A feenphone.com http://feenphone.com/?p=2424

FeenPhone Non-Windows Developer Protocol Guide

By
MichaelWDean

OK, people have been asking for this. Here ya go! Less-techy audio part by Michael W. Dean. Hella tech protocol part
by Derrick Slopey.

FeenPhone Non-Windows Developer Protocol Guide:

SOURCE CODE AND LEGAL
FeenPhone source code is on GitHub, HERE.

Open-source BSD 3-Clause License / no warranty of useability of FeenPhone software. More info HERE.

OVERVIEW / DEFINITION OF FeenPhone:
FeenPhone is free open-source (BSD 3-clause) P2P true-duplex mono decentralized VoIP software designed with
highest quality audio in mind. FeenPhone uses Opus codec over TCP. Default Opus 24KHz (32kbps).

FeenPhone uses Opus codec and NAudio, plus a bunch of original code. The only component that is imperative to
use in porting the functionalities in other OSes is the Opus Codec and the packet protocol.

FeenPhone is made for people who wish to produce broadcast-quality conversational spoken audio with people who
are not in the same location.

Unlike all other VolPs, FeenPhone contains no echo cancellation, no noise reduction and no audio compression. This
helps make the audio quality higher than with other VolPs, but also means that FeenPhone must be used in a quiet
room with a decent mic, a windscreen, and most importantly, with headphones. The headphones should be closed-
ear headphones to prevent echo.

FeenPhone could be used without headphones, but only in a push-to-talk one-way at a time system. This would be a
possible application for FeenPhone for mobile devices. The microphones on iPhones, Android phones and Windows
phones are fairly good, the limitations of the phone network and / or the limitations of various VolPs commonly used
on these devices are the reason they don’t sound great. FeenPhone could sound great on any of these devices if set
up to be push-to-talk in one direction at a time. (Read the last paragraph of the “Uses for FeenPhone” section on the
front page of this website for more on push-to-talk uses for FeenPhone.)

FeenPhone will work with any microphone, but is designed for, and sounds best with, a good cardioid dynamic USB
mic, with a windscreen, on a stand, near the mouth of the user, in a quiet sound-conditioned room. The
recommended specific mic is the $50 Audio-Technica AT2005USB. The makers of FeenPhone had tested many
microphones, and made FeenPhone with this mic in mind.

http://feenphone.com
http://feenphone.com/?p=2424
https://github.com/Derrick-/FeenPhone
http://opensource.org/licenses/BSD-3-Clause
http://feenphone.com/?page_id=239
http://feenphone.com/?post=1126
http://www.amazon.com/gp/product/B007JX8O0Y?ie=UTF8&camp=1789&creativeASIN=B007JX8O0Y&linkCode=xm2&tag=www30dollarfi-20

Low buffer sizes for input and output are important for low latency, so audio drivers which work closest to the
hardware are preferred. FeenPhone is client-server, and currently the server is responsible for redistributing the audio
from each client to the others. The server will have the lowest audio latency, but require the most bandwidth and
processing power.

FeenPhone could be built for many of different platforms, but on some of them it may make more sense to just rebuild
from scratch. A lot of the work on FeenPhone itself was concerned with interfacing with the audio system and handling
system-level audio device stuff, this won't likely translate well to other systems.

The networking engine may work well on Mono, but the audio system will not.

It will be a lot easier to simply start by making Clients for Linux, Android and Apple than to make full Server / Clients
like our Windows version.

Packets:
Currently the packet writers are defined in FeenPhone\Packets\Packet.cs

Readers can probably be inferred from them. The Packet readers/writers could use some cleanup and that is intendec
to be done before the next release.

Basic packet structure:
[byte packetld][ushort payloadLength][byte[] payload]
Encoding:

All numbers are little-endian unless otherwise specified.
A ushort is a little-endian two-byte number, for example 258 is encoded as [0x01][0x02]
A bool is a single byte 0 or 1

Text is Ascii encoded, and is not prefixed with a length unless otherwise specified. Most text was put at
the end of the message so that its length can be calculated from the payload length.

