x) = nkXj=0 aj;nkx�j ; aj;nk 2 R ;then(6:2:1) kPkk[0;1℄ = 1 and max0�j�nk jaj;nk j � k2; k = 1; 2; : : : :We may assume, without loss of generality, that �0 = 0: Choose a sequene(�k)1k=1 of positive integers suh that�1 = 1 ; �1�k+1 > 2�k�nk ; k = 1; 2; : : : :Now let the funtion f be de�ned by



6.2 Nondense M�untz Spaes 309(6:2:2) f(x) = 1Xk=1 k�2Pk(x�k ) � 1Xk=1 k�2 <1 ; 0 � x � 1 :Note that f 2 C[0; 1℄ by the Weierstrass M-test. For notational onveniene,let m0 := 0; mk := kXi=1 ni ; k = 1; 2; : : : :Further, let0 := 0 and a0 := 1Xk=1 k�2a0;nk = 1Xk=1 k�2Pk(0)and mk�1+j := �k�j ; j = 1; 2; : : : ; nk ; k = 1; 2; : : : :Observe that a0 2 R is well-de�ned sine jPk(0)j � 1 for eah k 2 N: Alsoinffi+1=i : i 2 Ng � minf2; inff�i+1=�i : i 2 Ngg > 1 :Let � := (i)1i=0. Then f 2 C[0; 1℄ de�ned by (6.2.2) is in the uniformlosure of M(� ) on [0; 1℄; hene, by the Clarkson-Erd}os theorem (see E.3e℄ of Setion 4.2), f is of the formf(x) = 1Xi=0 aixi ; x 2 [0; 1) :Sine f 2 C[0; 1℄; Theorem 6.2.8 implies that A := P1i=0 ai exists and is�nite. Realling (6.2.2) and the hoie of �k; and using E.3 e℄ of Setion4.2, we an dedue that eahk�2aj;nk ; j = 1; 2; : : : ; nk ; k = 1; 2; : : :is equal to one of the oeÆients a1; a2 : : : : Sine ja0;nk j = jPk(0)j � 1for eah k 2 N; from (6.2.1) and (6.2.2) we see that jaij � 1 holds forin�nitely many i 2 N; whih ontradits the fat that P1i=0 ai onverges.This �nishes the if part of the theorem.Now assume that � is not launary. Then for every � > 0 there is ann 2 N suh that �n�1=�n > 1 � �: Observe that Pn(x) := x�n � x�n�1ahieves its maximum modulus on [0; 1℄ atx = ��n�1�n �1=(�n��n�1)and hene



310 6. Inequalities in M�untz SpaeskPnk[0;1℄ � ��n�1�n ��n�1=(�n��n�1)�1� �n�1�n � � 1� �n�1�n < � ;whih shows that the lead oeÆient an;n ofTnf�0; �1; : : : ; �n; [0; 1℄gis at least 1=�; otherwise a�1n;nTn � Pn 2 Mn�1(�) would have at least nzeros on (0; 1), whih is a ontradition. The proof of the only if part of thetheorem is now �nished. utFrom the above proof it also follows that under the assumptions ofTheorem 6.2.7, the Chebyshev polynomialsTnf�0; �1; : : : ; �n; [0; 1℄ghave uniformly bounded oeÆients if and only if � is launary.As an appliation of Theorem 6.2.7 we derive the following Bernstein-type inequality.Theorem 6.2.9 (Bernstein-Type Inequality). Suppose �0 := 0, �1 � 1; andsuppose � := (�i)1i=0 is launary, that is,inff�i+1=�i : i 2 Ng > 1 :Then there exists a onstant  depending only on � (and not on y or thenumber of terms in p) suh thatjp0(y)j � 1� y kpk[0;1℄for every p 2M(�) = spanfx�0 ; x�1 ; : : : g and for every y 2 [0; 1):Proof. Let p 2M(�) be of the formp(x) = a0;n + nXj=1 aj;nx�j ; kpk[0;1℄ = 1 :Theorem 6.2.7 and the assumptions on � yieldjp0(y)j � ����� nXj=1 aj;n�jy�j�1����� � nXj=1 jaj;nj�jy�j�1� 1 nXj=1 �jy�j�1 � 2 1Xj=0 yj = 21� y ;where 1 and 2 depend only on �; and the theorem is proved. ut



6.2 Nondense M�untz Spaes 311Comments, Exerises, and Examples.The results of this setion have been obtained by Borwein and Erd�elyi [91,93, 95b, to appear 1℄. In E.1 we present some of the several importantonsequenes of our entral result, Theorem 6.2.2. In E.6 we o�er anotherproof of the �rst part of Theorem 6.2.1 when � is launary, while E.9 showsthat the Bernstein-type inequality of Theorem 6.2.9 \almost" haraterizesthe launary M�untz spaes. Note that if A � [0; 1℄ ontains an interval, thenthe �rst part of Theorem 6.2.1 follows immediately from E.3 of Setion 4.2.A typial ase that does not follow from that exerise is when A � [0; 1℄ isa \fat" Cantor-type set of positive measure.E.1 Some Consequenes of Theorem 6.2.2. Let A � [0;1) be a setof positive Lebesgue measure, and let rA be the essential supremum ofA as de�ned in Theorem 6.2.1. Suppose q 2 (0;1) and suppose w is anonnegative-valued, integrable weight funtion on A with RAw > 0: LetLq(w) := Lq(�); where d� = w dt; and where Lq(�) is de�ned in E.7 ofSetion 2.2. Let � := (�i)1i=0 be a sequene of distint nonnegative realnumbers with �i 6= 0 for eah i = 1; 2; : : : :a℄ SupposeP1i=1 1=�i <1: Then M(�) is not dense in Lq(w): Moreover,if the gap ondition inff�i � �i�1 : i 2 Ng > 0holds, then every funtion f 2 Lq(w) belonging to the Lq(w) losure ofM(�) an be represented asf(x) = 1Xi=0 aix�i ; ai 2 R ; x 2 A \ [0; rw) ;where rw := sup(y 2 [0;1) : ZA\(y;1)w(x) dx > 0) :If the above gap ondition does not hold, then every funtion f 2 Lq(w)belonging to the Lq(w) losure of M(�) an still be represented as ananalyti funtion on fz 2 C n (�1; 0℄ : jzj < rwgrestrited to A:Proof. Suppose f 2 Lq(w) and suppose there is a sequene (pi)1i=1 �M(�)suh that limi!1 kf � pikLq(w) = 0 :Minkowski's inequality (see E.7 b℄ and E.7 i℄ of Setion 2.2.) yields that(pi)1i=1 is a Cauhy sequene in Lq(w): The assumptions on w imply thatfor every Æ 2 (0; rw) there exists an � > 0 suh that



312 6. Inequalities in M�untz SpaesB := fx 2 A \ (Æ;1) : w(x) > �gis of positive Lebesgue measure. Let s := m(B) > 0: Observe that ifkpkLq(w) < "; thenm (x 2 B : jp(x)j � � 2"�s�1=q)! � s2 ;so m (x 2 B : jp(x)j < � 2"�s�1=q)! > s2 :Hene, by Theorem 6.2.2, (pi)1i=1 is uniformly Cauhy on [0; Æ℄: The proofan now be �nished as that of Theorem 6.2.1. utb℄ M�untz-Type Theorem in Lq(w). M(�) is dense in Lq(w) if and onlyif P1i=1 1=�i =1:Proof. Suppose P1i=1 1=�i = 1: Let f 2 Lq(w): It is standard measuretheory to show that for every " > 0 there exists a g 2 C[0; 1℄ suh thatg(0) = 0 and kf � gkLq(w) < "2 :Now Theorem 4.2.1 (full M�untz theorem in C[0; 1℄) implies that there existsa p 2M(�) suh thatkg � pkLq(w) � kg � pkA�ZA w�1=q � kg � pk[0;1℄�ZA w�1=q < "2 :Therefore M(�) is dense in Lq(w):Suppose now that P1i=1 1=�i < 1: Then part a℄ yields that M(�) isnot dense in Lq(w): ut℄ Convergene in M(�). SupposeP1i=1 1=�i <1, (pi)1i=1 �M(�); andpi(x)! f(x) ; x 2 A :Then (pi)1i=1 onverges uniformly on every losed subinterval of [0; rA):Proof. Let Æ 2 (0; rA) be �xed. Egoro�'s theorem (see, for example, Royden[88℄) and the de�nition of rA imply the existene of a set B � A \ (Æ;1)of positive Lebesgue measure so that (pi)1i=1 onverges uniformly on B andhene is uniformly Cauhy on B: Now Theorem 6.2.2 yields that (pi)1i=1 isuniformly Cauhy on [0; Æ℄; and the result follows. ut



6.2 Nondense M�untz Spaes 313d℄ SupposeP1i=1 1=�i =1: Show that there is a sequene (pi)1i=1 �M(�)that onverges pointwise on [0;1) but does not onverge uniformly onA \ [0; a℄ for some a 2 (0; rA):Hint: Use Theorem 4.2.1 (M�untz's theorem). ute℄ Suppose P1i=1 1=�i <1 andinff�i � �i�1 : i 2 Ng > 0 :Let P (�) denote the olletion of all real-valued funtions f de�ned on[0; 1) by a power seriesf(x) = 1Xi=0 aix�i ; ai 2 R ; x 2 [0; 1) :Suppose that A � [0; 1℄ with rA = 1: Show that if (fi)1i=1 � P (�) andfi(x)! f(x) ; x 2 A ;then fi(x)! ef(x) ; x 2 [0; 1) ;where ef 2 P (�).Hint: Use part ℄ and E.3 e℄ of Setion 4.2. utE.2 On the Smallest Zero of Chebyshev Polynomials in Nondense M�untzSpaes. Suppose �0 := 0 and P1i=1 1=�i < 1: Show that there exists aonstant  > 0 depending only on � := (�i)1i=0 (and not on n) suh thatthe smallest positive zero ofTnf0; �1; �2; : : : ; �n; [0; 1℄g ; n = 1; 2; : : :is greater than :Hint: If �1 � 1; then use the Mean Value Theorem, E.1 a℄ of Setion 3.3,and E.5 b℄ of Setion 4.2. If 0 < �1 < 1; then the saling x! x1=�1 reduesthe problem to the ase �1 = 1: utE.3 Extremal Funtions for the Remez-Type Inequality of Theorem 6.2.2.Suppose 0 � �0 < �1 < � � � < �n; 0 < %; A � [%;1) is a ompat setontaining at least n+ 1 points, and y 2 (0; %) is �xed. LetMn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :a℄ Show that there is a 0 6= p� 2Mn(�) suh thatjp�(y)jkp�kA = sup06=p2Mn(�) jp(y)jkpkA :Hint: Use a ompatness argument. utb℄ Show that p� = Tnf�0; �1; : : : ; �n;Ag for some  2 R:Hint: Use a perturbation argument. ut



314 6. Inequalities in M�untz SpaesE.4 A Lexiographi Property of Chebyshev Polynomials in Di�erentM�untz Spaes. Let 0 := �0 < �1 < � � � < �n; 0 := 0 < 1 < � � � < n;and �j � j ; j = 0; 1; : : : ; n :Let % > 0 and let A � [%;1) be ompat ontaining at least n+ 1 points,and letTn;� := Tnf�0; �1; : : : ; �n;Ag and Tn;� := Tnf0; 1; : : : ; n;Ag :a℄ Show that jTn;� (y)j � jTn;�(y)j for every y 2 [0; %):Hint: Suppose, without loss of generality, that there is an index m,1 � m � n; suh that �m < m and �j = j if j 6= m: We hoosean Rn;� 2 Mn(�) that interpolates Tn;� at the n zeros of Tn;� and isnormalized so that Rn;�(0) = Tn;� (0): Use Theorem 3.2.5 to show thatjRn;�(x)j � jTn;� (x)j for every x 2 [0;1); in partiular for every x 2 A:Now use E.3 to show that jTn;� (0)j = jRn;�(0)j � jTn;�(0)j; whih gives thedesired result for y = 0: Using this, we an dedue that jTn;� (y)j � jTn;�(y)jfor every y 2 [0; %); otherwiseTn;� � Tn;� 2 spanfx�0 ; x�1 ; : : : ; x�n ; xmgwould have at least (n+ 2) zeros in (0;1); whih is a ontradition. utb℄ Show that maxp2Mn(� ) jp(y)jkpkA � maxp2Mn(�) jp(y)jkpkAfor every y 2 [0; %); whereMn(� ) := spanfx0 ; x1 ; : : : ; xngand Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :Hint: Combine part a℄ and E.4. utE.5 Theorem 6.2.1 Follows from Theorem 6.2.2. Under the assumptionsof Theorem 6.2.1 show that if (pj)1j=1 � M(�) is uniformly Cauhy inC(A); then it is uniformly Cauhy in C[0; y℄ for every y 2 (0; rA), where rAis de�ned as in Theorem 6.2.1.Hint: Use Theorem 6.2.2. ut



6.2 Nondense M�untz Spaes 315E.6 Some Corollaries of Theorem 6.2.9 in the Launary Case. Suppose�0 := 0, �1 � 1; and � := (�i)1i=0 is launary.a℄ Show that the Chebyshev polynomialsTn := Tnf�0; �1; : : : ; �n : [0; 1℄g ; n = 1; 2; : : :have the following property: There is a onstant 1 2 (0; 1) depending onlyon � (and not on n) suh that if y 2 [0; 1) and jTn(y)j = 1; then jTn(x)j � 12for every x 2 [y; y + 1(1� y)℄:Hint: Use the Mean Value Theorem and the Bernstein-type inequality ofTheorem 6.2.9. utb℄ Show that there is a onstant 2 2 (0; 1) depending only on � (and noton n) so that if a < b are two onseutive zeros of Tn; then 1�b < 2(1�a):℄ Let � 2 (0; 1): Show that there is an n0 2 N depending only on � (andnot on n) so that every Tn has at most n0 zeros in [0; 1� �℄:d℄ Give a new proof of the �rst part of Theorem 6.2.1 based on parts a℄and ℄.Outline. By Lebesgue's density theorem (see Royden [88℄), it may be sup-posed, without loss of generality, that the left-hand side Lebesgue densityof A at 1 is 1: Choose � 2 (0; 1) so that A \ [0; 1 � �) ontains in�nitelymany points and(6:2:5) m(A \ [y; 1℄)1� y > 1for every y 2 [1� �; 1℄; where 1 2 (0; 1) is the same as in part a℄. For this�; hoose n0 aording to part ℄. Now de�ne g 2 C(A) so that g alternatesn0 + 3 times in A \ [0; 1� �) between 2 and �2 and is identially zero on[1 � �; 1℄: Assume that there exists a p 2 Mn(�) suh that kp� gkA � 14 :Use part a℄ and (6.2.5) to show that p � Tn 2 Mn(�) has more than ndistint zeros in [0; 1℄; whih is a ontradition. utThe following simple appliation of Theorem 6.2.9 was pointed out byWojieszyk:e℄ Suppose A � [0; 1℄ is a measurable set and the left-hand side Lebesguedensity of A at 1 is 1: Show that there is a onstant  > 0 depending onlyon � and A so that kpk[0;1℄ �  kpkAfor every p 2M(�) = spanfx�0 ; x�1 ; : : : g:Hint: Use the Mean Value Theorem, the Bernstein-type inequality of The-orem 6.2.9, and the Chebyshev-type inequality of E.3 f℄ of Setion 4.2. utf ℄ Use part e℄ to give another proof of Theorem 6.2.1.The following exerise onstruts quasi-Chebyshev polynomials Pn forMn(�) if the launarity onstant of � is large:



316 6. Inequalities in M�untz SpaesE.7 Quasi-Chebyshev Polynomials in Very Launary M�untz Spaes. Let�0 = 0, �1 = 2; and �i+1=�i � 16 for i = 1; 2; : : : : LetPn(x) := 1 + 2 nXj=1(�1)jx�j ; n = 1; 2; : : : :Let yi := (4�i)�1. Prove the following statements:a℄ kPnk[0;1℄ = 1 and Pn(1) = (�1)n:b℄ Pn has exatly n zeros, x1;n < x2;n < � � � < xn;n, in (0; 1):℄ jP 0n(�)j � 2�n for every � 2 [xn;n; 1℄.d℄ We havePn(x) � �15 if 1� y2k � x � 1� y2k2 and 1 � 2k � nandPn(x) � 15 if 1� y2k+1 � x � 1� y2k+12 and 1 � 2k + 1 � n :Hint: Part a℄ is obvious. Prove the rest together, by indution on n: utThe next exerise follows Borwein and Erd�elyi [95b℄.E.8 Produts of M�untz Spaes. Assoiated with � := (�j)1j=0; letMk(�) := (p = kYj=1 pj : pj 2M(�)) ; k = 1; 2; : : : :Is M2(�) dense in C[0; 1℄ for � := (j2)1j=0?Note that Mk(�); k � 2 is not the linear span of monomials, andM�untz's theorem does not give the answer. This exerise establishes Remez-,Bernstein-, and Nikolskii-type inequalities for Mk(�): From any of these itfollows immediately that if P1j=1 1=�j < 1 and A � [0; 1℄ is a set ofpositive Lebesgue measure, then Mk(�) is not dense in C(A):Throughout parts a℄ to d℄ of the exerise we assume 0 = �0 < �1 < � � � ,P1j=1 1=�j <1; and s 2 (0; 1):a℄ Remez-Type Inequality for Mk(�). There exists a onstant  depend-ing only on �; s; and k (and not on % or A) suh thatkpk[0;%℄ �  kpkAfor every p 2 Mk(�) and for every ompat set A � [%; 1℄ of Lebesguemeasure at least s > 0:



6.2 Nondense M�untz Spaes 317Proof. Theorem 6.2.2 implies that there exists a onstant � > 0 dependingonly on �, s; and k suh thatm(fx 2 [y; 1℄ : jp(x)j > ��1jp(y)jg) � 1� y � s2kfor every p 2M(�) and y 2 [0; 1� s℄: Now let p 2Mk(�), that is,p = kYj=1 pj ; pj 2M(�) :Then, for every y 2 [0; 1� s℄;m(fx 2 [y; 1℄ : jp(x)j > ��k jp(y)jg)� m k\j=1fx 2 [y; 1℄ : jpj(x)j > ��1jpj(y)jg!� 1� y � k s2k = 1� y � s2 :Hene y 2 [0; inf A℄ and m(A) � s imply thatm(fx 2 A : jp(x)j > ��kjp(y)jg) � s2 > 0and the inequality follows with  = �k. utb℄ Solution to Newman's Problem. Let A � [0; 1℄ be a set of positiveLebesgue measure. Then Mk(�) is not dense in C(A):Proof. This follows from part a℄. ut℄ Bernstein-Type Inequality for Mk(�). Suppose �1 � 1: There exists aonstant  depending only on �, s; and k (and not on % and A) suh thatkp0k[0;%℄ �  kpkAfor every p 2 Mk(�) and for every ompat set A � [%; 1℄ of Lebesguemeasure at least s > 0:Hint: Use the produt rule of di�erentiation, and estimate eah term sep-arately. Proeed as in the proof of part a℄. Use Theorem 6.2.2 and E.5 a℄and b℄ of Setion 4.2. utd℄ Nikolskii-Type Inequality for Mk(�). There exists a onstant  de-pending only on �, s, k, q, and w (and not on % and A) suh thatkpkq[0;%℄ �  ZA jp(x)jqw(x) dx



318 6. Inequalities in M�untz Spaesfor every p 2Mk(�); for every ompat set A � [%; 1℄ of Lebesgue measureat least s > 0; for every funtion w measurable and positive a.e. on [0; 1℄;and for every q 2 (0;1):Hint: Use part a℄. ute℄ Assoiated with�j = (�i;j)1i=0 ; j = 1; 2; : : : ; k ;let M(�1; �2; : : : ; �k) :=8<:p = kYj=1 pj : pj 2M(�j)9=; :Formulate and prove the analogs of parts a℄ to d℄ for M(�1; �2; : : : ; �k):E.9 A Weak Converse of Theorem 6.2.9. Suppose � := (�i)1i=0 is a(stritly) inreasing sequene of nonnegative real numbers with �0 := 0and �1 � 1: Suppose also that there exists a onstant  depending only on� (and not on y or the number of terms in p) suh thatjp0(y)j � 1� y kpk[0;1℄for every p 2 M(�) = spanfx�0 ; x�1 ; : : : g and for every y 2 [0; 1): Showthat there is a onstant � > 1 depending only on � suh that �n � �n:Outline. Let Tn := Tnf�0; �1; : : : ; �n; [0; 1℄gand denote its zeros in (0; 1) by x1;n > x2;n > � � � > xn;n: Use the MeanValue Theorem and the assumed Bernstein-type inequality to show thatthere is a onstant  2 (0; 1) depending only on � suh that1� xj;n � (1� xj+1;n) ; j = 1; 2; : : : ; n� 1 ; n 2 N ;hene 1�x1;n � n: On the other hand, use the Mean Value Theorem andTheorem 6.1.1 (Newman's inequality) to show that1� x1;n �  1 + 9 nXj=1 �j!�1 � (9(n+ 1)�n)�1 :Finally, ombine the lower and upper bounds for 1� x1;n to onlude that�n � �n9(n+ 1) : ut



6.2 Nondense M�untz Spaes 319E.10 Polynomials in x�n . Given n 2 N and �n 2 R; letPn(�n) := fpn(x�n) : pn 2 Png(as in E.6 of Setion 4.1). Suppose �n � 1 for all n 2 N: Let Æ 2 R bede�ned by lim supn logn�n = 12 log 1Æ :Suppose Æ > 0:a℄ Bounded Remez-Type Inequality. Suppose 0 < eÆ < Æ: Show that thereexists a onstant  depending only on eÆ (and not on n, y; or A) suh thatjp(y)j �  kpkAfor every p 2 [1n=1Pn(�n); for every A � [0; 1℄ of Lebesgue measure at least1� eÆ; and for every y 2 [0; inf A℄:Hint: Use Lemma 6.2.6 and E.6 a℄ of Setion 4.1. utb℄ M�untz-Type Theorem. If 0 � eÆ < Æ and A � [0; 1℄ is a set of Lebesguemeasure at least 1� eÆ; then [1n=1Pn(�n) is not dense in C(A).Hint: Use part a℄. ut



This is page 320Printer: Opaque this7Inequalities forRational Funtion Spaes

OverviewPreise Markov- and Bernstein-type inequalities are given for various lassesof rational funtions in the �rst setion of this hapter. Extensions of theinequalities of Lax, Shur, and Russak are also presented, as are inequal-ities for self-reiproal polynomials. The seond setion of the hapter isonerned with metri inequalities for polynomials and rational funtions.7.1 Inequalities for Rational Funtion SpaesSharp extensions of most of the polynomial inequalities of Setion 5.1 areestablished for rational funtion spaes onK := R (mod 2�), on the interval[�1; 1℄, on the unit irle of C , and on the real line. The lassial inequalitiesof Setion 5.1 are then reovered as limiting ases. A sharp extension ofLax's inequality is also given. Essentially sharp Markov- and Bernstein-type inequalities for self-reiproal and antiself-reiproal polynomials arepresented in the exerises.Let D := fz 2 C : jzj < 1g and �D := fz 2 C : jzj = 1g; as before.We study the rational funtion spaes:Tn(a1; a2; : : : ; a2n;K) := ( t(�)Q2nk=1 j sin((� � ak)=2)j : t 2 Tn)



7.1 Inequalities for Rational Funtion Spaes 321and T n (a1; a2; : : : ; a2n;K) := ( t(�)Q2nk=1 sin((� � ak)=2) : t 2 T n)on K with a1; a2; : : : ; a2n 2 C n R;Pn(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1 jx� akj : p 2 Pn�and Pn(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1(x� ak) : p 2 Pn�on [�1; 1℄ with a1; a2; : : : ; an 2 C n [�1; 1℄;Pn(a1; a2; : : : ; an; �D) := � p(z)Qnk=1(z � ak) : p 2 Pn�on �D with a1; a2; : : : ; an 2 C n �D; andPn(a1; a2; : : : ; an;R) := � p(x)Qnk=1 jx� akj : p 2 Pn�and Pn(a1; a2; : : : ; an;R) := � p(z)Qnk=1(z � ak) : p 2 Pn�on R with a1; a2; : : : ; an 2 C n R:The Chebyshev polynomials eTn, eUn, andV := (os �) eTn + (sin �)eUn ; � 2 Kfor the rational funtion spae Tn(a1; a2; : : : ; a2n;K) are de�ned in E.3 ofSetion 3.5, and they play a entral role in this setion.



322 7. Inequalities for Rational Funtion SpaesTheorem 7.1.1 (Bernstein-Szeg}o-Type Inequality on K). Given(ak)2nk=1 � C n R ; Im(ak) > 0 ;let eBn(�) := 12 2nXk=1 1� jeiak j2jeiak � ei�j2 :Then f 0(�)2 + eB2n(�)f2(�) � eB2n(�)kfk2K ; � 2 Kfor every f 2 Tn(a1; a2; : : : ; a2n;K):Equality holds if and only if either � is a maximum point of jf j (thatis, f(�) = �kfkK) or f is a linear ombination of eTn and eUn (with realoeÆients) as de�ned in E.3 of Setion 3.5.Corollary 7.1.2 (Bernstein-Type Inequality on K, Real Case). Given(ak)2nk=1 � C n R ; Im(ak) > 0 ;let the Bernstein fator eBn be de�ned as in Theorem 7.1.1. Thenjf 0(�)j � eBn(�)kfkK ; � 2 Kfor every f 2 Tn(a1; a2; : : : ; a2n;K):Equality holds if and only if f is a linear ombination of eTn and eUn(with real oeÆients) as de�ned in E.3 of Setion 3.5, and f(�) = 0:Theorem 7.1.1 and Corollary 7.1.2 an be easily obtained from the extensionof Theorem 3.5.3 given by E.3 of Setion 3.5, whih gives expliit formulasfor the Chebyshev polynomials for these lasses Tn(a1; a2; : : : ; a2n;K): Thearguments are outlined in E.1.The following two results an be obtained from Theorem 7.1.1 andCorollary 7.1.2 by the substitution x = os �; see E.2.Corollary 7.1.3 (Bernstein-Szeg}o-Type Inequality on [�1; 1℄). Assoiatedwith (ak)nk=1 � C n [�1; 1℄; let the Bernstein fator Bn be de�ned byBn(x) := nXk=1Re pa2k � 1ak � x ! ;where the hoie of pa2k � 1 is determined by ��ak �pa2k � 1�� < 1: Then(1� x2)f 0(x)2 +B2n(x)f2(x) � B2n(x)kfk2[�1;1℄ ; x 2 [�1; 1℄for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄):Equality holds if and only if either x is a maximum point of jf j (thatis, f(x) = �kfk[�1;1℄) or f = Tn with  2 R; where Tn is de�ned as inSetion 3.5.



7.1 Inequalities for Rational Funtion Spaes 323Corollary 7.1.4 (Bernstein-Type Inequality on [�1; 1℄, Real Case). Given(ak)nk=1 � C n [�1; 1℄; let the Bernstein fator Bn be de�ned as in Corollary7.1.3. Then jf 0(x)j � Bn(x)p1� x2 kfk[�1;1℄ ; x 2 (�1; 1)for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄):Equality holds if and only if f = Tn with  2 R; where Tn is de�ned asin Setion 3.5, and f(x) = 0: (Note that Bn(x) > 0 for every x 2 (�1; 1).)Our next result follows from Theorem 7.1.1; see the hints to E.3.Corollary 7.1.5 (Bernstein-Szeg}o-Type Inequality on R). Given(ak)nk=1 � C n R ; Im(ak) > 0 ;let the Bernstein fator Bn be de�ned byBn(x) := nXk=1 Im(ak)jx� akj2 :Then f 0(x)2 +B2n(x)f2(x) � B2n(x)kfk2R ; x 2 Rfor every f 2 Pn(a1; a2; : : : ; an;R):Equality holds if and only if either x is a maximum point of jf j (thatis, jf(x)j = �kfkR) or f is a linear ombination of Tn and Un (with realoeÆients) de�ned in E.5 of Setion 3.5.Corollary 7.1.6 (Bernstein-Type Inequality on R, Real Case). Assoiatedwith (ak)nk=1 � C nR; let the Bernstein fator Bn be de�ned as in Corollary7.1.5. Then jf 0(x)j � Bn(x)kfkR ; x 2 Rfor every f 2 Pn(a1; a2; : : : ; an;R):Equality holds if and only if f is a linear ombination of Tn and Un(with real oeÆients) de�ned in E.5 of Setion 3.5, and f(x) = 0:To formulate our next theorem we introdue some notation. For apolynomial q(z) := nYk=1 (z � ak) ; ak 2 C ;we de�ne



324 7. Inequalities for Rational Funtion Spaesq�(z) := nYk=1 (1� akz) =: znqn(z�1) :Then(7:1:1) jq(z)j = jq�(z)j ; z 2 �D :The funtion Sn(z) := q�(z)q(z) = nYk=1 1� akzz � akis the Blashke produt assoiated with (ak)nk=1:Theorem 7.1.7 (Bernstein-Type Inequality on �D, Complex Case). Given(ak)nk=1 � C n �D ; let the Bernstein fator Bn be de�ned byBn(z) := maxfB+n (z); B�n (z)gwith B+n (z) := nXk=1jakj>1 jakj2 � 1jak � zj2 and B�n (z) := nXk=1jakj<1 1� jakj2jak � zj2 :Then jf 0(z)j � Bn(z)kfk�D ; z 2 �Dfor every f 2 Pn(a1; a2; : : : ; an; �D):If the �rst sum is not less than the seond sum for a �xed z 2 �D; thenequality holds for f = S+n with  2 C , where S+n is the Blashke produtassoiated with those ak for whih jakj > 1: If the seond sum is not lessthan the �rst sum for a �xed z 2 �D; then equality holds for f = S�n with 2 C ; where S�n is the Blashke produt assoiated with those ak for whihjakj < 1:Proof. For reasons of symmetry it is suÆient to prove the theorem onlyfor z = 1: Without loss of generality we may assume that(7:1:2) Re nXk=1 11� ak! 6= n2 ;the remaining ases follow from this by a limiting argument. Let Q := �D(equipped with the usual metri topology), V := Pn(a1; a2; : : : ; an; �D) ;and L(f) := f 0(1) for f 2 V: We show in this situation that n + 1 � r inTheorem A.3.3 (interpolation of linear funtionals). Suppose to the ontrarythat r � n: By Theorem A.3.3, there are distint points x1; x2; : : : ; xr on�D, and there are onstants 1; 2; : : : ; r 2 C suh that



7.1 Inequalities for Rational Funtion Spaes 325(7:1:3) p0(1)q(1)� q0(1)p(1)q(1)2 = rXk=1 k p(xk)q(xk) ; p 2 Pn ;where(7:1:4) q(z) := nYk=1 (z � ak) :We laim that xk 6= 1 for eah k = 1; 2; : : : ; r: Indeed, if there is index ksuh that xk = 1; then Theorem A.3.3 implies thatp(z) := (z + 1)n�r rYk=1(z � xk) 2 Pnhas a zero at 1 with multipliity at least two, whih is a ontradition.Applying (7.1.3) with the above p; we obtainp0(1)q(1)� q0(1)p(1) = 0and sine p(1) 6= 0 and q(1) 6= 0, this is equivalent toq0(1)q(1) = p0(1)p(1) ;that is, in terms of the zeros of pn and qn;(7:1:5) nXk=1 11� ak = n� r2 + rXk=1 11� xk :Sine xk 2 �D and xk 6= 1; we have(7:1:6) Re� 11� xk� = 12 ; k = 1; 2; : : : ; r :It follows from (7.1.5) and (7.1.6) thatRe nXk=1 11� ak! = n2 ;whih ontradits assumption (7.1.2). So n+ 1 � r; indeed.A ompatness argument shows that there is a funtion ef 2 V suhthat k efk�D = 1 and L( ef) = kLk := max06=f2V jL(f)jkfk�D :



326 7. Inequalities for Rational Funtion SpaesTheorem A.3.3 implies j ef(xk)j = 1 for every k = 1; 2; : : : ; r: Hene, ifef = epq ; ep 2 Pn ; q(z) = nYk=1 (z � ak) ;then(7:1:7) h(z) := jep(z)j2 � jq(z)j2 � 0 ; z 2 �Dand(7:1:8) h(xk) = 0 ; k = 1; 2; : : : ; r :Note that t(�) := h(ei�) 2 Tn vanishes at eah �k, where the numbers�k 2 [��; �) are de�ned by xk = ei�k ; k = 1; 2; : : : ; r: Beause of (7.1.7),eah of these zeros is of even multipliity. Hene, n + 1 � r implies thatt 2 Tn has at least 2n + 2 zeros and therefore t = 0: From this we andedue that h(z) = 0 for every z 2 �D; so(7:1:9) jep(z)j = jq(z)j ; z 2 �D :We now havez�nep(z)ep �(z) = jep(z)j2 = jq(z)j2 = z�nq(z)q�(z) ; z 2 �D ;so by the uniity theorem for analyti funtions (see E.1 e℄ of Setion 1.2)ep ep� = qq� :From this, it follows that there exists a onstant 0 6=  2 C suh thatef(z) = ep(z)q(z) =  mYk=1 z � ��1kz � �k ; z 2 C ; q(z) 6= 0with some m � n and�k := ajk ; k = 1; 2; : : : ;m ; 1 � j1 < j2 < � � � < jm � n :A straightforward alulation gives thatj ef 0(1)j = ����� ef 0(1)ef(1) ����� = ����� mXk=1� 11� ��1k � 11� �k������= ����� mXk=1 j�kj2 � 1j�k � 1j2 ����� � maxfB+n (z); B�n (z)g ;whih �nishes the proof. ut



7.1 Inequalities for Rational Funtion Spaes 327Corollary 7.1.8 (Bernstein-Type Inequality on K, Complex Case). Given(ak)2nk=1 � C n R; let the Bernstein fator Bn be de�ned byeBn(�) := maxf eB+n (�); eB�n (�)gwitheB+n (�) := 2nXk=1Im(ak)<0 jeiak j2 � 1jeiak � ei�j2 and eB�n (�) := 2nXk=1Im(ak)>0 1� jeiak j2jeiak � ei�j2 :Then jf 0(�)j � Bn(�)kfkK ; � 2 Kfor every f 2 T n (a1; a2; : : : ; a2n;K):If the �rst sum is not less than the seond sum for a �xed � 2 K; thenequality holds for f(�) = S+2n(ei�) with  2 C ; where S+2n is the Blashkeprodut assoiated with those eiak for whih Im(ak) < 0: If the seond sumis not less than the �rst sum for a �xed � 2 K; then equality holds forf(�) = S�2n(ei�) with  2 C ; where S�2n is the Blashke produt assoiatedwith those eiak for whih Im(ak) > 0: Note thatS�2n(ei�) 2 T n (a1; a2; : : : ; a2n;K) :Proof. Observe that ifh(�) := 2nYj=1 sin((� � aj)=2) 2 T nand tn 2 T n ; then there are p 2 P2n and q 2 P2n suh thatt(�)h(�) = p(ei�)e�in�q(ei�)e�in� = p(ei�)q(ei�) ;where q is of the form q(z) =  2nYj=1(z � eiaj )with some  2 C : So the orollary follows from Theorem 7.1.7. utCorollary 7.1.9 (Bernstein-Type Inequality on [�1; 1℄, Complex Case).Given fakgnk=1 � C n [�1; 1℄, let the Bernstein fator Bn(x) be de�nedby Bn(x) = max( nXk=1 1� jkj2jk � zj2 ; nXk=1 jkj�2 � 1j�1k � zj2) ;



328 7. Inequalities for Rational Funtion Spaeswhere k and z are determined byak := 12 (k + �1k ) ; jkj < 1 ;x := 12 (z + z�1) ; Im(z) > 0 :Then jf 0(x)j � Bn(x)p1� x2 kfk[�1;1℄ ; x 2 (�1; 1)for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄): Note thatnXk=1 1� jkj2jk � zj2 = Re nXk=1 pa2k � 1ak � x ! ; x 2 [�1; 1℄ ;where the hoie of pa2k � 1 is determined by ��ak �pa2k � 1�� < 1:Proof. The orollary follows from Theorem 7.1.7 by the substitutionx = 12 (z + z�1): utBernstein's lassial polynomial inequalities disussed in Setion 5.1are ontained in Theorem 7.1.7 and Corollaries 7.1.8 and 7.1.9 as limitingases. In Theorem 7.1.7 and Corollary 7.1.9 we take(a(m)1 ; a(m)2 ; : : : ; a(m)n ) � C nDso that limm!1 ja(m)k j =1 ; k = 1; 2; : : : ; n :In Corollary 7.1.8 we take(a(m)1 ; a(m)2 ; : : : ; a(m)2n ) � C n Rso thata(m)n+k = a(m)k and limm!1 jIm(a(m)k )j =1 ; k = 1; 2; : : : ; n :To formulate our next result we introdue the Blashke produtQn(z) := nYk=1 z � akz � akassoiated with (a1; a2; : : : ; an) � C n R: Obviously jQn(z)j = 1 for everyz 2 R:



7.1 Inequalities for Rational Funtion Spaes 329Corollary 7.1.10 (Bernstein-Type Inequality on R, Complex Case). Given(ak)nk=1 � C n R; let the Bernstein fator Bn(x) be de�ned byBn(x) := maxfB+n (x); B�n (x)gwithB+n (x) := nXk=1Im(ak)>0 2 jIm(ak)jjx� akj2 and B�n (x) := nXk=1Im(ak)<0 2 jIm(ak)jjx� akj2for every x 2 R: Thenjf 0(x)j � Bn(x)kfkR ; x 2 Rfor every f 2 Pn(a1; a2; : : : ; an;R):If the �rst sum is not less than the seond sum for a �xed x 2 R; thenequality holds for f = Q+n with  2 C ; where Q+n is the Blashke produtassoiated with the poles ak lying in the open upper half-planeH+ := fz 2 C : Im(z) > 0g :If the seond sum is not less than the �rst sum for a �xed x 2 R; thenequality holds for f = Q�n with  2 C ; where Q�n is the Blashke produtassoiated with the poles ak lying in the open lower half-planeH� := fz 2 C : Im(z) < 0g :Corollary 7.1.10 follows from Theorem 7.1.7; see E.4.The next theorem improves the Bernstein-type inequality of Theorem7.1.7 in the ase when fakgnk=1 � C nD and f has all its zeros in C nD: Itextends Lax [44℄.Theorem 7.1.11 (Lax-Type Inequality). Given (ak)nk=1 � C n D, let theBernstein fator Bn be, as in Theorem 7.1.7, de�ned byBn(z) := nXk=1 jakj2 � 1jak � zj2 :Then jh0(z)j � 12Bn(z)khk�D ; z 2 �Dfor every h 2 Pn(a1; a2; : : : ; an; �D) having all its zeros in C nD:Equality holds for h = (Sn + 1) with  2 C ; where Sn is the Blashkeprodut assoiated with (ak)nk=1.



330 7. Inequalities for Rational Funtion SpaesNote that Bn(z) = jS0n(z)j: Note also thath := (Sn + 1) 2 Pn(a1; a2; : : : ; an; �D) ;  6= 0has all its zeros on �D:Proof. First assume that eah zero of h is on �D; the general ase an beredued to this (see E.5). Thus let h := p=q; where p 2 Pn has all its zeroson �D and where q(z) := nYk=1 (z � ak) ; jakj > 1 :Let q�(z) := nYk=1 (1� akz) :We study u(�) := p(e2i�)e�in�jq(e2i�)j = p(e2i�)pq(e2i�)pq�(e2i�)for � 2 R; where the square roots are taken so that pq is analyti in aneighborhood of the losed unit disk, and pq� is analyti in a neighborhoodof the omplement of the open unit disk. Sine p 2 Pn has all its zeros on�D; there exists a 0 6= � 2 C suh thatt(�) := �p(e2i�)e�in�is a real trigonometri polynomial of degree at most n (see E.5 a℄). Alsojq(e2i�)j = jq�(e2i�)j = nYk=1 j1� ake2i�j=  2nYk=1 j sin((� � k)=2)j ;where  > 0; eik = a�1=2k ; Im(k) > 0 ; k = 1; 2; : : : ; nand eik = �a�1=2k ; Im(k) > 0 ; k = n+ 1; n+ 2; : : : ; 2n :Applying Theorem 7.1.1 to��1u 2 Tn(1; 2; : : : ; 2n;K) ;



7.1 Inequalities for Rational Funtion Spaes 331we obtain(7:1:10) ju0(�)� i eBn(�)u(�)j � eBn(�)kukK ; � 2 K ;where eBn(�) = 12 nXk=1 1� jakj�1ja�1=2k � ei�j2 + 1� jakj�1j � a�1=2k � ei�j2!(7:1:11) = nXk=1 1� jakj�2ja�1k � e2i�j2 = nXk=1 jakj2 � 1jak � e2i�j2 :Observe that(7:1:12) u(�) = p(e2i�)q(e2i�) pq(e2i�)pq�(e2i�) = p(e2i�)q(e2i�)fn(ei�) ;where(7:1:13) fn(z) := pq(z2)pq�(z2) :A simple alulation (see E.4. of Setion 3.5) shows that(7:1:14) eBn(�) = ei� f 0n(ei�)fn(ei�) ; � 2 K :Also, sine jfn(ei�)j = 1 for every � 2 K; we have(7:1:15) kukK = pq �D = khk�D :Now (7.1.10) to (7.1.15) yield���� dd� �p(e2i�)q(e2i�)fn(ei�)�� iei� f 0n(ei�)fn(ei�) p(e2i�)q(e2i�)fn(ei�)���� � eBn(�)khk�D :So j2ie2i�h0(e2i�)fn(e2i�) + iei�f 0n(ei�)h(e2i�)� iei�f 0n(ei�)h(e2i�)j � eBn(�)khk�D :Thus 2 jh0(e2i�)j � eBn(�)khk�D ;whih, together with (7.1.11), �nishes the proof. ut



332 7. Inequalities for Rational Funtion SpaesComments, Exerises, and Examples.Most of the results in this setion have been proved in Borwein and Erd�elyi[to appear 4℄ and in Borwein, Erd�elyi, and Zhang [94a℄. A weaker versionof Corollary 7.1.9 has been obtained by Russak (see Petrushev and Popov[87℄). Theorem 7.1.11 ontains, as a limiting ase, an inequality of Lax [44℄onjetured by Erd}os. Lax's inequality establishes the sharp Bernstein-typeinequality on the unit disk for polynomials p 2 Pn having no zeros in theopen unit disk. That is, kp0kD � n2 kpkDfor suh polynomials. Various extensions of this inequality are given byAnkeny and Rivlin [55℄, Govil [73℄, Malik [69℄, and others. We disuss someof these in E.16 of Appendix 5.E.1 Proof of Theorem 7.1.1 and Corollary 7.1.2. Given (ak)2nk=1 � C nR;let Tn;a := Tn(a1; a2; : : : ; a2n;K) :a℄ Show that Tn;a is a Hermite interpolation spae. That is, if the pointsx1; x2; : : : ; xk 2 K are distint, and m1;m2; : : : ;mk are positive integerswith Pki=1mi � 2n+1; then for any hoie of real numbers yi;j , there is afuntion f 2 Tn;a suh thatf (j)(xi) = yi;j ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1 :Hint: See the hint to E.7 of Setion 1.1. utb℄ Show that for every �xed � 2 K; the valuemax06=f2Tn;a f 0(�)2 +B2n(�)f2(�)kfk2Kis attained by an ef 2 Tn;a:Hint: Use a ompatness argument. ut℄ Show that ef = V; where  2 R and V is one of the Chebyshev polyno-mials for Tn;a de�ned in Theorem 3.5.3 and E.3 of Setion 3.5.Hint: Use a variational method with the help of part a℄. utd℄ Prove Theorem 7.1.1.Hint: Use part ℄ and E.4 of Setion 3.5. ute℄ Prove Corollary 7.1.2.E.2 Proof of Corollaries 7.1.3 and 7.1.4.a℄ Prove the inequality of Corollary 7.1.3.



7.1 Inequalities for Rational Funtion Spaes 333Hint: Use Theorem 7.1.1 with the substitution x = os �: Note thatf 2 Pn(a1; a2; : : : ; an; [�1; 1℄) impliesg(�) := f(os �) = Tn(1; 1; 2; 2; : : : ; n; n;K) ;where the numbers k 2 C are de�ned byeik = ak �qa2k � 1 ; ak = 12 (eik + e�ik); Im(k) > 0 :Verify that if eBn is the Bernstein fator given in Theorem 7.1.1 assoiatedwith (1; 1; 2; 2; : : : ; n; n) ;then eBn(�) = nXk=1Re pa2k � 1ak � os �! ; � 2 K ;where the hoie of pa2k � 1 is determined by ��ak �pa2k � 1�� < 1: utb℄ Given x 2 [�1; 1℄; prove that equality holds in the inequality of Corol-lary 7.1.3 if and only if either x is a maximum point of jf j (that is,f(x) = �kfk[�1;1℄) or f = Tn with  2 R; where Tn is de�ned in Se-tion 3.5.Hint: Observe that V = (os �) eTn + (sin �)eUnis even if and only if V = �eTn and use Theorem 7.1.1. ut℄ Prove Corollary 7.1.4.E.3 Proof of Corollaries 7.1.5 and 7.1.6.a℄ Prove Corollary 7.1.5.Hint: Use Theorem 7.1.1 and the substitution x = iei� + 1ei� � 1 ; whih maps Konto R [ f1g: utb℄ Prove Corollary 7.1.6.E.4 Proof of Corollary 7.1.10. Prove Corollary 7.1.10.Hint: Use Theorem 7.1.7 and the substitution x = iz + 1z � 1 ; whih maps �Donto R [ f1g : utE.5 Completion of the Proof of Theorem 7.1.11.a℄ Show that if p 2 Pn has all its zeros on the unit irle, then thereis a 0 6= � 2 C suh that g(�) := �e�in�p(e2i�) is a real trigonometripolynomial of degree at most n:



334 7. Inequalities for Rational Funtion SpaesFor f = p=q withq(z) := nYk=1 (z � ak) ; ak 2 Cand p(z) :=  mYk=1 (z � bk) ; bk 2 C ;  2 C ; m � n ;we de�ne f� := p�=q; wherep�(z) :=  mYk=1 (1� zbk) :Let D := fz 2 C : jzj < 1g:b℄ Show that jf�(z)j = jf(z)j for every z 2 �D:In eah of the remaining parts of the exerise suppose that jakj > 1 foreah k:℄ Show that if � 2 �D and jbkj � 1 for eah k; then f + �f� has all itszeros on the unit irle.d℄ Show that if jbkj � 1 for eah k; thenjf 0(z)j � jf�0(z)j ; z 2 �D :Hint: First observe that it is suÆient to study the ase z = 1: We have����Re�f 0(1)f(1) ����� = �����Re nXk=1 11� bk!�Re nXk=1 11� ak!������ �����Re nXk=1 11� bk!� n2 �����+ �����n2 �Re nXk=1 11� ak!�����= n2 �Re nXk=1 11� bk!+ n2 �Re nXk=1 11� ak!= n�Re nXk=1 11� bk!�Re nXk=1 11� ak!= Re nXk=1 11� b�1k !�Re nXk=1 11� ak!= Re nXk=1 11� b�1k !�Re nXk=1 11� ak!= ����Re�f�0(1)f�(1) �����



7.1 Inequalities for Rational Funtion Spaes 335and ����Im�f 0(1)f(1) ����� = �����Im nXk=1 11� bk!� Im nXk=1 11� ak!�����= �����Im n� nXk=1 11� bk!� Im nXk=1 11� ak!�����= ������Im nXk=1 11� b�1k !+ Im nXk=1 11� ak!�����= ����Im�f�0(1)f�(1) ����� :The result now follows from the ombination of part b℄ and the above twoinequalities. ute℄ Prove that if jbkj � 1 for eah k; then2jf 0(z)j � jf 0(z)j+ jf�0(z)j � Bn(z)kfk�D ; z 2 �D ;where Bn(z) is the Bernstein fator de�ned in Theorem 7.1.11.Hint: Use parts ℄ and d℄ and the already proved part of Theorem 7.1.11(when f has all its zeros on the unit irle). utf ℄ Show that if jbkj � 1 for eah k; thenjf 0(z)j � 12Bn(z)�maxz2�D jf(z)j � minz2�D jf(z)j� ; z 2 �D ;where Bn(z) is the Bernstein fator de�ned in Theorem 7.1.7. This extendsa result of Aziz and Dawood [88℄.Hint: Assume that kfk�D = 1: Let m := minz2�D jf(z)j: Let � be a on-stant of modulus less than 1: Let g(z) := f(z) � �m: Observe that theargument of � an be hosen so thatjg�0(z)j = jf�0(z)j � j�jmBn(z) :By Rouh�e's theorem, g has no zeros in D: So parts d℄ and e℄ imply that2 jf�0(z)j � 2 j�jmBn(z) = 2 jg�0(z)j � jg0(z)j+ jg�0(z)j= jf 0(z)j+ jf�0(z)j � j�jmBn(z)� Bn(z)� j�jmBn(z) :Sine j�j an be hosen arbitrarily lose to 1, the result follows. ut



336 7. Inequalities for Rational Funtion SpaesE.6 Extensions of Russak's Inequalities.a℄ Given (ak)2nk=1 � C n R, show thatkf 0kL1(K) � 2�n kfkKfor every f 2 Tn(a1; a2; : : : ; a2n;K) andkf 0kL1(K) � 4�n kfkKfor every f 2 T n (a1; a2; : : : ; a2n;K):b℄ Given (ak)nk=1 � C n R, show thatkf 0kL1(R) � �n kfkRfor every f 2 Pn(a1; a2; : : : ; an;R; ) andkf 0kL1(R) � 2�n kfkRfor every f 2 Pn(a1; a2; : : : ; an;R).Hint: Use Corollaries 7.1.2, 7.1.8, 7.1.6, and 7.1.10. Write the Bernsteinfators in a form so that the integral (of eah term in the maximum if theBernstein fator is de�ned by a maximum) an be evaluated by the residuetheorem (in part a℄) and by �nding the antiderivative (in part b℄). ut℄ Are any of the inequalities of parts a℄ and b℄ sharp? If so, in whihases?E.7 Markov-Type Inequality. Given (ak)nk=1 � R n [�1; 1℄; show thatkf 0k[�1;1℄ � nn� 1  nXk=1 1 + jkj1� jkj!2 kfk[�1;1℄for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄); where the numbers k are de�nedby k := ak �qa2k � 1 ; ak = 12 (k + �1k ) ; jkj < 1 :Proeed as follows:a℄ Given (ak)nk=1 � R n [�1; 1℄; letak(y) :=8><>: 2ak1 + y + 1� y1 + y if 0 � y � 12ak1� y + 1 + y1� y if �1 � y � 0and let k(y) be de�ned by



7.1 Inequalities for Rational Funtion Spaes 337ak(y) =: 12 (k(y) + k(y)�1) ; jk(y)j < 1 :Show that jf 0(y)j � 21 + jyj  nXk=1 1 + k(y)1� k(y)!2 kfk[�1;1℄for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄).Hint: Show by a variational method thatmaxf jf 0(�1)jkfk[�1;1℄ = jT 0n(�1)j ;where the maximum is taken for all 0 6= f 2 Pn(a1; a2; : : : ; an; [�1; 1℄);and Tn is the Chebyshev polynomial for Pn(a1; a2; : : : ; an; [�1; 1℄) de�nedin Setion 3.5. Now the result follows from E.1 ℄ of Setion 3.5 by a linearshift from [�1; 1℄ to [�1; y℄ if 0 � y � 1; or to [y; 1℄ if �1 � y � 0: utb℄ Given (ak)nk=1 � R n [�1; 1℄; show thatjf 0(y)j � n1� jyj kfk[�1;1℄ ; y 2 (�1; 1)for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄):Hint: When y = 0; this follows from Corollary 7.1.3. When y 2 (�1; 1) isarbitrary, use a linear shift from [�1; 1℄ to [2y � 1; 1℄ if 0 � y � 1; or to[�1; 2y + 1℄ if �1 < y � 0: ut℄ Prove the Markov-type inequality of the exerise.Hint: Combine parts a℄ and b℄. Note thatjak(y)j � jakj and jk(y)j � jkj < 1 ; k = 1; 2; : : : ; nholds for every y 2 [�1; 1℄: utE.8 Shur-Type Inequality. Given fakgnk=1 � R n [�1; 1℄; show thatkfk[�1;1℄ � maxfjUn(1)j; jUn(�1)jg � f(x)p1� x2[�1;1℄for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄); where Un is the Chebyshev poly-nomial (of the seond kind) for Pn(a1; a2; : : : ; an; [�1; 1℄) de�ned in Setion3.5, and jUn(�1)j = ����� nXk=1 pa2k � 1ak � 1 �����with the hoie of pa2k � 1 determined by ��ak �pa2k � 1�� < 1: Show thatequality holds if and only if f = Un;  2 R:



338 7. Inequalities for Rational Funtion SpaesHint: First show that if ef 2 Pn(a1; a2; : : : ; an; [�1; 1℄) is extremal formaxf jf(�1)jf(x)p1� x2[�1;1℄ ;where the maximum is taken for all 0 6= f 2 Pn(a1; a2; : : : ; an; [�1; 1℄);then f = Un with some  2 R: Observe that Un(�1) an be evaluated byL'Hospital's rule sine Un(x)2 = 1� Tn(x)21� x2 ;hene jUn(�1)j2 = jT 0n(�1)j = jBn(�1)j � jUn(�1)j with the notation ofSetion 3.5. Thus jUn(�1)j = jBn(�1)j :If y 2 [�1; 1℄ is arbitrary, then use a linear shift from [�1; 1℄ to [�y; y℄(some aution must be exerised about the hange of poles). utE.9 Extension of Lax's Inequality on the Half-Plane. Assoiated with(ak)nk=1 � H+ := fz 2 C : Im(z) > 0g; let the Bernstein fator Bn be, asin Corollary 7.1.10, de�ned byBn(x) := nXk=1 2 Im(ak)jx� akj2 :Show that jh0(x)j � 12Bn(x)khkR ; x 2 Rfor every h 2 Pn(a1; a2; : : : ; an;R) having all its zeros in H+:Equality holds for h = (eSn +1) with  2 C ; where eSn is the Blashkeprodut assoiated with (ak)nk=1: Note that Bn(z) = jeS0n(z)j: Note also thath = (eS + 1) 2 Pn(a1; a2; : : : ; an;R) ;  6= 0has all its zeros on R:Hint: Use Theorem 7.1.11 with the substitution x = iz + 1z � 1 : utE.10 Remarks on Theorem 7.1.7 and Corollary 7.1.10.a℄ Given (ak)nk=1 � D and z 2 �D; show that equality holds in the in-equality of Theorem 7.1.7 if and only if f = Sn with  2 C ; where Sn isthe Blashke produt assoiated with (ak)nk=1:Hint: Analyze the proof of Theorem 7.1.7. utb℄ Given (ak)nk=1 � H+ = fz 2 C : Im(z) > 0g and x 2 R; show thatequality holds in the inequality of Corollary 7.1.10 if and only if f = Qnwith  2 C ; where Qn is the Blashke produt assoiated with (ak)nk=1:Note that the only if parts of E.10 a℄ and E.10 b℄ above are not laimedin the general ase of Theorem 7.1.7 and Corollary 7.1.10 (why?).



7.1 Inequalities for Rational Funtion Spaes 339E.11 Markov-Bernstein-Type Inequality for SRn and ASRn. Let SRndenote the set of all self-reiproal polynomials p 2 Pn satisfyingp(z) � znp(z�1) :Let SRn denote the set of all real self-reiproal polynomials of degree atmost n; that is, SRn := SRn \ Pn: For a polynomial p 2 Pn of the form(7:1:16) p(z) = nXj=0 jzj ; j 2 C ;p 2 SRn if and only ifj = n�j ; j = 0; 1; : : : ; n :Let ASRn denote the set of all antiself-reiproal polynomials p 2 Pnsatisfying p(z) � �znp(z�1) :Let ASRn denote the set of all real antiself-reiproal polynomials of degreeat most n; that is, ASRn := ASRn \ Pn: Let ASRn := ASRn \ Pn. For apolynomial p 2 Pn of the form (7.1.16) p 2 ASRn if and only ifj = �n�j ; j = 0; 1; : : : ; n :a℄ There exists an absolute onstant  suh thatjp0(x)j � nmin�(1 + logn); log� e1� x2�� kpk[�1;1℄holds for every x 2 [�1; 1℄ and for every p 2 Pn satisfying(7:1:17) jp(x)j � (1 + jxjn)kpk[�1;1℄ ; x 2 R ;in partiular, for every p 2 SRn and for every p 2 ASRn:The inequality jp0(x)j � n(1 + logn) kpk[�1;1℄for all p 2 SRn and for all p 2 ASRn was �rst obtained by Kro�o andSzabados [94a℄. They also showed that up to the onstant  > 0 the aboveinequality is sharp for both SRn and ASRn: Here we present a distintproof. The sharpness is studied in E.12 f℄.



340 7. Inequalities for Rational Funtion SpaesOutline. Suppose p 2 Pn satis�es (7.1.17). Then(7:1:18) f(x) := p(x)1 + x2nsatis�es(7:1:19) kfkR � 2 kpk[�1;1℄ :Let(7:1:20) ak := ei(2k�1)�=(2n) ; k = 1; 2; : : : ; 2nbe the zeros of the equation z2n + 1 = 0: Now Corollary 7.1.10, togetherwith (7.1.18) to (7.1.20), yields thatjf 0(x)j � 2 nXk=1 Im(ak)jx� akj2! kfkR(7:1:21) � 4 nXk=1 Im(ak)jx� akj2! kpk[�1;1℄ ; x 2 R :Show that if n 2 N and x 2 [�1; 1℄; then(7:1:22) 4 nXk=1 Im(ak)jx� akj2 � nmin�(1 + logn); log� e1� x2�� ;where here the � symbol means that there are absolute onstants 1 > 0and 2 > 0 (independent of n 2 N and x 2 [�1; 1℄) suh that the left-handside is between 1 times the right-hand side and 2 times the right-handside for every n 2 N and x 2 [�1; 1℄: Combining (7.1.18), (7.1.21), and(7.1.22), we onlude that there is an absolute onstant 2 suh that���� p0(x)1 + x2n � 2nx2n�11 + x2n p(x)1 + x2n ����� 2nmin�(1 + logn); log� e1� x2�� kpk[�1;1℄ ; x 2 R :So if x 2 [�1; 1℄; thenjp0(x)j � �22nmin�(1 + logn); log� e1� x2��+ 2n� kpk[�1;1℄and the proof is �nished. utb℄ There exists an absolute onstant  > 0 suh that p0(x)1 + x2n R � n(1 + logn)  p(x)1 + x2n Rfor every p 2 P2n:



7.1 Inequalities for Rational Funtion Spaes 341Proof. Assoiated with p 2 P2n; letf(x) := p(x)1 + x2n :Let ak := ei(2k�1)�=(2n) ; k = 1; 2; : : : ; 2nbe the zeros of the equation z2n + 1 = 0: Using Corollary 7.1.10, we andedue that there are absolute onstants 1 and 2 suh thatkf 0kR �  nXk=1 2 jIm(ak)j�1! kfkR � 1 nXk=1�kn��1! kfkR� 2n(1 + logn)kfkR :Therefore���� p0(x)1 + x2n � 2nx2n�11 + x2n p(x)1 + x2n ���� � 2n(1 + logn)  p(x)1 + x2n Rfor every x 2 R; whih implies p0(x)1 + x2n R � (2n(1 + logn) + 2n)  p(x)1 + x2n R ;and the result follows. ut℄ For every m 2 N; there exists a onstant (m) depending only on m sothat kp(m)k[�1;1℄ � (m)(n(1 + logn))mkpk[�1;1℄for every p 2 Pn satisfying(7:1:23) jp(x)j � (1 + jxjn)kpk[�1;1℄ :Proof. Using part b℄ and indution onm, we see that there exists a onstant1(m) depending only on m suh thatp(m)(x)1 + x2n R � 1(m)(n(1 + logn))m  p(x)1 + x2n Rfor every p 2 P2n: Note that if p 2 Pn satis�es (7.1.23), then p(x)1 + x2n R � 2  p(x)1 + jxjn R � 2kpk[�1;1℄ ;and the result follows. ut



342 7. Inequalities for Rational Funtion SpaesE.12 Quasi-Chebyshev Polynomials for SR2n and ASR2n. Letak := ei(2k�1)�=(2n) ; k = 1; 2; : : : nbe the zeros of the equation z2n + 1 = 0 in the upper half-plane. LetM2n(z) := nYk=1 (z � ak)2 ; z 2 C ;P2n(x) :=Re(M2n(x)) ; x 2 R ;and Q2n(x) :=Im(M2n(x)) ; x 2 R :a℄ Show that if n is even, then P2n 2 SR2n and Q2n 2 ASR2n; while if nis odd, then Q2n 2 SR2n and P2n 2 ASR2n:b℄ Show that jM2n(x)j = 1 + x2n ; x 2 Rand P2n(x)2 +Q2n(x)2 = (1 + x2n)2 ; x 2 R ;in partiular kP2nk[�1;1℄ � 2 and kQ2nk[�1;1℄ � 2 :Proof. Note that(7:1:24) M2n(x)1 + x2n = nYk=1 x� akx� ak ;whih implies the �rst equality. The rest is straightforward from the de�-nitions. ut℄ Show that there are extended real numbers1 = z0 > z1 > � � � > z2n = �1suh that M2n(zj)1 + z2nj = (�1)j ; j = 0; 1; : : : ; 2n(the value of the left-hand side at �1 is de�ned by taking the limit whenx! �1).Hint: Use (7.1.24) and the argument priniple (see, for example, Ash [71℄).ut



7.1 Inequalities for Rational Funtion Spaes 343d℄ Let n 2 N be even. Show that there exist1 = x0 > y1 > x1 > y2 > � � � > xn�1 > yn > xn = �1suh thatP2n(xj)1 + x2nj = (�1)j+n=2 ; Q2n(xj) = 0 ; j = 0; 1; : : : ; nand Q2n(yj)1 + y2nj = (�1)j+1+n=2; P2n(yj) = 0 ; j = 1; 2; : : : n :Formulate the analog statement when n 2 N is odd.e℄ Show that there exists an absolute onstant  > 0 suh thatjP 02n(x)j+ jQ02n(x)j � nmin�(1 + logn); log� e1� x2��for every n 2 N and x 2 [�1; 1℄:Proof. If x 2 [�1; 1℄; thenjP 02n(x)j+ jQ02n(x)j � jM 02n(x)j = jM 02n(x)j ����1 + x2nM2n(x) ����� ����M 02n(x)M2n(x) ���� = ����� nXk=1 2x� ak ����� � 2 nXk=1 Im(ak)jx� akj2� nmin�(1 + logn); log� e1� x2��with an absolute onstant  > 0; where the last inequality follows from(7.1.22). utThe next part shows the sharpness of the inequality of E.11 a℄.f ℄ Let  > 0 be the same absolute onstant as in part e℄. For the sake ofbrevity let Æn(x) := �nmin�(1 + logn); log� e1� x2����1 :Show that for every intervalIn;x := [x; x+ 8Æn(x)℄ � [0; 1℄ ;



344 7. Inequalities for Rational Funtion Spaesthere exist y1 2 In;x and y2 2 In;x suh thatjP 02n(y1)j � 12Æn(x)�1 and jQ02n(y2)j � 12Æn(x)�1 :Proof. Suppose that jP 02n(y)j < 12Æn(x)�1for every y 2 In;x: Then, from part e℄ we an dedue thatjQ02n(y)j > 12Æn(x)�1for every y 2 In;x: ThereforekQ2nk[�1;1℄ � 12 RIn;x jQ02n(y)j dy > 128Æn(x) 12Æn(x)�1 = 2 ;whih ontradits the last inequality of part b℄. This �nishes the proof ofthe �rst inequality. The seond inequality an be proven in the same way.utg℄ Show that p0(1) = 12n p(1)for every p 2 SRn:By using the quasi Chebyshev polynomials for SR2n and ASR2n, it anbe shown that the inequality of E.11 ℄ is essentially sharp for the lassesSRn and ASR2n for every m. This has been pointed out to us by Szabados.The argument requires some more tehnial details than the proof in them = 1 ase disussed in the above exerise.7.2 Inequalities for Logarithmi DerivativesWe derive a series of metri inequalities of the formm��x 2 R : r0(x)r(x) � ��� � n� ; � > 0 ;where r is a rational funtion of type (n; n) and  is a onstant independentof n. Here m is the Lebesgue measure, although, sine the sets in questionare usually just �nite unions of intervals, this is mostly a notational on-veniene. One of the interesting features of these inequalities is their easyextension from the polynomial ase to the rational ase.The basi inequality is due to Loomis [46℄. Note the invariane of themeasure of the set in this ase.



7.2 Inequalities for Logarithmi Derivatives 345Theorem 7.2.1. If p 2 Pn has n real roots, thenm��x 2 R : p0(x)p(x) � ��� = n� ; � > 0 :Proof. By onsidering ��1p instead of p; it is suÆient to prove the theoremfor � = 1: We �rst onsider the ase where p has distint roots, whih aredenoted by �1 < �2 < � � � < �n: Thenp0(x)p(x) = nXk=1 1x� �i :Let �1 < �2 < � � � < �n be the roots of p� p0; whih must all be real. Notethat these are the points where p0(x)=p(x) = 1: It is now easy to see fromthe graph that�x 2 R : p0(x)p(x) � 1� = [�1; �1℄ [ [�2; �2℄ [ � � � [ [�n; �n℄and m��x 2 R : p0(x)p(x) � 1�� = nXi=1 �i � nXi=1 �i :However, if p(x) := xn + an�1xn�1 + � � �+ a0; thennXi=1 �i = �an�1 ;while nXi=1 �i = �(an�1 � n)is �1 times the seond oeÆient of p� p0:This gives the result for distint roots. The ase when some of the rootsof p are repeated an be handled by an easy limiting argument. utCorollary 7.2.2. If �i 2 R; i > 0; i = 1; 2; : : : ; n; and Pni=1 i = 1;then m (x 2 R : nXi=1 ix� �i � �)! = 1� ; � > 0 :Proof. For i rational this follows immediately from Theorem 7.2.1 on lear-ing the denominators of i by multiplying by an integer. The real ase isan obvious limiting argument. utIn order to extend Theorem 7.2.1 to arbitrary polynomials we needthe following generalization of E.3 of Setion 2.4 due to Videnskii [51℄. Theproof is indiated in the exerises.



346 7. Inequalities for Rational Funtion SpaesLemma 7.2.3. If p 2 Pn is positive on [a; b℄; then there exists q; s 2 Pnnonnegative on [a; b℄ with all real roots (in [a; b℄) so thatp(x) = q(x) + s(x) :We now prove the unrestrited ase of Theorem 7.2.1.Theorem 7.2.4. Let p 2 Pn: Thenm��x 2 R : p0(x)p(x) � ��� � 2n� ; � > 0 :Proof. Let � > 0 and let pn 2 Pn: Choose a and b suh that�x 2 R : p0(x)p(x) � �� � [a; b℄ :By Lemma 7.2.3 we an �nd polynomials q 2 P2n and s 2 P2n suh thatp2(x) = q(x) + s(x)where, for x 2 [a; b℄;0 � q(x) � p2(x) and 0 � s(x) � p2(x)and both q and s have only real roots. Now�x 2 R : p0(x)p(x) � �� = �x 2 R : (p2)0(x)p2(x) � 2�� :Also, (p2)0(x) � 2�p2(x)holds exatly when q0(x) + s0(x) � 2�(q(x) + s(x)) :By Theorem 7.2.1m��x 2 R : q0(x)q(x) � 2��� = m��x 2 R : s0(x)s(x) � 2��� = n� :Sine q and s are nonnegative on [a; b℄, it follows thatm(fx 2 [a; b℄ : q0(x) + s0(x) � 2�(q(x) + s(x))g) � 2n� ;and the proof is �nished. utIt an be shown that this inequality is asymptotially sharp to theextent that the onstant 2 annot be replaed by any smaller onstant forlarge n; see Kristiansen [82℄.Theorem 7.2.4 extends easily to rational funtions.



7.2 Inequalities for Logarithmi Derivatives 347Theorem 7.2.5. If r = p=q, where p; q 2 Pn; thenm��x 2 R : r0(x)r(x) � ��� � 8n� ; � > 0 :Proof. We have r0r = p0p � q0qand for � > 0;�x 2 R : r0(x)r(x) � �� � �x 2 R : p0(x)p(x) � �2� [ �x 2 R : q0(x)q(x) � ��2� :By Theorem 7.2.4 m��x 2 R : p0(x)p(x) � �2�� � 4n� ;and with s(x) := q(�x);m��x 2 R : q0(x)q(x) � ��2�� = m��x 2 R : s0(x)s(x) � �2�� � 4n� :It follows that m��x 2 R : r0(x)r(x) � ��� � 8n�for every � > 0: utThis inequality probably does not have the exat onstant. It an beshown (see Borwein, Rakhmanov, and Sa� [to appear℄) that the onstant 8annot be replaed by any onstant less than or equal to 2�:Comments, Exerises, and Examples.Many variants on the inequalities of this setion are presented in E.2, E.3,E.4, and E.5. Some of these are in Borwein [82℄.E.5 explores some metri properties of the lemnisateE(p) := fz 2 C : jp(z)j � 1gof a moni polynomial p 2 Pn of the formp(z) = nYi=1 (z � zi) ; zi 2 C :



348 7. Inequalities for Rational Funtion SpaesThe reader is referred to Erd}os, Herzog, and Piranian [58℄ for many resultsand open problems onerning the lemnisate of moni polynomials. Onein partiular, whih is still open, onjetures that for moni polynomialsp 2 Pn; the length of the boundary of E(p) is maximal for p(z) := zn � 1and so is O(n): Pommerenke [61℄ has shown that this length is O(n2):Borwein [95℄ improves this to O(n); see E.7. E.9 solves another problemof Erd}os, namely, the diameter of E(p) for a moni polynomial p 2 Pn isalways at least 2.Erd}os [76℄ ontains several other related open problems.E.1 Polynomials as Sums of Polynomials with Real Roots.a℄ Suppose p 2 P2n n P2n�1; and suppose that p > 0 on [a; b℄: Thenp(x) = (x� a)(b� x)u2(x) + v2(x)for some u 2 Pn�1 and v 2 Pn; whih have all their zeros in [a; b℄:b℄ Suppose p 2 P2n+1 n P2n and suppose that p > 0 on [a; b℄: Thenp(x) = (b� x)u2(x) + (x� a)v2(x)for some u; v 2 Pn; whih have all their zeros in [a; b℄:Hint: Let p be a polynomial of degree 2n that is stritly positive on [a; b℄:Let Tn be the Chebyshev polynomial for the Chebyshev system( 1pp(x) ; xpp(x) ; : : : ; xnpp(x)) :Then Tn(x) = v(x)=pp(x) with some v 2 Pn: Show that, for part a℄, v andu de�ned by (x� a)(b� x)u2(x) = p(x)� v2(x)are the required polynomials. Use a similar onstrution for part b℄. utE.2 Various Speializations. For the next exerises we use the notationP+n to denote the polynomial of degree at most n with nonnegative oeÆ-ients, and P"n to denote those elements of Pn that are nondereasing on[0;1):a℄ If r = p=q; where p; q 2 Pn and both p and q have only real roots, thenm��x 2 R : r0(x)r(x) � ��� � 4n� ; � > 0 :



7.2 Inequalities for Logarithmi Derivatives 349b℄ Let r(x) := xn=(4n� x)n: Thenm��x 2 R : r0(x)r(x) � 1�� = 4n :℄ If r = p=q; where p 2 Pn and q 2 P"n; thenm��x � 0 : r0(x)r(x) � ��� � 2n� ; � > 0 :d℄ If r = p=q; where p 2 P+n and q 2 P"n; thenm��x � 0 : r0(x)r(x) � ��� � n� ; � > 0 :e℄ Let r(x) := xn. Thenm��x � 0 : r0(x)r(x) � ��� = n� ; � > 0 :E.3 Another Metri Inequality. If p 2 Pn has n real roots lying in theinterval (a; b); thenm��x 2 R : ����p0(x)p(x) ���� � �j(x� a)(b� x)j�� = 2n� ; � > 0 :Outline. Prove thatm��x 2 R : 0 � (x� a)(b� x)p0(x)p(x) � ��� = �nand m��x 2 R : 0 � (x� a)(b� x)p0(x)p(x) � ���� = �n :First onsider the ase when p has distint zeros. Let y0 < y1 < � � � < yndenote the n+1 roots of (x� a)(b� x)p0(x), and let x0 < x1 < � � � < xn�1denote the n roots of p(x): Theny0 < x0 � y1 < � � �xn�1 < yn < xn :=1 :Sine limx!xi�(x � a)(b� x)p0(x)p(x) = �1 ;we an dedue that for eah interval (yi; xi) there exists a point Æi 2 (yi; xi)suh that (Æi � a)(b� Æi)p0(Æi) = ��p(Æi) :Sine the above equation an have at most n+ 1 solutions, we havem��x 2 R : 0 � (x� a)(b� x)p0(x)p(x) � ���� = nXi=0(Æi � yi) :Now proeed as in the proof of Theorem 7.2.1. ut



350 7. Inequalities for Rational Funtion SpaesE.4 Extensions to Pn.a℄ If p 2 Pn ; thenm��x 2 R : ����p0(x)p(x) ���� � ��� � 8p2n� ; � > 0 :Hint: Write p as the sum of its real and imaginary parts. utb℄ If r = p=q with p; q 2 Pn; thenm��x 2 R : ����r0(x)r(x) ���� � ��� � 32p2n� ; � > 0 :E.5 On the Lemnisate E(p). Letp(z) := nYi=1 (z � zi) ; zi 2 Cand let E(p) := fz 2 C : jp(z)j � 1g :a℄ Show that m(E(p) \ R)) � 4 � 2�1=nwith equality only for the Chebyshev polynomial of degree n normalized tohave lead oeÆient 1; see P�olya [28℄.Hint: Analogously to the proof of the Remez inequality of Setion 5.1, showthat the Chebyshev polynomial transformed to an interval of length 4 isextremal for this problem. utb℄ Let m2(�) denote the planar Lebesgue measure. Show thatm2(E(p)) � 4� :(In fat, m2(E(p)) � �; whih is exat for zn; this is due to P�olya [28℄.)E.6 Cartan's Lemma. Letp(z) := nYj=1 (z � zj) ; zj 2 Cand � > 0 be �xed. Then there exist at most n open disks, the sum of whoseradii is at most 2�; so that if z 2 C is outside the union of these open disksthen jp(z)j > ��e�n :



7.2 Inequalities for Logarithmi Derivatives 351Prove Cartan's Lemma as follows:a℄ Let �1; �2; : : : ; �� be �xed omplex numbers. Let � > 0: Show thatthere exists a positive integer � less than or equal to � for whih thereexists an open disk with radius ��=n ontaining �j for exatly � distintvalues of j = 1; 2; : : : ; �:Hint: Suppose to the ontrary that there is no suh positive integer �.Show that this would imply the existene of an open disk with radius ��=nontaining �j for at least � +1 distint values of j = 1; 2; : : : ; �; whih is aontradition. utb℄ Show that there exist open disks D1; D2; : : : ; Dk and positive integersm1;m2; : : : ;mk with the following properties:(1) Pkj=1mj = n ; m1 � m2 � � � � � mk ;(2) Dj has radius mj�n ;(3) Dj \ Ej ontains exatly mj zeros of p, whereEj := C n (D1 [D2 [ : : : [Dj�1) ;(4) for every integer m > mj ; no open disk of radius m�n ontains exatlym zeros of p in Ej :Hint: Use part a℄. ut℄ Let D1; D2; : : : ; Dk be the open disks spei�ed in part b℄. Forj = 1; 2; : : : ; k; let D�j be the disk with the same enter as Dj and withtwie its radius. Show that for everyz 2 E� := C n (D�1 [D�2 [ � � � [D�k)there is a permutation ez1; ez2; : : : ; ezn of the zeros z1; z2; : : : ; zn suh thatjz � ezj j � j�n ; j = 1; 2; : : : ; n :Hint: Let z 2 E� be �xed. Show, by indution on i; that for every i =0; 1; : : : ; n� 1; there are at least i+1 zeros of p outside the open disk withenter z and radius (n�i)�n : Distinguish the ases(1) n� i > m1 ;(2) mj � n� i > mj+1; j = 1; 2; : : : ; k � 1 ;(3) mk � n� i > 0 : utd℄ Finish the proof of Cartan's lemma.



352 7. Inequalities for Rational Funtion SpaesE.7 The Length of the Boundary of E(p). Letp(z) := nYj=1 (z � zj) ; zj 2 Cand let E := E(p) := fz 2 C : jp(z)j � 1g :Show that the boundary �E of E is of length at most 4e�n: (In fat, withE.10 a℄, the estimate an be improved to (5:2)�n:)Outline. Proeed as follows:a℄ Let L be an arbitrary line in the omplex plane. Show that the set�E \ L ontains at most 2n distint points.Hint: By performing a translation and a rotation, if neessary, we mayassume that L = R: Now observe that there is a polynomial P (x; y) ofdegree at most 2n; in two real variables x and y; with omplex oeÆients,suh that �E = fz 2 C : jp(z)j2 = 1g= fz 2 C : p(z)p(z) = 1g= fz = x+ iy : x; y 2 R ; P (x; y) = 1g :Hene E \ R = fx 2 R : P (x; 0) = 1gand sine P (x; 0) 2 P2n; the result follows. utb℄ For a 2 C and r > 0; let Q be the squareQ := fz 2 C : jRe(z � a)j < r ; jIm(z � a)j < rg :Show that Q \ �E is of length at most 8rn:Hint: Divide Q \ �E into suburves C1; C2; : : : ; Cm so that every vertialand horizontal line ontains at most one point of eah Cj . Let l(j)x and l(j)ydenote the length of the interval obtained by projeting Cj to the x axesand y axes, respetively. Letlx := mXj=1 l(j)x and ly := mXj=1 l(j)y :Use part a℄ to show that lx � 4nr and ly � 4rn. Hene, if l denotes thelength of Q \ �En; then l � lx + ly � 8rn : ut



7.2 Inequalities for Logarithmi Derivatives 353℄ Show that the boundary �E of E is of length at most 16en:Hint: Combine Cartan's lemma (see E.7) and part b℄. utThe rest of the exerise is about improving 16en to 4�en:d℄ Let B be the open disk with enter a 2 C and radius r > 0. Show thatB \ �E is of length at most 2�rn:Outline. Let Q be the squareQ := fz 2 C : jRe(z)j < r ; jIm(z)j < rg :For � 2 [0; 2�) let Q� be the squareQ� := fa+ ei�(z � a) : z 2 Qg :Let l(�) denote the length of Q�\�E: Let lx(�) and ly(�) denote the totallength of the intervals obtained by projeting Q� \ �E to the lines�z = rei� : r 2 R	 and �z = rei(�+�=2) : r 2 R	 ;respetively (ounting multipliities). The preise de�nition of lx(�) andly(�) an be formulated in the same way as in the hint to part b℄, whih isleft to the reader. Use part a℄ to show thatlx(�) + ly(�) � 8rn ; � 2 [0; 2�) :Hene 4� l(0) = 12� Z 2�0 l(0)(j sin�j+ j os�j) d�= 12� Z 2�0 (lx(�) + ly(�)) d� � 8rn ;and l(0) � 2�rn follows. ute℄ Prove the initial statement of the exerise.Hint: Combine Cartan's lemma (see E.6) and part d℄. utE.8 On the Length of Another Lemnisate. Suppose p 2 Pn: Show thatthe length of the lemnisateF = F (p) := �z 2 C : ����p0(z)p(z) ���� = n�is at most 16n(1 + log n) (atually at most 4�n(1 + logn)).Hint: The arguments are very similar to those given in the outline to E.7.First show that if L is an arbitrary line in the omplex plane, then F \ Lontains at most 2n distint points. Next prove that if Dr is an open diskof radius r in the omplex plane, then Dr \ F is of length at most 8rn(atually at most 2�rn). Now use E.6 ℄ with � = 1 + logn: utThe proof of the following exerise requires some familiarity with har-moni funtions.



354 7. Inequalities for Rational Funtion SpaesE.9 On the Diameter of E(p). The diameter diam(A) of a nonempty setA � C is de�ned bydiam(A) := supfjz1 � z2j : z1; z2 2 Ag :Let p 2 Pn be an arbitrary moni polynomial of degree n; that is,p(z) := nYj=1 (z � zj) ; zj 2 C :Then the diameter of the setE(p) := fz 2 C : jp(z)j � 1gis at least 2.Proeed as follows:a℄ Let bC := C [ f1g and � := fz 2 bC : jzj > 1g :Let p 2 Pn be moni. Let E := o(E(p)); that is, the onvex hull of E(p):Use the Riemann mapping theorem (see Ahlfors [53℄) to show that thereexists a funtion g of the formg(z) = bz + 1Xj=0 bjz�j ; z 2 � ; b; bj 2 Csuh that g is analyti and one-to-one on �; andg(�) = bC nE :Hint: Note that bC nE is simply onneted. utb℄ Let b be the same as in part a℄. Show that jbj � 1:Outline. Beause of the de�nition of E; for every " > 0 there exists a Æ > 0suh that �" � log jz�np(g(z))j ; jzj = 1 + Æ :Sine G(z) := log jz�np(g(z))j is harmoni on �; we haveG(1) = 12�(1 + Æ) Z 2�0 G((1 + Æ)ei�) d� � �"2�(1 + Æ)for every " > 0; so G(1) � 0: On the other hand, sine p 2 Pn is a monipolynomial of degree n;



7.2 Inequalities for Logarithmi Derivatives 355G(1) = log jbjn = n log jbj ;from whih jbj � 1 follows. ut℄ Show that diam(E) � 2 :Outline. Assume to the ontrary that diam(E) < 2. Then there exists aÆ > 0 suh that jz�1(g(z)� g(�z))j < 2 ; jzj = 1 + Æ :Sine F (z) := z�1(g(z)� g(�z)) = 2b+ 2b1z�2 + 2b3z�4 + � � �is analyti on �, the maximum priniple (E.1 d℄ of Setion 1.2) yields2jbj = jF (1)j � maxjzj=1+Æ jF (z)j = maxjzj=1+Æ jz�1(g(z)� g(�z))j < 2 ;that is, jbj < 1; whih ontradits part b℄. utd℄ Note that diam(A) = diam(o(A)) for every nonempty A � C ; inpartiular, diam(E(p)) = diam(E):The more general result that diam(A) � 2 ap(A) for every nonemptyA � C is observed in Pommerenke [75℄.E.10 More on E(p). Suppose p is a moni polynomial with omplex o-eÆients. As before, letE := E(p) := fz 2 C : jp(z)j � 1g :a℄ It follows from E.6 (Cartan's lemma) that the set E(p) an be overedby disks the sum of whose radii is at most 2e: It is onjetured in Erd}os,Herzog, and Piranian [58℄ that the orret value in this problem is 2. (Theurrent best onstant is less than 2.6.)b℄ If E(p) is onneted, then it is ontained in a disk with radius 2 enteredat 1nPnk=1 zk, where z1; z2; : : : ; zn are the zeros of p.Proof. This is onjetured in Erd}os, Herzog, and Piranian [58℄ and provedin Pommerenke [59b℄. ut℄ If E(p) is onneted, then its irumferene is at least 2�:Proof. This is also onjetured in Erd}os, Herzog, and Piranian [58℄, andproved in Pommerenke [59b℄. ut



This is page 356Printer: Opaque thisA1Algorithms andComputational Conerns

OverviewAppendix 1 presents some of the basi algorithms for omputing with poly-nomials and rational funtions and disusses some of the omplexity issues.Inluded is a disussion of root �nding methods. It requires very little bak-ground and an essentially be read independently.Algorithms and Computational ConernsPolynomials lend themselves to omputation perhaps more than any otherobjet of analysis. Algorithms that involve speial funtions, di�erentialequations, series, and the like usually must redue at some point to a�nite polynomial or rational approximation or trunation. This often al-lows analyti problems to be redued to algebrai ones. This appendix willpresent, as a series of exerises, some of the prinipal algorithmi onerns.The reader is enouraged to experiment with the algorithms. With urrenttehnology this is most omfortably done in any of the large symboli ma-nipulation pakages available. Code, atual or shemati, is not presented.Indeed, methods rather than algorithms are presented. Current \pratial"best methods date quikly in this rapidly evolving area. It is also the au-thors' belief that today's theoretial uriosities may be vital for tomorrow's



Algorithms and Computational Conerns 357algorithms as larger instanes are alulated on faster mahines. Histori-ally we have already seen this happen repeatedly with algorithms suh asthe fast Fourier transform algorithm.One of the most interesting lessons to be learned from the last fewdeades of revitalized interest in omputational mathematis is that manyof the most familiar mathematial algorithms, suh as how to multiplylarge numbers, were very poorly understood, and indeed, still are in-ompletely analyzed. Very many of the familiar proesses of mathemat-is, suh as multipliation of large numbers or omputation of determi-nants, an be omputed far more expeditiously than allowed by the usual\shool" algorithms. See, for example, Aho, Hoproft, and Ullman [74℄; Biniand Pan [92℄; Borodin and Munro [75℄; Borwein and Borwein [87℄; Brent[74℄; Knuth [81℄; Pan [92℄; Smale [85℄; and Wilf [86℄ for the omplexity sideof the following exerises.E.1 Complexity and Reursion. We are onerned with measuring thesize of an algorithm given an input of a ertain length. Unfortunately, thereare many di�erent ways of measuring this. (One ould, for example, use thelength of the tapes of some well-de�ned instantiation of a Turing mahine.)We will settle for less. The measure of input size will usually be hosen to bea natural one, so for polynomials of degree n; the measure will often be n:The omplexity measure then depends a bit on the problem. For example, itmight ount the number of additions of oeÆients (we do not distinguishsubtration from addition) and multipliations of oeÆients required toevaluate the polynomial at a point. (So, for example, by Horner's rule O(n)operations suÆe.) Care is already required to ount naturally. Note thatwe have not spei�ed the size of the oeÆients (this may or may not bereasonable) and so we ould heat on addition of oeÆients by doing twoadditions as one addition of twie the length. (Sine a+ b and + d an bedeoded from (10ma+ ) + (10mb+ d); where m is larger than the numberof digits in any of a, b, ; or d.) It is more reasonable in this ontext to�x a preision (or to think of working to in�nite preision or over somepolynomial ring). Our ases are fairly simple, and the measures should belear in ontext.We adopt the following notations:f(n) = O(g(n)) means lim supn!1 f(n)g(n) <1and f(n) = 
(g(n)) means lim supn!1 g(n)f(n) <1 :Parts of these exerises are reprinted from Borwein and Borwein [87℄, with permis-sion from Wiley.



358 A1. Algorithms and Computational ConernsSo the �rst measure gives an upper bound, while the seond gives a lowerbound.Many algorithms are analyzed reursively. For example, addition of twopolynomials of degree at most 2n redues to two additions of polynomials ofdegree at most n, plus perhaps an \overhead" for reassembling the piees.In other words, for the omplexity of addition, we haveA(2n) � 2A(n) +  ;from whih one an dedue thatA(n) = O(n) :This general reursive strategy of breaking a problem in half is often alled\divide and onquer."We introdue the following funtions. Here n is the maximum degreeof the polynomials p and q: Additions, multipliations, and so on are per-formed in the underlying �eld of oeÆients (in our ase C or R) and areall performed to some predetermined �xed preision (possibly in�nite).A(n) := the maximum number of � ; � ; � ; to ompute p� q ;M(n) := the maximum number of � ; � ; � ; to ompute pq ;e(n) := the maximum number of � ; � ; � ; to evaluatep(�) for an arbitrary �xed � 2 C ;E(n) := the maximum number of � ; � ; � ; to evaluatep(�1); : : : ; p(�n) for arbitrary �xed �1; : : : ; �n 2 C :These are the omplexity funtions for polynomial addition, polynomialmultipliation, polynomial evaluation at a single point, and polynomialevaluation at n points, respetively. The input for the omputation is theoeÆients (and the evaluation points for e(n) and E(n)). So the inputmay be onsidered to be in C n+1 (or more generally an (n+1)-dimensionalvetor spae over an in�nite �eld). In the �rst two ases the output is thesequene of oeÆients. In the last two ases, respetively, the output is theevaluation and the sequene of evaluations.a℄ Show that usual algorithms giveA(n) � 2n+ 2 = O(n) ;M(n) = O(n2) ;e(n) = O(n) (Horner's rule) ;E(n) = O(n2) :E.2 and E.3 of this appendix provide better upper bounds for the last threefuntions above.



Algorithms and Computational Conerns 359b℄ Show that A(n) � n+ 1 ;M(n) � n+ 1 ;e(n) � n+ 1 ;E(n) � n+ 1 :Hint: In all ases this is a uniqueness argument. At least one operationmust be performed for eah oeÆient, otherwise the algorithm will notdistinguish various di�erent sequenes of input. ut℄ Some Reursive Bounds. Let a; b > 0 and ; d > 1: Suppose that f ismonotone on (0;1):If f(n) � af(n=) + bn; thenf(n) = O(n) if a <  ;f(n) = O(n logn) if a =  ;f(n) = O(nlog a) if a >  :If f(n) � df(n=d) + bn(logn)�1; thenf(n) = O(n(logn)) :Hint: Analyze the equality ase. Then establish the general priniple thatthe equality solution is the maximal solution. utE.2 The (Finite) Fast Fourier Transform (FFT). This is undoubtedly oneof the most widely used algorithms. It has, in its various forms, tremendouspratial and theoretial appliations.Let w be a primitive (n+1)th root of unity in either C or a �nite �eldFm ; that is, wn+1 = 1 and wk 6= 1 for k = 1; 2; : : : ; n: In the omplex asewe may take w := e2�i=(n+1): Consider the following two problems.Interpolation Problem. Given n+ 1 numbers, �0; �1; : : : ; �n; �nd the o-eÆients of the unique polynomialp(z) := a0 + a1z + � � �+ anznof degree n that satis�esp(wk) = �k ; k = 0; 1; : : : ; n :Evaluation Problem. Given the oeÆients of a polynomial pn of degreeat most n; alulate the n+ 1 valuesp(wk) ; k = 0; 1; : : : ; n :



360 A1. Algorithms and Computational ConernsThese are the two diretions of the (�nite) Fourier transform. Thelassial approahes to either part of the Fourier transform problem haveomplexity at least n2: This is the omplexity, for example, of evaluatingpn at n + 1 points using Horner's rule. Both diretions an, however, besolved with omplexity O(n logn).a℄ If n+ 1 = 2m; then both the interpolation and the evaluation problemhave omplexity O(n log n): (Here we are ounting the number of additionsand multipliations in the underlying oeÆient �eld, whih for most of ourpurposes is C :)Outline. We treat the evaluation �rst. Supposep(x) := a0 + a1x+ � � �+ anxn :Let q(x2) := a0 + a2x2 + a4x4 + � � �+ an�1xn�1and x r(x2) := x(a1 + a3x2 + � � �+ anxn�1) :Then, with y := x2; p(x) = x r(y) + q(y) ;where r and q are both polynomials of degree at most 2m�1 � 1: Theobservation that makes the proof work is that for w an (n + 1)th root ofunity, (wk)2 = �w(n+1)=2+ k�2 :Hene, evaluating p(x) at the n+ 1 roots of unity redues to evaluating rand q eah at the 12 (n+ 1) points (w2)1; (w2)2; : : : ; (w2)(n+1)=2 and amal-gamating the results. Observe that w2 is a primitive (2m�1)th root of unity,so we an iterate this proess. Let F (2m) be the number of additions andmultipliations required to evaluate a polynomial of degree at most 2m� 1at the 2m points wk ; k = 1; 2; : : : ; 2m; where w is a primitive (2m)th rootof unity. ThenF (1) = 1 and F (2m) = 2F (2m�1) + 2 � 2m ; m = 1; 2; : : : :The seond term omes from the single addition and multipliation requiredto alulate eah p(wk) from r(w2k) and q(w2k). This reursion solves asF (2m) = 2m+1m;and the bound for the evaluation problem is established.The interpolation problem is equivalent to evaluation. This an be seenas follows. Let w be a primitive (n+ 1)th root of unity, and let



Algorithms and Computational Conerns 361W := 0BBBB� 1 1 1 : : : 11 w w2 : : : wn1 w2 w4 : : : w2n... ... ... . . . ...1 wn w2n : : : wn2 1CCCCA :Then W�1 = 1n+ 1 0BBBB� 1 1 1 : : : 11 w�1 w�2 : : : w�n1 w�2 w�4 : : : w�2n... ... ... . . . ...1 w�n w�2n : : : w�n2 1CCCCAand w�1 is also a primitive (n+1)th root of unity. The interpolation probleman be formulated as follows. Find (a0; : : : ; an) so thatW (a0; a1; : : : ; an) = (�0; �1; : : : ; �n):However, this an be solved byW�1(�0; �1; : : : ; �n) = (a0; a1; : : : ; an) ;whih is exatly the evaluation problem. utSee Borodin and Munro [75℄ and Borwein and Borwein [87℄. Versionsof FFT exist in a plethora of shapes and sizes. We have just exposed thetip of the ieberg.As an appliation we onstrut a fast polynomial multipliation.b℄ Fast Polynomial Multipliation. Suppose the polynomials p; q of degreeat most n�1 are given. Compute the oeÆients of the produt pq as follows:b1℄ Use an FFT to evaluate p and q at the primitive (2n)th roots of unityw1; w2; : : : ; w2n:b2℄ Form p(wk)q(wk) ; k = 1; 2; : : : ; 2n :b3℄ Find the oeÆients of the produt pq by solving the interpolationproblem one again by using the FFT. Show that this algorithm requiresO(n logn)additions, multipliations, and divisions (of omplex numbers) and there-fore M(n) = O(n logn):This is the best-known upper bound on the serial omplexity of poly-nomial multipliation. The only known lower bound is the trivial one O(n):In parallel (on a PRAM) polynomial multipliation an be done in O(logn)time on O(N) proessors; see Pan [92℄. The same bounds apply for the FFTin a℄.



362 A1. Algorithms and Computational ConernsE.3 Other Elementary Operations.a℄ Fast Polynomial Division. For polynomials p of degree n and q of degreem � n; it is possible to �nd polynomials u and r with deg(r) < deg(q)suh that p(x) = u(x)q(x) + r(x)in O(n logn) additions and multipliations (of omplex numbers).Outline. Simplify by observing that it suÆes to alulate u sine r maythen be omputed by E.2 b℄. If we replae x by 1=x thenp(x�1)q(x�1) = u(x�1) + r(x�1)q(x�1)and so, for some h � 1;p�(x)q�(x) = u�(x) + xn�m+h r�(x)q�(x) ; where v�(x) := xdeg(v)v(x�1) :To alulate u� (and hene to alulate u) it suÆes to alulate the �rstn�m (= deg(u)) Taylor oeÆients of 1=q�: This an be done by Newton'smethod (see the next exerise) as follows: Suppose deg si = j � 1 and1q�(x) � si(x) = O(xj) :Establish that1q�(x) � �2si(x) � s2i (x)q�(x)� = 1q�(x) [1� si(x)q�(x)℄2 = O(x2j ) :Note that we may assume q�(0) 6= 0: Now the omputation ofsi+1 := 2si � s2i q�an be performed by using an FFT-based polynomial multipliation and itneeds only be performed by using the �rst 2j � 1 oeÆients of q� and si:By starting with an appropriate �rst estimate of s0 (say, s0(x) := 1=q�(0)),and proeeding indutively as above (doubling the number of oeÆientsused at eah stage) we an show that the required number of terms of theexpansion an be alulated in O(n log n) additions and multipliations (ofomplex numbers).b℄ Fast Reversion of Power Series. Letf(x) = 1Xk=0 akxk ; a0 6= 0



Algorithms and Computational Conerns 363be a formal power series with given oeÆients. Show that the �rst n oeÆ-ients of the formal Taylor expansion of 1=f an be omputed in O(n logn)additions, multipliations, and divisions (of omplex numbers).℄ Fast Polynomial Expansion. Given �1; �2; : : : ; �n show that the o-eÆients of Qni=1(x � �i) an all be alulated in O(n(logn)2) additions,multipliations, and divisions (of omplex numbers).Hint: Proeed reursively by dividing the problem into two parts of roughlyhalf the size. Reombine the piees using part b℄ of the previous exerise.utd℄ Fast Polynomial Expansion at Arbitrary Points. Given a polynomialp of degree at most n; and n + 1 distint points x0; x1; : : : ; xn; show thatp(x0); p(x1); : : : ; p(xn) an all be evaluated in O(n(logn)2) multipliationsand additions.Hint: Let q1(x) := bn=2�1Yi=0 (x� xi)and let r1 be the remainder on dividing p by q1: Note that r1(xi) = p(xi)for eah i < n=2: Similarly, useq2(x) := nYbn=2 (x� xi):Thus two divisions redue the problem to two problems of half the size. ute℄ Extend d℄ to rational funtions.f ℄ Evaluation of xn. The S-and-X binary method for alulating xn isthe following algorithm. Suppose n has binary representation Æ0Æ1Æ2 : : : Ækwith Æ0 = 1: Given symbols S and X; de�neSi := � SX if Æi = 1S if Æi = 0and onstrut the rule S1S2 � � �Sk :Now let S be the operation of squaring, and let X be the operation ofmultiplying by x. Let S1S2 � � �Sk operate from left to right beginning withx: For example, for n = 27, Æ0Æ1Æ2Æ3Æ4 = 11011and S1S2S3S4 = (SX)(S)(SX)(SX) :



364 A1. Algorithms and Computational ConernsThe sequene of alulations of x27 is thenx! x2 ! x3 ! x6 ! x12 ! x13 ! x26 ! x27:f1℄ Prove that the above method omputes xn and observe that it onlyrequires storing x; n, and one partial produt.f2℄ Show that the number of multipliations in the S-and-X method is lessthan 2blog2 n:f3℄ Show that the S-and-X method is optimal for omputation of x2m(onsidering only multipliations).f4℄ Show that the S-and-X method is not optimal for omputing x15:An extended disussion of this interesting and old problem is presentedin Knuth [81℄.Muh further material on the omplexity of polynomial operationsand omplexity generally may be found in Aho, Hoproft, and Ulman [74℄;Borodin and Munro [75℄; Pan [92℄; and Wilf [86℄.E.4 Newton's Method. One of the very useful algorithms, both in theoryand pratie, for zero �nding is Newton's method.a℄ Suppose f is analyti in a (omplex) neighborhood of z0; and supposef(z0) = 0 and f 0(z0) 6= 0: Show that the iterationxn+1 := xn � f(xn)f 0(xn)onverges loally uniformly quadratially, that is, with a onstant  inde-pendent of n; jxn+1 � z0j <  jxn � z0j2for initial values x0 in some neighborhood of z0: As before, we all thisloally quadrati onvergene.Hint: Note thatf(xn) = f(z0) + (xn � z0)f 0(z0) +O((xn � z0)2) ;whih impliesxn+1 � z0 = (xn � z0) �f 0(xn)� f 0(z0)f 0(xn) �+O((xn � z0)2) : ut



Algorithms and Computational Conerns 365b℄ Show that the iterationxn+1 := xn + f(xn)f 0(xn)onverges loally quadratially to the simple poles of a meromorphi fun-tion f: Note that this is Newton's method with the sign hanged.℄ The iteration xn+1 := xn � f(xn)f 0(xn)f 0(xn)2 � f(xn)f 00(xn)onverges loally quadratially to a zero of an analyti f independent of itsmultipliity; see Henrii [74℄.d℄ Let g := f�1: The iterationxn+1 := xn + (n+ 1) g(n)(xn)g(n+1)(xn)onverges loally uniformly to a zero of an analyti funtion f with(n + 2)th order. Newton's method is n := 0; Halley's method is n := 1(see Householder [70℄).Newton's method and its variants work tremendously well providedthat a good starting value an be found. This is a problem. On a realinterval a bisetion method an be used initially to loalize the zeros. Inthe plane, life is more ompliated as is seen in the next exerise. Anotherdrawbak to Newton's method is the need to ompute the derivative. Ofourse, this is not a problem for polynomials, but in a general setting it isusually replaed by an approximation suh asf(xn)� f(xn�1)xn � xn�1(whih yields the so-alled seant method).e℄ Consider Newton's method for omputing px starting with x0 := 1:This gives xn+1 := 12 �xn + xxn� :Show that rn(x) := xn+1 is a rational funtion in x with numerator ofdegree 2n and denominator of degree 2n � 1: Show that rn(x) �px has azero of order 2n+1 at 1: So rn is in fat the (2n; 2n � 1) Pad�e approximantto px. (This implies, though not obviously, that rn has all real negativeroots and poles.)



366 A1. Algorithms and Computational ConernsAn attrative feature of Newton's method is that it is \self-orreting."So, for example, to ompute a root to a large preision, one an start ata small preision and double the preision at eah iteration. This is a sub-stantial savings both pratially and theoretially. The same feature appliesto Newton's method solutions over formal power series, as in E.3 a℄. Thisallows for doubling the number of terms used at eah stage. Muh addi-tional material on Newton's method is available in Borwein and Borwein[87℄, Henrii [74℄, Householder [70℄, and Traub [82℄.E.5 Newton's Method in Many Variables.a℄ Let f : C n ! C n ; and suppose f has JaobianJ := �����fi�zj ���� ;where f := (f1; f2; : : : ; fn) with fi : C n ! C : Letx := (x1; x2; : : : ; xn) 2 C n :The funtion J(x) is the Jaobian evaluated at x. Then Newton's methodbeomes xk+1 = xk � skwhere sk solves J(xk)sk = f(xk). This iteration onverges loally uniformlyquadratially to a zero z0 of f; that is, with a onstant  independent of n;jxn+1 � z0j <  jxn � z0j2for initial values x0 in some neighborhood of z0; provided in a neighbor-hood of z0; f is ontinuously di�erentiable, J�1 exists and is bounded innorm, and J satis�es a Lipshitz ondition. We all this loally quadrationvergene. For a polynomial f; we require only that J�1 exists in a neigh-borhood of the zero z0: (For examples and detail, see Dennis and Shnabel[83℄.)b℄ Finding All Zeros of a Polynomial. Letp(z) := a0 + a1z + � � �+ anzn ; an := 1 :Let fi(x1; : : : ; xn) be the ith oeÆient ofg(x) := nYi=1(x� xi)� nXi=0 aixiand let f(x) := (f1; f2; : : : ; fn) :



Algorithms and Computational Conerns 367Then the iteration of part a℄ applied to f onverges loally quadratially toz0 := (z1; z2; : : : ; zn); where z1; z2; : : : ; zn are the zeros of p; provided thezeros of p are distint.℄ Another Approah to Finding All Zeros. Let xj(k) denote the kthapproximation to the jth root of p; where p is a polynomial of degree nwith n distint roots. Letxj(k + 1) = xj(k)� p(xj(k))Qki6=j(xj(k)� xi(x)) ; j = 1; 2; : : : ; n :Show that for suÆiently good hoie of (x0(1); : : : ; x0(k)); the above iter-ation onverges loally quadratially to a sequene of the n distint zerosof p:Hint: This is really just the single variable version of Newton's method foreah root, where the derivative is approximated by the derivative of the kthestimate. utd℄ Observe that the iteration of part ℄ fails to onverge for p(x) := xn�1;n > 2; if the starting values are all taken to be real.In pratie, the iteration of part ℄ works rather well for reasonablyhosen starting values. One an use the tehniques of the next exerise toloalize the zeros �rst. With are, an algorithm an be given that omputesa zero of a polynomial with an error < 2�b in O(n log b logn) time and allzeros in O(n2 log b logn) time; see Pan [92℄. On a parallel mahine (PRAM)an algorithm requiring O(log3(nb)) time and O(nb)O(1) proessors an begiven for omputing all zeros.e℄ Modify the iteration of E.4 ℄ as given in the previous exerise to get amethod that omputes all roots even in the presene of repeated roots.For further disussion, see Aberth [73℄, Durand [60℄, Kerner [66℄, andWerner [82℄.E.6 Loalizing Zeros.a℄ Cauhy Indies. Let r be a real rational funtion with a real pole �.The Cauhy index of r at � is8><>: 1 if limx!�� r(x) = �1 and limx!�+ r(x) =1�1 if limx!�� r(x) =1 and limx!�+ r(x) = �10 otherwise :The Cauhy index of r on an interval [a; b℄ is the sum of the Cauhy indiesof the poles of r in (a; b). (We demand that neither a nor b be poles of r.)We denote this by Iba(r):b℄ The Eulidean Algorithm. Let p0 and p1 be nonzero polynomials.De�ne polynomials p0; p1; : : : ; pm and q1; q2; : : : ; qm (by the usual divisionalgorithm) so that



368 A1. Algorithms and Computational Conernsp0(z) = p1(z)q1(z)� p2(z) ; deg(p2) < deg(p1) ;p1(z) = p2(z)q2(z)� p3(z) ; deg(p3) < deg(p2) ;...pm�1(z) = pm(z)qm(z)� 0 ;the algorithm stops the �rst time that the remainder is zero. This is alledthe Eulidean algorithm. Show that pm is the greatest ommon fator of p0and p1.℄ Let p0; p1; : : : ; pm be the polynomials generated by the Eulidean algo-rithm in part b℄. Let Pi := pi=pm; i = 0; 1; : : : ;m: Suppose p0(a)p0(b) 6= 0:Show that if Pk() = 0 for some k and a �  � �; thenP1() 6= 0 if k = 0and Pk�1()Pk+1() < 0 if 1 � k � m� 1 :d℄ Show that for real polynomials p0 and p1 with p0(a)p0(b) 6= 0;Iba(p1=p0) = v(a)� v(b) ; a < b ;where v(�) is the number of sign hanges in the sequene(p0(�); p1(�); : : : ; pm(�))and where the polynomials pi are generated by the Eulidean algorithm asin part b℄. (As before, by a sign hange we mean that pi(�)pi+k(�) < 0 andpi+1(�) = pi+2(�) = � � � = pi+k�1(�) = 0:)Hint: Without loss of generality, we may assume that pm = 1 (why?), soPk = pk for eah k: First, note that v(x) may hange magnitude only ifpi(x) = 0 for some i: By ontinuity of the polynomials pi; and by part ℄,v(x) is onstant on any subinterval of [a; b℄ that does not ontain a zero ofp0: We are now redued to onsidering the behavior of v(x) at the zeros ofp0: Consider the various possibilities for the behavior of p1=p0 at the zerosof p0 by onsidering the four possible hanges of signs of p0 and p1 at thezeros of p0 and the e�et this has on the Cauhy index and the inreaseand derease of v(x): (Note that v(x) dereases by 1 if the Cauhy index is1 while v(x) inreases by 1 if the Cauhy index is �1:) ute℄ Zeros on an Interval. Suppose p is a real polynomial and p(a)p(b) 6= 0:Then Iba(p0=p) equals the number of distint zeros of p in [a; b℄: This alsoequals v(a)� v(b); where v(x) is as in d℄ with p0 := p and p1 := p0:



Algorithms and Computational Conerns 369Hint: Use p0(z)p(z) =X mkz � �kand note that eah distint pole in (a; b) ontributes +1 to the Cauhyindex. utf ℄ Show that the number of zeros of a real polynomial on the real lineequals lima!1(v(�a)� v(a)) ;where v(x) is omputed as in part e℄. (That is, v(x) is the number of signhanges in the sequene (p0; p1; : : : ; pm) generated by the Eulidean algo-rithm with p0 := p and p1 := p0:)g℄ The Number of Zeros in H := fz 2 C : Im(z) > 0g. Suppose that themoni polynomial p 2 Pn has (exatly) k real zeros ounting multipliities.Write p(x) = r(x) + i s(x) ; r; s 2 Pn :Then the number of zeros of p in H is12 �n� k � I1�1(s=r)� ;and this an be omputed as in part d℄ by usingI1�1(s=r) = lim�!1 I���(s=r) :Hint: First onsider the ase where k = 0: Consider p on a ounterlokwisesemiirular ontour with base [��; �℄ and radius �: Consider the argumentof p as the ontour is traversed. On the half-irle, for large �, the argumentinreases by n� asymptotially; while on the axis the hange is ��I���(s=r);from whih the result follows. uth℄ Budan-Fourier Theorem. Let p 2 Pn. Let V (x) be the number of signhanges in the sequene �p(x); p0(x); : : : ; p(n)(x)� :Then the number of zeros of p in the interval [a; b℄, ounting multipliities,is V (a)� V (b)� 2m for some nonnegative integer m:We have followed Henrii [74℄ in this disussion.E.7 Zeros in a Disk.a℄ The transform z + i1 + iz maps the unit irle to the real axis and mapsthe open unit disk D to the upper half-plane fz 2 C : Im(z) > 0g: So thealgorithms of the previous exerise apply after transformation.



370 A1. Algorithms and Computational Conernsb℄ Zero Counting by Winding Number. Let !m := e2�i=m, where m is apositive integer. If p 2 Pn thenzp := 12�i Z�D p0(z)p(z) dz � mXk=1!km p0(!km)p(!km)ounts the number of zeros of p in the open unit disk D (assuming no zeroson the boundary �D). More preisely, we havezp = limm!1 mXk=1!km p0(!km)p(!km) :(Note that this lends itself to rapid evaluation by FFT methods.)℄ Show that 12�i Z�D 1z � � = mXk=1 !km!km � � + �m(�) ;where �m(�) � j�jm�11� j�j if j�j < 1and �m(�) � j�j�m�11� j�j�1 if j�j > 1 :Hint: Write 1z � � = � 1� 1Xk=0 zk�kand use the fat that 0 = Z�D p(z) dz = mXk=1!kmp(!km)for every p 2 Pm�1: utd℄ If p 2 Pn has no zeros in the annulus � � z � 1=� and if m in part b℄is greater than $ log 1��nlog � %+ 1 ;then the error in estimating zp by the sum is less than 1: So this providesan algorithm.



Algorithms and Computational Conerns 371E.8 Computing General Chebyshev Polynomials. Given a Chebyshevsystem M := (f0; : : : ; fn) of C1 funtions on, say, [0; 1℄ how does oneompute the assoiated Chebyshev polynomial Tn? That is, how does one�nd the unique equiosillating form T :=Pni=0 aifi of Setion 3.3?a℄ The Remez AlgorithmStep 1. Choose x0 := (0 =: x(0)0 < x(0)1 < � � � < x(0)n := 1)and �nd P0 2 span M suh thatP0(x(0)i ) = (�1)i ; i = 0; 1; : : : ; n :Step 2. Indutively set xm := (0 =: x(m)0 < x(m)1 < � � � < x(m)n := 1); whereP 0m�1(x(m)i ) = 0 ; i = 1; 2; : : : ; n� 1 :(That is, �nd the extrema of Pm�1.)Step 3. Find Pm 2 span M withPm(x(m)i ) = (�1)i ; i = 0; 1; : : : ; n :Then, provided the initial estimate x0 is suÆiently good, Pm ! Tnquadratially (see Veidinger [60℄).This is reasonably easy to ode. It involves solving an interpolationproblem in Steps 1 and 3. The zero �nding at Step 2 an be done quiteeasily sine one an �nd very good starting values for Newton's method,namely (x(m�1)i )ni=0.b℄ This algorithm modi�es to solve the best approximation problemminp2span M k!p� fk[a;b℄for !; f 2 C[a; b℄; where ! is positive on [a; b℄: One uses the Remez agorithmto �nd an equiosillating formP (x) = f(x)� !(x) nXi=0 ifi(x)at n+ 2 points. To do this, one solves the systemf(xk)� !(xk) nXi=0 ifi(xk) + (�1)k� ; k = 0; 1; : : : ; n+ 1for both the i and �: (This works reasonably well, provided that at eahstage kPk[a;b℄ ours at one of the xk: If not, an extra point must be insertedwhere the maximum norm ours and one of the original points must bedropped. This is e�eted in suh a way as to maintain the alternations insign of the error.) For details see Cody, Fraser, and Hart [68℄ and Veidinger[60℄.



This is page 372Printer: Opaque thisA2Orthogonality and Irrationality

OverviewThis appendix is an appliation of orthogonalization of partiular M�untzsystems to the proof of the irrationality of �(3) and some other familiarnumbers. It reprodues Ap�ery's remarkable proof of the irrationality of�(3) in the ontext of orthogonal systems.Orthogonality and IrrationalityAp�ery's wonderful proof of the irrationality of �(3) amounts to showingthat 0 < jd3nan�(3)� bnj ! 0 ;where bn is an integer, an := nXk=0�n+ kk �2�nk�2 ;and dn := lmf1; 2; : : : ; ng :Here lm denotes the least ommon multiple; see van der Poorten [79℄ andBeukers [79℄. In [81℄ Beukers reast the proof using Pad�e approximations.



Orthogonality and Irrationality 373Many, maybe most, irrationality proofs may be based on approxima-tion by Pad�e approximants and related orthogonal polynomials; see, forexample, Borwein [91a℄, [92℄ or Chudnovsky and Chudnovsky [84℄. It is theintention of this appendix to try to put the proof of the irrationality of �(3)into the framework of orthogonality. From the general orthogonalization ofthe system (x�0 ; x�1 ; x�2 ; : : : )on [0; 1℄; where the numbers �j are nonnegative and distint, speializingto the ase when�2j = j and �2j+1 = j + � ; j = 0; 1; : : :where � dereases to 0; is a very natural thing to do. This is how oneshould interpret orthogonalizing the system (x0; x0; x1; x1; : : : ): This leadsto orthogonal funtions that generalize the Legendre polynomials and areof the form pn(x) log x+ qn(x)with polynomials pn; qn 2 Pn of degree n: Legendre polynomials are loselytied to irrationality questions onerning log (see Borwein and Borwein[87℄, Chapter 11), and higher-order analogs prove to be the basis of dealingwith the irrationality of the trilog �P1n=1 xn=n3� for some values of x: Wethink that the proof of the irrationality of �(3) ows quite naturally fromthis point of view. Although in the end (Lemma A.2.3) we get bak toBeukers' integral approah to the irrationality of �(3) (as indeed we must).What follows, up to one appliation of the prime number theorem, is aself-ontained proof of the irrationality of �(3):The orthogonalization in question is the ontent of the �rst theorem.Theorem A.2.1. LetGn(x) := 12�i Z� Qn�1k=0 (t+ k + 1)2Qnk=0(t� k)2 (t+ n+ 1)xt dt ;where � is any simple ontour ontaining t = 0; 1; : : : ; n: ThenGn(x) = pn(x) logx+ qn(x) ;where pn(x) = nXk=0�nk�2�n+ kk �2(n+ k + 1)xk :Furthermore, we have the orthogonality relationsZ 10 Gn(x)xk dx = 0 ; k = 0; 1; : : : ; n ;Z 10 Gn(x)(log x)xk dx = 0 ; k = 0; 1; : : : ; n� 1 ;



374 A2. Orthogonality and Irrationalityand Z 10 G2n(x) dx = 12n+ 1 :Proof. As in Setion 3.4, the representation of Gn is just the evaluation ofthe integral at the poles, t = 0; 1; : : : ; n; by the residue theorem. The proofof the orthogonality onditions is a straightforward exerise on evaluatingZ 10 xk(logx)jGn(x) dxby interhanging the order of integration as in the proof of Theorem 3.4.3.utWe need to modify these forms marginally to give a zero at 1; as inthe next result.Theorem A.2.2. Let Gn and � be de�ned as in Theorem A.2.1. ThenFn(x) := 1xn+1 Z x0 ynGn(y) dy= 12�i Z� Qn�1k=0 (t+ k + 1)2Qnk=0(t� k)2 xt dt = An(x) log x+Bn(x) ;where An(x) := nXk=0�n+ kk �2�nk�2xkand Bn(x) := nXk=0 kxkwith k := �n+ kk �2�nk�2(n�1Xi=0 2k + i+ 1 � nXi=0i6=k 2k � i) :Furthermore,Z 10 Fn(x)Fm(x) dx = 2Æn;m(2n+ 1)3 ; Æn;m := � 0 if n 6= m1 if n = m ;Z 10 Fn(x)xk(log x)j dx = 0 ; k = 0; 1; : : : ; n� 1 ; j = 0; 1 ;and Fn(1) = 0 ; F 0n(1) = 1 ; F 00n (1) = 2n2 + 2n� 1 :



Orthogonality and Irrationality 375Proof. This follows muh as in Theorem A.2.1. The fat that Fn(1) = 0 isjust the statement that Gn is orthogonal to xn: utThe fat that Fn(1) = 0 is ritial in what follows. It immediately givesthat Bn(x) has a zero at 1, so Bn(x)=(1� x) is a polynomial, as in part ℄of the following orollary. (This is the only part of the orollary we need,but the orollary is of some interest in its own right.)Corollary A.2.3. Let Fn be de�ned as in Theorem A.2.2. Thena℄ Fn has 2n+ 1 zeros on (0; 1℄.b℄ An(x) has all real negative zeros.℄ Bn(x)=(1� x) is a polynomial with all real negative zeros that interlaethe zeros of An(x):Proof. The orthogonality onditions give 2n zeros of Fn on (0; 1) in a stan-dard fashion, and there is one zero at 1. The real negative zeros of An(x)and Bn(x) and their interlaing follow from the fat thatlogx+ Bn(x)An(x)has 2n + 1 zeros on (0; 1℄; and known results on interpolating Stieltjestransforms by rational funtions (see, for example, Baker and Graves Morris[81℄ or Borwein [83℄). utOne an, from the integral representation, dedue the next orollary,whih is also not atually needed in the proof of the irrationality of �(3):Corollary A.2.4. Both Fn and An satisfyx2(y00n � y00n�1)� 2nx(y0n + y0n�1) + x(y0n � y0n�1) + n2(yn � yn�1) = 0 :From Theorem A.2.2 we obtain (see E.2 b℄) the following:Corollary A.2.5. Let dn := lmf1; 2; : : : ; ng: Then the polynomial dnBn(x)has integer oeÆients.We get an approximation to �(3) by integration over the unit square.Theorem A.2.6.�12 Z 10 Z 10 Fn(xy)1� xy dx dy = An(1)�(3) +Rn ;where 2d3nRn is an integer.



376 A2. Orthogonality and IrrationalityProof. Reall that �12 Z 10 Z 10 log(xy)1� xy = �(3)sine Z 10 Z 10 (xy)n log(xy) dx dy = �2(n+ 1)3 :We haveFn(xy)1� xy = An(xy) �An(1)1� xy log(xy) + An(1)1� xy log(xy) + Bn(xy)1� xy :The �rst term of the last expression is a polynomial multiple of log(xy);and the last term is a polynomial. Both have degree n � 1 in xy: Here weuse part ℄ of Corollary A.2.3 in an essential way. Integrating the aboveequation with respet to x on [0; 1℄ and with respet to y on [0; 1℄; we getthe identity of the theorem. The fat that d3nRn is an integer an be seenas follows. One dn arises from eah of the two integrations of a polynomialof degree n � 1 with integer oeÆients and one dn omes from CorollaryA.2.5. utTheorem A.2.7. The number �(3) is irrational.Proof. It now suÆes to show that there is an � > 0 for whih0 < ����Z 10 Z 10 Fn(xy)1� xy dx dy���� = O� 1e(3+�)n� = o� 1d3n�sine by the prime number theorem, lmf1; 2; : : : ; ng = O(e(1+�)n) for ev-ery � > 0; see Borwein and Borwein [87, p. 377℄. (We use the notationbn = o(an) if bn = �nan with limn!1 �n = 0:) This an be proven in anumber of ways, we hose to onnet this proof via Pad�e approximants tothe integral estimate due to Beukers. This is the ontent of the followingresults and, in partiular, Lemma A.2.10. From Lemma A.2.10, the aboveestimates are easy sine the integrand in the right-hand side in LemmaA.2.10 satis�es 0 < xyv(1� x)(1� y)(1� v)1� (1� xy)v � (p2� 1)4on the open unit ube 0 < x; y; v < 1: utThe following lemma gives standard representations for the Pad�e ap-proximants to log and an be heked by expanding the integrals; see E.3.



Orthogonality and Irrationality 377Lemma A.2.8 (Pad�e Approximants). We have(n!)22�i Z� xt dtQnk=0(t� k)2 = (x� 1)2n+1 Z 10 vn(1� v)n dv(1� (1� x)v)n+1= pn(x) log x+ qn(x) = O((x� 1)2n+1) ;where � is a simple ontour ontaining t = 0; 1; : : : ; n; and pn and qn arepolynomials of degree n: (So pn=qn is the (n; n) Pad�e approximant to log xat 1:)Lemma A.2.9 (Rodrigues-Type Formula). With � as in Theorem A.2.1,Fn(xy) = dndyn dndxn xnyn2�i Z� (xy)t dtQnk=0(t� k)2= 1(n!)2 dndyn dndxn Z 10 (xy)nvn(1� v)n(xy � 1)2n+1(1� (1� xy)v)n+1 dv :Proof. This follows from di�erentiating the two representations derivedfrom Lemma A.2.8 oupled with Theorem A.2.2. utLemma A.2.10. We haveZ 10 Z 10 Fn(xy)1� xy dx dy= � Z 10 Z 10 Z 10 [xyv(1� x)(1� y)(1� v)℄n dx dy dv(1� (1� xy)v)n+1 :Proof. For k, n nonnegative integersZ 10 Z 10 (xy)n+k(1� x)n(1� y)n dx dy= � 1(n!)2 Z 10 Z 10 11� xy dndyn dndxn (xy)n+k(xy � 1)2n+1 dx dy :(Both sides equal � n!(n+ k)!(2n+ k + 1)!�2 ;though this is not ompletely transparent; see E.4.) So1(n!)2 Z 10 Z 10 11� xy dndyn dndxnxnyn(xy � 1)2n+1+k dx dy= � Z 10 Z 10 [xy(1� x)(1� y)℄n (xy � 1)k dx dy :



378 A2. Orthogonality and IrrationalityHene, on expanding (1� (1� xy)v)�n�1 in the following integrands,1(n!)2 Z 10 Z 10 11� xy dndyn dndxn xnyn(xy � 1)2n+1(1� (1� xy)v)n+1 dx dy= � Z 10 Z 10 [xy(1� x)(1� y)℄n(1� (1� xy)v)n+1 dx dy ;and with Lemma A.2.9 we are done. utComments, Exerises, and Examples.The approah of this appendix follows Borwein, Dykshoorn, Erd�elyi,and Zhang [to appear℄. Beukers' [79℄ very elegant reasting of Ap�ery's proofsof the irrationality of �(2) and �(3) is also presented in Borwein and Borwein[87℄. E.5 reasts the irrationality of �(2) = 16�2 into a form similar to theproof of the irrationality of �(3): E.6 treats the irrationality of log 2:Mahler[31℄ asts transendene results for exp and log in terms of general systemsof Pad�e approximants.E.1 Proof of Corollaries A.2.4 and A.2.5.a℄ Prove Corollary A.2.4 from the expliit representations of TheoremA.2.2.b℄ Prove Corollary A.2.5 from the formula for k in Theorem A.2.2.Hint: Observe that if p is a prime and n < p� � n + k for some integer�; then p divides �n+kk �. This is fairly straightforward from Euler's formulafor the largest power of a prime dividing a fatorial. utE.2 Formulas for �(n).a℄ Show thatZ 10 � � � Z 10 Z 10 dx1 dx2 � � � dxn1� x1x2 � � �xn = �(n) := 1Xk=1 1kn :b℄ Show that Z 10 logx1� x dx = ��26 :℄ Find a losed formula forZ 10 � � �Z 10 Z 10 log(x1x2 � � �xn)1� x1x2 � � �xn dx1 dx2 � � � dxnin terms of �(n+ 1):E.3 Proof of Lemma A.2.8. Give a proof of Lemma A.2.8.



Orthogonality and Irrationality 379E.4 The Identity in the Proof of Lemma A.2.10. Prove the identityZ 10 Z 10 (xy)n+k(1� x)n(1� y)n dx dy= � 1(n!)2 Z 10 Z 10 11� xy dndyn dndxn (xy)n+k(xy � 1)2n+1 dx dy= � n!(n+ k)!(2n+ k + 1)!�2 ;where k and n are nonnegative integers. Follow parts a℄ to ℄.Let k and n be nonnegative integers.a℄ Show thatAn;k := Z 10 Z 10 (xy)n+k(1� x)n(1� y)n dx dy = � n!(n+ k)!(2n+ k + 1)!�2 :b℄ LetBn;k := � 1(n!)2 Z 10 Z 10 1(1� xy) dndyn dndxn xn+k(xy � 1)2n+1 dx dy :Show thatn2Bn;k =[(n+ k)2 + (2n+ 1)(2n+ 2k + 1) + (2n+ 1)(2n)℄Bn�1;k+2� [2(n+ k)2 + (2n+ 1)(2n+ 2k + 1)℄Bn�1;k+1+ (n+ k)2Bn�1;k :℄ Show that A0;k = B0;k: Show that the valuesAn;k = � n!(n+ k)!(2n+ k + 1)!�2satisfy the reurrene relation established by part b℄ for the values Bn;k:E.5 The Irrationality of �2. ConsiderFn(x) := n!(2�i) Z� Qnk=1(t+ k)Qnk=0(t� k)2 xt dt ;where � is any simple ontour ontaining the poles at 0; 1; : : : ; n:



380 A2. Orthogonality and Irrationalitya℄ Show that Z 10 Fn(x)1� x dx = nXk=0�n+ kk ��nk�2�(2) +Rn ;where d2nRn is an integer (dn := lmf1; 2; : : : ; ng as before).Hint: Show that Fn(x) = An(x) log x+Bn(x) ;where An(x) := nXk=0�n+ kk �2�nk�2xkand Bn(x) := nXk=0 kxkwith k := �n+ kk ��nk�2( nXi=1 1k + i � nXi=0i6=k 2k � i) :Write Fn(x)1� x = An(x)� An(1)1� x logx+ An(1)1� x + Bn(x)1� x :Show that Fn(1) = 0; hene Bn(1) = 0: Reall that� Z 10 logx1� x dx = �(2) :Now the onlusions follow, as in the proof of Theorem A.2.6. utb℄ Show thatZ 10 Fn(x)1� x dx = Z 10 Z 10 xnyn(1� x)n(1� y)n(1� xy)n+1 dx dy :Hint: Use Lemma A.2.8. ut℄ Show that there exists a onstant  independent of n suh that0 < ����Z 10 Fn(x)1� x dx���� �  p5� 12 !5nand dedue that �(2) = 16�2 irrational. Hene � is irrational.



Orthogonality and Irrationality 381E.6 The Irrationality of log 2. Letpn(x) := 1n! dndxn [xn(1� x)n℄ = nXk=0�n+ kk ��nk�(�1)kxkbe the nth Legendre polynomial on [0; 1℄:a℄ Show thatZ 10 pn(x)1 + x dx = Z 10 pn(x)� pn(�1)1 + x dx+ Z 10 pn(�1)1 + x dx= pn(�1) log 2 + Rn ;where dnRn is an integer (dn := lmf1; 2; : : : ; ng as before).b℄ Show that ����Z 10 pn(x)1 + x dx���� = Z 10 xn(1� x)n(1 + x)n+1 dx :℄ Use parts a℄ and b℄ to show that log 2 is irrational.
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OverviewAppendix 3 presents an interpolation theorem for linear funtions that isused in Setion 7.1. From this Haar's haraterization of Chebyshev spaesfollows, as do alternate proofs of many of the basi inequalities.An Interpolation TheoremThe main result of this setion, Theorem A.3.3, is an interpolation theoremthat plays an important role in Setion 7.1. Further appliations are givenin the exerises.Throughout this appendix we use the following notation. Let Q be aompat Hausdor� spae. Let C(Q) be the spae of all real- or omplex-valued ontinuous funtions de�ned on Q. Let P be a (usually �nite-dimensional) linear subspae of C(Q) over R if C(Q) is real or over Cif C(Q) is omplex. The funtion f 2 C(Q) is said to be orthogonal to P ,written as f ? P , ifkfkQ � kf + pkQ for all p 2 P :This is an L1 analog of the more usual L2 notion of orthogonality, as in Se-tion 2.2. The following two lemmas give neessary and suÆient onditionsfor the relation f ? P .



An Interpolation Theorem 383Lemma A.3.1. Let 0 6= f 2 C(Q). The funtion f is orthogonal to P if andonly if there exists no p 2 P suh that(A:3:1) Re�f(x)p(x)� > 0holds on(A:3:2) E := E(f) := fx 2 Q : jf(x)j = kfkQg :Proof. Assuming there exists p 2 P satisfying (A.3.1) on E de�ned by(A.3.2), we show that kf � �pkQ < kfkQfor some � > 0: Sine the set E de�ned by (A.3.2) is ompat, Re�f(x)p(x)�attains its positive minimum, say, 2Æ > 0, on E, and there exists an openset G ontaining E suh thatRe�f(x)p(x)� > Æ > 0 ; x 2 G :Sine G := Q nG is also ompat, there exists an � > 0 suh thatjf(x)j < (1� �)kfkQ ; x 2 G :Thus, with a suÆiently small � > 0;jf(x)� �p(x)j2 � kfk2Q � 2�Æ + �2kpk2Q < kfk2Q ; x 2 G ;while jf(x) � �p(x)j � (1� �)kfkQ + �kpkQ < kfkQ ; x 2 G :Therefore kf � �pkQ < kfkQif � > 0 is small enough.Conversely, if f is not orthogonal to P; then there exists p 2 P suhthat kf � pk2Q < kfk2Q; so2Re�f(x)p(x)� > kpk2Q � 0 ; x 2 E ;and the proof is �nished. ut



384 A3. An Interpolation TheoremLemma A.3.2. Let 0 6= f 2 C(Q) and let P be an n-dimensional linear sub-spae of C(Q) over R if C(Q) is real or over C if C(Q) is omplex. Then thefuntion f is orthogonal to P if and only if there exist points x1; x2; : : : ; xrin E(f) de�ned by (A.3.2) and positive real numbers 1; 2; : : : ; r; where1 � r � n+1 when C(Q) is real, and 1 � r � 2n+1 when C(Q) is omplex,suh that(A:3:3) rXi=1 if(xi)p(xi) = 0 ; p 2 P :Proof. Suppose (A.3.3) holds with some positive real 1; 2; : : : ; r satisfy-ing Pri=1 i = 1: As jf(xi)j = kfkQ; we havekfk2Q = rXi=1 if(xi)f(xi) = rXi=1 if(xi)(f(xi)� p(xi))� kfkQ rXi=1 i max1�j�r jf(xj)� p(xj)j � kfkQkf � pkQfor every p 2 P; so f ? P: (Note that r � n+1 or r � 2n+1; respetively,was not needed for this part of the proof, so the suÆieny of (A.3.3) isvalid with no hypothesis about r:)Conversely, suppose f ? P: Let f'1; '2; : : : ; 'ng be a basis for Pover R (or C ; respetively), and onsider the map T : Q ! Rn (or C n ;respetively) de�ned byT (x) = f(x)('1(x); '2(x); : : : ; 'n(x)) :Observe that the origin is in the onvex hull ofT (E) := fT (x) : x 2 Eg ;otherwise by the priniple of separating hyperplanes (a orollary of theHahn-Banah theorem; see Rudin [73℄), there would exist omplex numbersa1; a2; : : : ; an suh thatRe nXi=1 aif(x)'i(x)! > 0 ; x 2 E :Hene, with p :=Pni=1 ai'i 2 P;Re�f(x)p(x)� > 0 ; x 2 Eand f is not orthogonal to P by Lemma A.3.1, whih ontradits our as-sumption.



An Interpolation Theorem 385Now it follows from Caratheodory's lemma (see E.1) that there existpoints x1; x2; : : : ; xr in E and positive real numbers 1; 2; : : : ; r; where1 � r � n+1 when C(Q) is real and 1 � r � 2n+1 when C(Q) is omplex,suh that rXi=1 if(xi)'k(xi) = 0; k = 1; 2; : : : ; n:Therefore rXi=1 if(xi)p(xi) = 0; p 2 P ;and the lemma is proved. utTheorem A.3.3 (Interpolation of Linear Funtionals). Let C(Q) be the setof real- (omplex-) valued ontinuous funtions on the ompat Hausdor�spae Q. Let P be an n-dimensional linear subspae of C(Q) over R (C ).Let L 6= 0 be a real- (omplex-) valued linear funtional on P . Thenthere exist points x1; x2; : : : ; xr in Q, and nonzero real (omplex) num-bers a1; a2; : : : ; ar, where 1 � r � n in the real ase and 1 � r � 2n� 1 inthe omplex ase, suh that(A:3:4) L(p) = rXi=1 aip(xi) ; p 2 Pand(A:3:5) kLk = rXi=1 jaij ;where kLk := supfjL(p)j : p 2 P ; kpkQ � 1g :Proof. Beause of the �nite dimensionality of P; there exists an elementp� 2 P (alled an extremal element for L) suh that kp�kQ = 1 andL(P �) = kLk: Let P0 denote the null-spae of L, soP0 := fp 2 P : L(p) = 0g :Now p� is orthogonal to P0 beause ifkp� + p0kQ < kp�kQ = 1for some p0 2 P; then g := p� + p0 satis�es kgkQ < 1 and L(g) = kLk;whih is impossible. Note that the dimension of P0 over R is n � 1 in thereal ase and 2n � 2 in the omplex ase. So by Lemma A.3.2 there existpoints x1; x2; : : : ; xr in



386 A3. An Interpolation TheoremE := fx 2 Q : jp�(x)j = 1gand positive real numbers 1; 2; : : : ; r; where 1 � r � n in the real aseand 1 � r � 2n� 1 in the omplex ase, suh thatrXi=1 ip�(xi)p0(xi) = 0 ; p0 2 P0 :Sine L(p)p� � L(p�)p 2 P0 for all p 2 P; we haveL(p) rXi=1 ijp�(xi)j2 = L(p�) rXi=1 ip�(xi)p(xi) ; p 2 P :Sine L(p�) = kLk and jp�(xi)j = 1 for eah i; we obtain (A.3.4) by takingai = ip�(xi)Prj=1 j kLk :Using the fat that jp�(xi)j = 1 for eah i in the above formula for ai; weget (A.3.5). utComments, Exerises, and Examples.We have followed Shapiro [71℄, whih gives a long disussion of questionsrelated to the best uniform approximation of a funtion f 2 C(Q) froma (usually �nite-dimensional) linear subspae P � C(Q): Some of these,together with other appliations, are disussed in the exerises.E.1 Caratheodory's Lemma. If A � Rn ; then every point from the onvexhull o(A) of A an be written as a onvex linear ombination of at mostn+ 1 points of A:Proof. Let x 2 A: After a translation if neessary, we may assume thatx = 0: Suppose(A:3:6) 0 = rXi=1 �ixi ; xi 2 A ; �i > 0 ; r > n+ 1 :Sine r > n+1; the elements x2; x3; : : : ; xr are linearly dependent, so thereexist real numbers �i; i = 2; 3; : : : ; r; not all zero, suh thatrXi=2 �ixi = 0 :Let �1 := 0: For all � 2 R; we have



An Interpolation Theorem 3870 = rXi=1 �ixi + � rXi=1 �ixi = rXi=1 (�i + ��i)xi :When � = 0; eah term in the last sum is positive. We now de�ne := min j�i=�ij; where the minimum is taken for all indies i for whih�i 6= 0: If the index j is hosen so that j�j=�j j = ; and if � := ��j=�j ;then at least one of the numbers �i + ��i is zero, and all are nonnegative.Also �1 + ��1 = �1 > 0: We have thus obtained a representation of thesame form as (A.3.6), but with s terms, where 1 � s � r � 1: If s > n+ 1;then the proess an be repeated, and after a �nite number of steps weobtain the desired representation. utE.2 Reformation in Terms of Integrals. Lemma A.3.2 an be reformu-lated as follows. Under the assumptions of Lemma A.3.2, f 2 C(Q) isorthogonal to P if and only if there exists a nonzero nonnegative Borelmeasure � on Q whose support onsists of r points of E(f) de�ned by(A.3.2), where 1 � r � n + 1 in the real ase and 1 � r � 2n + 1 in theomplex ase, suh that f(x) d�(x) annihilates P , that is,(A:3:7) ZQ f(x)p(x) d�(x) = 0 ; p 2 P :This reformation is not only a notational onveniene, but it is essentialin generalizations where P is no longer �nite-dimensional. Moreover, (A.3.7)with any nonzero nonnegative Borel measure (not neessarily disrete) issuÆient for f ? P: This is often useful, even when P is �nite-dimensional;see Shapiro [71℄.E.3 Haar's Charaterization of Chebyshev Spaes.a℄ Let f0; f1; : : : ; fn be real- or omplex-valued ontinuous funtionsde�ned on a (not neessarily ompat) Hausdor� spae Q: Show thatP := spanff0; : : : ; fng; where the span is taken over R (or C ), is a Cheby-shev spae if and only if there exists no real (or omplex) measure on Qannihilating P whose support onsists of less than n+ 1 points.Hint: Use Proposition 3.1.2. utb℄ Let P be an n-dimensional linear subspae of C(Q), the spae of real-(or omplex-) valued ontinuous funtions de�ned on a ompat Hausdor�spae Q ontaining at least n points. The spae P is a Chebyshev spae ifand only if for eah f 2 C(Q); there is a unique best uniform approximationto f from P:Proof. First suppose P is a Chebyshev spae of dimension n, and p1 andp2 are best uniform approximations to some f 2 C(Q) from P . Thenp3 := 12 (p1 + p2) is also a best uniform approximation to f from P . As



388 A3. An Interpolation Theoremf � p3 ? P; Lemma A.3.2 yields that jf(x) � p3(x)j attains its maximumon Q at r points, x1; x2; : : : ; xr; that support an annihilating measure forP; where r � n+ 1 by part a℄. Note thatp1(xj)� f(xj) = p2(xj)� f(xj) ; j = 1; 2; : : : ; n+ 1 ;and hene, sine P is a Chebyshev spae, p1 � p2 = 0:Conversely, if P is not a Chebyshev spae, then there exist n distintpoints x1; x2; : : : ; xn in Q suh that the system of homogeneous linear equa-tions 0B� g1(x1) : : : g1(xn)... . . . ...gn(x1) : : : gn(xn)1CA0� a1...an1A ;where fg1; : : : ; gng is a basis for P , has a nontrivial solution. Then also thehomogeneous system formed with the transposed matrix has a nontrivialsolution, so there exist onstants bi, not all zero, so thatnXi=1 bigi(xj) = 0 ; j = 1; 2; : : : ; n :Thus, with g :=Pni=1 bigi; we haveg(xj) = 0 ; j = 1; 2; : : : ; n :We may assume, without loss, that kgkQ = 1: Some of the onstantsa1; a2; : : : ; an may be zero; however, the set � of indies j for whih aj 6= 0is not empty. By Tietze's theorem there exists an f 2 C(Q) suh thatkfkQ = 1 and f(xj) = ajjaj j ; j 2 � :Setting h(x) := f(x)(1� jg(x)j); we haveh(xj) = ajjaj j ; j 2 � :We laim that kh� pkQ � 1 for every p 2 P: Indeed, if kh� pkQ < 1 forsome p 2 P; thenjf(xj)� p(xj)j2 = jf(xj)j2 � 2Re�p(xj)f(xj)�+ jp(xj)j2 < 1for every j 2 � ; hene Re(ajp(xj)) > 0 ; j 2 � :



An Interpolation Theorem 389Sine aj = 0 if j 62 �; we have Re(ajp(xj)) = 0 for eah j 62 �: ThusRe0� nXj=1 ajp(xj)1A > 0 :However, if p :=Pni=1 igi; thennXj=1 ajp(xj) = nXj=1 aj nXi=1 igi(xj) = nXi=1 bi nXj=1 aigi(xj) = 0 ;whih ontradits the previous inequality and shows that kh� pkQ � 1 forevery p 2 P .Finally, for all � 2 [0; 1℄, �g is a best uniform approximation to h fromP beause jh(x)� �g(x)j � jf(x)j(1� jg(x)j) + �jg(x)j� 1 + (�� 1)jg(x)j � 1for all x 2 Q; so the best uniform approximation to h 2 C(Q) from P isnot unique. utE.4 Uniity of the Extremal Funtion. Assume the notation of TheoremA.3.3. Show that if P � C(Q) is an n-dimensional real Chebyshev spaeand r = n; then the extremal element p� 2 P satisfying kp�kQ = 1 andL(p�) = kLk is unique.The interesting relations of Theorem A.3.3 to the Riesz representationtheorem, the Krein-Milman theorem, and the Hahn-Banah theorem aredisussed in Shapiro [71℄.E.5 Appliations of the Interpolation Theorem. As before, letD := fz 2 C : jzj < 1g and K := R (mod2�) :Prove the following statements. Eah of them may be proven by hara-terizing the extremal polynomial for the given inequality with the help ofTheorem A.3.3. A detailed hint is given only to part a℄.a℄ Bernstein's Inequality.jt0(�)j � nktkK ; t 2 Tn ; � 2 R :Hint: Let �0 2 R be �xed, and study the linear funtional L(t) := t0(�0),t 2 Tn. Observe that an extremal p in Lemma A.3.3 must satisfy jp(xi)j = 1for eah i = 1; 2; : : : ; r and r must equal 2n: Note that r � 2n holds by



390 A3. An Interpolation TheoremTheorem A.3.3, while the argument for r � 2n is similar to the orrespond-ing step in the proof of Theorem 7.1.7. Finally, show that the extremalelement t satisfying L(t) = kLk is of the formt(�) = os(n� � �)for some � 2 K: utb℄ Markov's Inequality.jp0(1)j � n2kpk[�1;1℄ ; p 2 Pn :℄ Chebyshev's Inequality.jp(x)j � jTn(x)j kpk[�1;1℄ ; p 2 Pn ; x 2 R n [�1; 1℄ ;where Tn is the Chebyshev polynomial of degree n de�ned by (2.1.1).d℄ Bernstein's Inequality.jp(z)j � jzjnkpkD ; p 2 Pn ; z 2 C nD :e℄ Bernstein's Inequality.jp0(z)j � njzjn�1kpkD ; p 2 Pn ; z 2 C nD :Hint: Use Theorem 1.3.1 (Luas' theorem). utf ℄ Riesz' Identity. There are real numbers ai with P2ni=1 jaij = n suhthat t0(�) = 2nXi=1 ait(� + �i) ; t 2 Tn ; � 2 R ;where �i := 2i�12n � ; i = 1; 2; : : : ; 2n :(This is, apart from the expliit determination of the number ai; an identitydisovered by M. Riesz [14℄.)g℄ Show that in part f℄,ai = (�1)i+1 14n sin2(�i=2) ; i = 1; 2; : : : ; 2n :h℄ Bernstein's Inequality in Lp.Z 2�0 jt0(�)jp d� � np Z 2�0 jt(�)jp d� ; t 2 Tn ; p � 1 :Hint: Use part f℄ and Jensen's inequality (see E.20 of Appendix 4). utArestov [81℄ shows that the inequality of part h℄ is valid for all p > 0:Golitshek and Lorentz [89℄ gives a simpler proof of this.i℄ Find all extremal polynomials in parts a℄ to e℄ and h℄.



An Interpolation Theorem 391E.6 An Inequality of Szeg}o. If p 2 Pn and z1; z2; : : : ; z2n are any equallyspaed points on the unit irle �D; thenkp0kD � n max1�k�2n jp(zk)j :Proof. See Frappier, Rahman, and Rusheweyh [85℄. ut



This is page 392Printer: Opaque thisA4Inequalities for GeneralizedPolynomials in Lp

OverviewMany inequalities for generalized polynomials are given in this appendix. Ofpartiular interest are the extensions of virtually all the basi inequalities toLp spaes. The prinipal tool is a generalized version of Remez's inequality.Inequalities for Generalized Polynomials inLpGeneralized (nonnegative) polynomials are de�ned by (A.4.1) and (A.4.3).The basi inequalities of Chapter 5 are extended to these funtions by re-plaing the degree with the generalized degree. The ruial observation isthat Remez's inequality extends naturally to this setting. This Remez in-equality then plays a entral role in the extensions of the other inequalities.These generalizations allow for a simple general treatment of Lp inequali-ties, whih is one main feature of this appendix.The funtion(A:4:1) f(z) = j!j mYj=1 jz � zj jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is alled a generalized nonnegative(algebrai) polynomial of (generalized) degree



Inequalities for Generalized Polynomials in Lp 393(A:4:2) N := mXj=1 rj :The set of all generalized nonnegative algebrai polynomials of degree atmost N is denoted by GAPN .The funtion(A:4:3) f(z) = j!j mYj=1 j sin((z � zj)=2)jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is alled a generalized nonnegativetrigonometri polynomial of degree(A:4:4) N := 12 mXj=1 rj :The set of all generalized nonnegative trigonometri polynomials of degreeat most N is denoted by GTPN : Throughout this setion we will studygeneralized nonnegative polynomials restrited to the real line. If the ex-ponents rj in (A.4.1) or (A.4.3) are even integers, then f is a nonnegativealgebrai or trigonometri polynomial, respetively. Note that the lassesGAPN and GTPN are not linear spaes. Note also that if f 2 GAPN orf 2 GTPN is of the form (A.4.1) or (A.4.3), respetively, with all rj � 1;then the one-sided derivatives of f exist at every x 2 R with the samemodulus, hene jf 0(x)j is well-de�ned for every x 2 R: We use the notationjf 0(x)j for f 2 GAPN or f 2 GTPN and x 2 R throughout this setionwith this understanding. If f 2 GAPN is of the form (A.4.1) or f 2 GTPNis of the form (A.4.3), where the zeros zj 2 C ; j = 1; 2; : : : ;m; are distint,then rj is alled the multipliity of zj in f: Our intention in this setionis to extend most of the lassial inequalities of Setion 5.1 to generalizednonnegative polynomials. In addition, we prove Nikolskii-type inequalitiesfor GAPN and GTPN :Theorem A.4.1 (Remez-Type Inequality for GAPN ). The inequalitykfk[�1;1℄ �  p2 +psp2�ps!Nholds for every f 2 GAPN and s 2 (0; 2) satisfyingm(fx 2 [�1; 1℄ : f(x) � 1g) � 2� s :E.5 shows that this inequality is sharp. Note that if 0 < s � 1; then p2 +psp2�ps!N � exp(5Nps):Throughout this setion, as before, K := R (mod 2�).



394 A4. Inequalities for Generalized Polynomials in LpTheorem A.4.2 (Remez-Type Inequality for GTPN ). The inequalitykfkK � exp �N �s+ 74s2�� � exp(4Ns)holds for every f 2 GTPN and s 2 (0; �=2℄ satisfying(A:4:5) m(fx 2 [��; �) : f(x) � 1g) � 2� � s :The inequalitykfkK �  p2 +p�p2�p�!N ; � = 1� os(s=2)holds for every even f 2 GTPN and s 2 (0; 2�) satisfying (A.4.5).We do not disuss what happens when s 2 (�=2; 2�) in the general asebeause the ase when s 2 (0; �=2℄ is satisfatory for our needs.Proof of Theorem A.4.1. First assume that f 2 GAPN is of the form (A.4.1)with rational exponents rj = qj=q; where qj ; q 2 N: Let k 2 N be an integer.Then (restrited to R) p := f2kq 2 P2kqN andm (fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s :Hene Theorem 5.1.1 yieldskfk[�1;1℄ = kpk1=(2kq)[�1;1℄ � �T2kqN �2 + s2� s��1=(2kq) :Sine by E.4,(A:4:6) limk!1�T2kqN �2 + s2� s��1=(2kq) =  p2 +psp2�ps!N ;the theorem is proved. The ase when the exponents rj > 0 are arbitraryreal numbers an be easily redued to the already proved rational ase bya straightforward density argument. utTheorem A.4.2 follows from Theorem 5.1.2 in exatly the same waythat Theorem A.4.1 follows from Theorem 5.1.1; see E.6.Theorem A.4.3 (Nikolskii-Type Inequality for GTPN ). Let � be a non-negative nondereasing funtion de�ned on [0;1) suh that �(x)=x is non-inreasing on [0;1): Then there is an absolute onstant 1 > 0 suh thatk�(f)kLp(K) � (1(1 + qN))1=q�1=pk�(f)kLq(K)for every f 2 GTPN and 0 < q < p �1: If �(x) = x; then 1 � e(4�)�1:



Inequalities for Generalized Polynomials in Lp 395Theorem A.4.4 (Nikolskii-Type Inequality for GAPN ). Let � be a non-negative nondereasing funtion de�ned on [0;1) suh that �(x)=x is non-inreasing on [0;1): Then there is an absolute onstant 2 > 0 suh thatk�(f)kLp[�1;1℄ � (2(2 + qN))2=q�2=pk�(f)kLq[�1;1℄for every f 2 GAPN and 0 < q < p � 1: If �(x) = x; then 2 � e2(2�)�1:In the proof of the seond part of Theorem A.4.4 we will need thefollowing Shur-type inequality, whih is interesting in its own right.Theorem A.4.5 (Shur-Type Inequality for GAPN ). The inequalitykfkq[�1;1℄ � e(1 + qN)p1� x2fq(x)[�1;1℄holds for every f 2 GAPN and q > 0:Aording to Theorem 5.1.9 (Shur's inequality), if N 2 N, f 2 PN ; andq 2 N; then the onstant e in the above inequality an be replaed by 1:It is suÆient to prove Theorems A.4.3 and A.4.4 when p = 1, andthen a simple argument gives the required results for arbitrary exponents0 < q < p < 1: To see this, say, in the trigonometri ase, assume thatthere is a onstant CN suh thatk�(f)kK � C1=qN k�(f)kLq(K)for every f 2 GTPN and 0 < q <1: Thenk�(f)kpLp(K) = k(�(f))p�q+qkL1(K)� k�(f)kp�qK k�(f)kqLq(K)� Cp=q�1N k�(f)kp�qLq(K)k�(f)kqLq(K) ;and therefore k�(f)kLp(K) � C1=q�1=pN k�(f)kLq(K)for every f 2 GTPN and 0 < q < p � 1:Proof of Theorem A.4.3 (when p =1). Sine � is nonnegative and nonde-reasing and (�(x)=x)q is noninreasing on [0;1); we have(�(f(�)))q � exp(�qNs)k�(f)kqKwhenever f(�) � exp(�Ns)kfkK :Hene, by E.7 b℄, we an dedue that



396 A4. Inequalities for Generalized Polynomials in Lpm (f� 2 [��; �) : (�(f(�)))q � exp(�qNs)k�(f)kqKg) � s4for every f 2 GTPN and s 2 (0; 2�): Choosing s := (1 + qN)�1; we getm ��� 2 [��; �) : (�(f(�)))q � e�1k�(f)kqK	� � (4(1 + qN))�1 :Hene, integrating only on the subset I of K where(�(f(�)))q � e�1k�(f)kqK ;we onlude that k�(f)kqK � 4e(1 + qN) ZI(�(f(�)))q d�� 4e(1 + qN)k�(f)kqLq(K) ;and the �rst part of the theorem is proved.Now we turn to the seond statement. LetD := fz 2 C : jzj < 1g and �D := fz 2 C : jzj = 1g :If h is analyti in the open unit disk D and ontinuous on the losed unitdisk D; then by Cauhy's integral formula we have(1� jrzj2)h(rz) = 12�i Z�D h(u)1� rzuu� rz duwhenever z 2 D and r 2 [0; 1): Note that u 2 �D and z 2 �D implyj1� rzuj = ju� rzj for all r 2 [0; 1): Hene, if P 2 Pn and 0 < q <1; then(1� r2)jP �(rz)jq � 12� Z�D jP �(u)jq jdujwhenever z 2 �D and r 2 [0; 1℄; where P � is obtained from the fatorizationof P by replaing eah fator (z � �) of P with j�j < 1 by (1� �z): Sine12 (1 + r)jz � �j � jrz � �j ; j�j > 1 ; z 2 �D ; r 2 [0; 1℄ ;we have (1� r2) � 12 (1 + r)�q deg(P ) jP (z)jq � 12� Z�D jP �(u)jq jdujwhenever z 2 �D and r 2 [0; 1℄: Maximizing the left-hand side for r 2 [0; 1℄and using the fat that jP �(z)j = jP (z)j for z 2 �D; we onlude that



Inequalities for Generalized Polynomials in Lp 397jP (z)jq � (2 + q deg(P ))e8� �Z�� jP (ei�)jq d� ; z 2 �D :Hene, by E.8, kRkqK � (1 + qn)e4� �Z�� jR(�)jq d�for every R 2 Tn: If f 2 GTPN is of the form (A.4.3) with rational expo-nents rj = �j=�; where �j ; � 2 N; then on applying the above inequalityto R := f2� 2 T2�N with q replaed by q=(2�); we onlude thatkfkqK � 1 + qN4� Z ��� f(�)q d�and the seond statement of the theorem is proved. The ase when theexponents rj > 0; j = 1; 2; : : : ;m; are arbitrary real numbers an beredued to the already proved rational ase by a straightforward densityargument. utProof of Theorem A.4.5. Let P 2 Pn andM := p1� x2 jP (x)jq[�1;1℄ :By E.8 ℄, there exists an R 2 P2n suh that jR(ei�)j = jP (os �)j; � 2 R:We de�ne R� 2 P2n from the fatorization of R by replaing all the fators(z � �) of R with j�j < 1 by (1 � �z): Note that j1� e2i�j = 2j sin �j andjR(ei�)j = jR�(ei�)j for all � 2 R: Hene the maximum priniple yields thatj1� (rz)2jjR�(rz)jq � maxz2�D j1� z2jjR�(z)jq= max�2R 2 j sin �jjP (os �)jq = 2M :By E.9 we havejR�(z)j � � 21 + r�2n jR�(rz)j ; z 2 �D ; r 2 [0; 1℄ :Hene jR�(z)jq � 22nq(1 + r)2nq 11� r2 2M ; z 2 �D ; r 2 [0; 1℄ ;where the minimum on [0; 1℄ of the right-hand side is taken atr := qn1 + qn :



398 A4. Inequalities for Generalized Polynomials in LpEstimating the right-hand side at this value of r; we getkPkq[�1;1℄ = maxz2�D jR�(z)jq � e(1 + qn)p1� x2 jP (x)jq[�1;1℄ :If f 2 GAPN is of the form (A.4.1) with rational exponents rj = �j=�;�j ; � 2 N; then applying the above inequality to P = f2� 2 P2�N with qreplaed by q=(2�); we getkfkq[�1;1℄ � e(1 + qN)p1� x2 fq(x)[�1;1℄ ;and the theorem is proved. The ase when the exponents rj > 0 are ar-bitrary real numbers an be easily redued to the already proved rationalase one again by a standard approximation. utProof of Theorem A.4.4 (when p =1). Sine � is nonnegative and nonde-reasing and (�(x)=x)q is noninreasing on [0;1); we have(�(f(x)))q � exp(�qNps)k�(f)kq[�1;1℄whenever f(x) � exp(�Nps)kfk[�1;1℄ :So by E.7 a℄ we an dedue thatm�nx 2 [�1; 1℄ : (�(f(x)))q � exp(�qNps)k�(f)kq[�1;1℄o� � s8for all s 2 (0; 2): Choosing s := (1 + qN)�2; we obtainm ��x 2 [�1; 1℄ : (�(f(x)))q � e�1k�(f)k[�1;1℄	� � 18(1 + qN)2 :Integrating on the subset I of [�1; 1℄ where(�(f(x)))q � e�1k�(f)k[�1;1℄ ;we onlude thatk�(f)kq[�1;1℄ � 8e(1 + qN)2 ZI(�(f(x)))q dx� 8e(1 + qN)2k�(f)kqLq[�1;1℄ :Thus the �rst part of the theorem is proved.To show that the given onstant works in the ase that �(x) = x we useanother method. Let h 2 GAPM : Then by E.10, g(�) = h(os �) 2 GTPM :On using the substitution x = os �; from Theorem A.4.3 we get



Inequalities for Generalized Polynomials in Lp 399khk[�1;1℄ � e(2�)�1(1 + qM) Z 1�1 jh(x)jq(1� x2)�1=2 dx :If f 2 GAPN ; then h(x) = f(x)(1�x2)1=(2q) 2 GAPM with M = N + q�1;so an appliation of the above inequality yields(A:4:7) p1� x2fq(x)[�1;1℄ � e(2�)�1(2 + qN) Z 1�1 fq(x) dx :(Note that the weaker assumption h 2 GAPM instead of f 2 GAPN alreadyimplies (A.4.7).)Now a ombination of Theorem A.4.5 and inequality (A.4.7) gives thatif �(x) = x; then the inequality of Theorem A.4.4 holds with 2 := e2(2�)�1:utNow we prove extensions (up to multipliative absolute onstants) ofMarkov's and Bernstein's inequalities for generalized nonnegative polyno-mials.Theorem A.4.6 (Bernstein-Type Inequality for GTPN ). There exists anabsolute onstant 3 > 0 suh thatkf 0kK � 3NkfkKfor every f 2 GTPN of the form (A.4.3) with eah rj � 1.Theorem A.4.7 (Bernstein-Type Inequality for GAPN ). The inequalityjf 0(x)j � 3Np1� x2 kfk[�1;1℄ ; x 2 (�1; 1) ;holds for every f 2 GAPN of the form (A.4.1) with eah rj � 1; where 3is as in Theorem A.4.6.Theorem A.4.8 (Markov-Type Inequality for GAPN ). There exists an ab-solute onstant 4 > 0 suh thatkf 0k[�1;1℄ � 4N2kfk[�1;1℄for every f 2 GAPN of the form (A.4.1) with eah rj � 1:To prove Theorem A.4.6 we need the following lemma.Lemma A.4.9. Suppose g 2 GTPN is of the form (A.4.3) with eah zj 2 R;and suppose at least one of any two adjaent (in K) zeros has multipliityat least 1. Then there exists an absolute onstant 5 > 0 suh that for everysuh g there is an interval I � K of length at least 5N�1 for whihmin�2I g(�) � e�1kgkK :



400 A4. Inequalities for Generalized Polynomials in LpProof. Take a g 2 GTPN satisfying the hypothesis of the lemma. Beauseof the periodiity of g we may assume that(A:4:8) g(�) = kgkK :De�ne(A:4:9) Qn;!(�) := T2n� sin(�=2)sin(!=2)�with(A:4:10) n := bN and ! := � � (3N)�1 ;where T2n is the Chebyshev polynomial of degree 2n de�ned by (2.1.1).By E.11 there exists an absolute onstant 6 > 1 suh that Qn;!(�) � 6:Introdue the setA := �� 2 [� � (3N)�1; � + (3N)�1℄ : g(�) � e�1g(�)	 :We study h := gjQn;!j 2 GTP2N : The inequality Qn;!(�) � 6 and as-sumption (A.4.8) yieldh(�) � g(�) � �16 Qn;!(�)g(�) = �16 khkKfor all � 2 [�!; !℄ = [��+ (3N)�1; � � (3N)�1℄: Further, the de�nition ofthe set A; the fat that kQn;!kK = Qn;!(�); and (A.4.8) imply thath(�) � e�1g(�)Qn;!(�) = e�1khkKfor all � 2 [� � (3N)�1; � + (3N)�1℄ nA: From the last two inequalities weonlude that h(�) � �17 khk[�1;1℄ for all � 2 [��; �℄ nA ;where 7 := minf6; eg > 1 is an absolute onstant. Therefore, by E.7 b℄m(A) � 8N�1 with 8 := 117 log 7 > 0 :Sine g 2 GTPN is of the form (A.4.3) with eah zj 2 R; and at leastone of any two adjaent zeros of g has multipliity at least 1, E.12 andassumption (8.1.8) imply that g annot have two or more distint zeros in[� � (3N)�1; � + (3N)�1℄: Hene A is the union of at most two intervals.Therefore there exists an interval I � A suh that m(I) � 8(2N)�1; andthe lemma is proved. ut



Inequalities for Generalized Polynomials in Lp 401Proof of Theorem A.4.6. Let f 2 GTPN be of the form (A.4.3) with eahrj � 1: Without loss of generality we may assume that jf 0(�)j = kf 0kK ;and it is suÆient to prove only thatjf 0(�)j � 3NkfkK :By E.13 we may assume that eah zj is real in (A.4.3). Hene, by E.2,g := jf 0j satis�es the assumption of Lemma A.4.9. Denote the endpointsof the interval I oming from Lemma A.4.9 by a < b: We an now deduethat kf 0kK = jf 0(�)j � eb� a Z ba jf 0(�)j d�� eN5 Z ba jf 0(�)j d� = eN5 jf(b)� f(a)j � 3NkfkKwith 3 := e�15 , and the proof is �nished. utProof of Theorem A.4.7. The theorem follows from Theorem A.4.6 by usingthe substitution x = os � and E.10 b℄. utProof of Theorem A.4.8. Let � := 1� (1+N)�2. Using Theorem A.4.7 andthen E.14, we obtainkf 0k[��;�℄ � 3N(N + 1)kfk[�1;1℄� 3N(N + 1)9kfk[��;�℄ � 4N2kfk[��;�℄ ;and then the theorem follows by a linear transformation. utNow we establish Remez-, Bernstein-, and Markov-type inequalitiesfor generalized nonnegative polynomials in Lp: In the proofs we use theinequalities proved in this appendix so far, and the methods illustrate howone an ombine the \basi" inequalities in the proofs of various other in-equalities for generalized nonnegative polynomials. First we state the mainresults.Theorem A.4.10 (Lp Remez-Type Inequality for GAPN ). Let � be a non-negative nondereasing funtion de�ned on [0;1) suh that �(x)=x is non-inreasing on [0;1): There exists an absolute onstant  � 5p2 suh thatZ 1�1(�(f(x)))p dx � �1 + exp�pNps�� ZA(�(f(x)))p dxfor every f 2 GAPN , A � [�1; 1℄ with m([�1; 1℄ n A) � s � 1=2; and forevery p 2 (0;1):



402 A4. Inequalities for Generalized Polynomials in LpTheorem A.4.11 (Lp Remez-Type Inequality for GTPN ). Let � be a non-negative nondereasing funtion de�ned on [0;1) suh that �(x)=x is non-inreasing on [0;1): There exists an absolute onstant  � 8 suh thatZ ���(�(f(�)))p d� � (1 + exp(pNs)) ZA (�(f(�)))p d�for every f 2 GTPN , A � [��; �℄ with m([��; �℄ n A) � s � �=2; and forevery p 2 (0;1):Theorem A.4.12 (Lq Bernstein-Type Inequality for GTPN ). Let � be anonnegative, nondereasing, onvex funtion de�ned on [0;1). There existsan absolute onstant  suh thatZ ��� ��N�qjf 0(�)jq� d� � Z ��� �(f(�)q) d�for every f 2 GTPN of the form (A.4.3) with eah rj � 1, and for everyq 2 (0; 1℄:Corollary A.4.13 (Lp Bernstein-Type Inequality for GTPN ). The inequal-ity Z ��� jf 0(�)jp d� � p+1Np Z ��� jf(�)jp d�holds for every f 2 GTPN of the form (A.4.3) with eah rj � 1; and forevery p 2 (0;1); where  is as in Theorem A.4.12.Theorem A.4.14 (Lp Markov-Type Inequality for GAPN ). There exists anabsolute onstant  suh thatZ 1�1 jf 0(x)jp dx � p+1N2p Z 1�1 jf(x)jp dxfor every f 2 GAPN of the form (A.4.1) with eah rj � 1; and for everyp 2 (0;1):Theorems A.4.1 and A.4.2 an be easily obtained from their L1analogs, Theorems A.4.1 and A.4.2, respetively; see E.15 and E.16, wherehints are given.Proof of Theorem A.4.12. For n := bN letDn(�) := ����� nXj=�n eij������be the modulus of the nth Dirihlet kernel. Choose q 2 (0; 1℄; and setm := 2q�1 � 2: Let g 2 GTPN be of the form (A.4.3) with eah rj � 1:On applying the Nikolskii-type inequality of Theorem A.4.3 to



Inequalities for Generalized Polynomials in Lp 403G := gDmn 2 GTPN+2nq�1 ;we obtain kgDmn kqK � 1 �1 + q �N + 2nq�1�� kgDmn kqLq(K)(A:4:11) � 1(1 + 3N) Z ���(g(�)Dmn (�))q d�= 1(1 + 3N) Z ��� gq(�)D2n(�) d� :If g 2 GTPN is of the form (A.4.3) with eah rj � 1; then m � 2 impliesthat G 2 GTPN is of the form (A.4.3) with eah rj � 1 as well. If we applythe Bernstein-type inequality of Theorem A.4.6 to G and use (A.4.11), wean dedue that��g0(�)Dmn (�) +mDm�1n (�)D0n(�)g(�)��qK� �3 �N + 2nq�1��q kgDmn kqK� q3Nq �1 + 2q�1�q 1(1 + 3N) Z ��� gq(�)D2n(�) d�for every � 2 K (we take one-sided derivatives everywhere). By putting� = 0; and notiing thatD0n(0) = 0 and Dn(0)m = (2n+ 1)2=q � N2=q ;we get(A:4:12) jg0(0)jq � Nq Z ��� gq(�)(2�)�1(2n+ 1)�1D2n(�) d�with an absolute onstant : Now let f 2 GTPn be of the form (A.4.3) witheah rj � 1: Let � 2 K be �xed. On applying (A.4.12) to g(�) := f(�+ �);we onlude thatjf 0(�)jq � Nq Z ��� fq(�)(2�)�1(2n+ 1)�1D2n(� � �) d� :Hene(A:4:13) N�qjf 0(�)jq � Z ��� fq(�)(2�)�1(2n+ 1)�1D2n(� � �) d� :Sine(A:4:14) Z ��� (2�)�1(2n+ 1)�1D2n(� � �) d� = 1 ;



404 A4. Inequalities for Generalized Polynomials in LpJensen's inequality (see E.7) and (A.4.3) imply that��N�qjf 0(�)jq� � Z ��� �(fq(�))(2�)�1(2n+ 1)�1D2n(� � �) d� :If we integrate both sides with respet to �; Fubini's theorem and (A.4.14)(on interhanging the role of � and �) yield the inequality of the theorem.utProof of Corollary A.4.13. If 0 < p � 1; then Theorem A.4.12 yields theorollary with q = p and �(x) = x: If 1 � p <1; then the orollary followsfrom Theorem A.4.12 again with q = 1 and �(x) = xp. utProof of Theorem A.4.14. We distinguish two ases.Case 1: p � 1: Let f 2 GAPN be of the form (A.4.1) with eah rj � 1:Then by E.10 b℄, g(�) := f(os �) 2 GTPN is of the form (A.4.3) with eahrj � 1: With the substitution x = os �; Corollary A.4.13 and TheoremA.4.11 imply thatZ 1�1 jf 0(x)jp(1� x2)(p�1)=2 dx(A:4:15) � p1Np Z 1�1 fp(x)(1� x2)�1=2 dx� p1Np exp(2pNN�1) Z Æ�Æ fp(x)(1� x2)�1=2 dx ;where Æ := maxf1�N�2; os(�=16)g and 1 and 2 are appropriate absoluteonstants. Sine p� 1 � 0; it follows from (A.4.15) thatZ Æ�Æ jf 0(x)jp dx(A:4:16) � (1� Æ2)(1�p)=2 Z Æ�Æ jf 0(x)jp(1� x2)(p�1)=2 dx� (1� Æ2)(1�p)=2p1Np exp(2p)(1� Æ2)�1=2 Z Æ�Æ fp(x) dx� p3Np�1NpN Z Æ�Æ fp(x) dx= p3N2p Z Æ�Æ fp(x) dx ;where 3 is also an absolute onstant. Sine (A.4.16) is valid for everyf 2 GAPN of the form (A.4.1) with eah rj � 1; the theorem follows by alinear shift from [�Æ; Æ℄ to [�1; 1℄:



Inequalities for Generalized Polynomials in Lp 405Case 2: 0 < p � 1: Let f 2 GAPN be of the form (A.4.1) with eah rj � 1:Using the inequality ja+ bjp � jajp + jbjp for p 2 (0; 1℄; we an dedue thatZA�jf 0(os �)jj sin �j1=p+1�p d�(A:4:17) � ZA����f(os �)j sin �j1=p�0���p d�+ ZA�f(os �)p�1j sin �j1=p�1j os �j�p d�for every measurable subset A of [��; �): Applying Theorem A.4.12 (with�(x) = x) to g(�) := f(os �)j sin �j1=p 2 GTPN+1=p ;then using (A.4.17) with A := [�Æ; Æ℄, Æ := 1� (N + 1)�2; we onlude, bythe substitution x = os �, thatZ Æ�Æ jf 0(x)jp(1� x2)p=2 dx(A:4:18) � 1(N + 1=p)p Z 1�1 fp(x) dx + p�p Z Æ�Æ fp(x)(1� x2)�p=2 dx ;where 1 is an absolute onstant. Note that Theorem A.4.10, 0 < p � 1,and the hoie of Æ imply that(A:4:19) Z 1�1 fp(x) dx � 2 Z Æ�Æ fp(x) dxwith an absolute onstant 2. A ombination of (A.4.18) and (A.4.19) yieldsZ Æ�Æ jf 0(x)jp dx(A:4:20)� (1� Æ2)�p=2 Z Æ�Æ jf 0(x)jp(1� x2)p=2 dx� (1� Æ2)�p=2(12(N + 1=p)p + p�p(1� Æ2)�p=2) Z Æ�Æ fp(x) dx� 2p=2(N + 1)p(12(N + 1=p)p + p�p2p=2(N + 1)p) Z Æ�Æ fp(x) dx� 3N2p Z Æ�Æ fp(x) dx ;where 3 is an absolute onstant. Sine (A.4.20) is valid for every f 2 GAPNof the form (A.4.1) with eah rj � 1; the theorem follows by a linear shiftfrom [�Æ; Æ℄ to [�1; 1℄: ut



406 A4. Inequalities for Generalized Polynomials in LpComments, Exerises, and Examples.Most of the results of this setion an be found in Erd�elyi [91a℄ and [92a℄;Erd�elyi, M�at�e, and Nevai [92℄; and Erd�elyi, Li, and Sa� [94℄; however, theproofs are somewhat simpli�ed here. For polynomials f 2 Pn and for ar-bitrary q 2 (0;1); Theorem A.4.5 was also proved by Kemperman andLorentz [79℄. An early version of Markov's inequality in Lp for ordinary poly-nomials is proven in Hille, Szeg}o, and Tamarkin [37℄. Weighted Markov- andBernstein-type analogs of Theorems A.4.6 to A.4.8 are obtained in Erd�elyi[92b℄. Appliations of the inequalities of this setion are given in Erd�elyi,Magnus, and Nevai [94℄ and in Erd�elyi and Nevai [92℄, where bounds areestablished for orthonormal polynomials and related funtions assoiatedwith (generalized) Jaobi weight funtions. Further appliations in the the-ory of orthogonal polynomials may be found in Freud [71℄ and Erd�elyi [91d℄.Lp extensions of Theorem 5.1.4 (Bernstein's inequality) and Theorem5.1.8 (Markov's inequality) have been studied by a number of authors. Thesharp Lp version of Bernstein's inequality for trigonometri polynomialswas �rst established by Zygmund [77℄ for p � 1: Using an interpolationformula of M. Riesz, he proved that(A:4:21) Z ��� jt0(�)jp d� � np Z ��� jt(�)jp d�for every t 2 Tn (see E.5 h℄ of Appendix 4). For 0 < p < 1; �rst Klein [51℄and later Osval'd [76℄ proved (A.4.21) with a multipliative onstant (p):Nevai [79a℄ showed that (p) � 8p�1: Subsequently, M�at�e and Nevai [80℄showed the validity of (A.4.21) with a multipliative absolute onstant, andthen Arestov [81℄ proved (A.4.21) (with the best possible onstant 1) forevery 0 < p < 1: Golitshek and Lorentz [89℄ gave a very elegant proof ofArestov's theorem.The Lp analog of Markov's inequality states that(A:4:22) Z 1�1 jQ0(x)jp dx � p+1n2p Z 1�1 jQ(x)jp dxfor every Q 2 Pn and 0 < p < 1; where  is an absolute onstant. Thisan be obtained from Arestov's theorem similarly to the way that TheoremA.4.14 is proven from Corollary A.4.13. To �nd the best possible onstantin (A.4.22) is still an open problem even for p = 2 or p = 1:The magnitude of(A:4:23) kf 0wk[�1;1℄kfwk[�1;1℄ ;



Inequalities for Generalized Polynomials in Lp 407(A:4:24) jf 0(y)w(y)jkfwk[�1;1℄ ; �1 � y � 1 ;and their orresponding Lp analogs for f 2 Pn and generalized Jaobiweight funtions(A:4:25) w(z) = kYj=1 jz � zj jrj ; zj 2 C ; rj 2 (�1;1)have been examined by several people. See, for example, Ditzian and Totik[88℄, Khalilova [74℄, Konjagin [78℄, Lubinsky and Nevai [87℄, Nevai [79a℄and [79b℄, and Protapov [60℄, but a multipliative onstant depending onthe weight funtion appears in these estimates. The magnitude of (A.4.23),(A.4.24), and their Lp analogs are examined in Erd�elyi [92b℄ and [93℄, whenboth f and w are generalized nonnegative polynomials. In these inequalitiesonly the degree of f , the degree of w, and a multipliative absolute onstantappear. The most general results are the following:Theorem A.4.15. There exists an absolute onstant  suh thatZ ��� jf 0(�)jpw(�) d� � p+1(N +M)p(Mp�1 + 1)p Z ��� jf(�)jpw(�) d�and kf 0wk[��;�℄ � (N +M)(M + 1)kfwk[��;�℄for every f 2 GTPN of the form (A.4.3) with eah rj � 1; for everyw 2 GTPM ; and for every p 2 (0;1):Theorem A.4.16. There exists an absolute onstant  suh thatZ 1�1 jf 0(x)jpw(x) dx � p+1(N +M)2p(Mp�1 + 1)2p Z 1�1 jf(x)jpw(x) dxand kf 0wk[�1;1℄ � (N +M)2kfwk[�1;1℄for every f 2 GAPN of the form (A.4.1) with eah rj � 1; for everyw 2 GAPM ; and for every p 2 (0;1):E.1 Another Representation of Generalized Nonnegative Polynomials.a℄ Show that if f = Qkj=1 jQj jrj with eah Qj 2 Pnj and rj > 0; thenf 2 GAPN with N � Pkj=1 rjnj : Similarly, if f = Qkj=1 jQj jrj with eahQj 2 Tnj and rj > 0; then f 2 GTPN with N �Pkj=1 rjnj :b℄ Show that if f 2 GAPN is of the form (A.4.1), then f =Qmj=1 jQj jrj=2with eah Qj 2 P2 and 0 � Qj on R: Similarly, if f 2 GTPN is of the form(A.4.3), then f =Qmj=1 jQj jrj=2 with eah Qj 2 T1 and 0 � Qj on R:



408 A4. Inequalities for Generalized Polynomials in LpE.2 The Derivative of an f 2 GTPN with Real Zeros. Show that iff 2 GTPN is of the form (A.4.3) with eah rj � 1 and zj 2 R; thenjf 0j 2 GTPN is of the form (A.4.3) with eah rj > 0 and zj 2 R; and atleast one of any two adjaent (in K) zeros of jf 0j has multipliity exatly 1:E.3 Generalized Nonnegative Polynomials with Rational Exponents. Showthat if f 2 GAPN is of the form (A.4.1) with rational exponents rj = qj=q,where qj ; q 2 N; then f2q 2 P2qN ; while if f 2 GTPN is of the form (A.4.3)with rational exponents rj of the above form then f2q 2 T2qN :E.4 Proof of (A.4.6). Prove (A.4.6) from the expliit formula (2.1.1) forthe Chebyshev polynomial Tn:E.5 Sharpness of the Remez-Type Inequality for GAPN . Letfn(x) := ����Tn�2x+ s2� s �����N=n 2 GAPN ; n = 1; 2; : : : :Show thatm(fx 2 [�1; 1℄ : fn(x) � 1g) = m([�1; 1� s℄) = 2� sand limn!1 fn(1) =  p2 +psp2�ps!N :The upper bound in Theorem A.4.1 is atually not ahieved by anelement of GAPN ; see Erd�elyi, Li, and Sa� [94℄.E.6 Proof of Theorem A.4.2.Hint: First assume that f 2 GTPN is of the form (A.4.3) with rationalexponents rj = qj=q; where qj ; q 2 N: Then p := f2q 2 T2qN ; and thedesired inequality an be obtained from Theorem 5.1.2 as in the proof ofTheorem A.4.1. utE.7 Corollaries of Theorems A.4.1 and A.4.2.a℄ The inequalitym ��x 2 [�1; 1℄ : f(x) � exp(�Nps)kfk[�1;1℄	� � s8holds for every f 2 GAPN and 0 < s < 2. In partiular,m ��x 2 [�1; 1℄ : f(x) � e�1kfk[�1;1℄	� � (8N2 + 4)�1holds for every f 2 GAPN .



Inequalities for Generalized Polynomials in Lp 409b℄ The inequalitym (f� 2 [��; �) : f(�) � exp(�Ns)kfkKg) � s4holds for every f 2 GTPN and 0 < s < 2�. In partiular,m ��� 2 [��; �) : f(�) � e�1kfkK	� � (4(N + 1))�1holds for every f 2 GTPN :E.8 Nonnegative Trigonometri Polynomials. Part a℄ restates E.3 ℄ ofSetion 2.4. Parts b℄ and ℄ disuss simple related observations.a℄ Let t 2 Tn be nonnegative on R: Show that there is a p 2 Pn suh thatt(�) = jp(ei�)j2 for every � 2 R:b℄ Let p 2 Pn and t(�) := jp(ei�)j2 for every � 2 R: Then t 2 Tn and t isnonnegative on R:℄ Show that if t 2 T n ; then there is a p 2 P2n suh that jt(�)j = jp(ei�)jfor every � 2 R:E.9 A Cruial Inequality in the Proof of Theorem A.4.5. Show thatjP (z)j � � 21 + r�n jP (rz)j ; z 2 �D ; r 2 [0; 1℄for every P 2 Pn having all its zeros outside the open unit disk D:Hint: Let P (z) = Qmj=1 (z � zj); where  2 C ; zj 2 C n D; and m � n:Show thatjz � zj j � 21 + r jrz � zj j ; j = 1; 2; : : : ;m ; r 2 [0; 1℄ : utE.10 f 2 GAPN Implies f(os �) 2 GTPN .a℄ Show that if f 2 GAPN ; then g(�) = f(os �) 2 GTPN :b℄ Show that if f 2 GAPN is of the form (8.1.1) with eah rj � 1; theng(�) = f(os �) 2 GTPN is of the form (A.4.3) with eah rj � 1:E.11 A Property of Qn;!. Let Qn;! be de�ned by (A.4.9) and (A.4.10).Show that there is an absolute onstant 6 > 1 suh that Qn;!(�) � 6:Hint: Use the expliit formula (2.1.1) for the Chebyshev polynomial Tn. ut



410 A4. Inequalities for Generalized Polynomials in LpE.12 A Property of the Zeros of a g 2 GTPN . Assume that g 2 GTPNis of the form (A.4.3) and letM := mXj=1zj2[���;�+�℄ rj :Show that M � 3N�kgk�1[�1;1℄ :Hint: First assume that eah rj is rational with ommon denominator q 2 N;and apply E.12 of Setion 5.1 to p := g2q 2 T2qN : utE.13 Extremal Funtions for the Bernstein-Type Inequality.a℄ Let rj � 1; j = 1; 2; : : : ;m; be �xed real numbers. Show that thereexists an ef 2 GTPN of the form(A:4:26) ef(z) = mYj=1 j sin((z � e�j)=2)jrj ; e�j 2 Csuh that j ef 0(�)jk efkK = supf jf 0(�)jkfkK ;where the supremum in the right-hand side is taken for all f 2 GTPN ofthe form(A:4:27) f(z) = j!j mYj=1 j sin((z � zj)=2)jrj ; zj 2 C ; 0 6= ! 2 C :Hint: Write eah f of the form (A.4.27) for whih the supremum is takenas f(z) = j!0j mYj=1 j!j sin((z � zj)=2) sin((z � zj)=2)jrj=2 ;where the numbers !j > 0 are de�ned byk!j sin((z � zj)=2) sin((z � zj)=2)kK = 1 ; j = 1; 2; : : : ;m ;and then use a ompatness argument for eah fator separately. utb℄ Let ef be as in part a℄. Show that eah zero of ef is real, that is, e�j 2 Rfor eah j in (A.4.26).Hint: Assume that there is an index 1 � j � m suh that �j 2 C nR: Thenef�(z) := ef(z) 1� � sin2((z � �)=2)sin((z � �j)=2) sin((z � �j)=2)!rj 2 GTPNwith suÆiently small � > 0 ontradits the maximality of ef: ut



Inequalities for Generalized Polynomials in Lp 411E.14 A Corollary of the Remez-Type Inequality for GAPN . Suppose that� := 1 � (1 + N)�2: Show that there is an absolute onstant 9 > 0 suhthat kfk[�1;1℄ � 9kfk[��;�℄for every f 2 GAPN :Hint: This is a orollary of Theorem A.4.1. utE.15 Proof of Theorem A.4.10.Outline. For f 2 GAPN , letI(f) := �x 2 [�1; 1℄ : (�(f(x)))p � exp(�5pNp2s)k�(f)kp[�1;1℄	 :From Theorem 5.1.1, 0 < s � 1=2; and the assumptions presribed for �it follows that m(I(f)) � 2s: Let I := A \ I(f): Sine m([�1; 1℄ n A) � s;m(I) � s: ThereforeZ[�1;1℄nA(�(f(x)))pdx � Z[�1;1℄nA k�(f)kp[�1;1℄ dx� exp�5pNp2s� ZI(�(f(x)))p dx� exp�5pNp2s� ZA (�(f(x)))p dx : utE.16 Proof of Theorem A.4.11.Hint: For f 2 GTPN ; letI(f) := �� 2 [��; �℄ : (�(f(�)))p � exp(�8pNs)k�(f)kpK	 :From Theorem 5.2.2, 0 < s � �=4; and the assumptions for �; it followsthat m(I(f)) � 2s: Now �nish the proof as in the hint for E.1. utE.17 Sharpness of Theorem A.4.10.a℄ Show that there exists a sequene of polynomials Qn 2 Pn and anabsolute onstant  > 0 suh thatZ 1�1 jQn(x)jp dx � s�1 + exp�pnps�� Z 1�s�1 jQn(x)jp dxfor every n 2 N; s 2 (0; 1℄; and p 2 (0;1):Hint: Study the Chebyshev polynomials Tn transformed linearly from[�1; 1℄ to [�1; 1� s℄: ut



412 A4. Inequalities for Generalized Polynomials in Lpb℄ Show that there exist a sequene of trigonometri polynomials tn 2 Tnand an absolute onstant  > 0 suh thatZ ��� jtn(�)jp d� � s(1 + exp(pns)) Z ��s=2��+s=2 jtn(�)jp d�for every p 2 N; s 2 (0; �℄; and p 2 (0;1):Hint: Study Qn;! de�ned by (A.4.9) with ! := � � s=2: utE.18 Sharpness of Corollary A.4.13 and Theorem A.4.14.a℄ Find a sequene of trigonometri polynomials tn 2 Tn that shows thesharpness of Corollary A.4.13 up to the onstant  > 0 for every p 2 (0;1)simultaneously.Hint: Take tn(�) := osn�: utb℄ For every p 2 (0;1); �nd a sequene of polynomials Qn;p 2 Pn whihshows the sharpness of Theorem A.4.14 up to the onstant  > 0:Outline. Let Lk 2 Pk be the kth orthonormal Legendre polynomial on[�1; 1℄ (see E.5 of Setion 2.3), and letGm(x) :=  mXk=0L0k(1)Lk(x) ;where  is hosen so that(A:4:28) Z 1�1G2m(x) dx = 1 :Show that there exist absolute onstants 1 > 0 and 2 > 0 (independentof m) suh that(A:4:29) jGm(1)j � 1m and jG0m(1)j � 2m3 :For a �xed n 2 N; let u := b2=p+ 1 and m := bn=u: If m � 1; then letQn;p := Gum 2 Pn; otherwise let Qn;p(x) := x 2 Pn: If m = 0; then thealulation is trivial, so let m � 1: Using (A.4.29) and the Nikolskii-typeinequality of Theorem A.4.4, show that there exists an absolute onstant3 > 0 suh that(A:4:30) Z 1�1 jQ0n;p(x)jp dx � p+13 m(u+2)p(1 + pn)�2 :Use the inequalityZ 1�1 jQn;p(x)jp dx = Z 1�1 jGm(x)jup dx � kGmkup�2[�1;1℄ Z 1�1G2m(x) dx ;



Inequalities for Generalized Polynomials in Lp 413the Nikolskii-type inequality of Theorem A.4.4, and (A.4.28) to show thatthere is an absolute onstant 4 > 0 suh that(A:4:31) Z 1�1 jQn;p(x)jp dx � p+14 mup�2 :Finally, ombine (A.4.30) and (A.4.31). Note that if p > 2; then m = bn;while if p � 2; then 14p(n�1) � m � 2pn: Note also that pp is between twopositive bounds for p 2 (0; 2℄: utE.19 Sharpness of Theorems A.4.3 and A.4.4.a℄ Let q 2 (0;1) be �xed. Show that there exists a sequene of polynomialsQn;q 2 Pn and an absolute onstant  > 0 suh thatkQn;qk[�1;1℄ � 1+1=q(1 + qn)2=qkQn;qkLq[�1;1℄for every n 2 N:Hint: Study Qn;p with p = q in the hint to the previous exerise. utb℄ Let Qn;q 2 Pn be the same as in part a℄. Show that there exist absoluteonstants 1 > 0 and 2 > 0 suh thatkQn;qkLp[�1;1℄ � 1+1=q1 1=p2 (1 + qn)2=q(1 + pn)�2=pkQn;qkLp[�1;1℄for every n 2 N and 0 < q < p �1:Hint: Combine part a℄ and the Nikolskii-type inequality of Theorem A.4.4.ut℄ Let q 2 (0;1) be �xed. Show that there exists a sequene of trigono-metri polynomials tn;q 2 Tn and an absolute onstant  > 0 suh thatktn;qkK � 1+1=q(1 + qn)1=qktn;qkLq(K)for every n 2 N:Hint: Let tn;q(�) := Qn;q(os �); where Qn;q are the same as in part a℄. Usepart a℄ and the Shur-type inequality of Theorem A.4.5. utd℄ Let tn;q 2 Tn be the same as in part ℄. Show that there exist absoluteonstants 1 > 0 and 2 > 0 suh thatktn;qkLp(K) � 1+1=q1 1=p2 (1 + qn)1=q(1 + pn)1=pktn;qkLq(K)for every n 2 N and 0 < q < p �1:Hint: Combine part a℄ and the Nikolskii-type inequality of Theorem A.4.3.ut



414 A4. Inequalities for Generalized Polynomials in LpE.20 Jensen's Inequality. Let � be a real-valued onvex funtion de�nedon [0;1); and let f and w be nonnegative Riemann integrable funtionson the interval [a; b℄; where R ba w = 1: Show that� Z ba f(x)w(x) dx! � Z ba �(f(x))w(x) dx :Hint: First assume that w is a step funtion. Use the fat that the onvexityof � implies its ontinuity, and hene the funtions �(f)w and fw areRiemann integrable. utE.21 A Pointwise Remez-Type Inequality for GAPN .a℄ Show that there exists an absolute onstant  > 0 suh thatjp(y)j � exp nmin( sp1� y2 ; ps)! ; y 2 [�1; 1℄for every p 2 Pn and s 2 (0; 1℄ satisfyingm(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s ;that is, with the notation of Theorem 5.1.1, for every p 2 Pn(s) withs 2 (0; 1℄:Proof. Assume, without loss of generality, that y 2 [0; 1℄: Leta := y + 12 (1� y ); � := arosa ;� := 2 arosy � arosa ; ! := � � 12 (� � �) ;Qn;!(�) := T2n� sin(�=2)sin(!=2)� ;where T2n is the Chebyshev polynomial of degree 2n de�ned by (2.1.1), andlet Qn;�;�(�) := Qn;! � 12 (� � (2� � (�+ �)))� :Assoiated with p 2 Pn(s); we introdueg(�) := p(os �)Qn;�;�(�) 2 T2n :Obviously jQn;�;�(�)j � 1 ; � 2 [0; 2�) n (�; �)and kQn;�;�k[0;2�℄ = Qn;�;� � 12 (�+ �)� = Qn;!(�) :



Inequalities for Generalized Polynomials in Lp 415The de�nition of ! implies that there exist absolute onstants 1 > 0 and2 > 0 suh that 1p1� y2 � � � ! � 2p1� y2 :This, together with E.3 ℄, yields that there are absolute onstants 3 > 0and 4 > 0 suh thatQn;!(�) � exp�3np1� y2� � exp�5nps�whenever y 2 [0; 1� 4s℄. It follows now from Theorem 5.1.1 thatjg(�)j � exp�5nps� � Qn;!(�)for every � 2 [0; 2�) n (�; �) and y 2 [0; 1� 4s℄: Furthermorejg(�)j � Qn;!(�)for every � 2 (�; �) for whih jp(os �)j � 1: Note thatj os �j � 1� 12 (1� y) ; � 2 (�; �)and hene p 2 Pn(s) with s 2 (0; 1℄ implies that there exists an absoluteonstant 5 > 0 suh thatm(f� 2 (�; �) : jp(os �)j � 1g) � 5sp1� y2 :Therefore f := (Qn;!(�))�1g 2 T2nsatis�es m(f� 2 [0; 2�) : jf(�)j � 1g) � 2� � eswith es := 5sp1� y2 ; y 2 [0; 1� 4s℄ :Applying Theorem 5.1.2 with f and es; we onlude thatjp(y)j = ��p �os � 12 (�+ �)���� = (Qn;!(�))�1g � 12 (�+ �)�=f � 12 (� + �)� � exp(4nes) � exp 5sp1� y2!whenever es 2 (0; �=2℄ and y 2 [0; 1 � 4s℄: If s 2 (0; 1℄; but es > �=2 ory 2 [1� 4s; 1℄; then Theorem 5.1.1 yields the required inequality. ut



416 A4. Inequalities for Generalized Polynomials in Lpb℄ Show that the inequality of part a℄ is sharp up to the absolute onstant > 0:Hint: Assume, without loss, that y 2 [0; 1℄: Show that there exists an abso-lute onstant 1 > 0 suh that the polynomialsWn;y;s(x) := Tn� 2x2� x + s2� s� 2 Pn(s) ;where Tn is the Chebyshev polynomial of degree n de�ned by (2.1.1), satisfyjWn;y;s(y)j � exp(1nps)for every n 2 N; y 2 [1� s=2; 1℄; and s 2 (0; 1℄:If y 2 [0; 1� s=2℄; then leta := y + s4 ; � := arosa ;� := 2 arosy � arosa ; ! := � � � � �2 ;Qn;�;�(�) := T2n� sin((� + � � (�+ �)=2)=2)sin(!=2) � ;Rn;�;�(�) := 12 (Qn;�;�(�) +Qn;�;�(��)) ;and we de�ne Wn;y;s for every n 2 N; y 2 [0; 1� s=2); and s 2 (0; 1℄ byRn;�;�(�) =Wn;y;s(os �) ; Wn;y;s 2 Pn :Show that Wn;y;s 2 Pn(s) and that there exists an absolute onstant  > 0suh that jWn;y;s(y)j � exp n sp1� y2!for every n 2 N; y 2 [0; 1� s=2); and s 2 (0; 1℄: ut℄ Extend the validity of part a℄ to the lass GAPN ; that is, prove thatthere exists an absolute onstant  > 0 suh thatjf(y)j � exp N min( sp1� y2 ; ps)! ; y 2 [�1; 1℄for every f 2 GAPN and s 2 (0; 1℄ satisfyingm(fx 2 [�1; 1℄ : f(x) � 1g) � 2� s :



This is page 417Printer: Opaque thisA5Inequalities for Polynomialswith Constraints

OverviewThis appendix deals with inequalities for onstrained polynomials. Typi-ally the onstraints are on the loation of the zeros, though various oef-�ient onstraints are also onsidered.Inequalities for Polynomials with ConstraintsFor integers 0 � k � n; letPn;k := fp 2 Pn : p has at most k zeros in Dgwhere, as before, D := fz 2 C : jzj < 1g: For a < b; letBn(a; b) := np 2 Pn : p(x) = � nXj=0 �j(b� x)j(x� a)n�j ; �j � 0o :For integers 0 � k � n; letePn;k(a; b) := fp = hq : h 2 Bn�k(a; b) ; q 2 Pkg :Two useful relations, given in E.1, arePn;0 � Bn(�1; 1) and Pn;k � ePn;k(�1; 1) :



418 A5. Inequalities for Polynomials with ConstraintsTheorem A.5.1 (Markov-Type Inequality for ePn;k). The inequalitykp(m)k[�1;1℄ � (18n(k + 2m+ 1))mkpk[�1;1℄holds for every p 2 ePn;k(�1; 1): (When m = 1; the onstant 18 an bereplaed by 9:)Proof. First we study the ase m = 1. Applying Theorem 6.1.1 (Newman'sinequality) with(�0; �1; : : : ; �k) = (n� k; n� k + 1; : : : ; n)and using a linear shift from [0; 1℄ to [�1; 1℄; we obtain that(A:5:1) jp0(1)j � 92n(k + 1)kpk[�1;1℄for every p 2 ePn;k(�1; 1) of the form(A:5:2) p(x) = (x+ 1)n�kq(x) ; q 2 Pk :Now let p 2 ePn;k(�1; 1) be of the form p = hq with q 2 Pk andh(x) = n�kXj=0 �j(1� x)j(x+ 1)n�k�j with eah �j � 0 :Without loss of generality, we may assume that n� k � 1; otherwise The-orem 5.1.8 (Markov's inequality) gives the theorem. Using (A.5.1) and thefat that eah �j � 0; we getjp0(1)j(A:5:3) = �����n�kXj=0 ��j(1� x)j(x + 1)n�k�jq(x)�0 (1)�����= ����� 1Xj=0(�j(1� x)j(x+ 1)n�k�jq(x))0(1)������ 92n(k + 2) (x + 1)n�k�1(�0(x+ 1) + �1(1� x))q(x)[�1;1℄� 92n(k + 2) n�kXj=0 �j(1� x)j(x+ 1)n�k�jq(x)[�1;1℄� 92n(k + 2)kpk[�1;1℄ :Now let y 2 [�1; 1℄ be arbitrary. To estimate jp0(y)j we distinguish twoases.



Inequalities for Polynomials with Constraints 419If y 2 [0; 1℄; then by a linear shift from [�1; 1℄ to [�1; y℄; we obtainfrom (A.5.3) that(A:5:4) jp0(y)j � 9y + 1 n(k + 2)kpk[�1;y℄ � 9n(k + 2)kpk[�1;1℄for every p 2 ePn;k(�1; y): It follows from E.1 d℄ thatePn;k(�1; 1) � ePn;k(�1; y) :So (A.5.4) holds for every p 2 ePn;k(�1; 1):If y 2 [�1; 0℄; then by a linear shift from [�1; 1℄ to [y; 1℄; we obtainfrom (A.5.3) that(A:5:5) jp0(y)j � 91� y n(k + 2)kpk[y;1℄ � 9n(k + 2)kpk[�1;1℄for every p 2 ePn;k(y; 1): By E.1 d℄ again,ePn;k(�1; 1) � ePn;k(y; 1) :So (A.5.5) holds for every p 2 ePn;k(�1; 1); whih �nishes the ase whenm = 1:Now we turn to the ase when m � 2: Note that an indution on mdoes not work diretly for an arbitrary p 2 ePn;k(�1; 1): However, it followsby indution on m that(A:5:6) kp(m)k[�1;1℄ � (9n(k +m+ 1))mkpk[�1;1℄for every p 2 ePn;k(�1; 1) of the form (A.5.2). Now let p 2 ePn;k(�1; 1) beof the form p = hq, where q 2 Pk andh(x) = n�kXj=0 �j(1� x)j(x + 1)n�j with eah �j � 0:For notational onveniene let s := minfn � k;mg. Using (A.5.6) and thefat that eah �j � 0, we getjp(m)(1)j(A:5:7) = �����n�kXj=0(�j(1� x)j(1 + x)n�k�jq(x))(m)(1)�����= ����� sXj=0(�j(1� x)j(1 + x)n�k�jq(x))(m)(1)������ (9n(k + s+m+ 1))m  sXj=0 �j(1� x)j(x+ 1)n�k�jq(x)[�1;1℄� (9n(k + 2m+ 1))m n�kXj=0 �j(1� x)j(x+ 1)n�k�jq(x)[�1;1℄= (9n(k + 2m+ 1))mkpk[�1;1℄ :



420 A5. Inequalities for Polynomials with ConstraintsFrom (A.5.7), in a similar fashion to the ase when m = 1; we onludethat kp(m)k[�1;1℄ � (18n(k + 2m+ 1))mkpk[�1;1℄for every p 2 ePn;k(�1; 1); whih �nishes the proof. utTheorem A.5.1 is essentially sharp as is shown in E.2 and E.4 f℄. How-ever, a better upper bound an be given for jp(m)(y)j when y 2 (�1; 1) isaway from the endpoints �1 and 1:Theorem A.5.2 (Markov-Bernstein Type Inequality for Pn;k). There existsa onstant (m) depending only on m suh thatjp(m)(y)j � (m) min(n(k + 1) ; pn(k + 1)p1� y2 )!m kpk[�1;1℄for every p 2 Pn;k and y 2 [�1; 1℄:Theorem A.5.2 has been proved in Borwein and Erd�elyi [94℄. Its proofis long, and we do not reprodue it here. However, the proof of a less sharpversion, where p1� y2 is replaed by 1 � y2; is outlined in E.4 and E.5.The fatorpn(k + 1) in Theorem A.5.2 is essentially sharp in the ase thatm = 1; see E.7.Theorem A.5.3 (Markov-Bernstein Type Inequality for Bn(�1; 1)). Thereexists a onstant (m) depending only on m suh thatjp(m)(y)j � (m) min(n ; pnp1� y2)!m kpk[�1;1℄for every p 2 Bn(�1; 1) (hene for every p 2 Pn;0) and y 2 [�1; 1℄:Note that the uniform (Markov-type) upper bound of the above the-orem is a speial ase (k = 0) of Theorem A.5.1. Our proof of TheoremA.5.3 o�ers another way to prove the ase of Theorem A.5.1 when k = 0:First we need a lemma.Lemma A.5.4. For n 2 N and y 2 R; let�n;y := 14  p(1� y2)+pn + 1n! ;where x+ := maxfx; 0g: Thenjp(y + i�n;y)j � p2e ��p �y � 12n���for every p 2 Bn(�1; 1); y 2 ��1� 18n ; 1 + 18n� ; and  2 [0; 1℄; where i isthe imaginary unit. The + sign is taken if y 2 ��1� 18n ; 0� ; and the �sign is taken if y 2 �0; 1 + 18n� :



Inequalities for Polynomials with Constraints 421Proof. It is suÆient to prove the lemma for the polynomialspn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N ; j = 0; 1; : : : ; n :The general ase whenp = nXj=0 �jpn;j with eah �j � 0 or eah �j � 0an then be obtained by taking linear ombinations. Without loss of gen-erality, we may assume that y 2 �0; 1 + 18n� : Then�2n;y � 18 � (1� y2)+n + 1n2� � (1� y)+4n + 18n2from whih it follows thatjpn;j(y + i�n;y)j � jpn;j(y + i�n;y)j= �(1� y)2 +�2n;y�j=2 �(1 + y)2 +�2n;y�(n�j)=2� �(1� y) + 12n�j �(1 + y) + 12n�n�j= �1� �y � 12n��j �1 + �y � 12n��n�j �1 + y + 12n1 + y � 12n �n�j� �2n+ 12n� 1�n pn;j �y � 12n� � p2epn;j �y � 12n� ;and the lemma is proved. utProof of Theorem A.5.3. For n 2 N and y 2 [�1; 1℄; let Bn;y denote theirle of the omplex plane with enter y and radius 14�n;y. Using E.4,Lemma A.5.4, and the maximum priniple, we obtainjp(z)j � p2e kpk[�1;1℄for every p 2 Bn(�1; 1); z 2 Bn;y; n 2 N; and y 2 [�1; 1℄: Hene, byCauhy's integral formula,jp(m)(y)j = ����� m!2�i ZBn;y p(�)(� � y)m+1 d������� m!2� ZBn;y ���� p(�)(� � y)m+1 ���� j d�j� m!2� 2� 14�n;y � 14�n;y��(m+1)p2ekpk[�1;1℄� (m) min(n ; pnp1� y2)!m kpk[�1;1℄for every p 2 Bn(�1; 1) and y 2 [�1; 1℄; whih proves the theorem. ut



422 A5. Inequalities for Polynomials with ConstraintsFor r 2 (0; 1℄; letD�r := fz 2 C : jz � (1� r)j < rg :For n 2 N; k = 0; 1; : : : ; n; and r 2 (0; 1℄; let P�n;k;r be the set of allp 2 Pn that have at most k zeros (ounting multipliities) in D�r , and letPn;k;r := P+n;k;r\P�n;k;r: The following result is proved in Erd�elyi [89a℄. Theproof in a speial ase is outlined in E.9.Theorem A.5.5 (Markov-Type Inequality for Pn;k;r). There exists a on-stant (m) depending only on m suh thatkp(m)k[�1;1℄ � (m)�n(k + 1)2pr �m kpk[�1;1℄for every p 2 Pn;k;r; m 2 N; and r 2 (0; 1℄:We state, without proof, the Lq analogs of Theorem A.5.2 for m = 1,established in Borwein and Erd�elyi [to appear 2℄.Theorem A.5.6 (Lq Markov-Type Inequality for Pn;k). There exists an ab-solute onstant  suh thatZ 1�1 jp0(x)jq dx � q+1(n(k + 1))q Z 1�1 jp(x)jq dxfor every p 2 Pn;k and q 2 (0;1):Theorem A.5.7 (Lq Bernstein-Type Inequality for Pn;k). There exists anabsolute onstant  suh thatZ ��� jp0(os t) sin tjq dt � q+1(n(k + 1))q=2 Z ��� jp(os t)jq dtfor every p 2 Pn;k and q 2 (0;1):Both of the above inequalities are sharp up to the absolute onstant  > 0:A Markov-type inequality for polynomials having at most k zeros inthe disk Dr := fz 2 C : jzj < rgis given by the following theorem; see Erd�elyi [90a℄.Theorem A.5.8 (Markov-Type Inequality for Polynomials with At Most kZeros in Dr). Let k 2 N and r 2 (0; 1℄: Then there exist onstants 1(k) > 0and 2(k) > 0 depending only on k so that1(k)�n+ (1� r)n2� � supp kp0k[�1;1℄kpk[�1;1℄ � 2(k)�n+ (1� r)n2� ;where the supremum is taken for all p 2 Pn that have at most k zeros inDr:



Inequalities for Polynomials with Constraints 423Comments, Exerises, and Examples.Erd}os [40℄ proved thatkp0k[�1;1℄ � n2 � nn� 1�n�1 kpk[�1;1℄ < e2n kpk[�1;1℄for every p 2 Pn;0 n � 2; having only real zeros. In this result, the assump-tion that p has only real zeros an be dropped. In E.11 we outline the proofof the above inequality for every p 2 Pn;0; n � 2: The polynomialspn(x) := (x + 1)n�1(1� x) ; n = 1; 2; : : : ;show that Erd}os's result is the best possible for Pn;0: Erd}os [40℄ also showedthat there exists an absolute onstant  suh thatjp0(y)j � pn(1� y2)2 kpk[�1;1℄for every p 2 Pn;0 having only real zeros. Markov- and Bernstein-typeinequalities for Bn(�1; 1) were �rst established by Lorentz [63℄, who provedTheorem A.5.3. Lorentz's approah is outlined for m = 1 in E.8. The proofpresented in the text follows Erd�elyi [91℄. Up to the onstant (m) >0 Theorem A.5.3 is sharp; see E.12. Sheik [72℄ found the best possibleasymptoti onstant in Lorentz's Markov-type inequality for m = 1 andm = 2: He proved the inequalitieskp0k[�1;1℄ � e2n kpk[�1;1℄ and kp00k[�1;1℄ � e2n(n� 1)kpk[�1;1℄for every p 2 Bn(�1; 1) (and hene for every p 2 Pn;0). Note that withpn(x) := (x+ 1)n�1(1� x);kp0nk[�1;1℄nkpnk[�1;1℄ ! e2 and kp00nk[�1;1℄n(n� 1)kpk[�1;1℄ ! e2 as n!1 :A slightly weaker version of Theorem A.5.1 was onjetured by Szabados[81℄, who gave polynomials pn:k 2 Pn;k with only real zeros so thatjp0n;k(1)j � 13n(k + 1)kpn;kk[�1;1℄for all integers 0 � k � n: After some results of Szabados and Varma[80℄ and M�at�e [81℄, Szabados's onjeture has been settled in Borwein [85℄,where it is shown thatkp0k[�1;1℄ � 9n(k + 1)kpk[�1;1℄



424 A5. Inequalities for Polynomials with Constraintsfor every p 2 Pn;k having n�k zeros in R n (�1; 1). The ruial part of thisproof is outlined in E.4 d℄ and e℄. The above inequality is extended to allp 2 ePn;k (and hene to all p 2 Pn;k) and to higher derivatives in Erd�elyi[91b℄, whose approah is followed in our proof of Theorem A.5.1.After partial results of Erd�elyi and Szabados [88, 89b℄ and Erd�elyi[91b℄, the \right" Markov-Bernstein-type analogs of Theorem A.5.2 forthe lasses Pn;k has been proved in Borwein and Erd�elyi [94℄. Note thatPn;n = Pn; and hene, up to the onstant (m); Theorem A.5.2 ontainsthe lassial inequalities of Markov and Bernstein, and of ourse the asek = 0 gives bak Lorentz's inequalities for the lasses Pn;0 � Bn(�1; 1):The \right" Markov- and Bernstein-type inequalities of Theorems A.5.8and A.5.9 for all lasses Pn;k in Lq, 0 < q <1, are established in Borweinand Erd�elyi [to appear 2℄.The Markov-type inequality for the lasses Pn;k;r given by TheoremA.5.5 is proved in Erd�elyi [89a℄. A weaker version, when k = 0 and thefator r�1=2 is replaed by a onstant (r) depending on r, is established inRahman and Labelle [68℄. When k = 0; Theorem A.5.5 is sharp up to theonstant (m) depending only on m; see E.10.E.1 Relation Between Classes of Constrained Polynomials.a℄ Show that Pn;0(�1; 1) � B(�1; 1): (This is an observation of G. G.Lorentz.)Hint: Use the identities(x��)(x��) = 14 j1+�j2(1�x)2+ 12 (j�j2 � 1)(1�x2) + 14 j1��j2(1+x)2and x� � = 12 (1� �)(x + 1)� 12 (�+ 1)(1� x) : utb℄ Show that Pn;k � ePn;k(�1; 1):℄ Show that Bn(a; b) � Bn(; d) whenever [; d℄ � [a; b℄:Hint: First show thatx� a = �1(x� ) + �2(d� x) and b� x = �3(x� ) + �4(d� x)with some nonnegative oeÆients. utd℄ Show that ePn;k(a; b) � ePn;k(; d) whenever [; d℄ � [a; b℄:E.2 Sharpness of Theorem A.5.1. Show that there exist polynomialspn;k 2 Pn;k of the formpn;k(x) = (x+ 1)n�kqn;k(x) ; qn;k 2 Pksuh that jp0n;k(1)j � 16n(k + 1)kpn;kk[�1;1℄for every n 2 N; k = 0; 1; : : : ; n:



Inequalities for Polynomials with Constraints 425Hint: Use the lower bound in Theorem 6.1.1 (Newman's inequality) with(�0; �1; : : : ; �k) = (n� k; n� k + 1; : : : ; ng : utE.3 A Tehnial Detail in the Proof of Lemma A.5.4. For n 2 N andy 2 [�1; 1℄; letFn := �z = a+ ib : a 2 ��1� 18n ; 1 + 18n� ; b 2 (��n;a; �n;a)	 ;and Bn;y := �z 2 C : jz � yj = 14�n;y	 :Show that Bn;y � Fn for every y 2 [�1; 1℄:E.4 Bernstein-Type Inequality for Pn;k. Prove that there exists an ab-solute onstant  suh thatjp0(y)j � pn(k + 1)1� y2 kpk[�1;1℄for every p 2 Pn;k; and y 2 (�1; 1): Proeed as follows:a℄ Show that for every n 2 N and k = 0; 1; : : : ; n; there exists a polynomialQ 2 Pn;k suh that jQ0(0)jkQk[�1;1℄ = supp2Pn;k jp0(0)jkpk[�1;1℄ :Hint: Use a ompatness argument. Use Rouh�e's theorem to show that theuniform limit of a sequene of polynomials from Pn;k on [�1; 1℄ is also inPn;k: utb℄ Show that Q has only real zeros, and at most k + 1 of them (ountingmultipliities) are di�erent from �1:Hint: Use a variational method. For example, if z0 2 C n R is a zero of Q;then the polynomialQ�(x) := Q(x)�1� �x2(x� z0)(x� z0)�with suÆiently small � > 0 is in Pn;k and ontradits the maximality ofQ: ut℄ Let Æ := (36n(k + 3))�1: Show thatkpk[�Æ;1℄ � 2 kpk[0;1℄for every polynomial Pn;k having all its zeros in [0;1) with at most k ofthem (ounting multipliities) in (0; 1):



426 A5. Inequalities for Polynomials with ConstraintsHint: Use the Mean Value Theorem and the result of Theorem A.5.1 trans-formed linearly from [�1; 1℄ to [0; 1℄: utd℄ Let z0 := i(36n(k+3))�1=2; where i is the imaginary unit and  2 [0; 1℄:Show that jp(z0)j � p2 kpk[�1;1℄for every polynomial p 2 Pn having only real zeros with at most k of them(ounting multipliities) in (�1; 1):Outline. Let p(x) =Qsj=1(x� uj) with some s � n: Applying part ℄ toq(x) := sYj=1 (x� u2j ) ;we obtainjq(�(36n(k + 3))�1)j � 2kqk[0;1℄ = 2kq(x2)k[0;1℄ = 2kp(x)p(�x)k[�1;1℄� 2kpk2[�1;1℄ :Observe thatjp(z0)j2 � jp(i(36n(k + 3))�1=2)j2 = sYj=1(u2j + (36n(k + 3))�1)= jq(�(36n(k + 3))�1)j ;whih, together with the previous inequality, yields the desired result. ute℄ Let Q 2 Pn;k be the extremal polynomial of part a℄, and letFn;k := nz = a+ ib : jaj � 1 ; jbj � (36n(k + 3))�1=2(1� jaj)o :Show that jQ(z)j � p2 kQk[�1;1℄for every z 2 Fn;k:Hint: Use parts b℄ and d℄ and a linear shift from the interval [�1; 1℄ to[2Re(z)� 1; 1℄ if Re(z) � 0; or to [�1; 2Re(z) + 1℄ if Re(z) < 0: ut



Inequalities for Polynomials with Constraints 427f ℄ Show that there exists an absolute onstant  > 0 suh thatjp0(0)j � pn(k + 1) kpk[�1;1℄for every p 2 Pn;k:Hint: By part a℄ it is suÆient to prove the inequality when p = Q; in whihase use part e℄ and Cauhy's integral formula. utg℄ Prove the main result stated in the beginning of the exerise.Hint: In order to estimate jp0(y)j when, for example, y 2 [0; 1℄ use a linearshift from [�1; 1℄ to [2y � 1; 1℄ and apply part f℄. utE.5 Bernstein-Type Inequality for Pn;k for Higher Derivatives. Provethat there exists a onstant (m) depending only on m so thatjp(m)(y)j � (m) pn(k + 1)1� y2 !m kpk[�1;1℄for every p 2 Pn;k and y 2 (�1; 1):Hint: First show that for every n;m 2 N, k = 0; 1; : : : ; n, and Æ 2 (0; 1℄;there exists a polynomial QÆ 2 Pn;k suh thatjQ(m)Æ (0)jkQÆk[�1;1℄n[�Æ;Æ℄ = supp2Pn;k jp(m)(0)jkpk[�1;1℄n[�Æ;Æ℄ :Show that QÆ has at most k+m zeros di�erent from �1: Show that there is apolynomialQ 2 Pn;k having at most k+m zeros (by ounting multipliities)di�erent from �1 suh thatjQ(m)(0)jkQk[�1;1℄ = supp2Pn;k jp(m)(0)jkpk[�1;1℄ :If y = 0; then use E.5 and indution on m to prove the inequality of theexerise for all p 2 Pn;k having at most k +m zeros di�erent from �1: Foran arbitrary y 2 (�1; 1) use a linear shift as is suggested in the hint to E.5g℄. utE.6 Sharpness of Theorem A.5.2. Show that there exist polynomialspn;k 2 Pn;k and an absolute onstant  > 0 suh thatjp0n;k(0)j � pn(k + 1)kpn;kk[�1;1℄for every n 2 N and k = 0; 1; : : : ; n:



428 A5. Inequalities for Polynomials with ConstraintsHint: If k = 0; then let m := � 13 (n� 1)� andpn;k(x) := (x � 1)m(x + 1)m+1+bpm :If 1 � k � 13n; then let m := � 13n� ; s := � 13 (k � 1)� ; andpn;k(x) := (x2 � 1)m T2s+1�r m2s+ 1 x� :If 13n < k � n; then let m := � 13n� and pn;k := pn;m: utE.7 Some Inequalities of Lorentz. (See Lorentz [63℄.)a℄ Show thatjp0(x)j � � nn� 1�n n ��p �x� 1n��� � 4n ��p �x� 1n���for every p 2 Bn(�1; 1) (hene for every p 2 Pn;0); n � 2; and x 2 [�1; 1℄;where in x� 1n the + sign is taken if x 2 [�1; 0); while the � sign is takenif x 2 [0; 1℄:Hint: Observe that it is suÆient to prove the inequality only forpn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N ; j = 0; 1; : : : ; n : utb℄ Let Æn(x) :=r1� x2n ; n 2 N ; x 2 [�1; 1℄ :Show that there exists an absolute onstant  > 0 suh thatjp0(x)j � (Æn(x))�1max�jp(x)j; ��p�x� 12Æn(x)���	for every p 2 Bn(�1; 1) (hene for every p 2 Pn;0) and x 2 ��1 + n ; 1� n� :Hint: Note that it is suÆient to prove the inequality only forpn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N ; j = 0; 1; : : : ; n : ut℄ Show that Z 1�1 jp0(x)jq dx � 2 � 4qnq Z 1�1 jp(x)jq dxfor every p 2 Bn(�1; 1) (hene for every p 2 Pn;0) and q 2 (0;1):



Inequalities for Polynomials with Constraints 429Hint: Use part a℄. utd℄ Show that there is an absolute onstant  > 0 suh thatZ 1�1 ��p0(x)p1� x2��q dx � 5qnq=2 Z 1�1 jp(x)jq dxfor every p 2 Bn(�1; 1) (hene for every p 2 Pn;0) and q 2 (0;1):Hint: Use parts b℄ and ℄. utAnalogs of parts a℄ and b℄ for higher derivatives are established byLorentz [63℄. From these, analogs of parts ℄ and d℄ for higher derivativesan be proven.E.8 Theorem A.5.5 in a Speial Case. Show that there is an absoluteonstant 1 suh that jp0(1)j � 1npr kpk[�1;1℄for every p 2 Pn having all its zeros in (�1; 1� 2r℄; r 2 (0; 1℄:Proof. First assume that(A:5:8) jp(1)j = kpk[�1;1℄ :Without loss of generality, we may assume that p 2 Pn n Pn�1: Denote thezeros of p by (�1 <)x1 � x2 � � � � � xn(� 1� 2r): LetI� := (1� 2(� + 1)4r; 1� 2�4r℄ ; � = 1; 2; : : : :Using E.12 of Setion 5.1, we obtainjp0(1)jjp(1)j = nXj=1 11� xj = 1X�=1 Xxj2I� 11� xj� 1Xv=1 ep2np2(� + 1)4r 12�4r� e2 1Xv=1 (� + 1)2�4 npr � 1nprwith an absolute onstant 1:Now we an drop assumption (A.5.8) as follows: Sine p has all itszeros in (�1; 1 � 2r℄; jpj and jp0j are inreasing on [1 � 2r;1): Pik theunique y 2 [1;1) satisfying jp(y)j = kpk[�1;1℄ = kpk[�1;y℄: Using a lineartransformation, from the already proved ase we easily obtainjp0(1)j � jp0(y)j � 1 2ny + 1 �2r + y � 1y + 1 ��1=2 kpk[�1;y℄� 1npr kpk[�1;1℄ : ut



430 A5. Inequalities for Polynomials with ConstraintsE.9 Sharpness of Theorem A.5.5. For n 2 N and r 2 (0;1); let Sn;r bethe family of all p 2 Pn that have no zeros in the stripfz 2 C : jIm(z)j < rg :a℄ Show that there exist polynomials pn;m;r 2 Sn;r and a onstant (m) > 0depending only on m suh thatjp(m)n;m;r(1)j � (m)�min� npr ; n2��m kpn;m;rk[�1;1℄for every n 2 N; r 2 (0; 1℄; and m = 1; 2; : : : ; n:Outline. If 0 < r � �4m ; then withxj := �1� 4�mr� os � 2j�12n �� ; j = 1; 2; : : : ; nand zj := xj + ir ; j = 1; 2; : : : ; nlet pn;m;r(x) := nYj=1(x� zj)(x� zj) 2 Sn;r :By E.1 of Setion 5.2, jpn;m;r(1)j = kpn;m;rk[�1;1℄: Prove thatjp(m)n;m;r(1)jkpn;m;rk[�1;1℄ = jp(m)n;m;r(1)jjpn;m;r(1)j� 2�1 + �4m��m 1p2 jq(m)n;m;r(1)jjqn;m;r(1)j� p2e  nXj=m 11� xj!m� (m)�min� npr ; n2��m ;where qn;m;r(x) := Qnj=1 (x� xj) and (m) > 0 depends only on m: If�4m < r � 1; then let pn;m;r := pn;m;er; where er := �4m : utb℄ Conlude from Theorem A.5.5 and part a℄ that there exist two onstants1(m) > 0 and 2(m) > 0 depending only on m suh that1(m)�min� npr ; n2��m � sup kp(m)k[�1;1℄kpk[�1;1℄� 2(m)�min� npr ; n2��m ;where the supremum is taken either for all p 2 Sn;r or for all p 2 Pn;0;r:



Inequalities for Polynomials with Constraints 431E.10 An Inequality of Erd}os. (See Erd}os [40℄.) Prove thatkp0k[�1;1℄ � n2 � nn� 1�n�1 kpk[�1;1℄for every p 2 Pn;0; n � 2: This extends a result of Erd}os [40℄ where theabove inequality is proven under the additional assumption that p has onlyreal zeros.a℄ Suppose p 2 Pn;0; all the zeros of p are real, p(1) = p(�1) = 0; andkpk[�1;1℄ = 1: Show thatp(x) � � nn� 1�n�1 1 + x1 + x0for every x 2 [�1; 1℄; where x0 is the only point in (�1; 1) with p0(x0) = 0:Proof. Without loss of generality, we may assume that deg(p) = n and�1 < x < x0: Let d := x0 �x: Let x1 := �1; x2; : : : ; xn denote the zeros ofp: Then p(x) = p(x)p(x0) = 1 + x1 + x0 nYj=2�1� dx0 � xj � :Sine the geometri mean of n�1 nonnegative numbers is not greater thantheir arithmeti mean, we havenYj=2�1� dx0 � xj� �  1n� 1  n� 1� nXj=2 dx0 � xj!!n�1� � 1n� 1 �n� 1 + dx0 + 1��n�1 � � nn� 1�n�1 :utb℄ Under the assumptions of part a℄ show thatkp0k[�1;1℄ � n2 � nn� 1�n�1 kpk[�1;1℄ :Proof. Note thatXxj�1 1xj � x0 = Xxj��1 1x0 � xj � min� k1� x0 ; n� kx0 + 1� � n2 ;where k denotes the number of zeros of p in [1;1): Hene, by part a℄,



432 A5. Inequalities for Polynomials with Constraintsp0(x) = p(x) nXj=1 1x� xj� � nn� 1�n�1 1 + x1 + x0 Xxj��1 1x� xj� � nn� 1�n 1 + x1 + x0 1 + x01 + x Xxj��1 1x0 � xj� n2 � nn� 1�n�1for every x 2 [�1; 1℄: Similarlyp0(x) � �n2 � nn� 1�n�1for every x 2 [�1; 1℄: ut℄ Suppose p 2 Pn;0 has only real zeros, p0 does not vanish in [�1; 1℄;p(�1) = 0; and p(1) = 1: Show thatkp0k[�1;1℄ � n2 kpk[�1;1℄ :Hint: Use the relation Pn;0 � Bn(�1; 1) to show thatp(x) � �x+ 12 �n ; x 2 [�1; 1℄ :Denote the zeros of p by x1 = �1, x2; x3; : : : ; xn: Then0 � p0(x) = p(x) nXj=1 1x� xj � �x+ 12 �n nx+ 1 � n2 = n2 kpk[�1;1℄for every x 2 [�1; 1℄: utd℄ Prove Erd}os's inequality for every p 2 Pn;0 having only real zeros.Hint: Redue the general ase to either part b℄ or part ℄ by a linear trans-formation. ute℄ Prove Erd}os's inequality for every p 2 Pn;0:Hint: Show that for every n 2 N and y 2 [�1; 1℄; there exists a polynomialQ 2 Pn;0 suh that jQ0(y)jkQk[�1;1℄ = supp2Pn;0 jp0(y)jkpk[�1;1℄ :Show by a variational method that if y 2 (�1; 1); then Q has only realzeros. Now part d℄ �nishes the proof. ut



Inequalities for Polynomials with Constraints 433f ℄ Show that kp0k[�1;1℄ = n2 � nn� 1�n�1 kpk[�1;1℄holds for a p 2 Pn;0 having only real zeros if and only if eitherp(x) = (x+ 1)n�1(1� x) or p(x) = (1� x)n�1(x+ 1)with some 0 6=  2 R:E.11 Sharpness of Theorem A.5.3. For every n 2 N; m = 1; 2; : : : ; n; andy 2 [�1; 1℄; there are polynomials pn;m;y 2 Bn(�1; 1) having zeros only inR n (�1; 1) suh thatjp(m)n;m;y(y)j � (m) min(n ; pnp1� y2)!m kpn;m;yk[�1;1℄with a onstant (m) > 0 depending only on m:Outline. If y 2 [�1; 1℄ n ��1 + 2mn ; 1� 2mn � ;then let pn;m;y(x) := (x+ 1)n :In what follows, assume thaty 2 [�1 + 2mn ; 1� 2mn ℄ :Let qn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N; j = 0; 1; : : : ; n: Show thatq(m)n;j (x)qn;j(x) = Qn;j;m(x)(x2 � 1)m ; m � j � n�m;where Qn;j;m is a polynomial of degree m with only real zeros and withleading oeÆient n!(n�m)! : Let�n;y := max( 1n ; p1� y2pn ) ; n 2 N ; y 2 [�1; 1℄ :Use the Mean Value Theorem and Theorem A.5.3 to show that there existsan absolute onstant  2 (0; 1) suh thatqn;j(x) � 12kqn;jk[�1;1℄ ; m � j � n�mfor everyx 2 Iy := [y � �n;y; y + �n;y℄ \ [�1; 1℄ ; y = 1� 2jn :



434 A5. Inequalities for Polynomials with ConstraintsLet m � j � n �m and y = 1 � 2jn be �xed. Choose a point � 2 Iysuh that j� � �ij � �n;y2(m+ 1) ; i = 1; 2; : : : ;m ;where the numbers �i are the zeros of Qn;j;m: Now show that there existsa onstant 1(m) > 0 depending only on m suh that(A:5:9) jq(m)n;j (�)j � 1(m) min(n; pnp1� y2)!m kqn;jk[�1;1℄ :Next show that if y 2 ��1 + 2mn ; 1� 2mn � ;then there exists a point� 2 �y � 12 (1� jyj) ; y + 12 (1� jyj)�and a value of j, m � j � n � m, suh that (A.5.9) holds. Polynomialspn;m;y with the desired properties an now be easily de�ned by using lineartransformations. utE.12 An Inequality of Tur�an. (See Tur�an [39℄.) Show thatkp0k[�1;1℄kpk[�1;1℄ > 16pnfor every p 2 Pn n Pn�1 having all its zeros in [�1; 1℄:Outline. Assume that p 2 Pn has all its zeros in [�1; 1℄; and kpk[�1;1℄ = 1:Choose an a 2 [�1; 1℄ suh that jp(a)j = 1. Without loss of generality,assume that p(a) = 1:a℄ Show that if a = �1; then jp0(1)j � 12n > 16pn:If a 2 (�1; 1); then p0(a) = 0. Without loss of generality, assume thata 2 [�1; 0℄: Let I := �a; a+ 2n�1=2� � [�1; 1℄ :If n � 3; then the result follows by the Mean Value Theorem; let n � 4:b℄ Use the Mean Value Theorem to show that if jp0(x)j � 16pn on I; thenp(x) � 23 on I:℄ Show that if jp00(x)j > 112n on I; then jp0(a+ 2n�1=2)j > 16pn:d℄ The proof of Tur�an's inequality an now be �nished as follows. Supposep(x) > 23 on I , and there exists a � 2 I suh that p00(�) � 112n: Note thatp0(x)2 � p(x)p00(x) = p(x)2 nXk=1 1(x� xk)2 ;



Inequalities for Polynomials with Constraints 435where x1; x2; : : : ; xn denote the zeros of p: Sine eah xk lies in [�1; 1℄, theinequality Pnk=1(x � xk)�2 � 14n holds for every x 2 I: Sine p(x) � 23 onI; this implies that p0(x)2 � p(x)p00(x) � n9 ; x 2 Iand hene p0(�)2 � n9 � jp(�)jjp00(�)j > n9 � n12 = n36 : utAn extension of Tur�an's inequality to Lp norms is given by Zhou [92b℄.E.13 An Inequality of Erd}os and Tur�an. Let p 2 Pn be of the formp(x) = � nYj=1(x� xj) ; �1 � x1 � x2 � � � � � xn � 1 :Suppose p is onvex on [xk�1; xk ℄ for some index k: Thenxk � xk�1 � 16pn :Proeed as follows: Let a be the only point in [xk�1; xk℄ for whihp0(a) = 0:a℄ Show that there exist �1; �2 2 R suh thata� 2n�1=2 � �1 < a < �2 � a+ 2n�1=2 ;jp0(�1)j � 16pn jp(a)j ; and jp0(�2)j � 16pn jp(a)j :Hint: Modify the outline of the proof of E.12. utb℄ Show that �1 � xk�1 � 6pn and xk � �2 � 6pn :Outline. To prove, say, the �rst inequality, we may assume that xk�1 < �1;otherwise the inequality is trivial. Using the onvexity of p on [xk�1; xk℄;we get jp0(x)j � jp0(�1)j ; x 2 [xk�1; �1℄ :Henejp(a)j � jp(�1)j = jp(�1)� p(xk�1)j = �����Z �1xk�1 p0(x) dx����� = Z �1xk�1 jp0(x)j dx� (�1 � xk�1)jp0(�1)j � (�1 � xk�1) 16pn jp(a)j ;and the result follows. ut



436 A5. Inequalities for Polynomials with Constraints℄ Conlude thata� xk�1 � (a� �1) + (�1 � xk�1) � 2pn + 6pn = 8pn ;and similarlyxk � a � (�2 � a) + (xk � �2) � 2pn + 6pn = 8pn : utd℄ Er}od [39℄ establishes the sharp inequalitiesxk � xk�1 � 2p2n� 3 if n is even,xk � xk�1 � 2p2n� 3pn2 � 2nn� 1 if n � 3 is odd.E.14 Shur-Type Inequality for Bn(�1; 1). Let � be an arbitrary positivereal number. Show thatsup06=p2Bn(�1;1) kpk[�1;1℄kp(x)(1� x2)�k[�1;1℄ = (n+ 2�)n+2�(4�)�(n+ �)n+�< � e4� (n+ 2�)�� :The supremum is attained if and only if p(x) = (1� x)n; 0 6=  2 R:Hint: Let x1 := nn+2� : If jyj � x1; thenjp(y)jkp(x)(1� x2)�k[�1;1℄ � 1(1� y2)� � 1(1� x21)�= (n+ 2�)2�(4�)�(n+ �)� < (n+ 2�)n+2�(4�)�(n+ �)n+� :If x1 < jyj � 1; say x1 < y � 1; then(1� y)j(y + 1)n�j � k(1� x)j(x+ 1)n�jk[�1;1℄ = 2njj(n� j)n�jnn= jj(n� j)n�j(n+ 2�)n�jnn(n+ �)n�j (1� x1)j(x1 + 1)n�j� �j(n+ �)�(n� j)�j �n+ 2�n+ � �n (1� x1)j(x1 + 1)n�j� �n+ 2�n+ � �n (1� x1)j(x1 + 1)n�jwhenever 0 � j � �nn+2� :



Inequalities for Polynomials with Constraints 437On the other hand, sine the funtion (1� x)j(x+ 1)n�j is monotonedereasing in �1� 2jn ; 1� ; the inequality(1� y)j(y + 1)n�j < (1� x1)j(x1 + 1)n�jfollows whenever �nn+2� < j � n: Finally, use the representationp(x) = nXj=0 aj(1� x)j(x+ 1)n�jwith eah aj � 0 or eah aj � 0 to show thatjp(y)j � (n+ 2�)n+2�(4�)�(n+ �)n+� ��p(x1)(1� x21)���for every p 2 Bn(�1; 1): utE.15 Shur-Type Inequality for Tn(�!; !). For n 2 N and ! 2 (0; �℄, letTn(�!; !) := ft 2 Tn : d!(t) � ng ;where the Lorentz degree d!(t) is de�ned in E.5 of Setion 2.4. Let � be anarbitrary positive real number. Show thatsup06=t2Tn(�!;!) ktk[�!;!℄t(�) � 12 (os � � os!)��[�!;!℄� � (n(� � 2!) +p!n)� ; 0 < ! � �=2(2! � � + n�1=2)�� ; �=2 � ! � � ;and the supremum is attained if and only ift(�) =  sin2n ! � �2 ; 0 6=  2 R :Here the � symbol means that the ratio of the two sides is between twopositive onstants depending only on � (and independent of n 2 N and! 2 (0; �℄).E.16 Extensions and Variations of Lax's Inequality. Theorem 7.1.11 on-tains, as a limiting ase, an inequality of Lax [44℄ onjetured by Erd}os; seepart a℄. Various extensions of this inequality are given by Ankeny and Rivlin[55℄, Govil [73℄, Malik [69℄, and others. Parts b℄ to e℄ disuss some of these.As before, letD := fz 2 C : jzj < 1g and �D := fz 2 C : jzj = 1g :



438 A5. Inequalities for Polynomials with Constraintsa℄ Lax's Inequality. The inequalitykp0kD � n2 kpkDholds for all p 2 Pn that have no zeros in the open unit disk.Proof. This follows from Theorem 7.1.11 as a limiting ase. utb℄ Malik's Extension. Assoiated withp(z) =  nYj=1(z � zj) ; zj 2 C ; 0 6=  2 C ;let p�(z) :=  nYj=1(1� zzj) = znp(1=z) :Then maxz2�D �jp0(z)j+ jp�0(z)j� = nfor every 0 6= p 2 Pn:Proof. See Malik [69℄. ut℄ An Observation of Kro�o. Suppose p 2 Pn satis�es that if p(z) = 0for some z 2 D; then p(1=z) = 0 (there is no restrition for the zeros of poutside D). Then kp0kD � n2 kpkD :Hint: Show that if p 2 Pn satis�es the assumption of the lemma, thenjp0(z)j � jp�0(z)j for every z 2 �D. Use part b℄ to �nish the proof. utd℄ An Inequality of Ankeny and Rivlin. Let r � 1. The inequalitymaxjzj=r jp(z)j � rn + 12 maxjzj=1 jp(z)jholds for all p 2 Pn that have no zeros in the open unit disk.Proof. See Ankeny and Rivlin [55℄. ute℄ An Inequality of Govil. Let r � 1. The inequalitykp0kD � n1 + r kpkDholds for all p 2 Pn that have no zeros in the disk fz 2 C : jzj < rg:Proof. See Govil [73℄. ut



Inequalities for Polynomials with Constraints 439f ℄ Let p(z) :=  nYk=1 (z � zk) ; 0 6=  2 C :Show that kp0kDk �  nXk=1 11 + jzkj! kpkD :Proof. If z 2 �D; thenRe�zp0(z)p(z) � = nXk=1Re� zz � zk� � nXk=1 11 + jzkj ;and the result follows. utg℄ Let r 2 (0; 1℄: The inequalitykp0kD � n1 + r kpkDholds for all p 2 Pn that have all their zeros in the disk fz 2 C : jzj � rg:Proof. Use part f℄. uth℄ Another Inequality of Govil. Let r > 1. The inequalitykp0kD � n1 + rn kpkDholds for all p 2 Pn whih have no zeros in the disk fz 2 C : jzj < rg:Proof. See Govil [73℄. utE.17 Markov-Type Inequality for Nonnegative Polynomials. Show thatkp0k[�1;1℄ � n22 kpk[�1;1℄for every p 2 Pn positive on [�1; 1℄:Proof. Suppose p 2 Pn is positive on [�1; 1℄ and kpk[�1;1℄ = 2: ApplyTheorem 5.1.8 (Markov's inequality) to q := p� 1: utE.18 Markov's Inequality for Monotone Polynomials. It has been ob-served by Bernstein that Markov's inequality for monotone polynomials isnot essentially better than for arbitrary polynomials. He proved that if nis odd, then sup06=p kp0k[�1;1℄kpk[�1;1℄ = �n+ 12 �2 ;where the supremum is taken for all p 2 Pn that are monotone on [�1; 1℄:



440 A5. Inequalities for Polynomials with ConstraintsFor even n, the inequalitysup06=p kp0k[�1;1℄kpk[�1;1℄ � �n+ 12 �2still holds. Parts a℄ and b℄ of this exerise outline a proof.a℄ Show that for every odd n; there is a p 2 Pn monotone on R for whihjp0(1)jkpk[�1;1℄ = �n+ 12 �2 :Proof. Let m := 12 (n� 1): Use E.2 e℄ of Setion 6.1 to show that there is aq 2 Pm for whihq2(1) =  mXk=0(1 + 2k)!Z 10 q2(t) dt = (m+ 1)2 Z 10 q2(t) dt :Now let p(x) := Z x0 q2(t) dt� 12 Z 10 q2(t) dt :Obviously p 2 Pn; p is monotone on R; andjp0(1)jkpk[�1;1℄ = q2(1)12 R 10 q2(t) dt = 2(m+ 1)2 = 2�n+ 12 �2 :Now the proof an be �nished by a linear transformation mapping [�1; 1℄to [0; 1℄: utb℄ Let n be odd. Show thatsup06=p kp0k[�1;1℄kpk[�1;1℄ � �n+ 12 �2 ;where the supremum is taken for all p 2 Pn that are monotone on [�1; 1℄:Hint: It is suÆient to prove that if n := 2m is even, thenkpk � 12 �n+ 22 �2 Z 1�1 p(t) dtfor every p 2 Pn nonnegative on [�1; 1℄: Show that there is an extremalpolynomial ep for the above inequality for whih kepk[�1;1℄ is ahieved at 1:Show, by a variational method, that this ep must have at least 2m zeros(ounting multipliities) in [�1; 1): Sine ep is nonnegative, it is of the formep = q2 with a q 2 Pm: Now use E.2 e℄ of Setion 6.1 to show that



Inequalities for Polynomials with Constraints 441q2(1) � 12 (m+ 1)2 Z 1�1 q2(t) dt = 12 �n+ 22 �2 Z 1�1 q2(t) dt ;and the result follows. ut℄ Let r = p=q; where p; q 2 Pn and q is positive and monotone non-dereasing on an interval [a; b℄: Show thatkr0k[a+�;b℄ � 4n2� krk[a;b℄for every � 2 (0; b� a):Proof. The proof follows Borwein [80℄. Let  2 [a + �; b℄ be a point wherejr0()j = kr0k[a+�;b℄: Let d 2 [a; ℄ be a point jp(d)j = kpk[a;℄. Thenr0() = p0()q() � q0()q() r() :Theorem 5.1.8 (Markov's inequality) and the monotoniity of q imply thatjp0()jjq()j � 2n2kpk[a;℄(� a)jq()j = 2n2jp(d)j(� a)jq()j � 2n2� a jp(d)jjq(d)j � 2n2� jr()jand jq0()jjq()j jr()j � 2n2kqk[a;℄jq()j jr()j � 2n2� jr()j :Thus kr0k[a+�;b℄ = jr0()j � 4n2� krk[a;b℄ : utd℄ Sharpness of Part ℄. Let n be odd. By part a℄, there exists a p 2 Pnsuh that p is monotone inreasing on R; p(a) = �1; p(a+ �) = 1, andjp0(a+ �)j = 12� �n+ 12 �2 :Let q := p+ 2 and r := 1=q: Show thatkrk[a;1℄ = 1 and jr0(a+ �)j = 19 � 12� �n+ 12 �2 :



442 A5. Inequalities for Polynomials with ConstraintsWeighted polynomial inequalities and their appliations are beyondthe sope of this book. A thorough disussion requires serious potentialtheoreti bakground, and proofs are usually quite long. Some of the mainresults in this area inlude von Golitshek, Lorentz, and Makovoz [92℄; He[91℄; Ivanov and Totik [90℄; Levin and Lubinsky [87a℄ and [87b℄; Lubinsky[89℄, Lubinsky and Sa� [88a℄, [88b℄, and [89℄; Mhaskar and Sa� [85℄; Nevaiand Totik [86℄ and [87℄; Sa� and Totik [to appear℄; and Totik [94℄. Thefollowing exerise treats a weighted Markov-type inequality with respetto the Laguerre weight on [0;1): The method presented below works inmore general ases; however, the tehnial details oming from the \right"polynomial approximation of the weight funtion is typially far more om-pliated.E.19 A Weighted Markov-Type Inequality of Szeg}o. Part a℄ presents asimple weighted polynomial inequality of Szeg}o [64℄.a℄ Show that kp0(x)e�xk[0;1) � (8n+ 2)kp(x)e�xk[0;1)for every p 2 Pn:Proof. Let p 2 Pn. First prove the inequalityjp0(0)j � (8n+ 2)kp(x)e�xk[0;1)as follows. Apply Theorem 5.1.8 (Markov's inequality) on [0; n=2℄ (by alinear transformation) to q(x) := p(x)�1� xn�nand note that�1� xn�n � e�x and �1� xn��1 � 2 ; x 2 [0; n=2℄ :The general ase an be easily redued to the ase disussed above. Ify 2 [0;1) is �xed, then let q(x) := p(x� y) 2 Pn: On applying the alreadyproved inequality with q; we obtainjp0(y)e�yj = jq0(0)e�yj� e�y(8n+ 2) maxx2[0;1) jq(x)e�xj� (8n+ 2) maxx2[0;1) jp(x+ y)e�(x+y)j� (8n+ 2) maxx2[0;1) jp(x)e�xj ;whih �nishes the proof. ut



Inequalities for Polynomials with Constraints 443b℄ There is an absolute onstant  > 0 suh thatkp0(x)e�xk[0;1) � pn kp(x)e�xk[0;1)holds for every p 2 Pn having no zeros in the disk with diameter [0; 2℄:Proof. See Erd�elyi [89℄, where this result is extended to various other gen-eral lasses of weight funtions and onstrained polynomials. utE.20 Inequalities for Generalized Polynomials with Constraints. Fors 2 (0; 2); letePn;k(s) := np 2 ePn;k : m(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� so :The polynomials Tn;k 2 Pn;k are de�ned byTn;k(x) := Tnfn� k; n� k + 1; : : : ; n; [0; 1℄g �12 (x+ 1)� ;where 0 � k � n are integers. (Note that the notation introdued in Se-tion 3.3 de�nes Tn;k only on [�1; 1℄; and, to be preise, Tn;k denotes thepolynomial de�ned above on [�1; 1℄:)a℄ Remez-Type Inequality for ePn;k. The inequalitykpk[�1;1℄ � Tn;k�2 + s2� s�holds for every p 2 ePn;k(s) and s 2 (0; 2): Equality holds if and only ifp(x) � �Tn;k� �2x2� s + s2� s� :Proof. The proof is quite similar to that of Theorem 5.1.1 (Remez Inequal-ity); see Borwein and Erd�elyi [92℄. utb℄ A Numerial Version of Part a℄. Show thatTn;k �2 + s2� s� � exp�5�pnks+ ns��for every s 2 (0; 1℄:Proof. See Borwein and Erd�elyi [92℄. ut



444 A5. Inequalities for Polynomials with ConstraintsLet GAPN;K , 0 � K � N , be the set of all f 2 GAPN of the form(A.4.1) for whih nXj=1jzj j�1 rj � K :Note that if 0 � K � N are integers and p 2 PN;K ; then jpj 2 GAPN;K :For 0 � K � N and 0 < s < 2, let GAPN;K(s) denote the olletionof all f 2 GAPN;K for whihm(fx 2 [�1; 1℄ : f(x) � 1g) � 2� s :The next part of the exerise extends a numerial version of part a℄ to thelasses GAPN;K(s):℄ Remez-Type Inequality for GAPN;K . There exists a onstant 1 � 5suh that kfk[�1;1℄ � exp�1 �pNKs+Ns��for every f 2 GAPN;K(s) and s 2 (0; 1℄:Hint: Let q 2 N be the ommon denominator of the numbers rj . Apply parta℄ with p := f2q 2 eP2qN;2qK(s), and then use part b℄. utd℄ Nikolskii-Type Inequality for GAPN;K . Let � be a nonnegative non-dereasing funtion de�ned on [0;1) suh that �(x)=x is noninreasing on[0;1): Then there exists an absolute onstant 2 � 25e2 suh thatk�(f)kLp[�1;1℄ � (2maxf1 ; q2NK ; qNg)1=q�1=pk�(f)kLq[�1;1℄for every f 2 GAPN;K and 0 < q < p � 1:The ase K = N (when there is no restrition on the zeros) of part d℄is the ontent of Theorem A.4.4. If qK � 1; then the Nikolskii fator in theunrestrited ase (K = N) is like (p2 qN)2=q�2=p; while in our restritedases it improves to (p2 qpNK)2=q�2=p:Proof. It is suÆient to prove the inequality when p = 1, and then asimilar argument, as in the proof of Theorems A.4.3 and A.4.4, gives theresult for arbitrary 0 < q < p � 1: Thus, in the sequel, let 0 < q < p =1:Using the inequality of part ℄ withs := minf1 ; (21q2NK)�1 ; (1qN)�1gand realling the onditions presribed for �; we onlude thatm��x 2 [�1; 1℄ : (�(f(x)))q � e�2k�(f)kq[�1;1℄	�� m��x 2 [�1; 1℄ : f(x) � e�2=qkfk[�1;1℄	�� m��x 2 [�1; 1℄ : f(x) � exp��1�pNKs+Ns��kfk[�1;1℄	�� s



Inequalities for Polynomials with Constraints 445for every f 2 GAPN;K : Now integrating only on the subset E of [�1; 1℄where (�(f(x)))q � e�2k�(f)kq[�1;1℄ ;we obtain k�(f)kq[�1;1℄ � e2m(E) ZE(�(f(x)))q dx� 2maxf1 ; q2NK ; qNgk�(f)kqLq[�1;1℄for every f 2 GAPN;K , where 2 := 21e2 (assuming 1 � 1). Sine 1 � 5;we have 2 � 25e2. ute℄ Remez-Type Inequality for Bn(�1; 1). Show thatkpk[�1;1℄ � � 22� s�nfor every p 2 Bn(�1; 1) satisfyingm(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s :Equality holds if and only if p is of the formp(x) = ��1� x2� s�n :Proof. See Erd�elyi [90b℄. utf ℄ Markov-Type Inequality for GAPN;K . There exists an absolute on-stant  > 0 suh thatkf 0k[�1;1℄ � N(K + 1)kfk[�1;1℄for every f 2 GAPN;K of the form (A.4.1) with eah rj � 1:Reall that jf 0(x)j is well-de�ned for every f 2 GAPN;K and x 2 R,as the modulus of the one-sided derivative of f at x. The ondition thatrj � 1 for eah j in (A.4.1) is needed to ensure that jf 0(zj)j <1 if zj 2 R.The above result generalizes the orresponding polynomial inequality forthe lasses Pn;k.Proof. See Borwein and Erd�elyi [92℄. ut



446 A5. Inequalities for Polynomials with ConstraintsE.21 The Ilye�-Sendov Conjeture. The following problem is known asthe Ilye�-Sendov onjeture. As before, let D := fz 2 C : jzj < 1g:Suppose P 2 Pn has all its zeros in the losed unit disk D. Then eahlosed disk entered at a zero of P ontains a zero of of P 0.Although the problem in this generality is still unanswered, severalspeial ases have been settled. The ase outlined in part a℄ was �rst provedin Rubinstein [68℄. Vâjâitu and Zaharesu [93℄ ontains stronger results; seealso Miller [90℄. Milovanovi�, Mitrinovi�, and Rassias [94℄ has a disussionabout the reent status of the onjeture.a℄ Suppose P (z) = nYk=1 (z � zk) ; jzkj � 1 ; jz1j = 1 :Show that P 0 has at least one zero in the losed disk entered at z1:Proof. Without loss of generality, we may assume that z1 := 1: Then P isof the form P (z) = (z � 1)Q(z); whereQ(z) := nYk=2 (z � zk) ; jzkj � 1 :Suppose the statement is false. Then R(z) := P 0(z + 1) has no zero in thelosed unit disk D: Hene ����R0(0)R(0) ���� < n� 1 :Observe that R(0) = Q(1) and R0(0) = 2Q0(1) :Hene ����Q0(1)Q(1) ���� = 12 ����R0(0)R(0) ���� < n� 12 :However, Re�Q0(1)Q(1) � = Re nXk=2 11� zk! � n� 12 :This ontradition �nishes the proof. utb℄ The polynomial P (z) := zn � 1 shows the sharpness of part a℄.



Inequalities for Polynomials with Constraints 447It follows from Theorem A.5.3 that there exists an absolute onstant > 0 suh that kp0k[�1;1℄ � n kpk[�1;1℄for every p 2 Pn with no zeros in the open unit disk. The polynomialspn(x) := (x+1)n show that up to the absolute onstant  > 0 this inequalityis the best possible. The next exerise shows that the \right" Markov fatoron [�1; 1℄ for polynomials of degree at most n with omplex oeÆients andwith no zeros in the open unit disk is n(1 + logn) rather than n. This isan observation of Hal�asz.E.22 Markov Inequality for Pn with No Zeros in the Unit Disk. Showthat there exists an absolute onstant 1 > 0 so thatkp0k[�1;1℄ � 1n(1 + logn)kpk[�1;1℄for every p 2 Pn with no zeros in the open unit disk.Show also that there exist polynomials pn 2 Pn with no zeros in theopen unit disk suh thatkp0nk[�1;1℄ � 2n(1 + log n)kpnk[�1;1℄ ; n = 1; 2; : : :with an absolute onstant 2 > 0:Proeed as follows:a℄ Show that if z 2 C is outside the open unit disk, thenjx� zjjx�1 � zj � jxjfor every x 2 R n [�1; 1℄:b℄ Suppose p 2 Pn has no zeros in the open unit disk. Let x 2 R n [�1; 1℄.Show that jp(x)j � jxjnjp(x�1)j :℄ Prove the upper bound of the exerise.Hint: Use part b℄ and E.11 a℄. utd℄ Let zk := e2ik�=(2n+1) ; k = 1; 2; : : : ; nbe the (2n+ 1)th roots of unity in the open upper half-plane. Letp2n+1(z) := p2n+2(z) := (z + 1) nYk=1(z � zk)2 :Show that jp2n+1(x)j = jx2n+1 � 1j for every x 2 R: Note that this impliesjp2n+1(�1)j = kp2n+1k[�1;1℄ = 2 :Show also that ����p02n+1(�1)p2n+1(�1) ���� � n(1 + logn)with an absolute onstant  > 0:
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Notation

De�nitions of the more ommonly used spaes are given. The equationnumbers here are the same as the equation numbers in the text.Throughout the book, unless otherwise stated, spans should be as-sumed to be real. Likewise, in funtion spaes, unless otherwise stated, thefuntions should be assumed to be real valued.The Basi Spaes.(1:1:1) Pn := (p : p(z) = nXk=0 akzk; ak 2 C) :(1:1:2) Pn := (p : p(z) = nXk=0 akzk; ak 2 R) :(1:1:3) Rm;n := �pq : p 2 Pm; q 2 Pn� :(1:1:4) Rm;n := �pq : p 2 Pm; q 2 Pn� :



468 NotationT n : = (t : t(�) := nXk=�n akeik�; ak 2 C)(1:1:5) = nt : t(z) = a0 + nXk=1(ak os kz + bk sin kz) ; ak; bk 2 Co :Tn : = nt : t(z) = a0 + nXk=1(ak os kz + bk sin kz) ; ak; bk 2 Ro :M�untz Spaes.(3:4:2) Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :(3:4:3) M(�) := 1[n=0Mn(�) = spanfx�0 ; x�1 ; : : : g :Assoiated with a sequene (�i)1i=0 with Re(�i) > �1=2 for eah i; the nthM�untz-Legendre polynomial is:Ln(x) := Lnf�0; : : : ; �ng(x)(3:4:5) := 12�i Z� n�1Yk=0 t+ �k + 1t� �k xt dtt� �n :For distint �i;(3:4:6) Lnf�0; : : : ; �ng(x) = nXk=0 k;nx�k ; x 2 (0;1)with k;n := Qn�1j=0 (�k + �j + 1)Qnj=0;j 6=k(�k � �j) :Also,(3:4:8) L�n := (1 + �n + �n)1=2Lnis the nth orthonormal M�untz-Legendre polynomial.



Notation 469Rational Spaes.K := R (mod 2�) ; D := fz 2 C : jzj < 1g ; �D := fz 2 C : jzj = 1g :Pn(a1; a2; : : : ; an) := � p(x)Qnk=1 jx� akj : p 2 Pn� :(3.5.3) Tn(a1; a2; : : : ; an) := � t(�)Qnk=1 jos � � akj : t 2 Tn� :(3.5.4)Also Tn(a1; a2; : : : ; a2n;K) := Tn(a1; a2; : : : ; a2n):= ( t(�)Q2nk=1 j sin((� � ak)=2)j : t 2 Tn)and T n (a1; a2; : : : ; a2n;K) := ( t(�)Q2nk=1 sin((� � ak)=2) : t 2 T n)on K with a1; a2; : : : ; a2n 2 C n R;Pn(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1 jx� akj : p 2 Pn�and Pn(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1(x � ak) : p 2 Pn�on [�1; 1℄ with a1; a2; : : : ; an 2 C n [�1; 1℄;Pn(a1; a2; : : : ; an; �D) := � p(z)Qnk=1(z � ak) : p 2 Pn�on �D with a1; a2; : : : ; an 2 C n �D; andPn(a1; a2; : : : ; an;R) := � p(x)Qnk=1 jx� akj : p 2 Pn�and Pn(a1; a2; : : : ; an;R) := � p(z)Qnk=1(z � ak) : p 2 Pn�on R with a1; a2; : : : ; an 2 C n R:



470 NotationGeneralized Polynomials.The funtion(A:4:1) f(z) = j!j mYj=1 jz � zj jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is alled a generalized nonnegative(algebrai) polynomial of (generalized) degree(A:4:2) N := mXj=1 rj :The set of all generalized nonnegative algebrai polynomials of degree atmost N is denoted by GAPN :The funtion(A:4:3) f(z) = j!j mYj=1 j sin((z � zj)=2)jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is alled a generalized nonnegativetrigonometri polynomial of degree(A:4:4) N := 12 mXj=1 rj :The set of all generalized nonnegative trigonometri polynomials of degreeat most N is denoted by GTPN :Constrained Polynomials.The following lasses of polynomials with onstraints appear in Appendix5: Pn;k := fp 2 Pn : p has at most k zeros in Dg ; 0 � k � n ;Bn(a; b) := np 2 Pn : p(x) = � nXj=0 �j(b�x)j(x�a)n�j ; �j � 0o ; a < b ;ePn;k(a; b) := fp = hq : h 2 Bn�k(a; b) ; q 2 Pkg ; 0 � k � n :



Notation 471Funtion Spaes.The uniform or supremum norm of a omplex-valued funtion f de�ned ona set A is de�ned by kfkA := supx2A jf(x)j :The spae of all real-valued ontinuous funtions on a topologial spaeA equipped with the uniform norm is denoted by C(A): If A := [a; b℄ isequipped with the usual metri topology, then the notation C[a; b℄ := C(A)is used.Let (X;�) be a measure spae (� nonnegative) and p 2 (0;1℄: Thespae Lp(�) is de�ned as the olletion of equivalene lasses of real-valuedmeasurable funtions for whih kfkLp(�) <1; wherekfkLp(�) := �ZX jf jp d��1=p ; p 2 (0;1)and kfkL1(�) := supf� 2 R : �(fx 2 X : jf(x)j > �g) > 0g <1 :The equivalene lasses are de�ned by the equivalene relation f � g iff = g �-almost everywhere on X: When we write Lp[a; b℄ we always meanLp(�); where � is the Lebesgue measure on X = [a; b℄: The notationsLp(a; b); Lp[a; b); and Lp(a; b℄ are also used analogously to Lp[a; b℄: Again,it is always our understanding that the spae Lp(�) is equipped with theLp(�) norm.Sometimes C(A) denotes the spae of all omplex-valued ontinuousfuntions de�ned on A equipped with the uniform norm. Similarly, Lp(�)may denote the spae all omplex-valued ontinuous funtions for whihkfkLp(�) < 1: This should always be lear from the ontext; many times,but not always, the reader is reminded if C[a; b℄ or Lp(�) is omplex.
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Abel, Niels Henrik, 3, 61Algorithms, 356{371evaluation of xn, 363fast Fourier transform, 359fast polynomial division, 362fast polynomial expansion, 363fast polynomial multipliation,361for Chebyshev polynomials, 371for ounting zeros, 364{370for polynomial evaluations, 363for reversion of power series, 362interpolation, 360Newton's method, 362, 364{367Remez, 371zero �nding for polynomials,366{370Alternation set, 93Alternation theorem, 94Apolar polynomials, 23, 24, 25Ar length of algebrai polynomials,31Ar length of trigonometripolynomials, 35Berman's formula, 166Bernstein fator, 145, 150, 152,

322{328Bernstein polynomials, 163{164Bernstein-Szeg}o inequality, 231, 245,259, 321{323for entire funtions of exponentialtype, 245for rational funtions on [�1; 1℄,322for rational funtions on K, 322for rational funtions on R, 323for trigonometri polynomials, 232Bernstein-type inequalitybounded, 178, 182, 213{214for Chebyshev spaes, 206for onstrained polynomials,420{447for entire funtions of exponentialtype, 245for exponential sums, 289for generalized polynomials,392{416for generalized polynomials in Lp,401{417for higher derivatives, 258for nondense M�untz spaes, 213,310for polynomials, 232{233, 390



474 Indexfor polynomials in Lp, 235, 390,401{417for produts of M�untz spaes, 317for rational funtions on [�1; 1℄,323, 327for rational funtions on D, 324for rational funtions on K, 322,327for rational funtions on R, 323,329for self-reiproal polynomials,339for trigonometri polynomials, 232unbounded, 154, 206{217weighted, 257Bessel's inequality, 46Best approximation, 94by rationals, 99to x�, a problem of Lorentz, 108to xn, 99uniqueness, 98Binomial oeÆient, 62Blashke produt, 190, 324Blumenthal's theorem, 78Bombieri's norm, 274Bounded Bernstein-type inequality;see Bernstein-type inequalityBounded Chebyshev-type inequality;see Chebyshev-typeinequalityBounded linear funtionals, 50Budan-Fourier theorem, 369Cardano, Girolamo, 3Cartan's lemma, 350Cauhy determinant, 106Cauhy indies, 367Cauhy's integral formula, 14Cauhy-Shwarz inequality, 42for sequenes, 46Ces�aro means, 165Chebyshev onstants, 39Chebyshev, P.L., 31Chebyshev polynomialsalgorithms for, 371best approximation to xn, 30ompositionharaterization, 33expliit formulas, 30, 32

in Chebyshev spaes, 114{125in rational spaes; see Chebyshevrationalsorthogonality, 32reduibility, 36seond kind, 37three-term reursion, 32trigonometri on subintervals, 235uniqueness, 118Chebyshev rationals, 139{153and orthogonality, 147derivative formulas, 146in algebrai rational spaes, 142in trigonometri rational spaes,143of the �rst and seond kind, 141on the real line, 151partial fration representation,144Chebyshev spae, 92dimension on the irle, 100funtions with presribed signhanges, 100Chebyshev system, 91{100extended omplete, 97Chebyshev's inequality, 235, 390Chebyshev-type inequalitybounded, 179, 182expliit bounds via Paley-Weinertheorem, 196for entire funtions of exponentialtype, 245Christo�el funtion, 74for M�untz spaes, 195Christo�el numbers, 67Christo�el-Darboux formula, 60CoeÆient boundsfor polynomials in speial bases,124in nondense rational spaes, 153of Markov, 248Comparison theorem, 103, 120, 122,183Completeness, 48, 79Complexity onerns, 356{371Conseutive zeros of p0, 26Constrained polynomials, 417{447Bernstein-type inequality, 420,425, 427



Index 475Lp inequalities, 422Markov-type inequality, 417{447Nikolskii-type, 444Remez-type, 443{445Shur-type, 436{437Cotes numbers, 67Cubi equations, 4d'Alembert, Jean le Rond, 13de la Vall�ee Poussin theorem, 99Denseness, 154{226of Markov spaes, 206{217of M�untz polynomials, 171{205of M�untz rationals, 218{226of polynomials, 154{170Derivatives of Markov systems, 112Desartes' rule of signs, 22, 102Desartes system, 100{113examples, 103lexiographi properties, 103Divide and onquer, 358Division of polynomials, 15, 362Elementary symmetri funtion, 5Enestr�om-Kakeya theorem, 12Erd}os inequality, 431Erd}os-Tur�an inequality, 435Euler, Leonhard, 13Evaluation of xn, 363Exponential sums; see M�untzpolynomialsa problem of Lorentz, 291Bernstein-type inequality, 291Markov-type inequality, 294Nikolskii-type inequality, 289Tur�an's inequality, 295with nonnegative exponents, 294Exponential type, 196, 245Extended omplete Chebyshev system,97Fator inequalities, 260{274via Mahler's measure, 271{273Fatorization, 10, 36Fast Fourier transform, 359Favards theorem, 73Fej�er gap, 27{28Fej�er operators, 164Fej�er's theorem, 165

Fekete point, 38Fekete polynomial, 38Ferrari, Ludovio, 3Ferro, Sipione del, 3Fourier oeÆient, 53Fourier series, 53Fundamental theorem of algebra, 3Gamma funtion, 63Gauss, Carl Friedrih, 13Gaussian hypergeometri series, 62Gauss-Jaobi quadrature, 67, 75Gauss-Luas theorem, 18Gegenbauer polynomials, 65Generalized polynomialsBernstein-type inequality, 399,407Lp inequalities, 401{407Markov-type inequality, 399, 407Nikolskii-type inequality, 394{395Remez-type inequality, 393{394,414Shur-type inequality, 395weighted inequalites, 407Girard, Albert, 13Grae's omplex version of Rolle'stheorem, 25Grae's theorem, 18Gram's lemma, 176Gram-Shmidt, 44Haar spae, 92Haar system, 92Halley's method, 365Hardy spae, 189Helly's onvergene theorem, 71Helly's seletion theorem, 71Hermite interpolation, 9Hermite polynomials, 57expliit formulas, 65Hilbert spae, 42H�older's inequality, 17, 49Horner's rule, 8Hypergeometri di�erential equation,63Hypergeometri funtions, 62Identity theorem, 15Inequalities



476 IndexBernstein-Szeg}o inequality; seeBernstein-Szeg}o inequalityBernstein-type; see Bernstein-typeinequalityBessel's; see Bessel's inequalitybounded Bernstein-type; seebounded Bernstein-typeinequalitybounded Chebyshev-type; seebounded Chebyshev-typeinequalityCauhy-Shwarz; see Cauhy-Shwarz inequalityChebyshev-type; see Chebyshev-type inequalityfor fators; see fator inequalitiesfor M�untz polynomials; see M�untzpolynomialsH�older's; see H�older's inequalityLax-type; see LaxMarkov-type; see Markov-typeinequalitymetri; see metri inequalitiesMinkowski's; see Minkowski'sinequalityNikolskii-type; see Nikolskii-typeinequalityRemez-type; see Remez-typeinequalityRussak's; see RussakShur-type; see Shur-typeinequalityTriangle; see Triangle inequalityunbounded Bernstein-type; seeunbounded Bernstein-typeinequalityInner produt, 41Inner produt spae, 41Integer-valued polynomials, 10InterpolationHermite; see Hermite interpolationLagrange; see LagrangeinterpolationNewton; see Newton interpolationJaobi polynomials, 57, 63expliit formulas, 63Jensen irles, 19Jensen's formula, 187

Jensen's inequality, 414Jensen's theorem, 19Kernel funtion, 47, 132Kolmogorov's inequality, 285Korovkin's theorems, 163Launary spaes, 308quasi-Chebyshev polynomials, 316Lagrange interpolation, 8Laguerre polynomials, 57, 66, 130expliit formulas, 66Laguerre's theorem, 20Lax-type inequality, 438for rationals, 329Malik's extension, 438on a half-plane, 338Legendre polynomials, 57Lemnisates of onstant modulus,352{353Lexiographi properties, 116for M�untz polynomials, 120, 314for M�untz-Legendre polynomials,136for sinh systems, 122Liouville's theorem, 15Logarithmi apaity, 38Lorentz degree, 82for polynomials, 86for trigonometri polynomials, 89Lorentz's problem, 108, 291Lp norm, 6, 48, 471lp norm, 6, 471Luas' theorem, 18Mahler's measure, 271Mairhuber theorem, 98Markov system, 100losure of nondense, 211derivative of, 112Markov-Stieltjes inequality, 76Markov-type inequalityfor Pn, 233for Pn, 255for onstrained polynomials,417{447for onstrained polynomials in Lp,422, 428{429



Index 477for exponential sums, 276{280,294{295for generalized polynomials,399{407, 445for generalized polynomials in Lp,401{407for higher derivatives, 248{260for monotone polynomials, 439{441for M�untz polynomials, 276{279,287{288for M�untz polynomials in Lp,279{280for nonnegative polynomials, 420,439for rational funtions, 336for self-reiproal polynomials,339for trigonometri polynomials onsubintervals, 242{245in the omplex plane, 235weighted, 442{443Maximum prinipal, 15m-distribution, 57Mergelyan's theorem, 170Mesh of zeros, 155Metri inequalities, 344{355for polynomials, 345{346for rational funtions, 347{349Minkowski's inequalityin Lp; p � 1, 49in Lp; p � 1, 52Moment, 57Moment problem, 70Monotone operator theorem, 163Multipliation of polynomials, 361M�untz polynomialsbounded Bernstein-typeinequality, 178, 182, 213,310, 317bound for smallest zero, 313lexiographi properties of zeros,116, 120Newman's inequality, 276, 301Newman's inequality in Lp, 279Newman's problem, 317Nikolskii-type inequality, 281, 298,317positive zeros, 22

Remez-type inequality, 304, 307,316where the sup norm lives, 301M�untz rationals, 218{226denseness, 218M�untz spae, 125{126lexiographi properties of zeros,120produts of, 222, 316quotients of, 218{226M�untz system, 125{136losure, 171{205nondense, 303{319M�untz-Legendre polynomials, 125{138de�nition, 126di�erential reursion, 129global estimate of zeros, 136integral reursion, 132lexiographi properties of zeros,133{136orthogonality, 127, 132orthonormality, 128Rodrigues-type formula, 128, 131zeros of, 133M�untz's theorem, 171{205another proof, 176, 192losure of span in, 178, 181, 185in C[0; 1℄, 171in C[a; b℄, 180, 184in L2[0; 1℄, 171in Lp[0; 1℄, 172in Lp[a; b℄, 186in Lp(w), 311on sets of positive measure, 303Newman's onjetureon denseness of produts, 316on denseness of quotients, 220,223Newman's inequality, 275{279an improvement, 287for M�untz polynomials, 276for M�untz polynomials in Lp, 279on positive intervals, 301Newton's identities, 5Newton Interpolation, 10Newton's method, 362, 364{367for x1=2, 365in many variables, 366



478 IndexNikolskii-type inequalityfor onstrained polynomials, 444for exponential sums, 289for generalized polynomials, 394,395for M�untz polynomials, 281, 298,317for produts of M�untz spaes, 317Nondense M�untz spaes, 303{319Nonnegative polynomials, 70, 85, 417,420Nonnegative trigonometripolynomials, 85, 409Norms, 471Lp; see Lp normlp; see lp normsupremum; see supremum normOrthogonal olletion, 43Orthogonal funtions, 41{56Orthogonal polynomials, 57{79as ontinued frations, 79as determinants, 76haraterization of ompatsupport, 77Gegenbauer; see GegenbauerpolynomialsHermite; see Hermite polynomialsinterlaing of zeros, 61Jaobi; see Jaobi polynomialsLaguerre; see LaguerrepolynomialsLegendre; see LegendrepolynomialsM�untz-Legendre; see M�untz-Legendre polynomialssimple real zeros, 61ultraspherial; see UltraspherialpolynomialsOrthogonal rational funtions, 147Orthonormal set, 43Paley-Weiner theorem, 196Parallelogram law, 42Parseval's identity, 48Partial fration deomposition, 7, 144Pellet's theorem, 16Polar derivative, 20Polynomials

as sums of squares, 85, 348Bernstein; see BernsteinpolynomialsChebyshev; see ChebyshevpolynomialsGegenbauer; see Gegenbauerpolynomialsgeneralized; see generalizedpolynomialsgrowth in the omplex plane, 239Hermite; see Hermite polynomialsin x�n , 167integer valued; see Integer valuedpolynomialsJaobi; see Jaobi polynomialsLaguerre; see LaguerrepolynomialsLegendre; see LegendrepolynomialsM�untz; see M�untz polynomialM�untz-Legendre; see M�untz-Legendre polynomialsnumber of real roots, 17, 137symmetri, 5trigonometri; see TrigonometripolynomialUltraspherial; see Ultraspherialpolynomialswith integer oeÆients, 169with nonnegative oeÆients,79{90, 417with real roots, 345, 347{348Produts of M�untz spaes, 222, 316Quadrati equations, 4Quarti equations, 4Quasi-Chebyshev polynomials, 316,342Railway trak theorem, 98Rakhmanov's theorem, 78Rational funtionsalgebrai, 139Chebyshev polynomials of, 139{153oeÆient bounds, 153inequalities; see inequalitiestrigonometri, 139Rational spaes



Index 479of algebrai rational funtions,139{153, 320{321of trigonometri rationalfuntions, 139{153, 320{321Reursive bounds, 359Remez's algorithm, 371Remez-type inequalityfor algebrai polynomials, 228for onstrained polynomials, 443,445for generalized polynomials, 393,394for generalized polynomials in Lp,401{402for M�untz spaes, 307for nondense M�untz spaes, 304for produts of M�untz spaes, 316pointwise, 414for trigonometri polynomials, 230Reproduing kernel, 47, 132Reversion of power series, 362Riemann-Lebesgue lemma, 54Riesz representation theorem, 50Riesz's identity, 390Riesz's lemma, 237Riesz-Fisher theorem, 50Rising fatorial, 62Rolle's theorem, 25Rouh�e's theorem, 14, 16Russak's inequalities, 336Salem numbers, 6Shur's theorem, 17Shur-type inequalityfor algebrai polynomials, 233for onstrained polynomials,436{437for generalized polynomials, 395for rational funtions, 337for trigonometri polynomials, 238Self-reiproal polynomials, 339quasi-Chebyshev polynomials, 342Somorjai's theorem, 218SpaeChebyshev; see Chebyshev spaeDesartes; see Desartes spaeHaar; see Haar spaeM�untz; see M�untz spae

rational; see rational spaeStieltjes' theorem, 78Stone-Weierstrass theorem, 161Sums of squares of polynomials, 85,348Supremum norm, 6, 29, 471Symmetri funtion, 5Symmetri polynomial, 5Szeg}o's inequality, 391Szeg}o's theorem, 23, 235Tartaglia, Niolo, 3Thebyhev; see ChebyshevThree-term reursion, 59Totally positive kernels, 110Trans�nite diameter, 38Triangle inequality, 42Trigonometri polynomial, 2Trigonometri polynomials of longestar length, 35Tur�an's inequality, 434Tur�an's inequality for exponentialsums, 295Ultraspherial polynomials, 65Unbounded Bernstein-type inequality,206{217haraterization of denseness, 207Uniity theorem, 15Variation diminishing property, 111Vandermonde determinant, 38, 103Videnskii's inequalities, 242{245Walsh's two irle theorem, 20Weierstrass' theorem, 154{170for Markov systems, 155for polynomials, 159for polynomials in x�, 167for polynomials with integeroeÆients, 169for trigonometri polynomials, 165in Lp, 169on ars, 170Stone-Weierstrass theorem, 161Wronskian, 22Zeros, 11{18algorithms for �nding, 364{367



480 Indexomplexity of, 367ounting by winding number, 370in a disk, 369in an interval, 368in Chebyshev spaes, 99loalizing, 367maximum number at one, 137maximum number of positive, 17of Chebyshev polynomials, 34,116, 120, 122
of derivatives of polynomials,18{28of integrals of polynomials, 24of M�untz polynomials, 120of M�untz-Legendre polynomials,133{136of orthogonal polynomials, 61Zolotarev, 35Zoomers, 218


