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Chapter 1

Fundamental Concepts

In the study of metric spaces, we observed that:

(i) many of the concepts can be described purely in terms of open sets,

(ii) open-set descriptions are sometimes simpler than metric descriptions,
e.g. continuity,

(iii) many results about these concepts can be proved using only the basic
properties of open sets (namely, that both the empty set and the un-
derlying set X are open, that the intersection of any two open sets is
again open and that the union of arbitrarily many open sets is open).

This prompts the question: How far would we get if we started with a collec-
tion of subsets possessing these above-mentioned properties and proceeded
to define everything in terms of them?

1.1 Describing Topological Spaces

We noted above that many important results in metric spaces can be proved
using only the basic properties of open sets that

• the empty set and underlying set X are both open,

• the intersection of any two open sets is open, and

• unions of arbitrarily many open sets are open.
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We will call any collection of sets on X satisfying these properties a topology.
In the following section, we also seek to give alternative ways of describing
this important collection of sets.

1.1.1 Defining Topological Spaces

Definition 1.1 A topological space is a pair (X, T ) consisting of a set X
and a family T of subsets of X satisfying the following conditions:

(T1) ∅ ∈ T and X ∈ T
(T2) T is closed under arbitrary union

(T3) T is closed under finite intersection.

The set X is called a space, the elements of X are called points of the space
and the subsets of X belonging to T are called open in the space; the family
T of open subsets of X is also called a topology for X.

Examples

(i) Any metric space (X, d) is a topological space where Td, the topology
for X induced by the metric d, is defined by agreeing that G shall be
declared as open whenever each x in G is contained in an open ball
entirely in G, i.e.

∅ ⊂ G ⊆ X is open in (X, Td) ⇔
∀x ∈ G, ∃rx > 0 such that x ∈ Brx(x) ⊆ G.

(ii) The following is a special case of (i), above. Let R be the set of real
numbers and let I be the usual (metric) topology defined by agreeing
that

∅ ⊂ G ⊆ X is open in (R, I) (alternatively, I-open) ⇔
∀x ∈ G, ∃rx > 0 such that (x− rx, x + rx) ⊂ G.

(iii) Define T0 = {∅, X} for any set X — known as the trivial or anti-discrete topology.

(iv) Define D = {G ⊆ X : G ⊆ X} — known as the discrete topology.
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(v) For any non-empty set X, the family C = {G ⊆ X : G = ∅ or X \G is
finite} is a topology for X called the cofinite topology.

(vi) For any non-empty set X, the family L = {G ⊆ X : G = ∅ or X \G is
countable} is a topology for X called the cocountable topology.

1.1.2 Neighbourhoods

Occasionally, arguments can be simplified when the sets involved are not
“over-described”. In particular, it is sometimes suffices to use sets which
contain open sets but are not necessarily open. We call such sets neighbor-
hoods.

Definition 1.2 Given a topological space (X, T ) with x ∈ X, then N ⊆ X
is said to be a (T )-neighbourhood of x ⇔ ∃ open set G with x ∈ G ⊆ N .

It follows then that a set U ⊆ X is open iff for every x ∈ U , there exists a
neighbourhood Nx of x contained in U . (Check this!)

Lemma 1.1 Let (X, T ) be a topological space and, for each x ∈ X, let N (x)
be the family of neighbourhoods of x. Then

(i) U ∈ N (x) ⇒ x ∈ U.

(ii) N (x) is closed under finite intersections.

(iii) U ∈ N (x) and U ⊆ V ⇒ V ∈ N (x).

(iv) U ∈ N (x) ⇒ ∃W ∈ N (x) such that W ⊆ U and W ∈ N (y) for each
y ∈ W.

Proof Exercise!

Examples

(i) Let x ∈ X, and define Tx = {∅, {x}, X}. Then Tx is a topology for X
and V ⊆ X is a neighbourhood of x iff x ∈ V . However, the only nhd
of y ∈ X where y 6= x is X itself
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(ii) Let x ∈ X and define a topology I(x) for X as follows:

I(x) = {G ⊆ X : x ∈ G} ∪ {∅}.
Note here that every nhd of a point in X is open.

(iii) Let x ∈ X and define a topology E(x) for X as follows:

E(x) = {G ⊆ X : x 6∈ G} ∪ {X}.
Note here that {y} is open for every y 6= x in X, that {x, y} is not
open, is not a nhd of x yet is a nhd of y.

In fact, the only nhd of x is X.

1.1.3 Bases and Subbases

It often happens that the open sets of a space can be very complicated and
yet they can all be described using a selection of fairly simple special ones.
When this happens, the set of simple open sets is called a base or subbase
(depending on how the description is to be done). In addition, it is fortunate
that many topological concepts can be characterized in terms of these simpler
base or subbase elements.

Definition 1.3 Let (X, T ) be a topological space. A family B ⊆ T is called
a base for (X, T ) if and only if every non-empty open subset of X can be
represented as a union of a subfamily of B.

It is easily verified that B ⊆ T is a base for (X, T ) if and only if whenever
x ∈ G ∈ T ,∃B ∈ B such that x ∈ B ⊆ G.
Clearly, a topological space can have many bases.

Lemma 1.2 If B is a family of subsets of a set X such that

(B1) for any B1, B2 ∈ B and every point x ∈ B1 ∩ B2, there exists B3 ∈ B
with x ∈ B3 ⊆ B1 ∩B2, and

(B2) for every x ∈ X, there exists B ∈ B such that x ∈ B,

then B is a base for a unique topology on X.
Conversely, any base B for a topological space (X, T ) satisfies (B1) and (B2).

Proof (Exercise!)

Definition 1.4 Let (X, T ) be a topological space. A family S ⊆ T is called
a subbase for (X, T ) if and only if the family of all finite intersections
∩k

i=1Ui, where Ui ∈ S for i = 1, 2, . . . , k is a base for (X, T ).
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Examples

(i) In any metric space (X, d), {Br(x) : x ∈ X, r > 0} forms a base for
the induced metric topology Td on X.

(ii) For the real line R with its usual (Euclidean) topology, the family
{(a, b) : a, b ∈ Q, a < b} is a base.

(iii) For an arbitrary set X, the family {{x} : x ∈ X} is a base for (X,D).

(iv) The family of all ‘semi-infinite’ open intervals (a,∞) and (−∞, b) in R
is a subbase for (R, I).

1.1.4 Generating Topologies

From the above examples, it follows that for a set X one can select in many
different ways a family T such that (X, T ) is a topological space. If T1 and
T2 are two topologies for X and T2 ⊆ T1, then we say that the topology T1 is
finer than the topology T2, or that T2 is coarser than the topology T1. The
discrete topology for X is the finest one; the trivial topology is the coarsest.
If X is an arbitrary infinite set with distinct points x and y, then one can
readily verify that the topologies I(x) and I(y) are incomparable i.e. neither
is finer than the other.
By generating a topology for X, we mean selecting a family T of subsets of
X which satisfies conditions (T1)–(T3). Often it is more convenient not to
describe the family T of open sets directly. The concept of a base offers an
alternative method of generating topologies.

Examples

• [Sorgenfrey line] Given the real numbers R, let B be the family of all
intervals [x, r) where x,r ∈ R, x < r and r is rational. One can readily
check that B has properties (B1)–(B2). The space Rs, generated by B,
is called the Sorgenfrey line and has many interesting properties. Note
that the Sorgenfrey topology is finer than the Euclidean topology on
R. (Check!)

• [Niemytzki plane] Let L denote the closed upper half-plane. We define
a topology for L by declaring the basic open sets to be the following:
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(I) the (Euclidean) open discs in the upper half-plane;

(II) the (Euclidean) open discs tangent to the ‘edge’ of the L, together
with the point of tangency.

Note If yn → y in L, then

(i) y not on ‘edge’: same as Euclidean convergence.

(ii) y on the ‘edge’: same as Euclidean, but yn must approach y from
‘inside’. Thus, for example, yn = ( 1

n
, 0) 6→ (0, 0)!

1.1.5 New Spaces from Old

A subset of a topological space inherits a topology of its own, in an obvious
way:

Definition 1.5 Given a topological space (X, T ) with A ⊆ X, then the fam-
ily TA = {A ∩ G : G ∈ T } is a topology for A, called the subspace (or
relative or induced) topology for A. (A, TA) is called a subspace of (X, T ).

Example
The interval I = [0, 1] with its natural (Euclidean) topology is a (closed)
subspace of (R, I).
Warning: Although this definition, and several of the results which flow from
it, may suggest that subspaces in general topology are going to be ‘easy’ in
the sense that a lot of the structure just gets traced onto the subset, there
is unfortunately a rich source of mistakes here also: because we are handling
two topologies at once. When we inspect a subset B of A, and refer to it
as ’open’ (or ’closed’, or a ’neighbourhood’ of some point p . . . . ) we must
be exceedingly careful as to which topology is intended. For instance, in the
previous example, [0, 1] itself is open in the subspace topology on I but, of
course, not in the ’background’ topology of R. In such circumstances, it is
advisable to specify the topology being used each time by saying T -open,
TA-open, and so on.

1.2 Closed sets and Closure

Just as many concepts in metric spaces were described in terms of basic open
sets, yet others were characterized in terms of closed sets. In this section we
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• define closed sets in a general topological space and

• examine the related notion of the closure of a given set.

1.2.1 Closed Sets

Definition 1.6 Given a topological space (X, T ) with F ⊆ X, then F is said
to be T -closed iff its complement X \ F is T -open.

From De Morgan’s Laws and properties (T1)–(T3) of open sets, we infer that
the family F of closed sets of a space has the following properties:

(F1) X ∈ F and ∅ ∈ F
(F2) F is closed under finite union

(F3) F is closed under arbitrary intersection.

Sets which are simultaneously closed and open in a topological space are
sometimes referred to as clopen sets. For example, members of the base
B = {[x, r) : x, r ∈ R, x < r, r rational } for the Sorgenfrey line are clopen
with respect to the topology generated by B. Indeed, for the discrete space
(X,D), every subset is clopen.

1.2.2 Closure of Sets

Definition 1.7 If (X, T ) is a topological space and A ⊆ X, then

A
T

= ∩{F ⊆ X : A ⊆ F and F is closed}
is called the T -closure of A.

Evidently, A
T

(or A when there is no danger of ambiguity) is the smallest
closed subset of X which contains A. Note that A is closed ⇔ A = A.

Lemma 1.3 If (X, T ) is a topological space with A, B ⊆ X, then

(i) ∅̄ = ∅
(ii) A ⊆ Ā

(iii) ¯̄A = Ā
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(iv) A ∪B = Ā ∪ B̄.

Proof Exercise!

Theorem 1.1 Given a topological space with A ⊆ X, then x ∈ Ā iff for
each nhd U of x, U ∩ A 6= ∅.

Proof

⇒: Let x ∈ Ā and let U be a nhd of x; then there exists open G with
x ∈ G ⊆ U . If U∩A = ∅, then G∩A = ∅ and so A ⊆ X\G ⇒ Ā ⊆ X\G
whence x ∈ X\G, thereby contradicting the assumption that U∩A = ∅.

⇐: If x ∈ X \ Ā, then X \ Ā is an open nhd of x so that, by hypothesis,
(X \ Ā) ∩ A 6= ∅, which is a contradiction (i.e., a false statement).

Examples

(i) For an arbitrary infinite set X with the cofinite topology C, the closed
sets are just the finite ones together with X. So for any A ⊆ X,

Ā =

{
A if A is finite
X if A is infinite

Note that any two non-empty open subsets of X have non-empty in-
tersection.

(ii) For an arbitrary uncountable set X with the cocountable topology L,
the closed sets are the countable ones and X itself. Note that if we
let X = R, then [0, 1] = R! (In the usual Euclidean topology, [0, 1] =
[0, 1].)

(iii) For the space (X, Tx) defined earlier, if ∅ ⊂ A ⊆ X, then

Ā =

{
X if x ∈ A
X \ {x} if x 6∈ A

(iv) For (X, I(x)) with A ⊆ X,

Ā =

{
A if x 6∈ A
X if x ∈ A
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(v) For (X, E(x)) with ∅ ⊂ A ⊆ X,

Ā =

{
A if x ∈ A
A ∪ {x} if x 6∈ A

(vi) In (X,D), every subset equals its own closure.

1.3 Continuity and Homeomorphism

The central notion of continuity of functions is extended in this section to
general topological spaces. The useful characterization of continuous func-
tions in metric spaces as those functions where the inverse image of every
open set is open is used as a definition in the general setting.
Because many properties of spaces are preserved by continuous functions,
spaces related by a bijection (one-to-one and onto function) which is con-
tinuous in both directions will have many properties in common. These
properties are identified as topological properties. Spaces so related are called
homeomorphic.

1.3.1 Continuity

The primitive intuition of a continuous process is that of one in which small
changes in the input produce small, ’non-catastrophic’ changes in the cor-
responding output. This idea formalizes easily and naturally for mappings
from one metric space to another: f is continuous at a point p in such a
setting whenever we can force the distance between f(x) and f(p) to be as
small as is desired, merely by taking the distance between x and p to be
small enough. That form of definition is useless in the absence of a properly
defined ’distance’ function but, fortunately, it is equivalent to the demand
that the preimage of each open subset of the target metric space shall be
open in the domain. Thus expressed, the idea is immediately transferrable
to general topology:

Definition 1.8 Let (X, T ) and (Y,S) be topological spaces; a mapping f :
X → Y is called continuous iff f−1(U) ∈ T for each U ∈ S i.e. the inverse
image of any open subset of Y is open in X.
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Examples

(i) If (X,D) is discrete and (Y,S) is an arbitrary topological space, then
any function f : X → Y is continuous!

Again, if (X, T ) is an arbitrary topological space and (Y, T0) is trivial,
any mapping g : X → Y is continuous.

(ii) If (X, T ), (Y,S) are arbitrary topological spaces and f : X → Y is a
constant map, then f is continuous.

(iii) Let X be an arbitrary set having more than two elements, with x ∈ X.
Let T = I(x), S = Tx in the definition of continuity; then the identity
map idX : X → X is continuous. However, if we interchange T with
S so that T = Tx and S = I(x), then idX : X → X is not continuous!
Note that idX : (X, T1) → (X, T2) is continuous if and only if T1 is finer
than T2.

Theorem 1.2 If (X1, T1), (X2, T2) and (X3, T3) are topological spaces and
h : X1 → X2 and g : X2 → X3 are continuous, then g ◦ h : X1 → X3 is
continuous.

Proof Immediate.

There are several different ways to ’recognise’ continuity for a mapping be-
tween topological spaces, of which the next theorem indicates two of the most
useful apart from the definition itself:

Theorem 1.3 Let f be a mapping from a topological space (X1, T1) to a
topological space (X2, T2). The following statements are equivalent:

(i) f is continuous,

(ii) the preimage under f of each closed subset of X2 is closed in X1,

(iii) for every subset A of X1, f(Ā) ⊆ f(A).

Proof It is easy to see that (i) implies (ii). Assuming that (ii) holds, apply it
to the closed set f(A) and (iii) readily follows. Now if (iii) is assumed and G
is a given open subset of X2, use (iii) on the set A = X1 \ f−1(G) and verify
that it follows that f−1(G) must be open.
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1.3.2 Homeomorphism

Definition 1.9 Let (X, T ), (Y,S) be topological spaces and let h : X → Y
be bijective. Then h is a homeomorphism iff h is continuous and h−1 is
continuous. If such a map exists, (X, T ) and (Y,S) are called homeomor-
phic.

Such a map has the property that

G ∈ T ⇔ f(G) ∈ S.

It follows that any statement about a topological space which is ultimately
expressible solely in terms of the open sets (together with set-theoretic rela-
tions and operations) will be true for both (X, T ) and (Y,S) if it is true for
either. In other words, (X, T ) and (Y,S) are indistinguishable as topological
spaces. The reader who has had abstract algebra will note that homeo-
morphism is the analogy in the setting of topological spaces and continuous
functions to the notion of isomorphism in the setting of groups (or rings) and
homomorphisms, and to that of linear isomorphism in the context of vector
spaces and linear maps.
Example
For every space (X, T ), the identity mapping idX : X → X is a homeomor-
phism.
A property of topological spaces which when possessed by a space is also pos-
sessed by every space homeomorphic to it is called a topological invariant.
We shall meet some examples of such properties later.
One can readily verify that if f is a homeomorphism, then the inverse map-
ping f−1 is also a homeomorphism and that the composition g ◦ f of two
homeomorphisms f and g is again a homeomorphism. Thus, the relation ‘X
and Y are homeomorphic’ is an equivalence relation.
In general, it may be quite difficult to demonstrate that two spaces are home-
omorphic (unless a homeomorphism is obvious or can easily be discovered).
For example, to verify that (R, I) is homeomorphic to (0, 1) with its in-
duced metric topology, it is necessary to demonstrate, for instance, that
h : (0, 1) → R where h(x) = 2x−1

x(x−1)
is a homeomorphism.

It is often easier to show that two spaces are not homeomorphic: simply
exhibit an invariant which is possessed by one space and not the other.
Example
The spaces (X, I(x)) and (X, E(x)) are not homeomorphic since, for example,
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(X, I(x)) has the topological invariant ‘each nhd is open’ while (X, E(x)) does
not.

1.4 Additional Observations

Definition 1.10 A sequence (xn) in a topological space (X, T ) is said to
converge to a point x ∈ X iff (xn) eventually belongs to every nhd of x i.e.
iff for every nhd U of x, there exists n0 ∈ N such that xn ∈ U for all n ≥ n0.

Caution
We learnt that, for metric spaces, sequential convergence was adequate to
describe the topology of such spaces (in the sense that the basic primitives
of ‘open set’, ‘neighbourhood’, ‘closure’ etc. could be fully characterised in
terms of sequential convergence). However, for general topological spaces,
sequential convergence fails. We illustrate:

(i) Limits are not always unique. For example, in (X, T0), each sequence
(xn) converges to every x ∈ X.

(ii) In R with the cocountable topology L, [0, 1] is not closed and so
G = (−∞, 0) ∪ (1,∞) is not open — yet if xn → x where x ∈ G,
then Assignment 1 shows that xn ∈ G for all sufficiently large n. Fur-

ther, 2 ∈ [0, 1]
L
, yet no sequence in [0, 1] can approach 2. So another

characterisation fails to carry over from metric space theory.

Finally, every L-convergent sequence of points in [0, 1] must have its
limit in [0, 1] — but [0, 1] is not closed (in L)!

Hence, to discuss topological convergence thoroughly, we need to develop a
new basic set-theoretic tool which generalises the notion of sequence. It is
called a net — we shall return to this later.

Definition 1.11 A topological space (X, T ) is called metrizable iff there
exists a metric d on X such that the topology Td induced by d coincides with
the original topology T on X.

The investigations above show that (X, T0) and (R,L) are examples of non-
metrizable spaces. However, the discrete space (X,D) is metrizable, being
induced by the discrete metric

d(x, y) =

{
1 if x 6= y
0 if x = y
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Chapter 2

Topological Properties

We explained in the previous chapter what a topological property (homeo-
morphic invariant) is but gave few good examples. We now explore some of
the most important ones. Recurring themes will be:

• When do subspaces inherit the property?

• How do continuous maps relate to the property?

• Does the property behave specially in metric spaces?

2.1 Compactness

We all recall the important and useful theorem from calculus, that functions
which are continuous on a closed and bounded interval take on a maximum
and minimum value on that interval. The classic theorem of Heine-Borel-
Lebesgue asserts that every covering of such an interval by open sets has a
finite subcover. In this section, we use this feature of closed and bounded
subsets to define the corresponding notion, compactness, in a general topo-
logical space. In addition, we consider important variants of this notion:
sequential compactness and local compactness.

2.1.1 Compactness Defined

Given a set X with A ⊆ X, a cover for A is a family of subsets U = {Ui :∈ I}
of X such that A ⊆ ∪i∈IUi. A subcover of a given cover U for A is a subfamily
V ⊂ U which still forms a cover for A.
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If A is a subspace of a space (X, T ), U is an open cover for A iff U is a cover
for A such that each member of U is open in X.
The classic theorem of Heine-Borel-Lebesgue asserts that, in R, every open
cover of a closed bounded subset has a finite subcover. This theorem has
extraordinarily profound consequences and like most good theorems, its con-
clusion has become a definition.

Definition 2.1 (X, T ) is said to be compact iff every open cover of X has
a finite subcover.

Theorem 2.1 (Alexander’s Subbase Theorem) Let S be any subbase
for (X, T ). If every open cover of X by members of S has a finite subcover,
then X is compact.

The proof of this deep result is an application of Zorn’s lemma, and is not
an exercise for the faint-hearted!

Examples

(i) (R, I) is not compact, for consider U = {(−n, n) : n ∈ N}. Similarly,
(C, Tusual) is not compact.

(ii) (0, 1) is not compact, for consider U = {( 1
n
, 1) : n ≥ 2}.

(iii) (X, C) is compact, for any X.

(iv) Given x ∈ X, (X, E(x)) is compact; (X, I(x)) is not compact unless X
is finite.

(v) T finite for any X ⇒ (X, T ) compact.

(vi) X finite, T any topology for X ⇒ (X, T ) compact.
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(vii) X infinite ⇒ (X,D) not compact.

(viii) Given (X, T ), if (xn) is a sequence in X convergent to x, then {xn :
n ∈ N} ∪ {x} is compact.

2.1.2 Compactness for Subspaces

We call a subset A of (X, T ) a compact subset when the subspace (A, TA) is
a compact space. It’s a nuisance to have to look at TA in order to decide on
this. It would be easier to use the original T . Thankfully, we can!

Lemma 2.1 A is a compact subset of (X, T ) iff every T -open cover of A
has a finite subcover.

Proof Exercise.

Lemma 2.2 Compactness is closed-hereditary and preserved by continuous
maps.

Proof Exercise.
Example
The unit circle in R2 is compact; indeed, paths in any space are compact.

2.1.3 Compactness in Metric Spaces

In any metric space (M, d), every compact subset K is closed and bounded:
(bounded, since given any x0 ∈ M ,

K ⊆ B(x0, 1) ∪B(x0, 2) ∪B(x0, 3) ∪ · · ·
⇒ K ⊆ ∪j

i=1B(x0, ni)

where we can arrange n1 < n2 < . . . < nj. Thus K ⊆ B(x0, nj) and so any
two points of K lie within nj of x0 and hence within 2nj of each other i.e. K
is bounded.
K is closed, since if x ∈ K̄ and x 6∈ K, then for each y ∈ K, dy = 1

2
d(x, y) > 0

so we may form the (open) cover of K as follows: {B(y, dy) : y ∈ K}
which reduces to a finite subcover {B(yi, dyi

) : yi ∈ K, i = 1, . . . , n}. The
corresponding neighbourhoods of x, namely B(x, dyi

), i = 1, . . . , n, may be
intersected giving a neighbourhood of x which misses K —contradiction!)
Neither half is valid in all topological spaces;
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• ‘compact⇒ bounded’ doesn’t even make sense since ‘bounded’ depends
on the metric.

• ‘compact ⇒ closed’ makes sense but is not always true. For example,
in (R, C), (0, 1) is not closed yet it is compact (since its topology is the
cofinite topology!)

Further, in a metric space, a closed bounded subset needn’t be compact (e.g.
consider M with the discrete metric and let A ⊆ M be infinite; then A is
closed, bounded (since A ⊆ B(x, 2) = M for any x ∈ M), yet it is certainly
not compact! Alternatively, the subspace (0, 1) is closed (in itself), bounded,
but not compact.)
However, the Heine-Borel theorem asserts that such is the case for R and
Rn; the following is a special case of the theorem:

Theorem 2.2 Every closed, bounded interval [a, b] in R is compact.

Proof Let U be any open cover of [a, b] and let K = {x ∈ [a, b] : [a, x] is
covered by a finite subfamily of U}. Note that if x ∈ K and a ≤ y ≤ x, then
y ∈ K. Clearly, K 6= ∅ since a ∈ K. Moreover, given x ∈ K, there exists
δx > 0 such that [x, x + δx) ⊆ K (since x ∈ some open U ∈ chosen finite
subcover of U). Since K is bounded, k∗ = sup K exists.

(i) k∗ ∈ K: Choose U ∈ U such that k∗ ∈ U ; then there exists ε > 0
such that (k∗ − ε, k∗] ⊆ U . Since there exists x ∈ K such
that k∗ − ε < x < k∗, k∗ ∈ K.

(ii) k∗ = b : If k∗ < b, choose U ∈ U with k∗ ∈ U and note that
[k∗, k∗ + δ) ⊆ U for some δ > 0 —contradiction!

Note

An alternative proof [Willard, Page 116] is to invoke the connected nature of
[a, b] by showing K is clopen in [a, b].

Theorem 2.3 Any continuous map from a compact space into a metric space
is bounded.

Proof Immediate.

Corollary 2.1 If (X, T ) is compact and f : X → R is continuous, then f
is bounded and attains its bounds.

Proof Clearly, f is bounded. Let m = sup f(X) and l = inf f(X); we must
prove that m ∈ f(X) and l ∈ f(X). Suppose that m 6∈ f(X). Since
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f(X) = f(X), then there exists ε > 0 such that (m − ε,m + ε) ∩ f(X) = ∅
i.e. for all x ∈ X, f(x) ≤ m− ε . . .contra!
Similarly, if l 6∈ f(X), then there exists ε > 0 such that [l, l + ε) ∩ f(X) = ∅
whence l + ε is a lower bound for f(X)!

2.1.4 Sequential Compactness

Definition 2.2 A topological space (X, T ) is said to be sequentially com-
pact if and only if every sequence in X has a convergent subsequence.

Recall from Chapter 1 the definition of convergence of sequences in topolog-
ical spaces and the cautionary remarks accompanying it. There we noted
that, contrary to the metric space situation, sequences in topology can have
several different limits! Consider, for example, (X, T0) and (R,L). In the
latter space, if xn → l, then xn = l for all n ≥ some n0. Thus the sequence
1, 1

2
, 1

4
, 1

8
, . . . does not converge in (R,L)!

Lemma 2.3 Sequential compactness is closed-hereditary and preserved by
continuous maps.

Proof Exercise.
We shall prove in the next section that in metric spaces, sequential compact-
ness and compactness are equivalent!

Definition 2.3 Given a topological space (X, T ), a subset A of X and x ∈
X, x is said to be an accumulation point of A iff every neighbourhood of
x contains infinitely many points of A.

Lemma 2.4 Given a compact space (X, T ) with an infinite subset A of X,
then A has an accumulation point.

Proof Suppose not; then for each x ∈ X, there exists a neighbourhood Nx of
x such that Nx ∩ A is (at most) finite; the family {Nx : x ∈ X} is an open
cover of X and so has a finite subcover {Nxi

: i = 1, . . . , n}. But A ⊆ X and
A is infinite, whence

A = A ∩X = A ∩ (∪Nxi
) = ∪n

i=1(A ∩Nxi
)

is finite!
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Lemma 2.5 Given a sequentially compact metric space (M,d) and ε > 0,
there is a finite number of open balls, radius ε, which cover M .

Proof Suppose not and that for some ε > 0, there exists no finite family of
open balls, radius ε, covering M . We derive a contradiction by constructing
a sequence (xn) inductively such that d(xm, xn) ≥ ε for all n, m (n 6= m),
whence no subsequence is even Cauchy!
Let x1 ∈ M and suppose inductively that x1, . . . , xk have been chosen in M
such that d(xi, xj) ≥ ε for all i, j ≤ k, i 6= j.By hypothesis, {B(xi, ε) : i =
1, . . . , k} is not an (open) cover of M and so there exists xk+1 ∈ M such that
d(xk+1, xi) ≥ ε for 1 ≤ i ≤ k. We thus construct the required sequence (xn),
which clearly has no convergent subsequence.

Theorem 2.4 A metric space is compact iff it is sequentially compact.

Proof

⇒: Suppose (M, d) is compact. Given any sequence (xn) in M , either A =
{x1, x2, . . .} is finite or it is infinite. If A is finite, there must be at least
one point l in A which occurs infinitely often in the sequence and its
occurrences form a subsequence converging to l. If A is infinite, then by
the previous lemma there exists x ∈ X such that every neighbourhood
of x contains infinitely many points of A.

For each k ∈ ω, B(x, 1
k
) contains infinitely many xn’s: select one, call

it xnk
, making sure that nk > nk−1 > nk−2 . . .. We have a subsequence

(xn1 , xn2 , . . . , xnk
, . . .) so that d(x, xnk

) < 1
k
→ 0 i.e. xnk

→ x. Thus
in either case there exists a convergent subsequence and so (M,d) is
sequentially compact.

⇐: Conversely, suppose (M, d) is sequentially compact and not compact.
Then there exists some open cover {Gi : i ∈ I} of M having no finite
subcover. By Lemma 2.5, with ε = 1

n
(n ∈ ω), we can cover M by a

finite number of balls of radius 1
n
. For each n, there has to be one of

these, say B(xn,
1
n
), which cannot be covered by any finite number of

the sets Gi. The sequence (xn) must have a convergent subsequence
(xnk

) which converges to a limit l. Yet {Gi : i ∈ I} covers M , so
l ∈ some Gi0 , say.

As k →∞, xnk
→ l; but also 1

nk
→ 0 and 1/nk is the radius of the ball

centred on xnk
. So eventually B(xnk

, 1
nk

) is inside Gi0 , contradictory to
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their choice! (More rigorously, there exists m ∈ ω such that B(l, 2
m

) ⊆
Gi0 . Now B(l, 1

m
) contains xnk

for all k ≥ k0 say, so choose k ≥ k0

such that nk ≥ m. Then B(xnk
, 1

nk
) ⊆ B(l, 2

m
) ⊆ Gi0 .) Hence, M is

compact.

2.1.5 Compactness and Uniform Continuity

Recall that a map f : (X1, d1) → (X2, d2), where (Xi, di) is a metric space
for each i, is uniformly continuous on Xi if given any ε > 0, ∃δ > 0 such that
d1(x, y) < δ for x, y ∈ X1 ⇒ d2(f(x), f(y)) < ε.
Ordinary continuity of f is a local property, while uniform continuity is a
global property since it says something about the behaviour of f over the
whole space X1. Since compactness allows us to pass from the local to the
global, the next result is not surprising:

Theorem 2.5 If (X, d) is a compact metric space and f : X → R is contin-
uous, then f is uniformly continuous on X.

Note Result holds for any metric space codomain.
Proof Let ε > 0; since f is continuous, for each x ∈ X, ∃δx > 0 such that
d(x, y) < 2δx ⇒ |f(x)− f(y)| < ε

2
. The family {Bδx(x) : x ∈ X} is an open

cover of X and so has a finite subcover {Bδxi
(xi) : i = 1, . . . , n} of X. Let

δ = min{δxi
: i = 1, . . . , n}; then, given x, y ∈ X such that d(x, y) < δ, it

follows that |f(x)− f(y)| < ε
(for x ∈ Bδxi

(xi) for some i, whence d(x, xi) < δxi
and so d(y, xi) ≤ d(y, x) +

d(x, xi) < δ + δxi
≤ 2δxi

⇒ |f(y)− f(xi)| < ε
2
.

Thus |f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| < ε
2

+ ε
2

= ε).
Note Compactness is not a necessary condition on the domain for uniform
continuity. For example, for any metric space (X, d), let f : X → X be the
identity map. Then f is easily seen to be uniformly continuous on X.

2.1.6 Local Compactness

Definition 2.4 A topological space (X, T ) is locally compact iff each point
of X has a compact neighbourhood.

Clearly, every compact space is locally compact. However, the converse is
not true.
Examples
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(i) With X infinite, the discrete space (X,D) is clearly locally compact (for
each x ∈ X, {x} is a compact neighbourhood of x!) but not compact.

(ii) With X infinite and x ∈ X, (X, I(x)) is locally compact (but not
compact).

(iii) (R, I) is locally compact (x ∈ R ⇒ [x − 1, x + 1] is a compact neigh-
bourhood of x).

(iv) The set of rational numbers Q with its usual topology is not a locally
compact space, for suppose otherwise; then 0 has a compact neighbour-
hood C in Q so we can choose ε > 0 such that J = Q ∩ [−ε, ε] ⊆ C.
Now J is closed in (compact) C and is therefore compact in R. Thus,
J must be closed in R—but J̄R = [−ε, ε]!

Lemma 2.6 (i) Local compactness is closed-hereditary.

(ii) Local compactness is preserved by continuous open maps — it is not
preserved by continuous maps in general. Consider idQ : (Q,D) →
(Q, IQ) which is continuous and onto; (Q,D) is locally compact while
(Q, IQ) isn’t!

Proof Exercise.

2.2 Other Covering Conditions

Definition 2.5 A topological space (X, T ) is said to be

(i) Lindelöf iff every open cover of X has a countable subcover

(ii) countably compact iff every countable open cover of X has a finite
subcover.

Thus, a space is compact precisely when it is both Lindelöf and countably
compact. Further, every sequentially compact space is countably compact,
although the converse is not true. Moreover, sequential compactness neither
implies nor is implied by compactness.
However, for metric spaces, or more generally, metrizable spaces, the condi-
tions compact, countably compact and sequentially compact are equivalent.
Note Second countable⇒ separable; separable + metrizable⇒ second count-
able . . . and so in metrizable spaces, second countability and separability are
equivalent.
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2.3 Connectedness

It is not terribly hard to know when a set on the real line is connected, or
‘of just one piece.’ This notion is extended to general topological spaces
in this section and alternative characterizations of the notion are given. In
addition the relationship between continuous maps and and connectedness
is given. This provides an elegant restatement of the familiar Intermediate
Value Theorem from first term calculus.

2.3.1 Definition of Connectedness

A partition of (X, T ) means a pair of disjoint, non-empty, T -open subsets
whose union is X. Notice that, since these sets are complements of one
another, they are both closed as well as both open. Indeed, the definition of
’partition’ is not affected by replacing the term ’open’ by ’closed’.

Definition 2.6 A connected space (X, T ) is one which has no partition.
(Otherwise, (X, T ) is said to be disconnected.)
If ∅ 6= A ⊆ (X, T ), we call A a connected set in X whenever (A, TA) is a
connected space.

Lemma 2.7 (X, T ) is connected iff X and ∅ are the only subsets which are
clopen.

Examples

(i) (X, T0) is connected.

(ii) (X,D) cannot be connected unless |X| = 1. (Indeed the only connected
subsets are the singletons!)

(iii) The Sorgenfrey line Rs is disconnected (for [x,∞) is clopen!).

(iv) The subspace Q of (R, I) is not connected because

Q ∩ [−
√

2,
√

2]︸ ︷︷ ︸
closed in Q

= Q ∩ (−
√

2,
√

2)︸ ︷︷ ︸
open in Q
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is clopen and is neither universal nor empty.

(v) (X, C) is connected except when X is finite; indeed, every infinite sub-
set of X is connected.

(vi) (X,L) is connected except when X is countable; indeed, every uncount-
able subset of X is connected.

(vii) In (R, I), A ⊆ R is connected iff A is an interval. (Thus, subspaces
of connected spaces are not usually connected — examples abound in
(R, I).)

2.3.2 Characterizations of Connectedness

Lemma 2.8 ∅ ⊂ A ⊆ (X, T ) is not connected iff there exist T -open sets G,
H such that A ⊆ G∪H, A∩G 6= ∅, A∩H 6= ∅ and A∩G∩H = ∅. (Again,
we can replace ’open’ by ’closed’ here.)

Proof Exercise.
Note By an interval in R, we mean any subset I such that whenever a < b < c
and whenever a ∈ I and c ∈ I then b ∈ I. It is routine to check that
the only ones are (a, b), [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b), (−∞, b],
(−∞,∞) = R and {a} for real a, b, a < b where appropriate.
It turns out that these are exactly the connected subsets of (R, I):-

Lemma 2.9 In R, if [a, b] = F1∪F2 where F1, F2 are both closed and a ∈ F1,
b ∈ F2 then F1 ∩ F2 6= ∅.
Proof Exercise.

Theorem 2.6 Let ∅ ⊂ I ⊆ (R, I). Then I is connected iff I is an interval.

Proof

⇒: If I is not an interval, then there exist a < b < c with a ∈ I, b 6∈ I and
c ∈ I. Take A = I ∩ (−∞, b) and B = I ∩ (b,∞). Then A ∪ B = I,
A ∩ B = ∅, A 6= ∅, B 6= ∅, A ⊂ I, B ⊂ I and A, B are both open in I
i.e. A and B partition I and so I is not connected.
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⇐: Suppose I is not connected and that I is an interval. By the ‘closed’
version of Lemma 2.8, there exist closed subsets K1, K2 of R such
that I ⊆ K1 ∪ K2, I ∩ K1 6= ∅, I ∩ K2 6= ∅ and I ∩ K1 ∩ K2 = ∅.
Select a ∈ I ∩ K1, b ∈ I ∩ K2; without loss of generality, a < b.
Then [a, b] ⊆ I so that [a, b] = ([a, b] ∩K1) ∪ ([a, b] ∩K2), whence by
Lemma 2.9, ∅ 6= [a, b] ∩K1 ∩K2 ⊆ I ∩K1 ∩K2 = ∅!

2.3.3 Connectedness and Continuous Maps

Lemma 2.10 Connectedness is preserved by continuous maps.

Proof Exercise.

Corollary 2.2 (Intermediate Value Theorem) If f : [a, b] → R is con-
tinuous and f(a) < y < f(b), then y must be a value of f .

Proof Exercise.

Corollary 2.3 (Fixed point theorem for [0, 1]) If f : [0, 1] → [0, 1] is
continuous, then it has a ‘fixed point’ i.e. there exists some x ∈ [0, 1] such
that f(x) = x.

Proof Consider g(x) = f(x)− x. Then g : [0, 1] → R is continuous. Further,
g(0) = f(0) ≥ 0 and g(1) = f(1) − 1 ≤ 0 so that 0 is intermediate between
g(0) and g(1). Thus, by the Intermediate Value Theorem, there exists x ∈
[0, 1] such that 0 = g(x) = f(x)− x i.e. such that f(x) = x.
Note Given continuous h : [a, b] → [a, b], it follows that h has a fixed point
since [a, b] ∼= [0, 1] and ‘every continuous function has a fixed point’ is a
homeomorphic invariant.

Lemma 2.11 Let (X, T ) be disconnected with ∅ ⊂ Y ⊂ X, Y clopen. If A
is any connected subset of X, then A ⊆ Y or A ⊆ X \ Y .

Proof If A ∩ Y 6= ∅ 6= A ∩ (X \ Y ), then ∅ ⊂ A ∩ Y ⊂ A and A ∩ Y is
clopen in A. Thus, A is not connected! It follows that either A ∩ Y = ∅ or
A ∩X \ Y = ∅ i.e. either A ⊆ X \ Y or A ⊆ Y .

Lemma 2.12 If the family {Ai : i ∈ I} of connected subsets of a space
(X, T ) has a non-empty intersection, then its union ∪i∈IAi is connected.
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Proof Suppose not and that there exists a non-empty proper clopen subset Y
of ∪i∈IAi. Then for each i ∈ I, either Ai ⊆ Y or Ai ⊆ ∪i∈IAi \ Y . However
if for some j, Aj ⊆ Y , then Ai ⊆ Y for each i ∈ I (since ∩i∈IAi 6= ∅) which
implies that ∪i∈IAi ⊆ Y !
Similarly, if for some k ∈ I, Ak ⊆ ∪i∈IAi \ Y , then ∪i∈IAi ⊆ ∪i∈IAi \ Y !

Corollary 2.4 Given a family {Ci : i ∈ I} of connected subsets of a space
(X, T ), if B ⊆ X is also connected and B ∩ Ci 6= ∅ for all i ∈ I, then
B ∪ (∪i∈ICi) is connected.

Proof Take Ai = B ∪ Ci in Lemma 2.12.

Lemma 2.13 If A is a connected subset of a space (X, T ) and A ⊆ B ⊆ ĀT ,
then B is a connected subset.

Proof If B is not connected, then there exists ∅ ⊂ Y ⊂ B which is clopen
in B. By Lemma 2.11, either A ⊆ Y or A ⊆ B \ Y . Suppose A ⊆ Y (a
similar argument suffices for A ⊆ B \ Y ); then ĀT ⊆ Ȳ T and so B \ Y =
B ∩ (B \ Y ) = ĀTB ∩ (B \ Y ) ⊆ Ȳ TB ∩ (B \ Y ) = Y ∩ (B \ Y ) = ∅ — a
contradiction!

Definition 2.7 Let (X, T ) be a topological space with x ∈ X; we define the
component of x, Cx, in (X, T ) to be the union of all connected subsets of
X which contain x i.e.

Cx = ∪{A ⊆ X : x ∈ A and A is connected}.

For each x ∈ X, it follows from Lemma 2.12 that Cx is the maximum con-
nected subset of X which contains x. Also it is clear that if x, y ∈ X, either
Cx = Cy or Cx ∩ Cy = ∅ (for if z ∈ Cx ∩ Cy, then Cx ∪ Cy ⊆ Cz ⊆ Cx ∩ Cy

whence Cx = Cy(= Cz)). Thus we may speak of the components of a space
(X, T ) (without reference to specific points of X): they partition the space
into connected closed subsets (by Lemma 2.13) and are precisely the maximal
connected subsets of X.
Examples
(i) If (X, T ) is connected, (X, T ) has only one component, namely X!
(ii) For any discrete space, the components are the singletons.
(iii) In Q (with its usual topology), the components are the singletons. (Thus,
components need not be open.)
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Definition 2.8 A space (X, T ) is totally disconnected iff the only con-
nected subsets of X are the singletons (equivalently, the components of (X, T )
are the singletons).

Thus, by the previous examples, we see that the space Q of rationals, the
space R \Q of irrationals and any discrete space are all totally disconnected.
Further, the Sorgenfrey line Rs is totally disconnected.

2.3.4 Pathwise Connectedness

Definition 2.9 A topological space (X, T ) is pathwise connected iff for
any x, y ∈ X, there exists a continuous function f : [0, 1] → X such that
f(0) = x and f(1) = y. Such a function f is called a path from x to y.

Theorem 2.7 Every pathwise connected space is connected.

Proof Let (X, T ) be pathwise connected and let a ∈ X; for every x ∈ X, there
exists a path px : [0, 1] → X from a to x. Then, for each x ∈ X, px([0, 1])
is connected; moreover, pa(0) = a ∈ ∩x∈Xpx([0, 1]) so that by Lemma 2.12,
X = ∪x∈Xpx([0, 1]) is connected.
Note well The converse is false. Consider the following example, the topolo-
gist’s sine curve:

V = {(x, 0) : x ≤ 0} ∪ {(x, sin
1

x
) : x > 0}

is a connected space, but no path can be found from (0, 0) to any point
(x, sin 1

x
) with x > 0

(for suppose, w.l.o.g., there exists a path p : [0, 1] → X with p(0) = ( 1
π
, 0)

and p(1) = (0, 0). Then π1◦p, being continuous, must take all values between
0 and 1

π
, in particular 1

(2n+ 1
2
)π

for each n i.e. there exists tn ∈ [0, 1] such that

π1◦p(tn) = 1
(2n+ 1

2
)π

for each n. Thus, p(tn) = ( 1
(2n+ 1

2
)π

, 1) → (0, 1) as n →∞.

Now tn ∈ [0, 1] for all n which implies that there exists a subsequence (tnk
)

in [0, 1] with tnk
→ λ. Then p(tnk

) → p(λ) and so π1 ◦ p(tnk
) → 0. Thus

p(λ) = (0, y) for some y, whence y = 0 (since p(λ) ∈ X)!)

2.4 Separability

Definition 2.10 A topological space is said to be
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(i) separable iff it has a countable dense subset.

(ii) completely separable (equivalently,second countable) iff it has a
countable base.

Examples

(i) (R, I) is separable (since Q̄ = R).

(ii) (X, C) is separable for any X.

(iii) (R,L) is not separable.

Theorem 2.8 (i) Complete separability implies separability.

(ii) The converse is true in metric spaces.

Proof We prove only (ii). In metric space (M,d), let D = {x1, x2, . . .} be
dense. Consider B = {B(xi, q) : i ∈ ω, q ∈ Q, q > 0}, a countable collection
of open sets. One can show that B is a base for Td . . . over to you!

Theorem 2.9 (i) Complete separability is hereditary.

(ii) Separability is not hereditary. (Consider the ‘included point’ topology
I(0) on R; then (R, I(0)) is separable, since {0} = R. However, R\{0}
is not separable because it is discrete.)

Example
Separability does not imply complete separability since, for example, (R, I(0))
is separable but not completely separable.(Suppose there exists a countable
base B for its topology. Given x 6= 0, {0, x} is an open neighbourhood of x
and so there exists Bx ∈ B such that x ∈ Bx ⊆ {0, x}.Thus Bx = {0, x} i.e.
B is uncountable . . . contradiction!

Theorem 2.10 Separability is preserved by continuous maps.

Proof Exercise.
Note Complete separability is not preserved by continuous maps.

26



Chapter 3

Convergence

In Chapter 1, we defined limits of sequences in a topological space (X, T ) so
as to assimilate the metric definition. We noted, however, that not everything
we knew about this idea in metric spaces is valid in topological spaces.
We will examine two main ways around this difficulty:

• develop a kind of ‘super-sequence’ or net which does for general topol-
ogy what ordinary sequences do for metric spaces.

• identify the class of topological spaces in which the old idea of sequential
limit is good enough.

3.1 The Failure of Sequences

The following important results are probably familiar to us in the context of
metric spaces, or at least in the setting of the real line, R.

Theorem 3.1 Given (X, T ), A ⊆ X, p ∈ X: if there exists some sequence
of points of A tending to p, then p ∈ Ā.

Theorem 3.2 Given (X, T ), A ⊆ X: if A is closed, then A includes the
limit of every convergent sequence of points of A.

Theorem 3.3 Given f : (X, T ) → (Y, T ′
): if f is continuous, then f ‘pre-

serves limits of sequences’ i.e. whenever xn → l in X, then f(xn) → f(l) in
Y .
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In each case above, it is routine to prove the statement true in a general
topological space as asserted. We illustrate by proving Theorem 3.3:
Let f be continuous and xn → l in X. We must show that f(xn) → f(l).
Given a neighbourhood N of f(l), there exists open G such that f(l) ∈ G ⊆
N . Then l ∈ f−1(G) ⊆ f−1(N) i.e. f−1(N) is a neighbourhood of l and so
xn ∈ f−1(N)∀n ≥ n0 say. Thus f(xn) ∈ N∀n ≥ n0, whence f(xn) → f(l).
In metric spaces, the converses of these results are also true but our main
point here is that in general topology, the converses are not valid.
Example
In (R,L), (0, 1) = R. So, for example, 5 ∈ (0, 1) and yet the only way a
sequence (xn) converges to a limit l is for xn = l from some stage on. So no
sequence in (0, 1) can converge to 5 proving that the converse of Theorem 3.1
is false.
Continuing, the limit of any convergent sequence in (0, 1) must belong to
(0, 1) for the same reason and yet (0, 1) is not closed. Thus, Theorem 3.2’s
converse is false.
Further, idR : (R,L) → (R, I) is not continuous and yet it does preserve
limits of sequences.
Now this is a great nuisance! Sequences are of immense usefulness in real
analysis and in metric spaces and elsewhere — and their failure to describe
general topology adequately is a technical handicap. What to do?

3.2 Nets - A Kind of ‘Super-Sequence’

Recall that a sequence is just a function having the positive integers as do-
main. The set of positive integers, of course, possesses a particularly simple
ordering; there is a first member, second member, third member, etc. Not all
sets are naturally endowed with so simple an ordering. For example, dictio-
nary (lexographical) ordering of words is more complex (though still relative
nice as orderings go). By replacing the domain of positive integers with a set
having a more complicated ordering we will:

• define a net (in analogy with sequence),

• identify an associated notion of convergence,

• show that net convergence is sufficient to characterize closure of sets,
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• and that compactness can be characterized in terms of convergence of
subnets.

Note that these last two items generalize the role of sequences in a metric
space.

3.2.1 Definition of Net

Definition 3.1 A binary relation ≤ on a set P is said to be a pre-order iff

(i) p ≤ p ∀p ∈ P

(ii) p ≤ q and q ≤ r imply p ≤ r ∀p, q, r ∈ P .

We often refer to P as being a pre-ordered set when it is understood that ≤
is the pre-order in question.
If it is also true that for p, q ∈ P ,

(iii) p ≤ q and q ≤ p imply p = q, P is said to be a partially ordered set
(or poset).

Definition 3.2 A pre-ordered set P is said to be directed (or updirected)
iff each pair of members of P has an upperbound.

(i.e. if p, q ∈ P , then there exists s ∈ P such that p ≤ s, q ≤ s.)

Definition 3.3 Let (P,≤) be a poset. Then if x, y ∈ P with x 6≤ y and
y 6≤ x, we write x ‖ y and say that x and y are incomparable;
If E ⊆ P , then E is said to be totally unordered (or diverse) iff x, y ∈ E
implies x = y or x ‖ y.
If C ⊆ P , then C is said to be linear (or a chain or a total order) iff
x, y ∈ C implies x < y, x = y or y < x.
(P,≤) is said to be a lattice iff each pair of members of P has a greatest
lower bound and a least upper bound.
A lattice (P,≤) is said to be complete iff every non-empty subset Y of P
has a greatest lower bound (∧Y ) and a least upper bound (∨Y ).
An element v of a poset (P,≤) is said to be maximal ( minimal) iff v ≤ x
(x ≤ v), x ∈ P ⇒ v = x.

Definition 3.4 A net in a (non-empty set) X is any function x : A → X
whose domain A is a directed set.
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In imitation of the familiar notation in sequences, we usually write the net
value x(α) as xα. A typical net x : A → X will usually appear as (xα, α ∈ A)
or (xα)α∈A or some such notation.

Examples of Nets

(i) N , Z, N×N are all directed sets, where suitable pre-orders are respec-
tively the usual magnitude ordering for N and Z, and (i, j) ≤ (m,n)
iff i ≤ m and j ≤ n, in N × N . Thus, for example, a sequence is an
example of a net.

(ii) The real function f : R \ {0} → R given by f(x) = 3− 1
x

is a net, since
its domain is a chain. Any real function is a net.

(iii) Given x ∈ (X, T ), select in any fashion an element xN from each neigh-
bourhood N of x; then (xN)N∈Nx is a net in X ( since it defines a
mapping from (Nx,≤) into X). Recall that Nx is ordered by inverse
set inclusion!

3.2.2 Net Convergence

Definition 3.5 A net (xα)α∈A in (X, T ) converges to a limit l if for each
neighbourhood N of l, there exists some αN ∈ A such that xα ∈ N for all
α ≥ αN .

In such a case, we sometimes say that the net (xα)α∈A

eventuates N . Clearly, this definition incorporates the old definition of ‘limit
of a sequence’. The limit of the net f described in (ii) above is 3. In (iii),
the net described converges to x no matter how the values xN are chosen
. . . prove!

3.2.3 Net Convergence and Closure

Our claim is that nets ‘fully describe’ the structure of a topological space. Our
first piece of evidence to support this is that with nets, instead of sequences,
Theorems 3.1, 3.2 and 3.3 have workable converses:

Theorem 3.4 Given (X, T ), A ⊆ X, p ∈ X: p ∈ Ā iff there exists a net in
A converging to p.
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Proof If some net of points of A converges to p, then every neighbourhood
of p contains points of A (namely, values of the net) and so we get p ∈ Ā.
Conversely, if p is a closure point of A then, for each neighbourhood N of p,
it will be possible to choose an element aN of A that belongs also to N . The
net which these choices constitute converges to p, as required.

Theorem 3.5 Given (X, T ), A ⊆ X, A is closed iff it contains every limit
of every (convergent) net of its own points.

Proof This is really just a corollary of the preceding theorem.

Theorem 3.6 Given f : (X, T ) → (Y, T ′
), f is continuous iff f preserves

net convergence.

Proof Exercise.

3.2.4 Nets and Compactness

Definition 3.6 Let (xα)α∈A be any net and let α0 ∈ A. The αth
0 tail of the

net is the set {xα : α ≥ α0} = x([α0, )). We denote it by x(α0 →).

Definition 3.7 Let (xα)α∈A and (yβ)β∈B be any two nets. We call (yβ)β∈B

a subnet of (xα)α∈A provided that every tail of (xα) contains a tail of (yβ)
i.e. provided:

∀α0 ∈ A ∃β0 ∈ B such that x(α0 →) ⊇ y(β0 →).

We expected a definition like ‘subsequence’ to turn up here and we are dis-
appointed that it has to be so complicated.
Net theory ceases to be a straightforward generalisation of sequence theory
precisely when we have to take a subnet . . . so we’ll try to avoid this whenever
possible! There is however one result certainly worth knowing:

Theorem 3.7 (X, T ) is compact iff in X, every net has (at least one) con-
vergent subnet.

(So, for example, (n) is a net in R with no convergent subnet.)
Proof Not required.

Corollary 3.1 Compactness is closed-hereditary
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Proof (for if (xα) is a net in a closed set F ⊆ X, then it has a convergent
subnet (yβ) in X. Thus there exists a subnet (zγ) of (yβ) in F which converges
in X, whence its limit is in F ).

Corollary 3.2 Compactness is preserved by continuous maps

Proof (for if X is compact and f continuous, let (yα)α∈A be a net in f(X).
Then for each α ∈ A, yα = f(xα) for some xα ∈ X. The net (xα)α∈A

has a convergent subnet (zβ)β∈B, say zβ → l, whence f(zβ) → f(l). Then
(f(zβ))β∈B is a convergent subnet of (yα)α∈A).
Example
If (xnk

) is a subsequence of a sequence (xn), then it is a subnet of it also;

because the ith0 tail of the sequence (xn) is

{xi0 , xi0+1, xi0+2, . . .} · · · (∗)
while the ith0 tail of the subsequence (xnk

) is:

{xni0
, xni0+1

, xin0+2 , . . .} · · · (∗∗)
and we see that (∗∗) ⊆ (∗) merely because ni0 ≥ i0.

Lemma 3.1 If a net (xα) converges to a limit l, then so do all its subnets.

Proof Let (yβ) be a subnet of (xα); let N be a neighbourhood of l. Then
there exists α0 such that xα ∈ N for all α ≥ α0. Further, there exists β0 such
that {yβ : β ≥ β0} ⊆ {xα : α ≥ α0} and so yβ ∈ N for all β ≥ β0.

3.3 First Countable Spaces - Where Sequences

Suffice

Why do sequences suffice to describe structure in R, C and other metric
spaces but not in many other topological spaces? The key here is recognizing
that many proofs regarding convergence in metric spaces involve constructing
sequences of nested open sets about a point. Sometimes these describe the
topological structure near the point and other times not. In what follows we

• identify the local characteristic of topological space that makes these
proofs work,

• and prove that sequences suffice to describe the topological structure
of spaces with this characteristic.
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3.3.1 First Countable Spaces

So what characteristic common to R, C and other metric spaces makes se-
quences so ‘good’ at describing their structure?

Definition 3.8 Let x ∈ (X, T ). A countable neighbourhood base at
x means: a sequence N1, N2, N3, . . . of particular neighbourhoods of x such
that every neighbourhood of x shall contain one of the Ni’s.

Note that we may assume that N1 ⊇ N2 ⊇ N3 ⊇ · · · because, if not, then we
can work with N1, N1 ∩N2, N1 ∩N2 ∩N3, . . .

Definition 3.9 We call (X, T ) first-countable when every point in X has
a countable neighbourhood base.

Example The classic example of a first-countable space is any metric (or
metrizable) space because if x ∈ (M,d), then B(x, 1), B(x, 1

2
), B(x, 1

3
), . . . is

a countable neighbourhood base at x.

Theorem 3.8 First-countability is hereditary and preserved by continuous
open onto maps.

Proof Left to the reader.

Theorem 3.9 (i) Complete separability implies first countability.

(ii) Converse not always true.

(iii) Converse valid on a countable underlying set.

Proof

(i) If B is a countable base for (X, T ) and p ∈ X, consider {B ∈ B : p ∈ B}
which is a countable family of neighbourhoods of p. Moreover, they
form a neighbourhood base at p.

(ii) An uncountable discrete space is first countable ( since metrizable), yet
is not completely separable.

(iii) Suppose X countable and (X, T ) first countable. For each x ∈ X,
choose a countable neighbourhood base: N(x, 1), N(x, 2), N(x, 3), . . . .
Each is a neighbourhood of x and so contains an open neighbourhood
of x: G(x, 1), G(x, 2), G(x, 3), . . . .

Then B = {G(x, n) : n ∈ N, x ∈ X} is a countable family of open sets
and is a base for (X, T ). Thus, (X, T ) is completely separable.
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Example
The Arens-Fort space (see, for example, Steen and Seebach, Counterexamples
in Topology is not first-countable because otherwise it would be completely
separable which is false!

3.3.2 Power of Sequences in First Countable Spaces

The following three results illustrate that ‘sequences suffice for first-countable
spaces’ in the sense that we don’t need to use nets to describe their structure.
This is why sequences are sufficiently general to describe, fully, metric and
metrizable spaces.

Theorem 3.10 Given a first-countable space (X, T )

(i) p ∈ X, A ⊆ X, then p ∈ Ā iff there exists a sequence of points of A
converging to p.

(ii) A ⊆ X is closed iff A contains every limit of every convergent sequence
of its own points.

(iii) f : (X, T ) → (Y, T ′
) is continuous iff it preserves limits of (convergent)

sequences.

Proof

(i) Theorem 3.1 said that if there exists a sequence in A converging to
some p ∈ X, then p ∈ Ā.

Conversely, if p ∈ Ā, then p has a countable base of neighbourhoods
N1 ⊇ N2 ⊇ N3 ⊇ · · ·, each of which must intersect A. So choose
xj ∈ Nj ∩A for all j ≥ 1. Then (xj) is a sequence in A and, given any
neighbourhood H of p, H must contain one of the Nj’s i.e. H ⊇ Nj0 ⊇
Nj0+1 ⊇ · · · so that xj ∈ H for all j ≥ j0. That is, xj → p.

(ii) Corollary of (i).

(iii) f continuous implies that it must preserve limits of sequences (by The-
orem 3.3). Conversely, if f is not continuous, there exists A ⊆ X such
that f(Ā) 6⊆ f(A). Thus, there exists p ∈ f(Ā) \ f(A) so p = f(x),
some x ∈ Ā. So there exists a sequence (xn) in A with xn → x.

34



Yet, if f(xn) → f(x)(= p), p would be the limit of a sequence in f(A)
so that p ∈ f(A) —contradiction! Thus f fails to preserve convergence
of this sequence.
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Chapter 4

Product Spaces

A common task in topology is to construct new topological spaces from other
spaces. One way of doing this is by taking products. All are familiar with
identifying the plane or 3-dimensional Euclidean space with ordered pairs
or triples of numbers each of which is a member of the real line. Fewer are
probably familar with realizing the torus as ordered pairs of complex numbers
of modulus one. In this chaper we answer two questions:

• How do the above product constructions generalize to topological spaces?

• What topological properties are preserved by this construction?

4.1 Constructing Products

The process of constructing a product falls naturally into two stages.

• The first stage, which is entirely set-theoretic, consists in describing an
element of the underlying set of the product. This task is primarily
one of generalizing the notion of ordered pair or triple.

• The second stage is describing what open sets look like. This will be
done by describing a subbasis for the topology. The guiding goal is to
provide just enough opens sets to guarantee the continuity of certain
important functions.
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4.1.1 Set-Theoretic Construction

Suppose throughout that we are given a family of topological spaces {(Xi, Ti) :
i ∈ I} where I is some non-empty ‘labelling’ or index set.
Our first task is to get a clear mental picture of what we mean by the product
of the sets Xi. Look again at the finite case where I = {1, 2, . . . , n}. Here,
the product set

X = X1 ×X2 ×X3 × . . .×Xn =
n∏

i=1

Xi = {(p1, p2, . . . , pn) : pi ∈ Xi, i ∈ I}.

i.e. the elements of X are the functions x : I → ∪n
i=1Xi such that x(1) ∈ X1,

x(2) ∈ X2, . . . , x(n) ∈ Xn i.e. x(i) ∈ Xi∀i where, for convenience, we usually
write xi instead of x(i). In this form, the definition extends immediately to
any I, finite or infinite i.e. if {Xi : i ∈ I} is any family of sets, then their
product is

{x : I → ∪i∈IXi for which x(i) ∈ Xi ∀i ∈ I}
except that we normally write xi rather than x(i).
Then a typical element of X =

∏
Xi will look like: (xi)i∈I or just (xi). We

will still call xi the ith coordinate of (xi)i∈I . ( Note that the Axiom of Choice
assures us that

∏
Xi is non-empty provided none of the Xi’s are empty.)

4.1.2 Topologizing the Product

Of the many possible topologies that could be imposed on X =
∏

Xi, we
describe the most useful. This topology is ’just right’ in the sense that it
is barely fine enough to guarantee the continuity of the coordinate projec-
tion functions while being just course enough allow the important result of
Theorem 4.1.

Definition 4.1 For each i ∈ I, the ith projection is the map πi :
∏

Xi →
Xi which ‘selects the ith coordinate’ i.e. πi((xi)i∈I) = xi.

An open cylinder means the inverse projection of some non-empty Ti-open
set i.e. π−1

i (Gi) where i ∈ I, Gi 6= ∅, Gi ∈ Ti.
An open box is the intersection of finitely many open cylinders ∩n

j=1π
−1
ij (Gij).

The only drawable case I = {1, 2} may help explain:
(Here will be, eventually, a picture!)
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We use these open cylinders and boxes to generate a topology with just
enough open sets to guarantee that projection maps will be continuous.
Note that the open cylinders form a subbase for a certain topology T on
X =

∏
Xi and therefore the open boxes form a base for T ; T is called the

[Tychonoff]product topology and (X, T ) is the product of the given fam-
ily of spaces. We write (X, T ) =

∏{(Xi, Ti) : i ∈ I} =
∏

i∈I(Xi, Ti) or even
T =

∏
i∈I Ti.

Notice that if ∩n
j=1π

−1
ij (Gij) is any open box, then without loss of generality

we can assume i1, i2, . . . in all different because if there were repetitions like

. . . ∩ π−1
ik

(G) ∩ π−1
ik

(H) . . .

we can replace each by

. . . ∩ π−1
ik

(G ∩H) ∩ . . .

and thus eliminate all repetitions.
It is routine to check that if Tn is the usual topology on Rn, and T the usual
topology on R, then

(R, T )× (R, T )× . . . (R, T ) = (Rn, Tn)

as one would hope!

Lemma 4.1 In a product space (X, T ), N is a neighbourhood of p ∈ X iff
there exists some open box B such that p ∈ B ⊆ N .

Lemma 4.2 For each i ∈ I,

(i) πi is continuous

(ii) πi is an open mapping.

Proof

(i) Immediate.

(ii) Given open G ⊆ X, then G is a union of basic open sets {Bk : k ∈ K}
in X, whence πi(G) is a union of open subsets {Bi

k : k ∈ K} of Xi and
is therefore open. (The notation here is intended to convey that Bi

k is
the ’component along the i-th coordinate axis’ of the open box Bk.)
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Theorem 4.1 A map into a product space is continuous iff its composite
with each projection is continuous.

Proof Since the projections are continuous, so must be their composites with
any continuous map. To establish the converse, first show that if S is a
subbase for the codomain (target) of a mapping f , then f will be continuous
provided that the preimage of every member of S is open; now use the fact
that the open cylinders constitute a subbase for the product topology.
Worked example Show that (X, T ) × (Y,S) is homeomorphic to (Y,S) ×
(X, T ).
Solution

Define f : X × Y → Y ×X
g : Y ×X → X × Y





by f(x, y) = (y, x)
g(y, x) = (x, y).

Clearly these are one-

one, onto and mutually inverse. It will suffice to show that both are contin-
uous.
π1 ◦ f = π

′
2; π2 ◦ f = π

′
1. Now π

′
i is continuous for i = 1, 2 and so f is

continuous! Similarly, g is continuous.
Worked example Show that the product of infinitely many copies of (N,D)
is not locally compact.
Solution
We claim that no point has a compact neighbourhood. Suppose otherwise;
then there exists p ∈ X, C ⊆ X and G ⊆ X with C compact, G open and
p ∈ G ⊆ C. Pick an open box B such that p ∈ B ⊆ G ⊆ C. B looks like
∩n

j=1π
−1
ij (Gij). Choose in+1 ∈ I \ {i1, i2, . . . , in}; then πin+1(C) is compact

(since compactness is preserved by continuous maps).
Thus, pin+1 ∈ πin+1(B) = Xin+1 ⊆ πin+1(C) ⊆ Xin+1 = (N,D). Thus,
πin+1(C) = (N,D) . . . which is not compact!

4.2 Products and Topological Properties

The topological properties possessed by a product depends, of course, on the
properties possessed by the individual factors. There are several theorems
which assert that certain topological properties are productive i.e. are
possessed by the product if enjoyed by each factor. Several of these theorems
are given below.
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4.2.1 Products and Connectedness

Theorem 4.2 Any product of connected spaces must be connected.

Proof is left to the reader.

4.2.2 Products and Compactness

Theorem 4.3 (Tychonoff’s theorem) Any product of compact spaces is com-
pact i.e. compactness is productive.

Proof It suffices to prove that any covering of X by open cylinders has a
finite subcover. Suppose not and let C be a family of open cylinders which
covers X but for which no finite subcover exists. For each i ∈ I, consider

{Gij : Gij ⊆ Xi and π−1
i (Gij) ∈ C}.

This cannot cover Xi (otherwise, Xi, being compact, would be covered by
finitely many, say Xi = Gi1 ∪Gi2 ∪ . . . ∪Gin , whence

X = π−1
i (Xi) = π−1

i (Gi1 ∪ . . . ∪ π−1
i (Gin).︸ ︷︷ ︸

all in C, contrary to the choice of C
Select, therefore, zi ∈ Xi \ ∪{ those Gij ’s}; consider z = (zi)i∈I ∈ X. Since
C covered X, z ∈ some C ∈ C. Now C = π−1

k (Gk) for some k ∈ I and so
πk(z) = zk ∈ Gk, contradicting the choice of the zi’s.
To prove the above without Alexander’s Subbase Theorem is very difficult in
general, but it is fairly simple in the special case where I is finite. Several fur-
ther results show that various topological properties are ’finitely productive’
in this sense.

Theorem 4.4 If (X1, T1), (X2, T2), . . . , (Xn, Tn) are finitely many sequen-
tially compact spaces, then their product is sequentially compact.

Proof
Take any sequence (xn) ∈ X. The sequence (π1(xn))n≥1 in sequentially
compact X1 has a convergent subsequence π1(xnk

) → l1 ∈ X1. The se-
quence (π2(xnk

))k≥1 in sequentially compact X2 has a convergent subsequence
(π2(xnkj

))j≥1 → l2 ∈ X2 and π1(xnkj
) → l1 also.

Do this n times! We get a subsequence (yp)p≥1 of the original sequence such
that πi(yp) → li for i = 1, 2, . . . , n. It’s easy to check that yp → (l1, l2, . . . , ln)
so that X is sequentially compact, as required.
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Lemma 4.3 ‘The product of subspaces is a subspace of the product.’

Proof
Let (X, T ) =

∏
i∈I(Xi, Ti); let ∅ ⊂ Yi ⊆ Xi for each i ∈ I. There appear to

be two different ways to topologise
∏

Yi:

either (i) give it the subspace topology induced by
∏ Ti

or (ii) give it the product of all the individual subspace topologies (Ti)Yi
.

The point is that these topologies coincide—if G∗
i0

is open in (Ti0)Yi0
where

i0 ∈ I i.e. G∗
i0

= Yi0 ∩Gi0 for some Gi0 ∈ Ti0 , a typical subbasic open set for
(ii) is

{(yi) ∈
∏

Yi : yi0 ∈ G∗
i0
}

which equals

∏
Yi ∩ {(xi) ∈

∏
Xi : xi0 ∈ Gi0 ∈ Ti0 , i0 ∈ I}

=
∏

Yi ∩ { a typical open cylinder in
∏

Xi}
which is a typical subbasic open set in (i). Hence, (i) = (ii).

Theorem 4.5 Local compactness is finitely productive.

Proof
Given x = (x1, x2, . . . , xn) ∈ (X, T ) =

∏n
i=1(Xi, Ti), we must show that x

has a compact neighbourhood. Now, for all i = 1, . . . , n, xi has a compact
neighbourhood Ci in (Xi, Ti) so we choose Ti-open set Gi such that xi ∈ Gi ⊆
Ci. Then

x ∈ G1 ×G2 × . . .×Gn︸ ︷︷ ︸
∩n

1 π−1
i (Gi)

⊆ C1 × C2 × . . .× Cn︸ ︷︷ ︸
compact subset of

∏
Xi

i.e. x has C1 × C2 × . . . × Cn as a compact neighbourhood. (Note that the
previous lemma is used here, to allow us to apply Tychonoff’s theorem to
the product of the compact subspaces Ci, and then to view this object as a
subspace of the full product!) Thus, X is locally compact.

Lemma 4.4
∏

Yi
T

=
∏

Ȳi
Ti ( in notation of previous lemma).

Proof Do it yourself! (‘The closure of a product is a product of the closures.’)
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4.2.3 Products and Separability

Theorem 4.6 Separability is finitely productive.

Proof
For 1 ≤ i ≤ n, choose countable Di ⊆ Xi where D̄i

Ti = Xi. Consider

D = D1 × D2 × . . . × Dn =
∏n

1 Di, again countable. Then D̄ =
∏

Di
T

=∏
D̄i

Ti =
∏

Xi = X.
Notice that the converses of all such theorems are easily true. For example,

Theorem 4.7 If (X, T ) =
∏

i∈I(Xi, Ti) is

(i) compact

(ii) sequentially compact

(iii) locally compact

(iv) connected

(v) separable

(vi) completely separable

then so is every ‘factor space’ (Xi, Ti).

Proof For each i ∈ I, the projection mapping πi : X → Xi is continuous,
open and onto. Thus, by previous results, the result follows.
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Chapter 5

Separation Axioms

We have observed instances of topological statements which, although true
for all metric (and metrizable) spaces, fail for some other topological spaces.
Frequently, the cause of failure can be traced to there being ‘not enough
open sets’ (in senses to be made precise). For instance, in any metric space,
compact subsets are always closed; but not in every topological space, for
the proof ultimately depends on the observation

‘given x 6= y, it is possible to find disjoint open sets G and H
with x ∈ G and y ∈ H’

which is true in a metric space (e.g. put G = B(x, ε), H = B(y, ε) where
ε = 1

2
d(x, y)) but fails in, for example, a trivial space (X, T0).

What we do now is to see how ‘demanding certain minimum levels-of-supply
of open sets’ gradually eliminates the more pathological topologies, leaving
us with those which behave like metric spaces to a greater or lesser extent.

5.1 T1 Spaces

Definition 5.1 A topological space (X, T ) is T1 if, for each x in X, {x} is
closed.

Comment 5.1 (i) Every metrizable space is T1

(ii) (X, T0) isn’t T1 unless |X| = 1

Theorem 5.1 (i) T1 is hereditary
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(ii) T1 is productive

(iii) T1 ⇒ every finite set is closed. More precisely, (X, T ) is T1 iff T ⊇ C,
i.e. C is the weakest of all the T1 topologies that can be defined on X.

Proof is left to the reader.
The respects in which T1-spaces are ‘nicer’ than others are mostly concerned
with ‘cluster point of a set’ (an idea we have avoided!). We show the equiv-
alence, in T1 spaces, of the two forms of its definition used in analysis.

Theorem 5.2 Given a T1 space (X, T ), p ∈ X and A ⊆ X, the following
are equivalent:

(i) Every neighbourhood of p contains infinitely many points of A

(ii) Every neighbourhood of p contains at least one point of A different from
p.

Proof Obviously, (i) ⇒ (ii); conversely, suppose (i) fails; so there exists a
neighbourhood N of p such that N ∩ A is finite. Consider H = [X \ (N ∩
A)]∪{p}; it is cofinite and is thus an (open) neighbourhood of p. Hence N∩H
is a neighbourhood of p which contains no points of A, except possibly p itself.
Thus, (ii) fails also.
Hence, (i) ⇔ (ii).

5.2 T2 (Hausdorff) Spaces

Definition 5.2 A topological space (X, T ) is T2 (or Hausdorff) iff given
x 6= y in X, ∃ disjoint neighbourhoods of x and y.

Comment 5.2 (i) Every metrizable space is T2

(ii) T2 ⇒ T1 (i.e. any T2 space is T1, for if x, y ∈ T2X and y ∈ {x}, then
every neighbourhood of y contains x, whence x = y.)

(iii) (X, C), with X infinite, cannot be T2

Theorem 5.3 (i) T2 is hereditary

(ii) T2 is productive.
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Proof

i The proof is left to the reader.

ii Let (X, T ) =
∏

i∈I(Xi, Ti) be any product of T2 spaces. Let x = (xi)i∈I

and y = (yi)i∈I be distinct elements of X. Then there exists i0 ∈ I
such that xi0 6= yi0 in Xi0 . Choose disjoint open sets G, H in (Xi0 , Ti0)
so that xi0 ∈ G, yi0 ∈ H. Then x ∈ π−1

i0 (G) ∈ T , y ∈ π−1
i0 (H) ∈ T and

since G ∩H = ∅, π−1
i0 (G) ∩ π−1

i0 (H) = ∅. Hence result.

The T2 axiom is particularly valuable when exploring compactness. Part of
the reason is that T2 implies that points and compact sets can be ‘separated
off’ by open sets and even implies that compact sets can be ‘separated off’
from other compact sets in the same way.

Theorem 5.4 In a T2-space (X, T ), if C is a compact set and x 6∈ C, then
there exist T -open sets G and H so that x ∈ G, C ⊆ H and G ∩H = ∅.
Proof A valuable exercise: separate each point of C from x using disjoint
open sets, note that the open neighbourhoods of the various elements of C,
thus obtained, make up an open covering of C, reduce it to a finite subcover
by appealing to compactness . . .

Corollary 5.1 In a T2-space, any compact set is closed.

Corollary 5.2 In a T2-space, if C and K are non-empty compact and dis-
joint, then there exist open G, H such that C ⊆ G, K ⊆ H and G ∩H = ∅.

A basic formal distinction between algebra and topology is that although
the inverse of a one-one, onto group homomorphism [etc!] is automatically a
homomorphism again, the inverse of a one-one, onto continuous map can fail
to be continuous. It is a consequence of Corollary 5.2 that, amongst compact
T2 spaces, this cannot happen.

Theorem 5.5 Let f : (X1, T1) → (X2, T2) be one-one, onto and continuous,
where X1 is compact and X2 is T2. Then f is a homeomorphism.

Proof It suffices to prove that f is closed. Given closed K ⊆ X1, then K is
compact whence f(K) is compact and so f(K) is closed. Thus f is a closed
map.
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Theorem 5.6 (X, T ) is T2 iff no net in X has more than one limit.

Proof

(i) ⇒ (ii): Let x 6= y in X; by hypothesis, there exist disjoint neighbourhoods U of
x, V of y. Since a net cannot eventually belong to each of two disjoint
sets, it is clear that no net in X can converge to both x and y.

(ii) ⇒ (i): Suppose that (X, T ) is not Hausdorff and that x 6= y are points in X
for which every neighbourhood of x intersects every neighbourhood of
y. Let Nx (Ny) be the neighbourhood systems at x (y) respectively.
Then both Nx and Ny are directed by reverse inclusion. We order the
Cartesian product Nx ×Ny by agreeing that

(Ux, Uy) ≥ (Vx, Vy) ⇔ Ux ⊆ Vx and Uy ⊆ Vy.

Evidently, this order is directed. For each (Ux, Uy) ∈ Nx × Ny, Ux ∩
Uy 6= ∅ and hence we may select a point z(Ux,Uy) ∈ Ux ∩ Uy. If Wx is
any neighbourhood of x, Wy any neighbourhood of y and (Ux, Uy) ≥
(Wx,Wy), then

z(Ux,Uy) ∈ Ux ∩ Uy ⊆ Wx ∩Wy.

That is, the net {z(Ux,Uy), (Ux, Uy) ∈ Nx × Ny} eventually belongs to
both Wx and Wy and consequently converges to both x and y!

Corollary 5.3 Let f : (X1, T1) → (X2, T2), g : (X1, T1) → (X2, T2) be con-
tinuous where X2 is T2. Then their ‘agreement set’ is closed i.e. A = {x :
f(x) = g(x)} is closed.

5.3 T3 Spaces

Definition 5.3 A space (X, T ) is called T3 or regular provided :-

(i) it is T1, and

(ii) given x 6∈ closed F , there exist disjoint open sets G and H so that
x ∈ G, F ⊆ H.

Comment 5.3 (i) Every metrizable space is T3; for it is certainly T1 and
given x 6∈ closed F , we have x ∈ open X \ F so there exists ε > 0 so
that x ∈ B(x, ε) ⊆ X \F . Put G = B(x, ε

2
) and H = {y : d(x, y) > ε

2
};

the result now follows.
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(ii) Obviously T3 ⇒ T2.

(iii) One can devise examples of T2 spaces which are not T3.

(iv) It’s fairly routine to check that T3 is productive and hereditary.

(v) Warning: Some books take T3 to mean Definition 5.3(ii) alone, and
regular to mean Definition 5.3(i) and (ii); others do exactly the oppo-
site!

5.4 T31
2

Spaces

Definition 5.4 A space (X, T ) is T3 1
2
or completely regular or Tychonoff

iff

(i) it is T1, and

(ii) given x ∈ X, closed non-empty F ⊆ X such that x 6∈ F , there exists
continuous f : X → [0, 1] such that f(F ) = {0} and f(x) = 1.

Comment 5.4 (i) Every metrizable space is T3 1
2

(ii) Every T3 1
2

space is T3 ( such a space is certainly T1 and given x 6∈
closed F , choose f as in the definition; define G = f−1([0, 1

3
)), H =

f−1((2
3
, 1]) and observe that T3 follows.)

(iii) Examples are known of T3 spaces which fail to be Tychonoff

(iv) T3 1
2

is productive and hereditary.

5.5 T4 Spaces

Definition 5.5 A space (X, T ) is T4 or normal if

(i) it is T1, and

(ii) given disjoint non-empty closed subsets A, B of X, there exist disjoint
open sets G, H such that A ⊆ G, B ⊆ H.

Theorem 5.7 Every metrizable space (X, T ) is T4.
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Proof Certainly, X is T1; choose a metric d on X such that T is Td. The
distance of a point p from a non-empty set A can be defined thus:

d(p,A) = inf{d(p, a) : a ∈ A}

Given disjoint non-empty closed sets A, B, let

G = {x : d(x,A) < d(x,B)}
H = {x : d(x,B) < d(x,A)}.

Clearly, G∩H = ∅. Also, each is open (if x ∈ G and ε = 1
2
{d(x,B)−d(x,A)},

then B(x, ε) ⊆ G, by the triangle inequality.) Now, if d(p,A) = 0, then for
all n ∈ N , there exists xn ∈ A such that d(p, xn) < 1

n
. So d(p, xn) → 0

i.e. xn → p, whence p ∈ Ā. Thus for each x ∈ A, x 6∈ B = B̄ so that
d(x,B) > 0 = d(x,A) i.e. x ∈ G. Hence A ⊆ G. Similarly B ⊆ H.
It’s true that T4 ⇒ T3 1

2
but not very obvious. First note that if G0, G1 are

open in a T4 space with Ḡ0 ⊆ G1, then there exists open G 1
2

with Ḡ0 ⊆ G 1
2

and Ḡ 1
2
⊆ G1 (because the given Ḡ0 and X \ G1 are disjoint closed sets so

that there exist disjoint open sets G 1
2
, H such that Ḡ0 ⊆ G 1

2
, X \ G1 ⊆ H

i.e. G1 ⊇ (closed) X \H ⊇ G 1
2
).

Lemma 5.1 (Urysohn’s Lemma) Let F1, F2 be disjoint non-empty closed
subsets of a T4 space; then there exists a continuous function f : X → [0, 1]
such that f(F1) = {0}, f(F2) = {1}.

Proof Given disjoint closed F1 and F2, choose disjoint open G0 and H0 so that
F1 ⊆ G0, F2 ⊆ H0. Define G1 = X\F2 (open). Since G0 ⊆ (closed) X\H0 ⊆
X \ F2 = G1, we have Ḡ0 ⊆ G1.
By the previous remark, we can now construct:

(i) G 1
2
∈ T : Ḡ0 ⊆ G 1

2
, Ḡ 1

2
⊆ G1.

(ii) G 1
4
, G 3

4
∈ T : Ḡ0 ⊆ G 1

4
, Ḡ 1

4
⊆ G 1

2
, Ḡ 1

2
⊆ G 3

4
, Ḡ 3

4
⊆ G1.

(iii) . . . and so on!

Thus we get an indexed family of open sets

{Gr : r =
m

2n
, 0 ≤ m ≤ 2n, n ≥ 1}
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such that r1 ≤ r2 ⇒ Ḡr1 ⊆ Gr2 .
Observe that the index set is dense in [0, 1]: if s < t in [0, 1], there exists
some m

2n such that s < m
2n < t. Define

f(x) =

{
inf{r : x ∈ Gr} x 6∈ F2

1 x ∈ F2.

Certainly f : X → [0, 1], f(F2) = {1}, f(F1) = {0}. To show f continuous,
it suffices to show that f−1([0, α)) and f−1((α, 1]) are open for 0 < α < 1.
Well, f(x) < α iff there exists some r = m

2n such that f(x) < r < α. It
follows that f−1([0, α)) = ∪r<αGr, a union of open sets.
Again, f(x) > α iff there exist r1, r2 such that α < r1 < r2 < f(x), implying
that x 6∈ Gr2 whence x 6∈ Ḡr1 . It follows that f−1((α, 1]) = ∪r1>α(X \ Ḡr1),
which is again open.

Corollary 5.4 Every T4 space is T3 1
2
.

Proof Immediate from Lemma 5.1. (Note that there exist spaces which are
T3 1

2
but not T4.)

Theorem 5.8 Any compact T2 space is T4.

Proof Use Corollary 5.2 to Theorem 5.3.
Note Unlike the previous axioms, T4 is neither hereditary nor productive.
The global view of the hierarchy can now be filled in as an exercise from
data supplied above:-
Metrizable Hereditary? Productive?
T4

T3 1
2

T3

T2

T1

The following is presented as an indication of how close we are to having
‘come full circle’.

Theorem 5.9 Any completely separable T4 space is metrizable!

Sketch Proof
Choose a countable base; list as {(Gn, Hn) : n ≥ 1} those pairs of elements
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of the base for which Ḡn ⊆ Hn. For each n, use Lemma 5.1 to get continuous
fn : X → [0, 1] such that fn(Ḡn) = {0}, fn(X \Hn) = {1}. Define

d(x, y) =

√√√√∑

n≥1

{fn(x)− fn(y)

2n
}2.

One confirms that d is a metric, and induces the original topology.
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