Packet Ids:

e Chat=2,

e LoginStatus =5,

¢ LoginRequest = 6,
e UserList =12,

e UserLogout = 14,
e UserlLogin =15,

¢ Audio = 16,
e PingReq = 22,
e PingResp = 23,

Structures:

UserData
[ushort length][AsciiEncodedText]The user data structure contains a unsigned 16bit short little-endian length of
the ASCII encoded text data followed by the text data which is a tab delimited list of the follow string
values:UserID: a guid string in the format shown in the example.
Admin: “1” or “0” indicating whether the user is an administrator
Username
NicknameText data example:"0989547f-9986-4319-a0e2-eeeab91a9137\t0\tderrick\tderrick”

Packets:

Chat (Client, Server):
[0x02][ushort payloadLength][UserData][AsciiEncodedText]Note: The acsii encoded text is not prefixed with a
length, but will be equal to the payloadLength-UserDatalLength. The UserData length is specified in the first two
bytes of the UserData structure.

LoginStatus (Server):
[0x05][ushort payloadLength][bool loginStatus][AsciiEncodedText]

AsciiEncodedText:
An optional message from the server. If omitted, payloadLength will be 1

Client should prompt user for login credentials if loginStatus==

LoginRequest (Client):
[0x06] [ushort payloadLength][AsciiEncodedText]

AsciEncodedText
Tab delimited username then password. Like: “derrick\tpass”

Server will reply with LoginStatus packet.

UserList (Server):
[0x0C][ushort payloadLength][byte count][UserData....]

Count

The number of user structures contained in the packet.
UserInfoStructures

The Userlnfo datas for each connected user.

UserLogout (Server):
[0x0D][ushort payloadLength][][UserData]

UserData:
The User structure for the user which logged out or disconnected

UserLogin (Server):
[OxOE][ushort payloadLength][][UserData]

UserData
The User structure for the user which logged in

Audio(Client, Server):
[0x10][ushort payloadLength][byte codeclD][bool containsGuid][optional byte(16) userID][AudioData]

codeclD
This is the defined codec under which the audio data is encoded. See the Audio Codecs section for more
information.
containsGuid
True if the UserlD is specified, used by server for broadcasting other user’s data. It is always false when
the client is sending its own audio to the server, or if the server is sending its own audio to clients.
UserlD:
If containsGuid is true, this is a 16-byte representation of the guid Userld which the audio was received
from.
AudioData:
The encoded audio stream

The Server is responsible for echoing any audio received from clients to all the other clients. There is no mixing
done on the server, each client receives a discrete audio stream from each user. It is preferred that the server
add the received audio to its own play buffer before sending the packets to the clients to minimize local latency
(at the expense of remote latency).

PingReq (Client, Server):
[0x16][0x02][ushort timecode]

Timecode
A 16-bit timestamp generated by the requestor. The source if the timestamp does not matter because the
remote device simply echoes this code back to the requestor. In the .Net implementation the total
milliseconds since program start is used for this value.

Upon receipt, the PingResp message should be sent back containing the same timecode which was sent.

PingResp (Client, Server):
[0x17][0x02][ushort echo]

echo
The 16-bit value that was sent in the request.

Audio:

These are the most basic parameters for encoding the audio in supported formats. Please refer to the documentation
for each codec for additional implementation information. The left prefixes each codec name with the CodecID as
specified by the packet protocol for the AudioData packet.

Currently Supported CodecsIDs:

43: OpusCodec24kHzVoip32768

Channels: 10pus segment frames: 960bitRate: 32768outputSampleRate: 24000codingMode: Voip = 2048
77: OpusCodecAudio48kHz65536

Channels: 10pus segment frames: 960bitRate: 65536outputSampleRate: 48000codingMode: Audio = 2049
140: G722ChatCodec

Channels: 1bitRate: 64000outputSampleRate: 16000Flags: None
106: Uncompressed8KHzMonoPcmChatCodec
Channels: 2bitRate: 1280000outputSampleRate: 8000Sample format: 16bit

The non-Opus codecs / audio formats (G.722 and PCM) and non-TCP protocols (the options for UDP and for Telnet)
in FeenPhone are optional and are not needed in a derived version. The client that does not support a codeclD
should gracefully decline to play the audio, and perhaps inform the user that the codec is unsupported.

Please contact us HERE or post a comment below if you're working on a non-Windows version so people can
coordinate. And we’re available for testing your version over the Internet, and will offer feedback free. If you work with
us on it and it rocks, we may help you promote it when you’re done. Thank you!

http://feenphone.com/?page_id=298

	FeenPhone Non-Windows Developer Protocol Guide
	Packets:
	Basic packet structure:
	Encoding:
	Packet Ids:
	Structures:
	Packets:

	Audio:
	Currently Supported CodecsIDs:

